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| mprovement of the estimator of the mean in presence
of partial respondents

1. Introduction

Even in the best survey, despite all efforts (nmadting and interesting introductions, well-designed
and not too long questionnaires, solicited parétign, and so on), some data will be missing.

In fact, in many sample surveys, some of the wg@tected do not provide an acceptable measure of
the variable of interest, denoted by Y. We shatligate as non-respondent those units. These
missing values not only mean less efficient estamdtecause of the reduced size of the data base
but also that the standard complete-data methodsot®e immediately used to analyse the data.
Moreover, possible biases exist because the resptsdre often systematically different from the
non-respondents. These biases are difficult toiedite since the precise reasons from nonresponse
are usually not known. For instance, in a mail syrthe questionnaire may not be returned or
returned but not completely filled in. In a surweith personal interviews, some individuals refuse
to respond to some or all the questions . It mayuoalso interviewer errors: omitted questions,
illegible recording of the response and so on.

Here we shall consider the situation in which fomg units the principal item concerning the
variable Y is missing but we have the responsetteer variable, called X.

Two general technigques have been proposed intliteréo face the above problem:
1) imputation technique (see, for instance, Litlied Rubin (1987), Trimarchi (1990)). This

operation considers a prevision of the missing @almputation implies that an imputed valug

is produced for a missing valug, that is, V. fills the blank for the missing value in the data
analysis

2) adjustments of the Horvitz- Thompson estimatoough the estimated individuals response

probabilities in order to compensate for the nspondents (see Giommi (1984), Yogendra P.
Chaubey et al (1997)).

In the present paper we want to improve the impnaechnique when we have information about
an auxiliary variable prior to sampling or durirgtoperation of sampling.

We will considerate two estimators generally usegbriactise. The first one is based only on the
complete responses and it is generally biased.s€hend one considers the auxiliary information
available at sample level.

! This work was discussed together by the two astHarparticular, §2-3 were carried out by Poliesitid §4 by
Merulla. Address for communications: Pollastri Avlgi— Dipartimento di Metodi Quantitativi per I'Ecomia —
Universita degli Studi di Milano — Bicocca — P.zeeAeo Nuovo, 1 — 20126 — Milano — Italy. E-mail:
Angiola.Pollastri@unimib.it- pmerull@tin.it
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Considering that it may happen to have also auyilinformation at population level, here we
propose a new estimator which is an applicatiothefregression technique. We shall show that the
new estimator is more efficient than the estimatonssidered before.

The above demonstration is done considering thiatgiin that the number of non respondents to
item regarding the variable Y is known.

Then we analize through simulation studies the g@migs and the distribution of the estimators
considered in different situations

2. Estimation

Let consider a finite populatioR of N elementary units denoted hy,....,u;,...,u, . Associated
with each member oP there is a value of the variable Y indicated By and an auxiliary

variable X which assumes valug . Let assume that the variablemay be the predictor of the

variableY.
Let suppose that the relation between Y and X be

y. =a+ [ +& i=1,...,N

whereE(g,) = 0 andg, and X, are independentr.v. aids, )= .0
Here we shall suppose thAatis known.

It follows that
E(Y,) =a+ Bu,

Let suppose that ideally the population may beddit in two groups: in the first the units will
respond to the item connected with the variablenY the related mean will be indicated py ; in

the second group they will not respond and the nwéahe variable Y will be denoted by, .

Suppose thaX will receive responses from all the units. We dertoy 4, and p, respectively
the mean of X in the group where Y obtains respeasel in the group wheré will be missing.

Let suppose to select a simple random sample efrsiz
We denote byn, the number of complete observations andnby n—n, the number of missing
data on variablef. Before selecting the samplg, is a random variable because we do not know

how many units will respond to Y. After having aadted the datay, will be a constant.

