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Abstract

We derive recursive relationships for the m.g.f. of the geometric av-
erage of the underlying within some a¢ ne Garch models (namely Hes-
ton and Nandi 2000, Christo¤ersen, Heston and Jacobs 2006, Bellini and
Mercuri, 2007, Mercuri, 2008) used for the semi-analytical valuation of
geometric Asian options. Similar relationships are obtained for low order
moments of the distribution of the arithmetic average of the underlying in
the same models, that are used for approximate evaluation of arithmetic
Asian options (Turnbull and Wakeman 1991). In both cases the accuracy
of the semi-analytical procedure is assessed by means of a comparison
with Montecarlo prices.

Keywords Asian Options, A¢ ne Garch Models, Fourier Transform, Semi-
analytical Valuation, Edgeworth Series

1 Introduction

The aim of this paper is to price a discretely monitored Asian option when the
underlying asset follows an a¢ ne Garch process. Asian options are options in
which the underlying variable is an average (geometric or arithmetic). The Asian
options are quite popular among the derivative traders and risk managers for
several reasons. First of all, Asian options smoothen possible market instabilities
occurring near the expiry date. Moreover, these options provide a suitable hedge
for �rms - this can be the case, for instance, of commodity end-users which are
�nancially exposed to average prices.
Several approaches have been proposed for the pricing of Asian options (see

Fusai and Roncoroni 2008 for a recent review and numerical comparisons).
These approaches can be broadly classi�ed into three categories: analytical,
approximation and Monte Carlo simulation.
The �rst approach, proposed by Carverhill and Clewlow (1990) under a geo-

metric Brownian motion assumption, is based on the Fourier transform. These
authors obtain a recursive procedure for the computation of the density of the
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arithmetic average of the underlying. Benhamou (2002) apply the same ap-
proach to some non-lognormal densities, e.g. Student t. Recently, for arithmetic
Asian option under Lévy processes, Fusai and Meucci (2008) solve the valuation
problem by recursive integration and derive a recursive theoretical formula for
the moments. Moreover, for the Geometric Asian option, these authors provide
a closed form formula in terms of the Fourier transform.
The second approach is based on approximating the true distribution of the

average with a more tractable one that matches some low order moments. Fol-
lowing this idea, Lévy (1991) proposed to approximate an arithmetic average of
lognormals with a lognormal while Turnbull and Wakeman (1992) proposed to
use an Edgeworth series approximation. In this way, the authors could capture
the skewness and kurtosis present in the log-returns, retaining the lognormal
approximation as a special case. Recently Albrecher (2004) explored these ap-
proaches under more general Lévy processes (see Albrecher and Predota 2004).
The main drawback of the approximation methods is that, in general, it is very
di¢ cult to evaluate the approximation error.
The last approach combines the Monte Carlo simulation with the analytical

formula for geometric Asian options. Indeed, in order to price an arithmetic
Asian option, it is possible to increase the accuracy of the Monte Carlo simu-
lation using the geometric Asian option price as control variate, as shown by
Kemma and Vorst (1990).

From an empirical point of view, it is well known that the Black-Scholes
model is not able to capture some �stylized facts�such as skewness and heavy
tails in the distribution of logreturns. For this reason, the Lévy processes have
been introduced in �nance (see among others Geman 2002, Schoutens 2003,
Carr et al. 2003, for an introduction to Lévy processes with an application in
�nance). Although these processes are able to account for the skewness and
the excess kurtosis, they are still based on an I.I.D. assumption that does not
capture the dependence structure observed in real �nancial data.
The most common discrete time models of non I.I.D. data are Garch-like mod-
els, that are indeed very popular in Finance. For option pricing purposes, a very
suitable class is constituted by the so-called a¢ ne Garch models, that yield a
closed form formula for option prices, since it is possible to compute the char-
acteristic function of log-prices and thereby options prices by inverse Fourier
transform methods (see Heston and Nandi 2000 for a normal case, Christof-
fersen et al. 2006 for Inverse Gaussian innovations, Bellini and Mercuri 2007 for
Gamma innovations and Mercuri 2008 for Tempered Stable innovations).
The contribution of this paper is two-fold. First, we provide a closed form

formula for geometric Asian options when the underlying follow an a¢ ne Garch
process of the above mentioned types. Second we discuss the case of the arith-
metic Asian option and provide a recursive procedure for the computation of
the moments of the arithmetic average that will be the basis of an approximated
procedure.
This paper is organized as follow: in Section 2 we quickly review some a¢ ne
Garch models present in literature. In Section 3 we obtain the valuation formula
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for geometric Asian option and we check the accuracy of the proposed procedure
by a comparison with Monte Carlo prices.
In the last Section we present the approximation method for the arithmetic
Asian options.

