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Schrödinger operators with singular potentials

In quantum mechanics, the hamiltonian of a non-relativistic
charged particle in an electromagnetic field has the form

(−i∇ + A)2 + V

A : R
N → R

N magnetic potential associated to
the magnetic field B = curlA .

V : R
N → R electric potential.
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Schrödinger operators with singular potentials

In quantum mechanics, the hamiltonian of a non-relativistic
charged particle in an electromagnetic field has the form

(−i∇ + A)2 + V

A : R
N → R

N magnetic potential associated to
the magnetic field B = curlA .

V : R
N → R electric potential.

For N > 2, we consider singular homogeneous electromagnetic
potentials which make the operator invariant by scaling

A(x) =
A
(
x
|x|

)

|x|
A ∈ C1(SN−1,RN )

and
V (x) = −

a
(
x
|x|

)

|x|2

a ∈ L∞(SN−1,R)

“6th European Conference on Elliptic and Parabolic Problems” , Gaeta, May 25, 2009 – p. 2



A prototype in dimension 2

Aharonov-Bohm magnetic potentials are associated to thin
solenoids: if the radius of the solenoid tends to zero while the
flux through it remains constant, then the particle is subject to a
δ-type magnetic field, which is called Aharonov-Bohm field. An
associated vector potential in R

2 is

A(x1, x2) = α

(

− x2

|x|2 ,
x1

|x|2
)

, (x1, x2) ∈ R
2,

with α = circulation of A around the solenoid.
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Aharonov-Bohm vector potentials are
• singular at 0,
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A prototype in dimension 2

Aharonov-Bohm magnetic potentials are associated to thin
solenoids: if the radius of the solenoid tends to zero while the
flux through it remains constant, then the particle is subject to a
δ-type magnetic field, which is called Aharonov-Bohm field. An
associated vector potential in R

2 is

A(x1, x2) = α

(

− x2

|x|2 ,
x1

|x|2
)

, (x1, x2) ∈ R
2,

with α = circulation of A around the solenoid.

Aharonov-Bohm vector potentials are
• singular at 0,
• homogeneous of degree −1

• transversal, i.e. A(θ) · θ = 0 for all θ ∈ S
N−1 (TC)
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Singular homogeneous electric potentials

which scale as the laplacian arise in nonrelativistic molecular
physics, see [J. M. L évy-Leblond, Phys. Rev. (1967)] . The potential
describing the interaction between an electric charge and the
dipole moment D ∈ R

N of a molecule has the form

V (x) = −λ (x · d)

|x|3 in R
N ,

where λ ∝ magnitude of the dipole moment D

d = D/|D| = orientation of D.
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Singular homogeneous electric potentials

which scale as the laplacian arise in nonrelativistic molecular
physics, see [J. M. L évy-Leblond, Phys. Rev. (1967)] . The potential
describing the interaction between an electric charge and the
dipole moment D ∈ R

N of a molecule has the form

V (x) = −λ (x · d)

|x|3 in R
N ,

where λ ∝ magnitude of the dipole moment D

d = D/|D| = orientation of D.

Schrödinger operators with dipole-type potentials
a(x/|x|)
|x|2

are studied in

[Terracini, Adv. Diff. Equations (1996)]
[F.-Marchini-Terracini, Discr. Contin. Dyn. Syst. (2008)]
[F.-Marchini-Terracini, Indiana Univ. Math. J., to appear]
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Problem: describe the asymptotic behavior at the singularity of solutions
to equations associated to Schrödinger operators with singular
electromagnetic potentials of type

LA,a :=

(

−i∇ +
A
(
x
|x|

)

|x|

)2

−
a
(
x
|x|

)

|x|2

in a domain Ω ⊂ R
N containing either the origin or a neighborhood of ∞.
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Problem: describe the asymptotic behavior at the singularity of solutions
to equations associated to Schrödinger operators with singular
electromagnetic potentials of type

LA,a :=

(

−i∇ +
A
(
x
|x|

)

|x|

)2

−
a
(
x
|x|

)

|x|2

in a domain Ω ⊂ R
N containing either the origin or a neighborhood of ∞.

