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Improvement of the estimator of the mean in presence 

of partial  respondents 
 
 
1. Introduction 
 
Even in the best survey, despite all efforts (motivating and interesting introductions, well-designed 
and not too long questionnaires, solicited participation, and so on),  some data will be missing. 
In fact, in many sample surveys, some of the units selected do not provide an acceptable measure of 
the variable of interest, denoted by Y. We shall indicate as non-respondent those units. These 
missing values not only mean less efficient estimates because of the reduced size of the data base 
but also that the standard complete-data methods cannot be immediately used to analyse the data. 
Moreover, possible biases exist because the respondents are often systematically different from the 
non-respondents. These biases are difficult to eliminate since the precise reasons from nonresponse 
are usually not known. For instance, in a mail survey the questionnaire may not be returned or 
returned but not completely filled in. In a survey with personal interviews, some individuals refuse 
to respond to some or all the questions . It may occur also interviewer errors: omitted questions, 
illegible recording of the response and so on. 
 
Here we shall consider the situation in which for some units the principal item concerning the 
variable Y is missing but we have the response to another variable, called X.  
 
Two general techniques have been proposed in literature to face the above problem: 
1) imputation technique (see, for instance, Little and Rubin (1987), Trimarchi (1990)). This 
operation considers a prevision of the missing value. Imputation implies that an imputed value  iŷ  

is produced for a missing value iy , that is, iŷ  fills the blank for the missing value in the data 

analysis 
2) adjustments of the Horvitz- Thompson estimator through the estimated individuals response 
probabilities in order to compensate for the non-respondents (see  Giommi (1984), Yogendra P. 
Chaubey et al (1997)). 
 
In the present paper we want to improve the imputation technique when we have information about 
an auxiliary variable prior to sampling or during the operation of sampling.  
 
 
We will considerate two estimators generally used in practise. The first one is based only on the 
complete responses and it is generally biased. The second one considers the auxiliary information 
available at sample level. 
 

                                                           
1 This work was discussed together by the two authors. In particular, §2-3 were carried out by Pollastri and §4 by 
Merulla. Address for communications: Pollastri Angiola – Dipartimento di Metodi Quantitativi per l’Economia – 
Università degli Studi di Milano – Bicocca – P.za Ateneo Nuovo, 1 – 20126 – Milano – Italy. E-mail: 
Angiola.Pollastri@unimib.it – pmerull@tin.it 
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Considering that it may happen to have also auxiliary information at population level, here we 
propose a new estimator which is an application of the regression technique. We shall show that the 
new estimator is more efficient than the estimators considered before. 
The above demonstration is done considering the situation that the number of non respondents to 
item regarding the variable Y is known.   
Then we analize through simulation studies the properties and the distribution of the estimators 
considered in different situations 
 
2. Estimation 
 
Let consider a finite population P of  N elementary units denoted by Ni uuu ,...,,....,1 . Associated  

with each member of P there is a value of the variable  Y indicated by *
iy and an auxiliary   

variable X  which assumes  value *ix . Let assume that the variable X may be the predictor of the 

variable Y.  
Let suppose that the relation between Y and X be 
 

iii xy εβα ++=               i=1,...,N 

 
where 0)( =iE ε   and iε   and  iX  are independent r.v. and 0)( =iE ε . 

Here we shall suppose that β  is known. 
 
It follows that 
 

xiYE βµα +=)(  

 
Let suppose that ideally the population may be divided in two groups: in the first the units will 
respond to the item connected with the variable Y and the related mean will be indicated by 

1Yµ ; in 

the second group they will not respond and the mean of the variable Y will be denoted by 
2Yµ . 

Suppose that X will receive responses from all the units. We denote by 
1Xµ  and µX2

 respectively 

the mean of X in the group where Y obtains responses and in the group where Y  will be missing. 
 
Let suppose to select a simple random sample of size n. 
We denote by 1n  the number of complete observations and by 12 nnn −=  the number of missing 
data on variable Y. Before selecting the sample, n1 is a random variable because we do not know 

how many units will respond to Y. After having collected the data, 1n  will be a constant. 
 