2 A¢ ne Garch Models

The aim of this section is to review the existing a¢ ne Garch models. The main
feature of these models is that they yield a closed form formula for option prices
in terms of Fourier transform. The models are written in an exponential form

St = St�1 exp (Xt)

where the logreturns Xt follow an a¢ ne Garch process.
We will write the dynamics directly under the risk neutral measure. These
models may also be introduced under the objective measure, and the change of
measure may be performed by means of the conditional Esscher transform, as
discussed in Siu et al (2004) and Bellini - Mercuri (2007)
The �rst model was proposed by Heston and Nandi (HN henceforth) in which
the dynamics of Xt under the martingale measure is given by:(

Xt = r � 1
2ht +

p
htZt

ht = �0 + �1(Zt�1 � �
p
ht�1)

2 + �1ht�1

where Zt are i.i.d. standard normal.
Christo¤ersen et al. (2006) pointed out that this model seems to be not

su¢ ciently �exible, particularly if we consider the options with short maturities.
These authors suggested that the reason is that normal innovations are not
able to capture the conditional skewness and the conditional kurtosis of the
logreturns. For this reason, they proposed an a¢ ne Garch model with Inverse
Gaussian innovations (CHJ model henceforth), where the risk-neutral dynamics
of logreturns is given by:8>>>>>>>>><>>>>>>>>>:

Xt = r + �ht � "t
"tjFt�1 = �Yt
Yt � IG(�t) with �t =

ht
�2

ht = �0 + �1"t�1 + �1ht�1 +
h2t�1
"t�1

With similar motivations, Bellini and Mercuri (2007) suggested a model with
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Gamma innovations (BM model):8>>>>>>><>>>>>>>:

Xt = r + �ht � "t

"tjFt�1 =
bp
a
Yt

Yt � Ga(aht; b)
ht = �0 + �1"t�1 + �1ht�1

Finally, Mercuri (2008) proposed an a¢ ne Garch model with Tempered Stable
innovations (M model) that encompasses both the CHJ and the BM models as
special cases: 8>>>>>>><>>>>>>>:

Xt = r + �ht � "t

"tjFt�1 =
Yt

2

q
�a (1� �) (b)(��2)=�

Yt � TS (�; aht; b)
ht = �0 + �1"t�1 + �1ht�1

Remark 1 Let s(x;�; �; c; �) be the positively skewed �-stable density function
with � � (0; 1). We say that TS(�; a; b) is a tempered stable distribution with a
� (0; 1); a > 0 and b � 0, if its density function is given by:

p (x;�; a; b) = exp (ab) s(x;�; 1;
a

2� sec
�
��2
� ; 0) exp��1

2
b1=�x

�

3 Geometric Asian options

In this section we provide an analytic procedure for the pricing of a geometric
Asian option where the underlying is observed at equally-spaced times (for no-
tational simplicity we will consider unitary steps).
The payo¤ of the geometric Asian call option with �xed strike K is given by:

C (K;T ) = max fGT �K; 0g

where

GT =

 
TY
t=0

St

! 1

T + 1
(1)

In order to price this option, we have to evaluate the expected payo¤ under the
martingale measure:

C (K; t) = e�r(T�t)EQt [max fGT �K; 0g] (2)

By de�ning
YT := ln (GT )
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we can rewrite the expected value in (2) as:

C
�
ek; t

�
= e�r(T�t)

+1Z
k

�
eYT � ek

�
dF (YT ) (3)

where k = ln (K).
In a general Garch setup, this integral can not be computed analytically since
the distribution of YT is unknown. In the next section we show how to compute
in a recursive fashion the moment generating function of the variable YT .

3.1 Recursive computation of the m.g.f. of average logre-
turns YT

We write the m.g.f. of YT in exponential form

't (u) = Et [exp (uYT )] =

= exp

"
u

T + 1

t�1X
h=0

ln (Sh) +A (t : T; u) +B (t : T; u)ht+1 + C (t : T; u) ln (St)

#
with time-dependent coe¢ cients A (t : T; u), B (t : T; u) and C (t : T; u).
From the iteration property of conditional expectations we have that:

't (u) = exp

"
u

T + 1

t�1X
h=0

ln (Sh) +

�
u

T + 1
+ C (t+ 1 : T; u)

�
ln (St)+

#
�

� exp [C (t+ 1 : T; u) r +A (t+ 1 : T; u) + �0B (t+ 1 : T; u)+
� 1
2 ln (1� 2�1B (t+ 1 : T; u))

�
�

� exp
��
C (t+ 1 : T; u) (�� 1

2
)� �

2

2
+ �1B (t+ 1 : T; u)+

+
1
2 (C (t+ 1 : T; u)� �)

2

1� 2�1B (t+ 1 : T; u)

��
ht+1

and by substituting and equating terms of the same order in logprice and volatil-
ity we get the following recursive system for the coe¢ cients:8>>>>>>>><>>>>>>>>:

A (t : T; u) = C (t+ 1 : T; u) r +A (t+ 1 : T; u) + �0B (t+ 1 : T; u)+
� 1
2 ln (1� 2�1B (t+ 1 : T; u))

B (t : T; u) = C (t+ 1 : T; u) (�� 1
2 )�

�2

2
+ �1B (t+ 1 : T; u)+

+
1
2 (C (t+ 1 : T; u)� �)

2

1� 2�1B (t+ 1 : T; u)
C (t : T; u) = u

T+1 + C (t+ 1 : T; u)

(4)