• Linear perturbation of LA,a: LA,au = h(x)u

with h ∈ L∞
loc(Ω \ {0}) negligible with respect to 1

|x|2

near the singularity
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Problem: describe the asymptotic behavior at the singularity of solutions
to equations associated to Schrödinger operators with singular
electromagnetic potentials of type

LA,a :=

(

−i∇ +
A
(
x
|x|

)

|x|

)2

−
a
(
x
|x|

)

|x|2

in a domain Ω ⊂ R
N containing either the origin or a neighborhood of ∞.

• Linear perturbation of LA,a: LA,au = h(x)u

with h ∈ L∞
loc(Ω \ {0}) negligible with respect to 1

|x|2

near the singularity

• Semilinear equations of type LA,au = f(x,u(x))

with f having at most critical growth.
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Remark

Comparison and maximum principles play a crucial role both in
[F.-Marchini-Terracini (2008)] and [Pinchover (1994)] .

In the presence of a singular magnetic potential, comparison
methods are no more available, preventing us from a direct
extension of the aforementioned results.

We overcome this difficulty by a Almgren type monotonicity
formula and blow-up methods.
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The angular operator

We aim to describe the rate and the shape of the singularity of
solutions, by relating them to the eigenvalues and the
eigenfunctions of a Schrödinger operator on the sphere S

N−1

corresponding to the angular part of LA,a:

LA,a :=
(
− i∇SN−1 + A

)2 − a
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The angular operator

We aim to describe the rate and the shape of the singularity of
solutions, by relating them to the eigenvalues and the
eigenfunctions of a Schrödinger operator on the sphere S

N−1

corresponding to the angular part of LA,a:

LA,a :=
(
− i∇SN−1 + A

)2 − a

For a ∈ L∞(SN−1,R) and A ∈ C1(SN−1,RN ), the operator LA,a

on S
N−1 admits a diverging sequence of real eigenvalues

µ1(A, a) 6 µ2(A, a) 6 · · · 6 µk(A, a) 6 · · ·.
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The angular operator

We aim to describe the rate and the shape of the singularity of
solutions, by relating them to the eigenvalues and the
eigenfunctions of a Schrödinger operator on the sphere S

N−1

corresponding to the angular part of LA,a:

LA,a :=
(
− i∇SN−1 + A

)2 − a

For a ∈ L∞(SN−1,R) and A ∈ C1(SN−1,RN ), the operator LA,a

on S
N−1 admits a diverging sequence of real eigenvalues

µ1(A, a) 6 µ2(A, a) 6 · · · 6 µk(A, a) 6 · · ·.

Positivity of the quadratic form associated to LA,a is ensured by

µ1(A, a) > −
(
N − 2

2

)2

(PD)
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The functional setting

D1,2
∗ (RN ,C) := completion of C∞

c (RN \ {0},C) with respect to

‖u‖D1,2
∗ (RN ,C) :=

(∫

RN

(
∣
∣∇u(x)

∣
∣
2

+
|u(x)|2
|x|2

)

dx

)1/2

.
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The functional setting

D1,2
∗ (RN ,C) := completion of C∞

c (RN \ {0},C) with respect to

‖u‖D1,2
∗ (RN ,C) :=

(∫

RN

(
∣
∣∇u(x)

∣
∣
2

+
|u(x)|2
|x|2

)

dx

)1/2

.

D1,2
∗ (RN ,C) =

{

u ∈ L1
loc(R

N \ {0},C) :
u

|x| ,∇u ∈ L2(RN ,CN )

}

.
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The functional setting

D1,2
∗ (RN ,C) := completion of C∞

c (RN \ {0},C) with respect to

‖u‖D1,2
∗ (RN ,C) :=

(∫

RN

(
∣
∣∇u(x)

∣
∣
2

+
|u(x)|2
|x|2

)

dx

)1/2

.

D1,2
∗ (RN ,C) =

{

u ∈ L1
loc(R

N \ {0},C) :
u

|x| ,∇u ∈ L2(RN ,CN )

}

.