2.1 Estimation without using  auxiliary information 
 
If we consider only the complete responses, indicated by ),...,1( 11 niy i = , we estimate yµ  by  
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The estimator 1Y  is affected by the following bias  
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where 2W  is the proportion of non-respondents in the population. 
The demonstration is analogous to the situation of the total non-respondents (see Pollastri, 1997). 
 
The variance of the r.v. 1Y  is 
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The mean square error is given by 
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2.2 Estimation using information from the sample: Regression Imputation 
 
The estimation of yµ  (see Trimarchi, 1990) may be 

 
( )11,ˆ xxy −+= βµ  

 
Where 1x  is the mean of the variable X computed in the part of the sample where the observations 
are complete. x  is the mean of the observations concerning the variable X  in all the sample. 
It is interesting to observe that yiµ , corresponds to 
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that is, yµ̂  is the mean of the sampled values iy1  in the stratum of the respondents and of the 

imputed values  
 

)(ˆ 1212 xxyy ii −+= β  

 

where iy  is missing. The pounds are constituted by the rate of response in the sample 
n

n
r 1=  and 

the rate of non-response 
n

n
r 2)1( =−  . 

 
The estimator yµ̂  is unbiased. 

In fact 
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The variance of the estimator yµ̂   is given by 
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Adding and subtracting xµ  in the second term, we can obtain 
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Remembering (Pollastri, 1997) that 
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and observing that 

,0)])([( 12 =−− xx XXE µµ  

 
after some algebra, we arrive to the result 
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All the above considerations are done  when the data are collected, that is when 1n  and 2n are 

fixed. 
 
 
 
2.3 Imputation using auxiliary information from population. 
 
Let suppose we know the real average xµ  of the variable X  in the population. For instance, if P is 

constituted by the population of a city,  X may represent the age or if the population is constituted 
by all the farms of a region, X may be the area of each farm. In this situation we can consider the 
estimator  
 

)(ˆ 11
' xy xY −+= µβµ  

 
This corresponds to impute the missing data with 
 

)()(ˆ 21122 xiilri xyxxyy µββ −+=−+=  
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The estimator yµ ′ˆ  is unbiased. In fact 
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The variance of the estimator yµ̂′  is given by 

 
3.  Comparison between estimators 
 
The efficiency of the estimator yµ̂ ′  with respect to the estimator yµ̂  is given by 
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In Table 1 are reported the values of the efficiency as a function of the correlation coefficient  and 
of the rate of non-response.  
From these values it is evident that the efficiency of the estimator yµ̂ ′ , which considers also the 

knowledge of xµ , increases when the rate of non-response decreases, keeping fixed ρ . 

Furthermore the efficiency of the estimator yµ̂ ′  with respect to the estimator yµ̂  is greater when the 

correlation coefficient is very high. 
 

Table 1 

                nn /2    

nn /

0.2 0.5 0.8 

0.10 0.964 0.769 0.384 

0.30 0.972 0.811 0.445 

0.50 

 

0.98 0.857 0.529 

  
 
 
4. Simulation purpose 
 
Now we aim to examine missing data problems2 and to explain the main characteristics of the 
different approaches presented in this paper. 
The purpose is to analyse the properties of different estimators under specific situations; in 
particular we wish to observe: 

1. The estimators behaviour on varying the number of cases in the selected sample and the number 
of respondents. 

                                                           
2 This has been made by simulations created using FORTRAN 90 software. 

ρ
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2. The eventual variation of expected value and variance of the estimator due to the estimation of β  
when it is unknown. 

3. The estimators characteristics when missing data are: 

3.1. Completely at random (MCAR) 
3.2. High values of the variable Y 
3.3. Low values of the variable Y 
3.4. Values of Y on high values of the variable X (MAR) 
3.5. Values of Y on low values of the variable X (MAR) 

It will be finally interesting to observe the estimators distributions when the population considered 
is normally and when it is lognormally distributed. In the following table are reported the symbols 
used. 