2.1 Estimation without using auxiliary information

If we consider only the complete responses, inditaty y,; (i =1...,n, ), we estimateu, by

The estimatoiY1 is affected by the following bias
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O ZEM) ~ 4y =Wy (s — Hy)

whereW, is the proportion of non-respondents in the pdputa
The demonstration is analogous to the situatiadhetotal non-respondents (see Pollastri, 1997).

The variance of the r.\; is
_  o?
Var(Y,) =—-
r]1

The mean square error is given by
2

va _ﬁ 2 _ 2
MSE(Yl)_ n +W, (,U\(1 ,UYZ)

1

2.2 Estimation using information from the samplegfssion Imputation

The estimation ofu, (see Trimarchi, 1990) may be

2=y, + (X - %)

Where X, is the mean of the variab¥ecomputed in the part of the sample where the olasens

are completeX is the mean of the observations concerning thiabiar X in all the sample.
It is interesting to observe that;, corresponds to

Lo 1 1&g
/,ly = r[n—z yj_i] + (1_r)[n_z yzi]

that is, fz, is the mean of the sampled valugs in the stratum of the respondents and of the
imputed values

92i =y, + IB(XZi - Yl)

where y, is missing. The pounds are constituted by the shtesponse in the sampte=ﬁ and
n

n
the rate of non-respongg—-r) =2 .
n

The estimatorjz, is unbiased.
In fact

E(4,) - 1y = E(Y,) =y + FE(X = X,) =
W, (ty, = Hy,) + By = Bly, =

W, (a + By, —a = Buy,) + Bux = By, =
W, B(1y, = Hy,) ~Wo B(Hy, = Hy,) =0
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The variance of the estimatgr, is given by

Var(f,) = E(it, - p4,)?
= E[(Y, - 4,)? + B (X = X)2+28(X = X)(Y, = p4,)]

Adding and subtracting/, in the second term, we can obtain

var(i,)
:Var(\71) +,82E(>?_/Jx)2+,32E(X1 _/Jx)2 +2,32E[(>?_,ux )(Xl _/Jy)]
+ 2L X(Y, — 1, )]~ 20X, (Y, — 4]

Remembering (Pollastri, 1997) that

EL(X - )(Y - 1,)] = ”n

and that
X1nl + )?an
n

X =

and observing that
E[(Xz —,ux)(Xl _:Ux)] =0,

after some algebra, we arrive to the result
~ 05 n, »
Var(2,) =—* (1~ p%)
n n

All the above considerations are done when tha deg¢ collected, that is wham and n, are
fixed.

2.3 Imputation using auxiliary information from pdation.

Let suppose we know the real avergge of the variableX in the population. For instance, if P is

constituted by the population of a city, X maynesgent the age or if the population is constituted
by all the farms of a region, X may be the areaaxth farm. In this situation we can consider the
estimator

A = Yo+ Blpy — %)
This corresponds to impute the missing data with

Vo =V ¥ B(Xy = %) =Y, + B(Xy — 1)
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The estimatoriz, is unbiased. In fact

E(f,) = 1, = E(Y,) = 4, + BE(14, = X))
=W, (,u\(1 - /JYZ) + ,Blux - IB/'lxl
:WZ,B(IUX1 _,uxz) _szlg(:ux1 _:sz) =0

The variance of the estimatgzil‘y is given by

3. Comparison between estimators

The efficiency of the estimatqu,, with respect to the estimatgr, is given by

_2
n

In Table 1 are reported the values of the efficyeas a function of the correlation coefficient and
of the rate of non-response.

From these values it is evident that the efficienéythe estimator/z,, which considers also the
knowledge ofy, , increases when the rate of non-response decréasgsng fixedp .
Furthermore the efficiency of the estimat&);; with respect to the estimatqffy Is greater when the
correlation coefficient is very high.

Tablel
n2 / n 0.2 0.5 0.8
P,
0.10 0.964 0.769 0.384
0.30 0.972 0.811 0.445
0.50 0.98 0.857 0.529

4. Simulation purpose

Now we aim to examine missing data problérmed to explain the main characteristics of the
different approaches presented in this paper.