Under assumptions (TC) and (PD), D1,2
∗ (RN ,C) = D1,2

A,a(RN ), where

D1,2
A,a(RN ) is the completion of C∞

c (RN \ {0},C) with respect to

‖u‖D1,2
A,a

(RN ) :=

(∫

RN

[∣
∣
∣
∣

(

∇+i
A
(
x/|x|

)

|x|

)

u(x)

∣
∣
∣
∣

2

−a
(
x/|x|

)

|x|2 |u(x)|2
]

dx

)1/2

Moreover the norms ‖ · ‖D1,2
∗ (RN ,C) and ‖ · ‖D1,2

A,a
(RN ) are equivalent.
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The functional setting

N > 3

Hardy’s inequality

(
N−2

2

)2 ∫

RN

|u|2

|x|2 dx 6
∫

RN |∇u|2 dx
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The functional setting

N > 3

Hardy’s inequality

(
N−2

2

)2 ∫

RN

|u|2

|x|2 dx 6
∫

RN |∇u|2 dx

⇓

D1,2
∗ (RN ,C) = D1,2(RN ) = C∞

c (RN ,C)
‖·‖D1,2(RN )

‖u‖D1,2(RN ) :=

(∫

RN

∣
∣∇u(x)

∣
∣
2
dx

)1/2

and the norms ‖ · ‖D1,2
∗ (RN ,C) and ‖ · ‖D1,2(RN ) are equivalent.
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The functional setting If N = 2 , (TC) holds (i.e. A(θ) ·θ = 0), and

ΦA :=
1

2π

∫ 2π

0

α(t) dt 6∈ Z (ND)

where α(t) := A(cos t, sin t) · (− sin t, cos t)
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The functional setting If N = 2 , (TC) holds (i.e. A(θ) ·θ = 0), and

ΦA :=
1

2π

∫ 2π

0

α(t) dt 6∈ Z (ND)

where α(t) := A(cos t, sin t) · (− sin t, cos t)

⇓ [Laptev-Weidl (1999)]

C∞
c (RN \ {0},C) functions satisfy the following Hardy inequality:

(

min
k∈Z

|k − ΦA|
)2
∫

R2

|u(x)|2
|x|2 dx 6

∫

R2

∣
∣
∣
∣
∇u(x) + i

A
(
x/|x|

)

|x| u(x)

∣
∣
∣
∣

2

dx

︸ ︷︷ ︸

optimal
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The functional setting If N = 2 , (TC) holds (i.e. A(θ) ·θ = 0), and

ΦA :=
1

2π

∫ 2π

0

α(t) dt 6∈ Z (ND)

where α(t) := A(cos t, sin t) · (− sin t, cos t)

⇓ [Laptev-Weidl (1999)]

C∞
c (RN \ {0},C) functions satisfy the following Hardy inequality:

(

min
k∈Z

|k − ΦA|
)2
∫

R2

|u(x)|2
|x|2 dx 6

∫

R2

∣
∣
∣
∣
∇u(x) + i

A
(
x/|x|

)

|x| u(x)

∣
∣
∣
∣

2

dx

︸ ︷︷ ︸

optimal

D1,2
∗ (RN ,C) = D1,2

A (R2) = completion w.r.t.

∥
∥
∥
∥
∇u+i A

(
x/|x|

)

|x| u

∥
∥
∥
∥

L2(R2,C)
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The functional setting

In an open bounded domain Ω ⊂ R
N , 0 ∈ Ω, let

H1
∗ (Ω,C) = completion of







u ∈ H1(Ω,C) ∩ C∞(Ω,C) :

u vanishes in a neighborhood of 0






w.r.t.

‖u‖H1
∗(Ω,C) =

(

‖∇u‖2
L2(Ω,CN ) + ‖u‖2

L2(Ω,C) +
∥
∥
∥
u

|x|
∥
∥
∥

2

L2(Ω,C)

)1/2

.
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In an open bounded domain Ω ⊂ R
N , 0 ∈ Ω, let

H1
∗ (Ω,C) = completion of







u ∈ H1(Ω,C) ∩ C∞(Ω,C) :

u vanishes in a neighborhood of 0






w.r.t.

‖u‖H1
∗(Ω,C) =

(

‖∇u‖2
L2(Ω,CN ) + ‖u‖2

L2(Ω,C) +
∥
∥
∥
u

|x|
∥
∥
∥

2

L2(Ω,C)

)1/2

.

H1
∗ (Ω,C) =

{

u ∈ H1(Ω,C) :
u

|x| ∈ L2(Ω,C)

}
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The functional setting

In an open bounded domain Ω ⊂ R
N , 0 ∈ Ω, let

H1
∗ (Ω,C) = completion of







u ∈ H1(Ω,C) ∩ C∞(Ω,C) :

u vanishes in a neighborhood of 0






w.r.t.