Table of symbols 

V preceding an estimator mark denotes its variance and with the addition 
of a final S it represents the estimated variance 

E preceding an estimator mark, denote the expected value 

MSE preceding an estimator mark, denote the mean square error 

MCAR Completely at random (MCAR) 

OR High values of the variable Y 

LY  Low values of the variable Y 

HXMAR Values of Y on high values of the variable X (MAR) 

LXMAR Values of Y on low values of the variable X (MAR) 

BE after mark estimator means that β is estimated with sample data 

 
 
4.1. Simulation steps 
 
For the simulation it was created an artificial population with known mean and variance. 
After having selected a random sample from the population, we have remarked the observations (xi, 
yi ) respectively value of the auxiliary variable X and of the variable to study Y. 
To simplify the results interpretation we have assigned value 0 to the mean of Y in the population 
and 0.64 to its variance. We have also chosen a high correlation coefficient (0.9) between X and Y 
as we wished to describe an example of strong relation.  
Once the sample has been drawn out, we have proceeded with the missing data selection of the 
variable Y. As mentioned before we have considered different missing data mechanism: 

• Missing completely at random (MCAR): missingness is unrelated to the values of the variables 
• Missing at random (MAR): given survey variables,  the missing data distribution depends only 

on variables that are entirely recorded in the data set 
• Missing data which depend on the same variable on which we enter nonrespondents  

As we shall illustrate in the description of simulation results, the presence of MCAR allows 
complete case analysis without danger of biased estimation, though some loss in efficiency. 
As MCAR is often difficult to meet in practice, it is useful to include in the survey variables which 
have low probability to record nonrespondents and that are highly correlated with the variable to 
study. Actually it has been previously demonstrated that, with imputation of missing data or with 
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the application of regression with auxiliary population information, ML estimators can improve the 
estimation, as we see in the next pages. For each missing data mechanism exposed we have 
calculated the mean estimation in every sample extracted with the following estimators: 
 
 

a) Complete Case Estimator (1Y ) 

b) Regression Imputation Estimator (yµ̂ ) 

c) Regression Imputation Estimator with auxiliary information from the population (yµ ′ˆ ) 

  
4.2. Simulation results 

4.2.1 First analysis: expected values and variances examination  

 

Table 2 

Estimators expected values – s=1000 

n=100 
n2=20 

)ˆ(βE  )( 1YE  )ˆ( yE µ  )ˆ( yE µ ′  

MCAR  -0,00178 -0,00040 0,00089 

MCAR_BE 1,43775  -0,00030 0,00112 

HY  -0,28001 -0,05465 -0,05336 

HY_BE 1,26795 -0,28001 -0,08125 -0,0801 

LY  0,27639 0,05194 0,05323 

LY_BE 1,26721 0,27639 0,07853 0,07997 

 

On examining the table 1, we immediately note that the estimators appear to be unbiased for 
random missing data. This table has been created for different sample sizes and numbers. Obviously 
we have indicated only one kind of table but we are able to affirm that there is a general 
improvement on extending the sample size and the number of samples extracted, but for the high 
variability assumed, this improvement is not regular. 
Among the considered estimators, yµ ′ˆ  seems to come nearer to the population mean of Y than the 

other estimators. 
Let now consider the missing data that are not completely at random. If they depend on the variable 
Y we note significant changes. First the 1Y  estimator is not unbiased yet while yµ ′ˆ  and yµ̂  

estimators are in general unbiased, especially for large samples even if they present worse values 
than MCAR case. 
 
 
As regards missing data depending on Y the mean estimations are fairly biased. 
Let observe now the variances of the estimators. 
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Table 3 

Estimated variance – s=1000 

n=100 n2=20 )(ˆ
1YV  )ˆ(ˆ

yV µ  )ˆ(ˆ
yV µ ′  

MCAR 
0,00806 0,00646 0,00150 

MCAR_BE 
0,00806 0,00647 0,00154 

HY 
0,00697 0,00683 0,00152 

HY_BE 
0,00697 0,00686 0,00162 

LY 
0,00667 0,00642 0,00145 

LY_BE 
0,00667 0,00677 0,0017 

 

Y mean and variance and estimators variance calculated with theoretical formulisations  

 )(YE  )(YV  )( 1YV  )ˆ( yV µ  )ˆ( yV µ ′  

n=100, n2=20 -0,00168 0,00620 0,00800 0,00670 0,00152 

 

We can immediately note that yµ ′ˆ  variance is even lower than mean estimator variance without 

nonrespondents. This occurs because of the missing data imputation, which causes data 
homogenisation and consequently a reduction of the variance. Nevertheless it is important to stress 
that yµ ′ˆ  is the unbiased estimator with lowest variance. 