The purpose is to analyse the properties of difterestimators under specific situations; in
particular we wisho observe:

1. The estimators behaviour on varying the numbeiasés in the selected sample and the number
of respondents.

2 This has been made by simulations created usirRTIRAN 90 software.
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2. The eventual variation of expected value and vagasf the estimator due to the estimatiofof
when it is unknown.
3. The estimators characteristics when missing d&ta ar

3.1. Completely at random (MCAR)

3.2. High values of the variable Y

3.3. Low values of the variable Y

3.4. Values of Y on high values of the variable X (MAR)
3.5. Values of Y on low values of the variable X (MAR)

It will be finally interesting to observe the eséitars distributions when the population considered
is normally and when it is lognormally distributdd.the following table are reported the symbols
used.

Table of symbols

\% preceding an estimator mark denotes its variamcewith the addition
of a final S it represents the estimated variance

E preceding an estimator mark, denote the expectiea

MSE preceding an estimator mark, denote the meagrsaeprror

MCAR Completely at random (MCAR)

OR High values of the variable Y

LY Low values of the variable Y

HXMAR Values of Y on high values of the variableg(MAR)

LXMAR Values of Y on low values of the variable KIAR)

BE after mark estimator means tlffais estimated with sample data

4.1. Simulation steps

For the simulation it was created an artificial plgon with known mean and variance.

After having selected a random sample from the [adjon, we have remarked the observatiofs (
yi ) respectively value of the auxiliary variable Xdeof the variable to study Y.

To simplify the results interpretation we have gsed value 0 to the mean of Y in the population
and 0.64 to its variance. We have also chosentadagelation coefficient (0.9) between X and Y
as we wished to describe an example of strongoalat

Once the sample has been drawn out, we have preteaeith the missing data selection of the
variable Y. As mentioned before we have considditdrent missing data mechanism:

* Missing completely at random (MCAR): missingnesanselated to the values of the variables

* Missing at random (MAR): given survey variablebge tissing data distribution depends only
on variables that are entirely recorded in the data

* Missing data which depend on the same variable linhawe enter nonrespondents

As we shall illustrate in the description of sintida results, the presence of MCAR allows
complete case analysis without danger of biasechasbn, though some loss in efficiency.

As MCAR is often difficult to meet in practice,ig useful to include in the survey variables which
have low probability to record nonrespondents drad are highly correlated with the variable to
study. Actually it has been previoushgmonstrated that, with imputation of missing datavith
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the application of regression with auxiliary pogida information, ML estimators can improve the
estimation, as we see in the next pages. For easbing data mechanism exposed we have
calculated the mean estimation in every sampleetdd with the following estimators:

a) Complete Case Estimatoy,()
b) Regression Imputation Estimatq ()

c) Regression Imputation Estimator with auxiliary imf@tion from the population,ﬂ('y)

4.2. Simulation results

4.2.1First analysis: expected valuasd variances examination

Table2
Estimators expected values=1000

=100 BB | EY) | B | E@)

n,=20

MCAR -0,00178| -0,00040| 0,00089
MCAR_BE | 1,43775 -0,00030| 0,00112
HY -0,28001| -0,05465| -0,05336
HY_BE 1,26795| -0,28001| -0,08125| -0,0801
LY 0,27639( 0,05194| 0,0532
LY_BE 1,26721| 0,27639( 0,07853| 0,0799

On examining the table 1, we immediately note tthat estimators appear to be unbiased for
random missing data. This table has been creatatifferent sample sizes and numbers. Obviously
we have indicated only one kind of table but we abte to affirm that there is a general

improvement on extending the sample size and thebeu of samples extracted, but for the high
variability assumed, this improvement is not regula

Among the considered estimatogz, seems to come nearer to the population mean o the

other estimators.
Let now consider the missing data that are not detely at random. If they depend on the variable

Y we note significant changes. First the¢ estimator is not unbiased yet Whilfi!'y and ,[ly

estimators are in general unbiased, especiallyafge samples even if they present worse values
than MCAR case.