‖u‖H1
∗(Ω,C) =

(

‖∇u‖2
L2(Ω,CN ) + ‖u‖2

L2(Ω,C) +
∥
∥
∥
u

|x|
∥
∥
∥

2

L2(Ω,C)

)1/2

.

H1
∗ (Ω,C) =

{

u ∈ H1(Ω,C) :
u

|x| ∈ L2(Ω,C)

}

• If N > 3, H1
∗ (Ω) = H1(Ω,C) and their norms are equivalent.

• If N = 2, H1
∗ (Ω) is strictly smaller than H1(Ω,C).
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The Almgren frequency function

Studying regularity of area-minimizing surfaces of codimension
> 1, in 1979 Almgren introduced the frequency function

N(r) =
r
∫

Br
|∇u|2 dx

∫

∂Br
u2

and observed that, if u is harmonic, then N ր in r .
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The Almgren frequency function

Studying regularity of area-minimizing surfaces of codimension
> 1, in 1979 Almgren introduced the frequency function

N(r) =
r
∫

Br
|∇u|2 dx

∫

∂Br
u2

and observed that, if u is harmonic, then N ր in r .

“frequency ”: if u is a harmonic function in R
2 homogeneous of

degree k
(
uk(r, θ) = akr

k sin(kθ)
)
, then N(r) = k.
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The Almgren frequency function

Studying regularity of area-minimizing surfaces of codimension
> 1, in 1979 Almgren introduced the frequency function

N(r) =
r
∫

Br
|∇u|2 dx

∫

∂Br
u2

and observed that, if u is harmonic, then N ր in r .

The Almgren monotonicity formula was used in
• [Garofalo-Lin, Indiana Univ. Math. J. (1986)] : generalization to variable
coefficient elliptic operators in divergence form (unique continuation)
• [Athanasopoulos-Caffarelli-Salsa, Amer. J. Math. (2008) ]: regularity of the
free boundary in obstacle problems.
• [Caffarelli-Lin, J. AMS (2008)] regularity of free boundary of the limit
components of singularly perturbed elliptic systems.
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The Almgren type frequency function

In an open bounded Ω ∋ 0, let u be a H1
∗ (Ω)-weak solution to

LA,au = h(x)u, with h satisfying

h ∈ L∞
loc(Ω \ {0},C), |h(x)| = O(|x|−2+ε) as |x| → 0 (H0)
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The Almgren type frequency function

In an open bounded Ω ∋ 0, let u be a H1
∗ (Ω)-weak solution to

LA,au = h(x)u, with h satisfying

h ∈ L∞
loc(Ω \ {0},C), |h(x)| = O(|x|−2+ε) as |x| → 0 (H0)

For small r > 0 define

D(r) = 1
rN−2

∫

Br

[∣
∣∇u+ i

A( x
|x|

)

|x| u
∣
∣
2 − a( x

|x|
)

|x|2 |u|2 − (ℜh)|u|2
]

dx,

H(r) = 1
rN−1

∫

∂Br

|u|2 dS.
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The Almgren type frequency function

In an open bounded Ω ∋ 0, let u be a H1
∗ (Ω)-weak solution to

LA,au = h(x)u, with h satisfying

h ∈ L∞
loc(Ω \ {0},C), |h(x)| = O(|x|−2+ε) as |x| → 0 (H0)

For small r > 0 define

D(r) = 1
rN−2

∫

Br

[∣
∣∇u+ i

A( x
|x|

)

|x| u
∣
∣
2 − a( x

|x|
)

|x|2 |u|2 − (ℜh)|u|2
]

dx,

H(r) = 1
rN−1

∫

∂Br

|u|2 dS.