Moreover, from the simulations carried on we have observed that the more the sample size raises 
the more the variance decreases. This trend happens even in the event of non-random missing, 
where we notice not particular differences with the same variance estimators in MCAR. 
 

4.3.2 β  estimated through sample data 

 
When missing data are completely at random β estimation is unbiased; only in the event of small 
sample size (ex. s=50, n=50 and m=10) b is fairly far from the true value of β. 
 

Table 4 

β Estimation: s=50, missing data at random 

n=50 n2=10 )ˆ(βE  

MCAR_BE 
1,40345 

HY_BE 
1,26522 

LY_BE 
1,25584 

 
In case of non-random missing data b is biased; the bias decreases with the sample size raising. The 
effect of β estimation on mean estimators expected value is not particularly relevant for MCAR; 
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even for the other missing data mechanisms there are minimal differences which vanish when N 
increases, though their expected value are a little worse than the firsts.  

 

4.2.2 The effect of nonrespondents fraction increase 

 

Table 5 

Random missing data – s=500 

 )( 1YE  )ˆ( yE µ  )ˆ( yE µ ′  )(ˆ
1YV  )ˆ(ˆ

yV µ  )ˆ(ˆ
yV µ ′  

n=500 n2=50 -0,00826 -0,00737 -0,00198 0,00143 0,00131 0,00029 

n=500 n2=100 -0,00653 -0,00687 -0,00148 0,00145 0,00129 0,00031 

n=500 n2=150 -0,00700 -0,00796 -0,00257 0,00168 0,00141 0,00035 

 
 

 )( 1YMSE  )ˆ( yMSE µ  )ˆ( yMSE µ ′  

n=500 n2=50 0,0015 0,00136 0,00029 

n=500 n2=100 0,0015 0,00133 0,00031 

n=500 n2=150 0,00173 0,00148 0,00036 

 

Table 6 

Missing data depending on Y: High values of Y – s=500 

 )( 1YE  )ˆ( yE µ  )ˆ( yE µ ′  )(ˆ
1YV  )ˆ(ˆ

yV µ  )ˆ(ˆ
yV µ ′  

n=500 n2=50 -0,28179 -0,05708 -0,04918 0,00136 0,00130 0,00028 

n=500 n2=100 -0,28615 -0,05964 -0,05425 0,00145 0,00136 0,00032 

n=500 n2=150 -0,40331 -0,08162 -0,07623 0,00156 0,00141 0,00036 

 
 

)( 1YMSE  )ˆ( yMSE µ  )ˆ( yMSE µ ′  

0,02773 0,0026 0,00122 

0,08333 0,00491 0,00326 

0,16422 0,00807 0,00617 
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Table 7 

Missing data depending on Y: Low values of Y – s=500 

 )( 1YE  )ˆ( yE µ  )ˆ( yE µ ′  )(ˆ
1YV  )ˆ(ˆ

yV µ  )ˆ(ˆ
yV µ ′  

n=500 n2=50 0,14828 0,02266 0,02805 0,00130 0,00127 0,00028 

n=500 n2=100 0,27223 0,04600 0,05139 0,00137 0,00126 0,00029 

n=500 n2=150 0,38948 0,06803 0,07342 0,00145 0,00128 0,00034 

 

 )( 1YMSE  )ˆ( yMSE µ  )ˆ( yMSE µ ′  

n=500 n2=50 0,02328 0,00178 0,00106 

n=500 n2=100 0,07548 0,00338 0,00293 

n=500 n2=150 0,15315 0,00591 0,00573 

 
On examining the above tables, when the missing data fraction arises, it is confirmed what has been 
demonstrated in the conceptual part of this paper, such as: 
� On augmenting the proportion of nonrespondents there is a worsening of the estimators 

expected value in case of missing data depending on Y; 
� There is a general variance growth. 
� Nonrespondents fraction extremely affects yµ̂  estimator on determining its variance, owing to 

the particular variance function form. 
Let consider the variance of estimator yµ̂ .We can clearly note that the value it assumes depends not 

only on the population variance and correlation coefficient which furthermore represent determinant 
components, but as well on nonrespondents number. As regards yµ ′ˆ , however, the more this number 

increases the more its variance grows, owing to the reduction of both denominator and weight 
preceding the correlation coefficient, though it preserves a smaller variance value than 1Y  and yµ̂ . 