As regards missing data depending on Y the meamatsins are fairly biased.
Let observe now the variances of the estimators.
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Table3

Estimated variance s=1000

n=100n,=20 V() | V(a,) V()

MCAR 0,00806 0,00646 0,00150
MCAR_BE 0,00806 0,00647 0,00154
" 0,00607 | 0,00683 0,00152
v BE 0,00607 | 0,00686 0,00162
Ly 0,00667 0,00642 0,00145
LY BE 0,00667 0,00677 0,0017

Y mean and variance and estimators variance céécligith theoretical formulisations

ECY) | V(Y)

V(Y,)

V(@) | V(i)

n=100,n,=20 -0,00168| 0,00620

0,0080

D

0,00670

0,001

52

We can immediately note thak, variance is even lower than mean estimator vagiamithout

nonrespondents. This occurs because of the misdatg imputation, which causes data
homogenisation and consequently a reduction of/éinence. Nevertheless it is important to stress
that /7, is the unbiased estimator with lowest variance.
Moreover, from the simulations carried on we habesesved that the more the sample size raises

the more the variance decreases. This trend hapges in the event of non-random missing,
where we notice not particular differences with shene variance estimators in MCAR.

4.3.23 estimated through sample data

When missing data are completely at rand8mstimation is unbiased; only in the event of small
sample size (e»xs=50,n=50 andm=10) b is fairly far from the true value @.

Table4

3 Estimation:s=50, missing data at random

n=50 n=10

E(B)

MCAR_BE

1,40345

HY BE

1,26522

LY_BE

1,25584

In case of non-random missing dates biased; the bias decreases with the samplea&sag. The
effect of S estimation on mean estimators expected value tipadicularly relevant for MCAR;
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even for the other missing data mechanisms therevamimal differences which vanish whéh
increases, though their expected value are aWitiese than the firsts.

4.2.2 The effect of nonrespondents fraction ina@eas

07/04/09

Table5
Random missing datas=500
E(Y) | B(4y) | B(&y) | V(Y) | V(&) | V()
n=500 n=50 -0,00826( -0,00737  -0,0019B 0,00143 0,001B1 0290
n=500 n=100 -0,00653| -0,006871 -0,0014B 0,00145 0,00129 003D
n=500 n=150 -0,00700| -0,00794 -0,0025/7 0,00148 0,00141 0039
N/ ~ ~r
MSE(Y,) | MSE(2Z,) | MSE({Z))
n=500 n=50 0,0015 0,00136 0,00029
n=500 n=100 0,0015 0,00133 0,00031
n=500 n=150 0,00173 0,00148 0,00036
Table6
Missing data depending on Y: High values of ¥=500
E(Y) | B(4y) | By | VYY) | V(&) | V)
n=500 n=50 -0,28179( -0,0570§ -0,0491B 0,00136 0,00130 0280
n=500 n=100 -0,28615| -0,05964 -0,0542b 0,00145 0,00136 0032
n=500 n=150 -0,40331| -0,08164 -0,07623 0,001536 0,00141 0036
MSEY,) | MSE(f,) | MSE(/,)
0,02773 0,0026 0,00122
0,08333 0,00491 0,00326
0,16422 0,00807 0,00617




Table7

Missing data depending on Y: Low values of ¥=500

E(v) | E(4) | BUL) | VYD) | V(&) | V()
n=500 Bp=50 0,14828| 0,02264 0,0280p 0,00130 0,0012 0,00028
n=500 B=100 0,27223( 0,04600 0,05139 0,00137 0,0017% 0D0oph2
n=500 p=150 0,38948( 0,068043 0,0734R 0,00145 0,0013 O,ADOW?)
MSKY,) | MSE(#,) | MSE )

n=500 p=50 0,02328 0,00178 0,00106

n=500 =100 0,07548 0,00338 0,00293

n=500 p=150 0,15315 0,00591 0,00573

On examining the above tables, when the missing fiattion arises, it is confirmed what has been

demonstrated in the conceptual part of this papert as:

= On augmenting the proportion of nonrespondentsethera worsening of the estimators
expected value case of missing data depending on Y;

= There is a general variance growth.