If (PD) holds and u 6≡ 0,
⇒ H(r) > 0 for small r > 0

;

Almgren type frequency function

N (r) = Nu,h(r) =
D(r)

H(r)

is well defined in a suitably small interval (0, r̄).
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The Almgren type frequency function

N ∈W 1,1
loc (0, r) and, in a distributional sense and for a.e. r ∈ (0, r),

N ′(r) =

2r

[(∫

∂Br

∣
∣∂u
∂ν

∣
∣
2
dS
)(∫

∂Br
|u|2dS

)

−
(∫

∂Br
ℜ
(
u∂u

∂ν

)
dS
)2
]

(∫

∂Br
|u|2dS

)2 +
αh(r)

∫

∂Br
|u|2dS

where αh(r)= 2

[ ∫

Br

ℜ(h(x)u(x) (x · ∇u(x))) dx

+
N − 2

2

∫

Br

(ℜh(x))|u(x)|2 dx− r

2

∫

∂Br

(ℜh(x))|u(x)|2 dS
]
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(ℜh(x))|u(x)|2 dx− r
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∂Br

(ℜh(x))|u(x)|2 dS
]

(H0) =⇒
∣
∣
∣
∣

αh(r)
∫

∂Br
|u|2dS

∣
∣
∣
∣
6 const r−1+ε
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∂ν

∣
∣
2
dS
)(∫

∂Br
|u|2dS

)

−
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(
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)
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6

0

where αh(r)= 2

[ ∫

Br

ℜ(h(x)u(x) (x · ∇u(x))) dx

+
N − 2

2

∫

Br

(ℜh(x))|u(x)|2 dx− r

2

∫

∂Br

(ℜh(x))|u(x)|2 dS
]

=⇒ the limit γ := limr→0+ N (r) exists and is finite.

︸ ︷︷ ︸
integrable
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Blow-up: set wλ(x) =
u(λx)
√

H(λ)
, so that

∫

∂B1

|wλ|2dS = 1.

{wλ}λ∈(0,λ̄) is bounded in H1
∗ (B1) =⇒ for any λn → 0+, wλnk ⇀ w in

H1
∗ (B1) along a subsequence λnk

→ 0+, and
∫

∂B1
|w|2dS = 1.
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u(λx)
√

H(λ)
, so that

∫

∂B1

|wλ|2dS = 1.

{wλ}λ∈(0,λ̄) is bounded in H1
∗ (B1) =⇒ for any λn → 0+, wλnk ⇀ w in

H1
∗ (B1) along a subsequence λnk

→ 0+, and
∫

∂B1
|w|2dS = 1.

(Ek) LA,aw
λnk (x) = λ2

nk
h(λnk

x)wλnk (x)
weak
;

limit
(E) LA,aw(x) = 0 in B1

Bootstrap and classical regularity theory ⇒

wλnk → w in C1,τ
loc (B1 \ {0}), τ ∈ (0, 1), H1(Br,C), H1

∗ (Br), r ∈ (0, 1).
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∫
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|w|2dS = 1.

(Ek) LA,aw
λnk (x) = λ2

nk
h(λnk

x)wλnk (x)
weak
;

limit
(E) LA,aw(x) = 0 in B1

Bootstrap and classical regularity theory ⇒

wλnk → w in C1,τ
loc (B1 \ {0}), τ ∈ (0, 1), H1(Br,C), H1

∗ (Br), r ∈ (0, 1).

If Nk(r) the Almgren frequency function associated to (Ek) and
Nw(r) is the Almgren frequency function associated to (E), then

lim
k→∞

Nk(r) = Nw(r) for all r ∈ (0, 1).
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Blow-up: By scaling Nk(r) = N (λnk
r)

⇓
Nw(r) = lim

k→∞
N (λnk

r) = γ ∀r ∈ (0, 1)
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Blow-up: By scaling Nk(r) = N (λnk
r)

⇓
Nw(r) = lim

k→∞
N (λnk

r) = γ ∀r ∈ (0, 1)

Then Nw is constant in (0, 1) and hence N ′
w(r) = 0 for any r ∈ (0, 1)

⇓
(
∫

∂Br

∣
∣
∣
∣

∂w

∂ν

∣
∣
∣
∣

2

dS

)

·
(∫

∂Br

|w|2dS
)

−
(∫

∂Br

ℜ
(

w
∂w

∂ν

)

dS

)2

= 0

Therefore w and ∂w
∂ν are parallel as vectors in L2(∂Br,C), i.e. ∃ a real

valued function η = η(r) such that ∂w
∂ν (r, θ) = η(r)w(r, θ) for r ∈ (0, 1).
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∣
∣
∣
∣

2

dS

)

·
(∫

∂Br

|w|2dS
)

−
(∫

∂Br

ℜ
(

w
∂w

∂ν

)

dS

)2

= 0

Therefore w and ∂w
∂ν are parallel as vectors in L2(∂Br,C), i.e. ∃ a real

valued function η = η(r) such that ∂w
∂ν (r, θ) = η(r)w(r, θ) for r ∈ (0, 1).