The same approach may be pursued in the other a¢ ne Garch models previously
introduced. In the CHJ model, we obtain the following recursive system:
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8>>>>>>>>><>>>>>>>>>:

A (t : T; u) = �1
2
ln[1� 2�4B(t+ 1; T; u)] + C (t+ 1 : T; u) r+

+A(t+ 1; T; u) + �0B(t+ 1; T; u)

B (t : T; u) = �1B(t+ 1; T; u) + C (t+ 1 : T; u)�+
1

�2
+

� 1

�2

p
[1� 2�4B(t+ 1; T; u)][1� 2C (t+ 1 : T; u) � � 2�1B(t+ 1; T; u))]

C (t : T; u) =
u

T + 1
+ C (t+ 1 : T; u)

(5)
In BM model, we have:8>>>>><>>>>>:

A (t : T; u) = C (t+ 1 : T; u) r +A (t+ 1 : T; u) +B (t+ 1 : T; u)!
B (t : T; u) = �B (t+ 1 : T; u) + C (t+ 1 : T; u)�+

�a log
�
1 +

C (t+ 1 : T; u)p
a

� �1p
a
B (t+ 1 : T; u)

�
C (t : T; u) =

u

T + 1
+ C (t+ 1 : T; u)

(6)

and in M model we get:

8>>>>>><>>>>>>:

A (t; T; u) = C (t+ 1 : T; u) r +A (t+ 1; T; u) + �0B (t+ 1; T; u)
B (t; T; �) = C (t+ 1 : T; u)�+ �1B (t+ 1; T; u)+

+ab

"
1�

 
1� (�1B (t+ 1; T; u)� C (t+ 1 : T; u))p

�ba (1� �)

!�#
C (t : T; u) =

u

T + 1
+ C (t+ 1 : T; u)

(7)

see the Appendix for the complete derivations.

Remark 2 The recursive system, in BM model, can be obtained as a spe-
cial case of the M model by setting b = 1; a =

a1
�

and computing the limit

for � ! 0+: Moreover it is possible to recover the CHJ model by imposing

� =
1

2
; a =

1

�2
; b = 1 and considering the following variance dynamics

ht = �0 + �1"t�1 + �1ht�1

where "t is conditionally distributed as IG
�
ht
�2

�
:

In all cases the recursive relations have to be numerically implemented with
the terminal conditions: 8><>:

A (T : T; u) = 0
B (T : T; u) = 0

C (T : T; u) =
u

T + 1
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3.2 Option pricing

In order to price a geometric Asian call option, we follow the approach proposed
in Carr and Madan (1998).
Let C

�
ek; t

�
the call price a time t, we introduce a dumping parameter � > 0

(usually chosen between 1:5 and 2) such that the quantity:

c�
�
ek; t

�
:= e�kC

�
ek; t

�
adimts the Fourier transform with respect to the logarithm of the strike-price:

F
�
c�
�
ek; t

��
() =

Z +1

�1
eikc�

�
ek; t

�
dk =

=
e�r(T�t)'t ( � �i� i)
�2 + � � 2 + i (2� + 1) 

where 't (�) is the characteristic function given the information a time t.
The option price may then be obtained by Fourier inversion:

C
�
ek; t

�
=
e��k

�

Z +1

0

eikF
�
c�
�
ek; t

��
() d (8)

In the following tables we compare the option prices obtained by the Fourier
approach with the Monte Carlo prices:

Insert table 1,2,3,4 about here

We consider the parameters reported in Mercuri (2008). These parameters
are calibrated on S&P500 closing option prices (from 06/22/06 to 07/10/06)
hence they allows a comparison between the di¤erent models. In all cases the
results from the recursive procedure are in good accordance with Monte Carlo
prices. Moreover we note that the higher prices are achieved in HN model while
the lower ones in M model and this di¤erence increases for options out-of-the
money. One possible explanation is the presence of a single tail in conditional
distributions, with the exception of the HN model.

4 Arithmetic Asian options

In this section we deal with the case of an arithmetic Asian option, that is, an
option written on the arithmetic average of an asset price or �nancial index.
We will follow the approximation approach that is based on replacing the true
distribution of the arithmetic average with a more tractable distribution match-
ing some low order moments (see Fusai and Roncoroni 2008 for a recent review).
Recently Albrecher (2004) extends this method to exponential Lévy processes.
The idea is to compute the moments of the true distribution by means of a
recursive procedure, much in the spirit of the preceding section.
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We have to evaluate the following expected values:

�n = E
Q
0

��
1

T + 1
AT

�n�
(9)

where n = 1; :::; N; (usually N = 4) and the variable AT is de�ned as:

AT :=
T+1X
t=0

St

we can rewrite AT using the log-returns

AT = S0 [1 + exp (X1) + :::+ exp (X1 + :::+XT )] =

= S0 [1 + exp (X1) [::: [1 + exp (XT )]]]

and by a straightforward calculation we have

AnT = S
n
0

nX
j1=0

�
n

j1

�
exp (j1X1) [::: [1 + exp (XT )]]

j1

and with repeated applications of the binomial theorem we get:

AnT = S
n
0

nX
j1=0

j1X
j2=0

:::

jT�1X
jT=0

EQ0 [exp (j1X1 + j2X2 + :::+ jTXT )] (10)

In the Heston-Nandi model it is possible to compute recursively the quantity:

'0 (j1; :::; jT ) = E
Q
0 [exp (j1X1 + j2X2 + :::+ jTXT )]

indeed by de�ning:

't (j1; :::; jT ) = exp [j1X1 + j2X2 + :::+A (t : T; jt+1; :::; jT )+

+B (t : T; jt+1; :::; jT )ht+1]

We have by the iteration property of conditional expectations:

't (j1; :::; jT ) = E
Q
t

�
't+1 (j1; :::; jT )

�
=

= � exp [j1X1 + :::+ jtXt + jt+1r +A (t+ 1 : T; jt+2; :::; jT )+
+�0B (t+ 1 : T; jt+2; :::; jT )� 1

2 ln (1� 2�1B (t+ 1 : T; jt+2; :::; jT ))
�
�

� exp
��
�jt+1 �

jt+1
2
� �

2

2
+ �1B (t+ 1 : T; jt+2; :::; jT )+

+

1

2
(�� jt+1)2

1� 2�1B (t+ 1 : T; jt+2; :::; jT )

1CAht+1
375

8



Hence we obtain the following recursive system for the coe¢ cients:8>>>>>>>><>>>>>>>>:

A (t : T; ; jt+1; :::; jT ) = jt+1r +A (t+ 1 : T; jt+2; :::; jT )+

+�0B (t+ 1 : T; jt+2; :::; jT )�
1

2
ln (1� 2�1B (t+ 1 : T; jt+2; :::; jT ))

B (t : T; ; jt+1; :::; jT ) = �jt+1 �
jt+1
2
� �

2

2
+ �1B (t+ 1 : T; jt+2; :::; jT )+

+

1

2
(�� jt+1)2

1� 2�1B (t+ 1 : T; jt+2; :::; jT )
(11)

As for the recursive determination of the m.g.f. of the geometric average, this
approach works also in the other considered a¢ ne Garch models.
In CHJ, BM, M model we obtain respectively in equations (12), (13) ; (14):

8>>>>><>>>>>:
A (t : T; jt+2; :::; jT ) = �

1

2
ln[1� 2�4B(t+ 1; T; jt+2; :::; jT )] + jt+1r+

+A(t+ 1; T; jt+2; :::; jT ) + �0B(t+ 1; T; jt+2; :::; jT )

B (t : T; jt+2; :::; jT ) = �1B(t+ 1; T; jt+2; :::; jT ) + jt+1�+
1

�2
� 1

�2
�

�
p
[1� 2�4B(t+ 1; T; jt+2; :::; jT )][1� 2jt+1� � 2�1B(t+ 1; T; jt+2; :::; jT ))]

(12)8>>>><>>>>:
A (t : T; jt+2; :::; jT ) = jt+1r +A (t+ 1 : T; jt+2; :::; jT )+
+�0B (t+ 1 : T; jt+2; :::; jT )
B (t : T; u) = �B (t+ 1 : T; jt+2; :::; jT ) + jt+1�+

�a log
�
1 +

jt+1p
a
� �1p

a
B (t+ 1 : T; jt+2; :::; jT )

� (13)

8>>>>><>>>>>:

A (t; T; jt+2; :::; jT ) = jt+1r +A (t+ 1; T; jt+2; :::; jT )+
+�0B (t+ 1; T; jt+2; :::; jT )
B (t; T; jt+2; :::; jT ) = jt+1�+ �1B (t+ 1; T; jt+2; :::; jT )+

+ab

"
1�

 
1� (�1B (t+ 1; T; jt+2; :::; jT )� jt+1)p

�ba (1� �)

!�# (14)

Remark 3 As in geometric case, the recursive systems (12) and (13) can be
obtained as special cases of M model by imposing the same condition introduced
in section 3.1

In order to check the accuracy of the proposed procedures, we compare
the �rst fourth moments of the sum variable in the above models obtained
by recursive systems and by the Monte Carlo simulation respectively. As in
previous section we use the calibrated parameters reported on Mercuri (2008).
We report the results in the tables 5, 6, 7 and 8:

Insert table 5,6,7,8 about here

Notice that, as expected, the �rst moments are equal for all models. For the
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other moments, the lower values are obtained in M model while the higher ones
in HN model. However, the Monte Carlo simulations con�rm the correctness of
recursive systems.
Finally, we study the approximations of the arithmetic option price by means

of Edgeworth series expansions. In order to capture the skewness and kurtosis
of the average variable, we follow the approach proposed in Turnbull and Wake-
man (1991). These authors adopt a fourth-order Edgeworth series expansion as
approximation of the true variable.
Let flog

�
y;m; v2

�
the lognormal density where the parameters m and v2

match the mean and the variance of the variable AT :

m = 2 log
�
EQ0 [AT ]

�
� 1
2
log
�
EQ0

�
A2T
��

v2 = log
�
EQ0

�
A2T
��
� 2 log

�
EQ0 [AT ]

�
The fourth-order Edgeworth approximation fedg

�
y;m; v2

�
is given by:

fedg
�
y;m; v2

�
= flog

�
y;m; v2

�
+

4X
i=1

ki
i!