 
 
4.3 Estimators’ distributions when the distribution of the variables is normal 

Once verified the quality, i.e. efficiency of yµ ′ˆ  estimator, it is now useful to analyse the studied 

estimators’ distribution. This could represent a further property especially for normal distributions 
(for example, let think about the possibilities achieved from hypothesis tests and confidence 
intervals). To obtain the real distribution, we should consider all samples s, which could be 
extracted according to a specific sample design. For each a (a: 1...s) we should know both the 
probability p(a) to extract s and the population mean estimator value ( )syy ˆˆ = . It would be possible, 

then, to calculate the real expected value, bias and variance of ŷ . However this is generally an 
impossible task, as the potential samples number is very high. This is the reason for using 
simulations to study estimators’ statistical properties in sample surveys.  
In the following charts and tables, consequently, we shall pay attention to the estimators’ 
distribution form. In the charts we will illustrate only yµ ′ˆ  distribution. We immediately note that all 

estimators are normal distributed, thus preserving the population distribution from which the sample 
has been extracted.  
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Chart 1. Estimators distribution with random missing data  
 
 
 
 
 
 
 
 
 
 
 

Chart 2. Estimators distribution with missing data depending on X 
 

 
 
 
 
 

Chart 3. Estimators distribution with missing data depending on X  
 

 

Note: Estimator = yµ ′ˆ , s=100, n=100, n2=20 

 
 
 
Table 7 instead, illustrates a test used in Monte Carlo simulation to calculate the actual confidence 
level, which may be used to study different estimators comparisons.  
Let consider fix population and sample design. A high number of samples is drawn out from the 
population under the considered sample design. Once extracted, the sample is placed again in the 
population before the next sample selection, in order to draw out the sample always from the same 
population. The samples number is high and it is indicated with K. If K is sufficiently high the 
distribution of the K estimations (empirical sample distribution) is able to approximate truly enough 
the real sample distribution, that is not easily obtainable, as we explained  before.   
We can therefore calculate 
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which is a variance estimation ( )yV ˆ  and finally, 
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which is a variance expected value estimation, E[( )yV ˆˆ ]. 
If for each sample we calculate the 95% approximate level confidence interval 
 

( )[ ] 21
ˆˆ96,1ˆ tVy ±  

 
and we successively count the intervals number R, which contain the true value µy, then R/K is the 
actual confidence level estimation. The actual confidence level estimation could differ from 95% as 

( ) ( )[ ]$ $ $y V yy− µ
1 2

has only an approximate normal distribution. 

In the following table it is illustrated a comparison between yµ ′ˆ  and 1Y . 

 

Table 8 
The actual confidence level. s=100, n=100, ns=20  

 
yµ ′ˆ  

1Y  

 5.0=ρ  9.0=ρ  5.0=ρ  9.0=ρ  

MCAR 0.94 0.94 0.94 0.92 

MCAR_BE 0.97 0.95   

HY 0.13 0.63 0.05 0.06 

HY_BE 0.08 0.47   

LY 0.25 0.76 0.06 0.11 

LY_BE 0.16 0.61   

HXMAR 0.98 0.95 0.60 0.11 

HXMAR_BE 0.93 0.94   

LXMAR 0.95 0.94 0.57 0.20 

LXMAR_BE 0.96 0.91   
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Firstly, we note that for high values of Y as missing data (HY and HY_BE), the confidence level is 
extremely low, that means that the number of intervals containing the real µy is  very small; the 
estimators considered are therefore unreliable in those cases. We wish to stress that the number of 
intervals is created with estimators values and variances.  
The same matter takes place  in the opposite situation, where minimal values of Y are considered as 
missing: though the presence of a modest improvement compared to the previous case, the actual 
confidence level is lower than 95%. 
 