After integration we obtain

w(r, θ)= e
R

r

1
η(s)dsw(1, θ) = ϕ(r)ψ(θ), r ∈ (0, 1), θ ∈ S

N−1.
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Blow-up: w(r, θ) = ϕ(r)ψ(θ)

Rewriting equation (E) LA,aw(x) = 0 in polar coordinates we obtain
(
−ϕ′′(r) − N−1

r ϕ′(r)
)
ψ(θ) + r−2ϕ(r)LA,aψ(θ) = 0.
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Rewriting equation (E) LA,aw(x) = 0 in polar coordinates we obtain
(
−ϕ′′(r) − N−1

r ϕ′(r)
)
ψ(θ) + r−2ϕ(r)LA,aψ(θ) = 0.

Then ψ is an eigenfunction of the operator LA,a.
Let µk0

(A, a) be the corresponding eigenvalue =⇒ ϕ(r) solves

−ϕ′′(r) − N−1
r ϕ(r) + r−2µk0

(A, a)ϕ(r) = 0.
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Blow-up: w(r, θ) = ϕ(r)ψ(θ)

Rewriting equation (E) LA,aw(x) = 0 in polar coordinates we obtain
(
−ϕ′′(r) − N−1

r ϕ′(r)
)
ψ(θ) + r−2ϕ(r)LA,aψ(θ) = 0.

Then ψ is an eigenfunction of the operator LA,a.
Let µk0

(A, a) be the corresponding eigenvalue =⇒ ϕ(r) solves

−ϕ′′(r) − N−1
r ϕ(r) + r−2µk0

(A, a)ϕ(r) = 0.

Then ϕ(r) = c1r
σ+

+ c2r
σ−

with σ± = −N−2
2 ±

√
(

N−2
2

)2
+ µk0

(A, a).

|x|σ−

ψ( x
|x| ) /∈ H1

∗ (B1) ; c2 = 0, ϕ(1) = 1 ; c1 = 1

⇓
w(r, θ) = rσ+

ψ(θ)

From Nw(r) ≡ γ, we deduce that γ = σ+.
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Asymptotics at the singularity

Step 1: any λn → 0+ admits a subsequence {λnk
}k∈N s.t.

u(λnk
x)

√

H(λnk
)
→ |x|γψ

( x

|x|
) weakly in H1(B1)

strongly in H1(Br) for all r ∈ (0, 1)

in C1,τ
loc (B1 \ {0}) for all τ ∈ (0, 1)

γ = −N−2
2 +

√
(

N−2
2

)2
+ µk0

(A, a), ψ eigenfunction associated to µk0
.
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Asymptotics at the singularity

Step 1: any λn → 0+ admits a subsequence {λnk
}k∈N s.t.

u(λnk
x)

√

H(λnk
)
→ |x|γψ

( x

|x|
) weakly in H1(B1)

strongly in H1(Br) for all r ∈ (0, 1)

in C1,τ
loc (B1 \ {0}) for all τ ∈ (0, 1)

γ = −N−2
2 +

√
(

N−2
2

)2
+ µk0

(A, a), ψ eigenfunction associated to µk0
.

Step 2: limr→0+
H(r)
r2γ is finite and > 0 (Step 1 + separation of variables)
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Asymptotics at the singularity

Step 1: any λn → 0+ admits a subsequence {λnk
}k∈N s.t.

u(λnk
x)

√

H(λnk
)
→ |x|γψ

( x

|x|
) weakly in H1(B1)

strongly in H1(Br) for all r ∈ (0, 1)

in C1,τ
loc (B1 \ {0}) for all τ ∈ (0, 1)

γ = −N−2
2 +

√
(

N−2
2

)2
+ µk0

(A, a), ψ eigenfunction associated to µk0
.

Step 2: limr→0+
H(r)
r2γ is finite and > 0 (Step 1 + separation of variables)

Step 3: So λ−γ
nk
u(λnk

θ) →
j0+m−1∑

i=j0

βiψi(θ) in C1,τ (SN−1)

where {ψi}j0+m−1
i=j0

is an L2(SN−1)-orthonormal basis for the
eigenspace associated to µk0

.