@iflog
�
y;m; v2

�
(@y)

i
+ e (y)

where ki is the di¤erence in the ith cumulant1 between the exact distribution
and approximate distribution, namely ki = �i (f)� �i

�
flog

�
y;m; v2

��
, with

�1 (f) = EQ0 [AT ]

�2 (f) = EQ0

��
AT � EQ0 [AT ]

�2�
�3 (f) = EQ0

��
AT � EQ0 [AT ]

�3�
�4 (f) = EQ0

��
AT � EQ0 [AT ]

�4�
� 3�2 (F )

1The cumulants of random variable X with distribution function F are de�ned by:

�i (F ) =

"
@i ln

�
E
�
etX

��
(@t)i

#
t=0

; i = 1; 2; :::
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Therefore the approximate Asian option price is given by:

cedg (K; 0) = e
�rT S0

T + 1

2664em+ v2

2 N

0BB@m+ v
2 � log

�
nK

S0

�
v

1CCA+

� (T + 1)K
S0

N

0BB@m� log
�
nK

S0

�
v

1CCA
3775+

+e�rT
S0
T + 1

"
�k3
3!

@flog
�
y;m; v2

�
@y

+
k4
4!

@2flog
�
y;m; v2

�
(@y)

2

#
y=

nK
S0

If we consider the �rst two cumulants we obtain the approximation proposed
by Lévy (1992). In the following tables, we compare the option prices obtained
by fourth-order Edgeworth series expansion with Monte Carlo simulation:

Insert table 9,10,11,12 about here

Notice that the approximate formula seems to work better in HN model.
This result may be due to the conditionally normal assumption for innovations.
Generally, the approximate formula seems to be consistent with the Monte Carlo
prices for options in the money.
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5 Appendix

Derivation of conditional m.g.f. in HN model for the YT variable
Given the formula

't (u) = Et [exp (uYT )] (15)

= exp

"
u

T + 1

t�1X
h=0

ln (Sh) +A (t : T; u) +B (t : T; u)ht+1 + C (t : T; u) ln (St)

#

we suppose that the relation (15) holds a time t + 1 and by iteration property
of the conditional expected value we compute the conditional m.g.f a time t:
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't (u) = Et
�
't+1 (u)

�
=

= exp

"
u

T + 1

t�1X
h=0

ln (Sh) +

�
u

T + 1
+ C (t+ 1 : T; u)

�
ln (St)

#
�

� exp [�0B (t+ 1 : T; u) + rC (t+ 1 : T; u) +A (t+ 1 : T; u)] �

� exp
��
�1B (t+ 1 : T; u)�

1

2
C (t+ 1 : T; u)

�
ht+1

�
�

�Et
h
exp

h
�1B (t+ 1 : T; u) (Zt � �

p
ht)

2 + C (t+ 1 : T; u)
p
htZt

ii

't (u) = Et
�
't+1 (u)

�
= exp

"
u

T + 1

t�1X
h=0

ln (Sh) +

�
u

T + 1
+ C (t+ 1 : T; u)

�
ln (St)

#
�

� exp [�0B (t+ 1 : T; u) + rC (t+ 1 : T; u) +A (t+ 1 : T; u)] �

� exp
��
�1B (t+ 1 : T; u)�

1

2
C (t+ 1 : T; u) + �C (t+ 1 : T; u)+

� C2 (t+ 1 : T; u)

4�1B (t+ 1 : T; u)

�
ht+1

�
�

�Et
�
exp

�
�1B (t+ 1 : T; u) (Zt �

�
�� C (t+ 1 : T; u)

2�1B (t+ 1 : T; u)

�p
ht+1)

2

��
using the moment generating function of the non central Chi-square

E[exp(a(z + b)2)] = exp(�1
2
ln(1� 2a) + ab2

1� 2a )

we obtain

't (u) = Et
�
't+1 (u)

�
= exp

"
u

T + 1

t�1X
h=0

ln (Sh) +

�
u

T + 1
+ C (t+ 1 : T; u)

�
ln (St)

#
�

� exp [�0B (t+ 1 : T; u) + rC (t+ 1 : T; u) +A (t+ 1 : T; u)+

�1
2
ln(1� 2�1B (t+ 1 : T; u))

�
�

� exp
��
�1B (t+ 1 : T; u) +

�
�� 1

2

�
C (t+ 1 : T; u)+

��
2

2
+

1
2 (�� C (t+ 1 : T; u))

2

1� 2�1B (t+ 1 : T; u)

!
ht+1

#
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Derivation of conditional m.g.f. in CHJ model for the YT variable.
As in HN model, we suppose that the relation (15) holds a time t + 1 and

therefore, by iteration property of the conditional expected value, we compute
the conditional m.g.f a time t:

't (u) = exp

"
u

T + 1

t�1X
h=0

ln (Sh) +

�
u

T + 1
+ C (t+ 1 : T; u)

�
ln (St)