These results are therefore useful to argue that the expected value of analysed estimators 
particularly affects their reliability even if their variance has regularly presented favourable results 
in accordance with the theory.  
A further consideration regards the different results according to the correlation coefficient ρ. As 
we could expect , the yµ ′ˆ  estimator results greatly improved in case of missing data depending on 

Y, though they remain under 95%. This demonstrates what theory explains: the opportunity of 
using auxiliary information, and in particular in this case the knowledge of the true mean µy, 
produces an estimation improvement especially when X and Y are strongly related. 
When we oppositely consider the situations where X values determine missing data, yµ ′ˆ  estimator is 

extremely satisfactory, conforming  therefore a normal distribution. 
If we analyse the results paying attention on the differences between yµ ′ˆ  and 1Y , we can also argue 

other interesting considerations. 
Firstly, we note that, in case of random missing data, the differences between these estimators are 
minimal and moreover both are satisfactory. However, when ρ  increases there is a little 
improvement of yµ ′ˆ  compared to 1Y  for the reasons previously explained. 

As regards the other situations, we observe moreover that 1Y  presents a very low actual confidence 

level. Thus it results particularly worst even for cases where yµ ′ˆ  don’t seem to be extremely 

adequate. We should think about the minimal probabilities of finding the true parameter of interest 
in the intervals created with 1Y  estimator and on the possible biased interpretations that such 
estimator could erroneously involve. 
 
 
4.4 Comparison with a lognormal population distribution 

 

As announced early in the paper, the simulation tested for samples extracted from population 
normally distributed, has then been conducted for population with a lognormal distribution. 
The aim of this operation was to verify if in presence of a different distribution or, in worst cases, of 
non-knowledge of the population distribution, the estimator found could improve in any case the 
mean estimation. Moreover,  there would be an important result if it was normally distributed as the 
previous case. 
In the following tables we wish to illustrate the main results (we have limited the exposition to the 
case of s=100) 
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Table 9 

Estimators expected values – s=100 

n=100 n2=20 )ˆ(βE  )( 1YE  )ˆ( yE µ  )ˆ( yE µ ′  

MCAR  1,36366 1,37295 1,37465 

MCAR_BE 1,35603 1,36366 1,37252 1,37398 

HY  1,37709 1,3699 1,37161 

HY_BE 1,20858 1,37709 1,37034 1,36913 

LY  1,62776 1,41916 1,42086 

LY_BE 1,59854 1,62776 1,39384 1,38907 

 
Note: lY =1,37713 

 

Estimated variance – s=100 

n=100 n2=20 )(ˆ
1YV  )ˆ(ˆ

yV µ  )ˆ(ˆ
yV µ ′  

MCAR 0,02386 0,02121 0,00671 

MCAR_BE 0,02386 0,02131 0,00724 

HY 0,02511 0,02094 0,01032 

HY_BE 0,02511 0,02123 0,00805 

LY 0,0293 0,02367 0,00787 

LY_BE 0,0293 0,01635 0,00427 

 

Y mean and variance and estimators variance calculated with theoretical formulisations  

 )(YE  )(YV  )( 1YV  )ˆ( yV µ  )ˆ( yV µ ′  )( lYV  

n=100 n2=20 1.37154 0.02082 0.02125 0.01881 0.00903 1.7006 

 
 
In the table above exposed, we note that as the normal distribution case, when missing are at 
random, the estimators considered are unbiased. However, on comparing with the previous 
situation, we immediately note that when missing data depend on Y, yµ ′ˆ  is no more the best 

estimator, as yµ̂  and even yµ ′ˆ  seem sometimes register better values. As regards variance, let pay 

attention to the high variance of the mean estimator ( )( lYV ) which can evidently produce some 

biased result.  
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4.4.1 The effect of nonrespondents fraction increase 

 

As the simulation first part, we have then analysed the estimators characteristics on increasing 
the number of missing data. In this case we have added even tables on MAR mechanisms to explore 
the complete field. We can observe that there are not great differences when nonrespondents 
increase, excluding the situations where missing data depend on X. Here we particularly note that 

1Y  estimator is strongly biased on comparison with the other estimators. Finally, we can denote that 

the YMP and yµ ′ˆ  estimators have similar trend and values in all cases illustrated. 