Expanding u(λ θ) =
∞∑

k=1

ϕk(λ)ψk(θ), we compute the βi’s.
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Asymptotics at the singularity

βi = lim
k→∞

λ−γ
nk
ϕi(λnk

)

=

Z

SN−1

»

R−γu(Rθ) +

Z R

0

h(s θ)u(s θ)

2γ +N − 2

„

s1−γ −
sγ+N−1

R2γ+N−2

«

ds

–

ψi(θ) dS(θ)

depends neither on the sequence {λn}n∈N nor on its subsequence {λnk
}k∈N

=⇒ the convergences actually hold as λ → 0
+.
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Asymptotics at the singularity

βi = lim
k→∞

λ−γ
nk
ϕi(λnk

)

=

Z

SN−1

»

R−γu(Rθ) +

Z R

0

h(s θ)u(s θ)

2γ +N − 2

„

s1−γ −
sγ+N−1

R2γ+N−2

«

ds

–

ψi(θ) dS(θ)

Theorem 1 [F.-Ferrero-Terracini, JEMS, to appear]

Let Ω ∋ 0 be a bounded open set in R
N , N > 2, (TC), (PD), and (H0) hold.

If u 6≡ 0 weakly solves LA,au = h(x)u in Ω, then ∃ k0 ∈ N, k0 > 1, s. t.

γ = limr→0+ Nu,h(r) = −N−2
2 +

√
(

N−2
2

)2
+ µk0(A, a).

Furthermore, for any τ ∈ (0, 1), as λ→ 0+,

λ−γu(λθ) →∑j0+m−1
i=j0

βiψi(θ) in C1,τ (SN−1)

λ1−γ∇u(λθ) →∑j0+m−1
i=j0

βi

(
γψi(θ)θ + ∇SN−1ψi(θ)

)
in C0,τ (SN−1).
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Asymptotics at the singularity

Corollary. Under the same assumptions as Theorem 1, let u be a weak H1
∗
(Ω)-solution

to LA,au = h(x)u.

(i) If u(x) = O(|x|k) as |x| → 0 for all k ∈ N, then u ≡ 0 in Ω.

(ii) If 0 < γ < 1 then u ∈ C0,γ
loc

(Ω).

(iii) If γ > 1 then u is locally Lipschitz continuous in Ω.
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Asymptotics at the singularity

Corollary. Under the same assumptions as Theorem 1, let u be a weak H1
∗
(Ω)-solution

to LA,au = h(x)u.

(i) If u(x) = O(|x|k) as |x| → 0 for all k ∈ N, then u ≡ 0 in Ω.

(ii) If 0 < γ < 1 then u ∈ C0,γ
loc

(Ω).

(iii) If γ > 1 then u is locally Lipschitz continuous in Ω.

(i) is a strong unique continuation property. It extends to singular
homogeneous magnetic potentials the unique continuation
property proved by Kurata for electromagnetic potentials in the
Kato class.
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Further results

• Semilinear equations LA,au = f(x,u(x)) in Ω ∋ 0 with
f : Ω × C → C a Carathéodory function satisfying

∣
∣
∣
∣

f(x, z)

z

∣
∣
∣
∣
6

{

C(1 + |z|2∗−2), if N > 3,

C(1 + |z|p−2) for some p > 2 , if N = 2 ,

for a.e. x ∈ Ω and for all z ∈ C \ {0}, where 2∗ = 2N
N−2 .
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Further results

• Semilinear equations LA,au = f(x,u(x)) in Ω ∋ 0 with
f : Ω × C → C a Carathéodory function satisfying

∣
∣
∣
∣

f(x, z)

z

∣
∣
∣
∣
6

{

C(1 + |z|2∗−2), if N > 3,

C(1 + |z|p−2) for some p > 2 , if N = 2 ,

for a.e. x ∈ Ω and for all z ∈ C \ {0}, where 2∗ = 2N
N−2 .