= Nonrespondents fraction extremely affe¢1§ estimator on determining its variance, owing to

the particular variance function form.
Let consider the variance of estimafay.We can clearly note that the value it assumes dtzpeot

only on the population variance and correlationffoacient which furthermore represent determinant
components, but as well on nonrespondents numiseredardsiz; , however, the more this number

increases the more its variance grows, owing toréueiction of both denominator and weight
preceding the correlation coefficient, though &serves a smaller variance value tiamnd ,Zzy.

4.3 Estimators’ distributions when the distributimithe variables is normal

Once verified the quality, i.e. efficiency gi; estimator, it is now useful to analyse the studied

estimators’ distribution. This could represent gHear property especially for normal distributions
(for example, let think about the possibilities i@oled from hypothesis tests and confidence
intervals). To obtain the real distribution, we slib consider all samples, which could be
extracted according to a specific sample desigm.eaeha (a: 1...s)we should know both the
probabilityp(a) to extracts and the population mean estimator vajue 9(5). It would be possible,
then, to calculate the real expected value, biakvamiance ofy. However thisis generally an
impossible task, as the potential samples numberery high. This is the reason for using
simulations to study estimators’ statistical praosrin sample surveys.

In the following charts and tables, consequently shall pay attention to the estimators’
distribution form. In the charts we will illustrataly ,[J’y distribution. We immediately note that all

estimators are normal distributed, thus preserthiegoopulation distribution from which the sample
has been extracted.
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Chart 1. Estimators distribution with random missitaga
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Chart 2. Estimators distribution with missing da¢gending on X

30

20

10

] N

o -.139 -.118 -.097 -.076 -.054 -.033 -.012 .009 .031 .052 .073 .094 .116

Chart 3. Estimators distribution with missing da¢pending on X

a0

0]
200

| N

]
o -139 -.105 -.071 -.037 -.003 031

Note: Estimator :/:/'y, s=100, n=100, =20

Table 7 instead, illustrates a test used in MordgddCsimulation to calculatidhe actual confidence
level, whichmay be used to study different estimators compass

Let consider fix population and sample design. ghhnumber of samples is drawn out from the
population under the considered sample design. @rtracted, the sample is placed again in the
population before the next sample selection, ireotd draw out the sample always from the same
population. The samples number is high and it diceted withK. If K is sufficiently high the
distribution of theK estimations (empirical sample distribution) iseatd approximate truly enough
the real sample distribution, that is not easiltagiable, as we explained before.

We can therefore calculate
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<l
I

M=
=

which is a variance estimation(§) and finally,

~ K ~ A
V==3"V(y)
-1

X||—\

i

which is a variance expected value estimatio, &D].
If for each sample we calculate the 95% approxirteatel confidence interval

g+ 108 f)]

and we successively count the intervals number lRgtweontain the true valys,, then R/K is the
actual confidence level estimation. The actual iclamfce level estimation could differ from 95% as

—

()_7 - ,uy)/[\7(§/)]whasonly an approximate normal distribution.

In the following table it is illustrated a companisbetweenz, andy,.

Table8
The actual confidence leve=100,n=100,ns=20
i, 4
p =05 £ =09 p=05 £ =09
MCAR 0.94 0.94 0.94 0.92
MCAR_BE 0.97 0.95
HY 0.13 0.63 0.05 0.06
HY_BE 0.08 0.47
LY 0.25 0.76 0.06 0.11
LY_BE 0.16 0.61
HXMAR 0.98 0.95 0.60 0.11
HXMAR_BE 0.93 0.94
LXMAR 0.95 0.94 0.57 0.20
LXMAR_BE 0.96 0.91
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Firstly, we note that for high values of Y as migsdata (HY and HY_BE), the confidence level is
extremely low, that means that the number of irtsncontaining the regk is very small; the
estimators considered are therefore unreliabl&ase cases. We wish to stress that the number of
intervals is created with estimators values anthvaes.