 

Table 10 
Random missing data – s=100 

 )( 1YE  )ˆ( yE µ  )ˆ( yE µ ′  )(ˆ
1YV  )ˆ(ˆ

yV µ  )ˆ(ˆ
yV µ ′  

n=500 n2=50 1,37237 1,37422 1,37503 0,00327 0,00307 0,00083 

n=500 n2=100 1.37942 1.37710 1.37790 0,00386 0,00315 0,00102 

 
Missing data depending on Y: High values of Y – s=100 

 )( 1YE  )ˆ( yE µ  )ˆ( yE µ ′  )(ˆ
1YV  )ˆ(ˆ

yV µ  )ˆ(ˆ
yV µ ′  

n=500 n2=50 1,37572 1,3771 1,37791 0,00343 0,0032 0,00086 

n=500 n2=100 1.37303 1.37535 1.37615 0,00377 0,00323 0,00091 

 
Missing data depending on Y: Low values of Y – s=100 

 )( 1YE  )ˆ( yE µ  )ˆ( yE µ ′  )(ˆ
1YV  )ˆ(ˆ

yV µ  )ˆ(ˆ
yV µ ′  

n=500 n2=50 1,50113 1,39571 1,39651 0,00369 0,00329 0,00093 

n=500 n2=100 1.63466 1.42658 1.42738 0,00452 0,0037 0,00116 

 

Missing data depending on X: High values of X – s=100 

 )( 1YE  )ˆ( yE µ  )ˆ( yE µ ′  )(ˆ
1YV  )ˆ(ˆ

yV µ  )ˆ(ˆ
yV µ ′  

n=500 n2=50 1,08762 1,30192 1,30272 0,00171 0,00221 0,00046 

n=500 n2=100 0.94098 1.28231 1.28311 0,00135 0,00185 0,00039 

Missing data depending on Y: Low values of X – s=100 

 )( 1YE  )ˆ( yE µ  )ˆ( yE µ ′  )(ˆ
1YV  )ˆ(ˆ

yV µ  )ˆ(ˆ
yV µ ′  

n=500 n2=50 1,4951 1,38181 1,38261 0,00368 0,00331 0,00093 

n=500 n2=100 1.61972 1.39475 1.39556 0,00453 0,00367 0,00117 

 
 
 
In this next table there is represented the actual confidence level, calculated only for a correlation 
coefficient of 0.9. It seems that when missing data depend on high values of Y or low values of X 
both actual confidence values are weak, while in the other situations yµ ′ˆ  presents best results as in 

case of normal distributed population.  
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Table 11 
The actual confidence level. s=100, n=100, ns=20  

9.0=ρ  
yµ ′ˆ  

1Y  

MCAR 0,96 0,93 

MCAR_BE 0,96  

HY 0,93 0,95 

HY_BE 0,94  

LY 0,94 0,68 

LY_BE 0,95  

HXMAR 0,37 0 

HXMAR_BE 0,2  

LXMAR 0,94 0,73 

LXMAR_BE 0,85  

 
 

It is, finally interesting to examine graphically the forms of yµ ′ˆ  estimator distribution which seems 

confirm the previous results. 
 

 
Note: Estimator = yµ ′ˆ , s=100, n=100, ns=20 – population lognormally distributed 

 
 

Chart 1. Estimators distribution with random missing data 
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Chart 2. Estimators distribution with missing data depending on X 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Chart 3. Estimators distribution with missing data depending on X 

 

 
 
 
5. Conclusions 
 
In this paper we have proposed an estimator of the mean useful when some information regarding  
the variable to be studied are missing but we know all the observations of an auxiliary variable in 
the sample and the mean of this variable in the population. Using this information we can improve 
the estimator used in the above situation. The variance of the new estimator is computed and so it is 
possible to study the efficiency. 
The simulation study confirms the properties of the estimators. Moreover it is possible to conclude 
that the distribution of the considered estimators is normal when the distribution of the variables X 
and Y is normal in the population. This property is not preserved when the variables X and Y are 
lognormal in the population. 
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