Under the further assumption µ1(0, a) > −
(
N−2

2

)2 a Brezis-Kato

type iteration argument provides an upper bound for solutions and then
reduces the semilinear problem to a linear one with enough control on
the perturbing potential at the singularity to apply Theorem 1 to recover
the exact asymptotic behavior of solutions at the singularity.
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Further results

• Semilinear equations LA,au = f(x,u(x)) in Ω ∋ 0 with
f : Ω × C → C a Carathéodory function satisfying

∣
∣
∣
∣

f(x, z)

z

∣
∣
∣
∣
6

{

C(1 + |z|2∗−2), if N > 3,

C(1 + |z|p−2) for some p > 2 , if N = 2 ,

for a.e. x ∈ Ω and for all z ∈ C \ {0}, where 2∗ = 2N
N−2 .

Under the further assumption µ1(0, a) > −
(
N−2

2

)2 a Brezis-Kato

type iteration argument provides an upper bound for solutions and then
reduces the semilinear problem to a linear one with enough control on
the perturbing potential at the singularity to apply Theorem 1 to recover
the exact asymptotic behavior of solutions at the singularity.

• invariance by the Kelvin transform =⇒ asymptotics at ∞ for solutions in
external domains
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Example: Aharonov-Bohm magnetic potentials in dim N = 2

A(cos t, sin t) = α(− sin t, cos t), α ∈ R \ Z, a(cos t, sin t) = a0, a0 ∈ R

(

−i∇+α

(

− x2

|x|2 ,
x1

|x|2
))2

u− a0

|x|2u = hu,
with x = (x1, x2) ∈ Ω ⊂ R2,
Ω bounded, 0 ∈ Ω,
and h verifying (H0).

Eigenvalues: {(α− j)2 − a0 : j ∈ Z} ⇒ µ1(A, a) =
(
dist(α,Z)

)2 − a0

If dist(α,Z) 6= 1
2 , then all eigenvalues are simple and the eigenspace

associated to the first eigenvalue is generated by ψ(cos t, sin t) = e−ijt.
If dist(α,Z) = 1

2 , then all eigenvalues have multiplicity 2.
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and h verifying (H0).

Eigenvalues: {(α− j)2 − a0 : j ∈ Z} ⇒ µ1(A, a) =
(
dist(α,Z)

)2 − a0

If dist(α,Z) 6= 1
2 , then all eigenvalues are simple and the eigenspace

associated to the first eigenvalue is generated by ψ(cos t, sin t) = e−ijt.
If dist(α,Z) = 1

2 , then all eigenvalues have multiplicity 2.

If a0 <
(
dist(α,Z)

)2
, dist(α,Z) 6= 1

2 ⇒ ∃ j0 ∈ Z, β ∈ C s.t.

λ−
√

(α−j0)2−a0u(λ cos t, λ sin t)
λ→0+

−→ βe−ij0t in C1,τ (0, 2π)
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associated to the first eigenvalue is generated by ψ(cos t, sin t) = e−ijt.
If dist(α,Z) = 1

2 , then all eigenvalues have multiplicity 2.

if a0 <
(
dist(α,Z)

)2
, dist(α,Z) = 1

2 ⇒ ∃ j0 ∈ Z, β1, β2 ∈ C s.t.

λ−
√

(α−j0)2−a0u(λ cos t, λ sin t)
λ→0+

−→ β1e
−ij0t+β2e

−i(2α−j0)t in C1,τ (0, 2π)
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Example: Aharonov-Bohm magnetic potentials in dim N = 2

A(cos t, sin t) = α(− sin t, cos t), α ∈ R \ Z, a(cos t, sin t) = a0, a0 ∈ R

(

−i∇+α
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|x|2 ,
x1

|x|2
))2

u− a0

|x|2u = hu,
with x = (x1, x2) ∈ Ω ⊂ R2,
Ω bounded, 0 ∈ Ω,
and h verifying (H0).

Eigenvalues: {(α− j)2 − a0 : j ∈ Z} ⇒ µ1(A, a) =
(
dist(α,Z)

)2 − a0

If dist(α,Z) 6= 1
2 , then all eigenvalues are simple and the eigenspace

associated to the first eigenvalue is generated by ψ(cos t, sin t) = e−ijt.
If dist(α,Z) = 1

2 , then all eigenvalues have multiplicity 2.

Furthermore, in view of the Corollary,

if (dist(α,Z))2 < 1 + a0 ⇒ u ∈ C0,γ
loc (Ω) with γ =

√

(dist(α,Z))2 − a0

if (dist(α,Z))2 > 1 + a0 ⇒ u is locally Lipschitz continuous in Ω.
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