#
�

� exp[C (t+ 1 : T; u) (Xt + r + �ht+1) +A(t+ 1; T; u)+
+B(t+ 1; T; u)(�0 + �1ht+1)]�

Et[exp("t+1(C (t+ 1 : T; u) � + �1B(t+ 1; T; u)) +
B(t+ 1; T; u)h2t+1

"t+1
))]

the expected value in above formula can be calculated using the generalized
moment generating function of Inverse Gaussian with � degree of freedom :

E[exp(�y +
�

y
)] =

�q
(�2 � 2�)

exp(� �
q
(�2 � 2�)(1� 2�)) (16)

Remembering that �t = ht
�2 we get

Et[exp("t+1(C (t+ 1 : T; u) � + �1B(t+ 1; T; u)) +
B(t+ 1; T; u)h2t+1

"t+1
))] =

=

1
�2q

1
�4 � 2B(t+ 1; T; u)

exp

�
ht+1
�2

+

�ht+1
r
[
1

�4
� 2B(t+ 1; T; u)] � [1� 2(C (t+ 1 : T; u) � + �1B(t+ 1; T; u))]

�
from which the recursive relation can be recovered.
Derivation of conditional m.g.f. in BM model for the YT variable.
Following the same approach proposed in HN model, we obtain for the con-

ditional moment generating function:

't (u) = exp

"
u

T + 1

t�1X
h=0

ln (Sh) +

�
u

T + 1
+ C (t+ 1 : T; u)

�
ln (St)

#
�

� exp[C (t+ 1 : T; u) (Xt + r + �ht+1) +A(t+ 1; T; u)+
+B(t+ 1; T; u)(�0 + �1ht+1)]�

Et[exp("t+1(C (t+ 1 : T; u) + �1B(t+ 1; T; u))]

hence, using the moment generating function of Gamma variable, we get
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't (u) = exp

"
u

T + 1

t�1X
h=0

ln (Sh) +

�
u

T + 1
+ C (t+ 1 : T; u)

�
ln (St)

#
�

� exp[C (t+ 1 : T; u) (Xt + r + �ht+1) +A(t+ 1; T; u)+

+B(t+ 1; T; u)(�0 + �1ht+1)]

�
1 +

� + �1B(t+ 1; T; �)p
a

��aht+1
Derivation of conditional m.g.f. in BM model for the YT variable.
For this model, the �rst step is given by:

't (u) = exp

"
u

T + 1

t�1X
h=0

ln (Sh) +

�
u

T + 1
+ C (t+ 1 : T; u)

�
ln (St)

#
�

� exp[C (t+ 1 : T; u) (Xt + r + �ht+1) +B(t+ 1; T; u)(�0 + �1ht+1)+

+A(t+ 1; T; u)]Et

24exp
0@ (�1B (t+ 1; T; u)� C (t+ 1 : T; u))

2

q
�a (1� �) (b)(��2)=�

Zt+1

1A35
recalling that the moment generating function of Tempered Stable distribution
with parameters (�; a; b) is given by:

E [exp (�X)] = exp
h
ab
h
1�

�
1� 2�b�1=�

��ii
we get

't (u) = exp

"
u

T + 1

t�1X
h=0

ln (Sh) +

�
u

T + 1
+ C (t+ 1 : T; u)

�
ln (St)

#
�

� exp[C (t+ 1 : T; u) (Xt + r + �ht+1) +B(t+ 1; T; u)(�0 + �1ht+1)+

+A(t+ 1; T; u)] exp

"
aht+1b

"
1�

 
1� (�1B (t+ 1; T; u)� C (t+ 1 : T; u))p

�ba (1� �)

!�##

from which the recursive system for the coe¤ecients in (15) :
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T = 60
N K = 0:95 K = 0:975 K = 1 K = 1:025 K = 1:05
500 0,05240 0,03251 0,01782 0,006530 0,00301
1000 0,05492 0,03430 0,01773 0,008011 0,00266
1500 0,05283 0,03364 0,01767 0,006770 0,00271
Semian: price 0,05336 0,03288 0,01733 0,007599 0,00272
T = 90
N K = 0:95 K = 0:975 K = 1 K = 1:025 K = 1:05
500 0,05278 0,03555 0,02209 0,01163 0,005018
1000 0,05390 0,03500 0,02024 0,01162 0,004647
1500 0,05660 0,03501 0,02147 0,01111 0,005278
Semian: price 0,05587 0,03656 0,02152 0,01125 0,005176

Tab.1: Comparison between Monte Carlo and semianalytical formula for
geometric Asians options in the HN model with parameters:
�0 = 4:23 � 10�5; �1 = 2:8 � 10�5; �1 = 4:86 � 10�1; � = 4:67:

T = 60
N K = 0:95 K = 0:975 K = 1 K = 1:025 K = 1:05
500 0,05303 0,02847 0,00737 0 0
1000 0,05158 0,02803 0,00738 0 0
1500 0,05205 0,02826 0,00685 0 0
Semian: price 0,05244 0,02857 0,00715 4,15*10�7 1,95*10�7