The same matter takes place in the opposite sityarhere minimal values of Y are considered as
missing: though the presence of a modest improveemnpared to the previous case, the actual
confidence level is lower than 95%.

These results are therefore useful to argue that ekxpected value oénalysed estimators
particularly affects their reliability even if thevariance has regularly presented favourable t®sul
in accordance with the theory.

A further consideration regards the different ressalccording to the correlation coefficiemt As
we could expect , th(@i/'y estimator results greatly improved in case of mgslata depending on
Y, though they remain under 95%. This demonstratbat theory explains: the opportunity of
using auxiliary information, and in particular ihig case the knowledge of the true megn
produces an estimation improvement especially whand Y are strongly related.

When we oppositely consider the situations whexaldies determine missing da;é; estimator is
extremely satisfactory, conforming therefore anmalrdistribution.

If we analyse the results paying attention on tifferénces betweeriz, andY,, we can also argue
other interesting considerations.

Firstly, we note that, in case of random missintadthe differences between these estimators are
minimal and moreover both are satisfactory. Howewehen p increases there is a little
improvement offz, compared toy, for the reasons previously explained.

As regards the other situations, we observe morebeeY, presents a very low actual confidence
level. Thus it results particularly worst even fomses wherg, don’t seem to be extremely

adequate. We should think about the minimal prdhisi of finding the true parameter of interest
in the intervals created witly, estimator and on the possible biased interpretatitiat such
estimator could erroneously involve.

4.4 Comparison with Bbgnormalpopulation distribution

As announced early in the paper, the simulatiotete$or samples extracted from population
normally distributed, has then been conducted épugation with dognormaldistribution.

The aim of this operation was to verify if in prase of a different distribution or, in worst cases,
non-knowledge of the population distribution, thetimator found could improve in any case the
mean estimation. Moreover, there would be an itgmbresult if it was normally distributed as the
previous case.

In the following tables we wish to illustrate theaim results (we have limited the exposition to the
case 06=100)
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Table9

Estimators expected values=100

n=1000=20 | g(p) | ECY) | E(,) | E(Z)
MCAR 1,36366| 1,37295 1,3746
MCAR_BE 1,35603 1,36366 1,37252 1,373948
HY 1,37709 1,3699 1,37161
HY_BE 1,20858 | 1,37709 1,37034  1,36913
LY 1,62776 1,41916 1,42084
LY_BE 1,59854| 1,62774 1,39384 1,389Qy7
Note: Y, =1,37713

Estimated variance s=100
0RO VYY) | VR, | V@)
MCAR 0,02386 0,02121 0,00671
MCAR_BE 0,02386 0,02131 0,00724
HY 0,02511 0,02094 0,01032
HY_BE 0,02511 |  0,02123 0,00805
LY 0,0293 0,02367 0,00787
LY_BE 0,0293 0,01635 0,00427

Y mean and variance and estimators variance céécligith theoretical formulisations

E(Y)

V(Y)

V(Y,)

V(i)

V(i)

V(Y)

n=100 =20 1.37154

0.02082

0.02125

0.01881

0.00903

1.700

Oy

In the table above exposed, we note that as thmalodistribution case, when missing are at
random, the estimators considered are unbiased.etmw on comparing with the previous
situation, we immediately note that when missingaddepend on Y.k, is no more the best

estimator, as&y and even,[/y seem sometimes register better values. As reganisnce, let pay

attention to the high variance of the mean estim@qY,)) which can evidently produce some

biased result.