T = 90
N K = 0:95 K = 0:975 K = 1 K = 1:025 K = 1:05
500 0,05347 0,03006 0,00965 0 0
1000 0,05371 0,02990 0,00972 0 0
1500 0,05429 0,03054 0,00960 2,66*10�8 0
Semian: price 0,05367 0,03025 0,00954 1,33*10�8 8,62*10�9

Tab.2: Comparison between Monte Carlo and semianalytical formula for
geometric Asians options in CHJ model with parameters:

�0 = 17:131 � 10�6; �1 = 0:515 � 10�4; �1 = 0:017;
� = 110:648; � = 0:033;  = 0:033:
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T = 60
N K = 0:95 K = 0:975 K = 1 K = 1:025 K = 1:05
500 0,05461 0,03226 0,013074 0,00204 6,83*10�6

1000 0,05398 0,03138 0,013292 0,00194 7,43*10�6

1500 0,05251 0,03004 0,012827 0,00184 9,95*10�6

Semian: price 0,05319 0,03090 0,012490 0,00187 8,26*10�7

T = 90
N K = 0:95 K = 0:975 K = 1 K = 1:025 K = 1:05
500 0,05591 0,03314 0,0147 0,00406 3,66*10�4

1000 0,05688 0,03397 0,0152 0,00438 3,45*10�4

1500 0,05542 0,03395 0,0161 0,00426 3,03*10�4

Semian: price 0,05495 0,03350 0,0158 0,00445 3,39*10�4

Tab.3: Comparison between Monte Carlo and semianalytical formula for
geometric Asians options in the BM model with parameters:

� = 68:220; �0 = 25:77 � 10�6; �1 = 67:051 � 10�4; � = 0:7341 � 10�3; a = 4721:8

T = 60
N K = 0:95 K = 0:975 K = 1 K = 1:025 K = 1:05
500 0,05136 0,02866 0,01011 0,001801 2,58*10�5

1000 0,05299 0,02908 0,01091 0,001578 9,95*10�6

1500 0,05180 0,03006 0,01082 0,001750 2,57*10�5

Semian: price 0,05176 0,02905 0,01090 0,001543 9,69*10�6

T = 90
N K = 0:95 K = 0:975 K = 1 K = 1:025 K = 1:05
500 0,05237 0,03203 0,01350 0,00363 2,79*10�4

1000 0,05339 0,03217 0,01429 0,00436 3,48*10�4

1500 0,05295 0,03228 0,01463 0,00412 4,70*10�4

Semian: price 0,05312 0,03155 0,01431 0,00393 3,89*10�4

Tab.4: Comparison between Monte Carlo and semianalytical formula for
geometric Asians options in the M model with parameters:
� = 147:29; �0 = 3:021 � 10�6; � = 0:828; �1 = 7:946 � 10�4;

k = 0:33; a = 12411; b = 3:599 :
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T = 15
N I nth II nth III nth IV nth
500 1,0009 1,005 1,0035 1,0061
1000 1,0004 1,0018 1,0037 1,0027
1500 0,99991 0,9999 1,0038 1,0047
Semian: 1,0005 1,0013 1,0024 1,0039
T = 30
N I nth II nth III nth IV nth
500 1,0006 1,0004 1,003 1,0023
1000 1,0014 1,0012 1,0057 1,0121
1500 1,0004 1,0015 1,0081 1,006
Semian: 1,001 1,0027 1,0053 1,0087

Tab.5: Comparison between Monte Carlo and semianalytical procedure for the
nth moments in the HN model with parameters:

�0 = 4:23 � 10�5; �1 = 2:8 � 10�5; �1 = 4:86 � 10�1; � = 4:67:

T = 15
N I nth II nth III nth IV nth
500 1,0003 0,9998 1,0001 1,0022
1000 1,0006 1,0015 1,0019 1,0033
1500 1,0003 1,0012 1,0017 1,0021
Semian: 1.0005 1,0010 1,0016 1,0022
T = 30
N I nth II nth III nth IV nth
500 1,0014 1,0021 1,0054 1,0063
1000 1,0017 1,0016 1,0033 1,0064
1500 1,0009 1,0020 1,0045 1,0052
Semian: 1,001 1,0021 1,0034 1,0048

Tab.6: Comparison between Monte Carlo and semianalytical procedure for the
nth moments in CHJ model with parameters:

�0 = 17:131 � 10�6; �1 = 0:515 � 10�4; �1 = 0:017; � = 110:648; � = 0:033;
 = 0:033:
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T = 15
N I nth II nth III nth IV nth
500 1,0021 1,0014 1,0007 1,003
1000 1,0001 1,0023 1,0006 1,0023
1500 1,0003 1,0009 1,0028 1,0031
Semian: 1.0005 1.0011 1.0019 1.0029
T = 30
N I nth II nth III nth IV nth
500 1,0009 1,0067 1,0088 1,0063
1000 1,0008 1,0037 1,0039 1,0064
1500 1,002 1,0032 1,0074 1,0067
Semian: 1,002 1,0024 1,0041 1,0063

Tab.7: Comparison between Monte Carlo and semianalytical procedure for the
nth moments in the BM model with parameters:

� = 68:220; �0 = 25:77 � 10�6; �1 = 67:051 � 10�4; � = 0:7341 � 10�3; a = 4721:8

T = 15
N I nth II nth III nth IV nth
500 1,0013 1,0014 1,0012 1,0026
1000 1,0001 1,0012 1,0018 1,0031
1500 1,0003 1,0011 1,0025 1,0031
Semian: 1,0005 1,0009 1,0014 1,0018
T = 30
N I nth II nth III nth IV nth
500 1,0005 1,0004 1,0044 1,0055
1000 1,0008 1,0023 1,0029 1,0044
1500 1,0005 1,0015 1,0029 1,0032
Semian: 1,001 1,002 1,0029 1,0039

Tab.8: Comparison between Monte Carlo and semianalytical procedure for the
nth moments in the M model with parameters:

� = 147:29; �0 = 3:021 � 10�6; � = 0:828; �1 = 7:946 � 10�4;
k = 0:33; a = 12411; b = 3:599:
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T = 15
N K = 0:95 K = 0:975 K = 1 K = 1:025 K = 1:05
500 0,05040 0,02541 0,00660 0,00103 1,20*10�4

1000 0,05041 0,02605 0,00830 0,00123 8,33*10�5

1500 0,05092 0,02628 0,00831 0,00124 5,38*10�5

Semian: price 0,05042 0,02615 0,00767 9; 02 � 10�4 3; 8 � 10�5
T = 30
N K = 0:95 K = 0:975 K = 1 K = 1:025 K = 1:05
500 0,05268 0,02977 0,01089 0,00291 6,2924*10�4

1000 0,05168 0,02752 0,01179 0,00332 6,4368*10�4

1500 0,05156 0,02897 0,01150 0,00337 7,2596*10�4

Semian: price 0,05121 0,02850 0,01166 0,00318 5,5477*10�4

Tab.9: Comparison between Monte Carlo and approximate formula for
arithmetic Asians options in the HN model with parameters:
�0 = 4:23 � 10�5; �1 = 2:8 � 10�5; �1 = 4:86 � 10�1; � = 4:67:

T = 15
N K = 0:95 K = 0:975 K = 1 K = 1:025 K = 1:05
500 0; 0505 0; 0254 0; 0023 0 0
1000 0; 0504 0; 0256 0; 00246 0 0
1500 0; 0507 0; 0260 0; 00243 0 0
Semian: price 0; 0504 0; 0263 0; 00350 9; 45 � 10�4 7; 12 � 10�9
T = 30
N K = 0:95 K = 0:975 K = 1 K = 1:025 K = 1:05
500 0; 0513 0; 0267 0; 00430 0 0
1000 0; 0513 0; 0263 0; 00435 0 0
1500 0; 0514 0; 0266 0; 00421 0 0
Semian: price 0; 0509 0; 0304 0; 00540 0; 00261 4; 44 � 10�5

Tab.10: Comparison between Monte Carlo and approximate formula for
arithmetic Asians options in CHJ model with parameters:

�0 = 17:131 � 10�6; �1 = 0:515 � 10�4; �1 = 0:017; � = 110:648;
� = 0:033;  = 0:033 :
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T = 15
N K = 0:95 K = 0:975 K = 1 K = 1:025 K = 1:05
500 0,0512 0,0264 0,00543 1,01*10�6 0
1000 0,0501 0,0270 0,00529 7,32*10�6 0
1500 0,0504 0,0264 0,00520 4,07*10�6 0
Semian: price 0,0504 0,0274 0,00330 3,99*10�4 2,67*10�5

T = 30
N K = 0:95 K = 0:975 K = 1 K = 1:025 K = 1:05
500 0,0503 0,0274 0,00838 2,59*10�5 0
1000 0,0508 0,0279 0,00795 8,14*10�5 0
1500 0,0520 0,0282 0,00833 3,17*10�5 0
Semian: price 0,0516 0,0289 0,00660 1,33*10�4 2,08*10�4

Tab.11: Comparison between Monte Carlo and approximate formula for
arithmetic Asians options in the BM model with parameters:

� = 68:220; �0 = 25:77 � 10�6; �1 = 67:051 � 10�4; � = 0:7341 � 10�3; a = 4721:8

T = 15
N K = 0:95 K = 0:975 K = 1 K = 1:025 K = 1:05
500 0,05304 0,02670 0,00362 0 0
1000 0,05220 0,02539 0,00411 0 0
1500 0,05210 0,02664 0,00451 0 0
Semian: price 0,05040 0,02542 4,66*10�4 0 0
T = 30
N K = 0:95 K = 0:975 K = 1 K = 1:025 K = 1:05
500 0,05130 0,02762 0,00729 0 0
1000 0,05308 0,02787 0,00811 5,18*10�5 0
1500 0,05102 0,02877 0,00599 2,32*10�5 0
Semian: price 0,05086 0,02592 9,76*10�4 0 0

Tab.12: Comparison between Monte Carlo and approximate formula for
arithmetic Asians options in the M model with parameters:
� = 147:29; �0 = 3:021 � 10�6; � = 0:828; �1 = 7:946 � 10�4;

k = 0:33; a = 12411; b = 3:599:
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