07/04/09
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4.4.1 The effect of nonrespondents fraction in@eas

As the simulation first part, we have then analydesl estimators characteristics on increasing
the number of missing data. In this case we hadeadven tables on MAR mechanisms to explore
the complete field. We can observe that there ategneat differences when nonrespondents
increase, excluding the situations where missirtg dapend on X. Here we particularly note that
Y, estimator is strongly biased on comparison withdther estimators. Finally, we can denote that

the YMP andjz, estimators have similar trend and values in aesdllustrated.

Table 10
Random missing datas=100

ECY) | B | B | V) | V(Z,) | V)

n=500 n=50 1,37237 1,37422 1,37503 0,00337 0,003p7 0,00083

n=500 =100 1.37942 1.37710 1.37790 0,00386 0,00315 02)01")

Missing data depending on Y: High values of ¥=100

E(Y) | B(#) | B(&) | VYY) | V(&) | V(Z)
n=500 =50 1,37572 1,3771 1,3779] 0,00343 0,0032 0,00086
n=500 np=100 1.37303 1.37535] 1.37615 0,00377 0,00323 0pogp

Missing data depending on Y: Low values of ¥=100

— — —— — —
E(Y) | BG4 | B(&) | VY | V(&) | VE)
n=500 p=50 150113| 1,39571 1,39650  0,00349  0,00349  0,00093
n=500 p=100 163466| 142658 142738 000452 0,003y 000416

Missing data depending on X: High values of X=100

— = y — — —
ECY) | By | B(&4) | VYY) | V(R,) | V(L)
n=500 B=50 108762 130194 130277 000171 000241 00046
n=500 =100 0.04008| 1.2823] 1.2831fL 0,00135  0,00185 09)01?3

Missing data depending on Y: Low values of %=100

E(Y) | BG4y | By | VYD) | V() | V(&)
n=500 =50 14951 | 138181 1,3826] 000368  0,00331 _ 0,00493
n=500 n=100 161972| 139479 139556 000453  0,00367 _ 000]1

In this next table there is represented the actaafidence level, calculated only for a correlation
coefficient of 0.9. It seems that when missing dipend on high values of Y or low values of X
both actual confidence values are weak, while édther situationgs;, presents best results as in

case of normal distributed population.
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Table 11
The actual confidence levet=100,n=100,ns=20

p=09 i, Y,
MCAR 0,96 0,93
MCAR_BE 0,96
HY 0,93 0,95
HY_BE 0,94
LY 0,94 0,68
LY_BE 0,95
HXMAR 0,37 0
HXMAR_BE 0,2
LXMAR 0,94 0,73
LXMAR_BE 0,85

It is, finally interesting to examine graphicallyetforms of iz, estimator distribution which seems
confirm the previous results.

Note: Estimator =,[1;, $=100, n=100, ns=20 — population lognormally dibtrted

Chart 1. Estimators distribution with random missitaga

40

30
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20

10

Std. Dev =,08
Mean = 1,375
N = 100,00

1,228 1,287 1,346 1,405 1464 1524 1583
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Chart 2. Estimators distribution with missing da¢pending on X

40

. /)

20

10

Std. Dev =,08

Mean = 1,372
0 \ N = 100,00

1,223 1,294 1,365 1,435 1,506 1,577

Chart 3. Estimators distribution with missing da¢gending on X

50

40

1

20

10

/ Std. Dev =,04
/ ‘\ Mean = 1,281

0 N = 100,00
1189 1,228 1,268 1307 1,347 1386

5. Conclusions

In this paper we have proposed an estimator ohtean useful when some information regarding
the variable to be studied are missing but we katwhe observations of an auxiliary variable in
the sample and the mean of this variable in thailadpn. Using this information we can improve
the estimator used in the above situation. Theawag of the new estimator is computed and so it is
possible to study the efficiency.

The simulation study confirms the properties of éisémators. Moreover it is possible to conclude
that the distribution of the considered estimatsnsormal when the distribution of the variables X
and Y is normal in the population. This propertyn preserved when the variables X and Y are
lognormal in the population.
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