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Introduction

SiGe heterostructures have gained a lot of interests in view of developing devices inte-
grated into the main-stream Silicon technology and also from a scientific point of view as
a prototypical system to understand the properties of more complex systems, such as I1I-V
semiconductors. Si-Ge epitaxial structures, as well as other mismatched heteroepitaxial
materials, have a high potential to improve the state-of-the-art of Si devices, thanks to
the fact that the strain modifies the band structures of this material class, opening new
possibility of band-gap engineering. Since the nineties, the development of devices having
strained-SiGe layers as the active part occurred, in particular the heterojunction bipolar
transistors, further developed to what is presently the fourth-generation of SiGe technol-
ogy. Also the introduction of strained Si layers by using relaxed SiGe virtual substrates, is
very important, for example, for the complementary metal-oxide-semiconductor (CMOS)
technology.

In order to effectively exploit SiGe or strained-Si layers in any application, it is fundamen-
tal to growth high quality single crystalline materials, reducing as much as possible the
defect density in the active volume and the surface corrugation, and to obtain the desired
strain state in the epitaxial layers. However the possibility of using such heterostructures
for any application, is hindered by the nucleation of dislocation, which is often an unavoid-
able strain-relief mechanisms. Dislocation formation affects both the final material quality
and the relaxation degree of mismatched layers. These defects are often charged and act as
non-radiative recombination centers and it is generally accepted that they are detrimental
for opto-electronic devices based on Si-Ge semiconductors. Moreover, a cross hatch mor-
phology at the surface is typically produced by misfit dislocations at the substrate-epilayer
interface, so as to increase the layer roughness. In the past years, a lot of effort has been
devoted reduce the defect density or to segregate dislocations in non-active regions. How-
ever, dislocation engineering, intended as the precise control of dislocation position, has
always been a goal out of reach, because of the nucleation of such defects at unpredictable
sites at the surface or at other heterogeneities. It is clear that predicting the extent of the
plastic relaxation process and governing dislocation nucleation and positioning would be
of the utmost importance.

Self-assembled nanoislands and nanowires represent other novel heterostructures that can
be exploited to obtain defect-free configurations with the desired strain state. Even in this
case, very high stresses arise from the epitaxial integration of lattice mismatched materials
and dislocation formation remains a competitive strain relief mechanism. Hence it is of
fundamental importance to determine the coherency limits of such nanostructures and to



8 Introduction

elucidate the main strain relief mechanisms in the attempt to predict the final dislocation
microstructure and strain state in heteroepitaxial systems.

The main goal of this work, is the understanding of the fundamental mechanisms of
dislocation nucleation and propagation in Si-Ge nanostructures (i.e. films, nanoislands
and nanowires) through dislocation modelling. Even if dislocation formation and motion
relies on a sequence of discrete atomic displacements, such defects induce in a crystal a
smooth deformation field in the entire structure. The elastic theory of dislocations pro-
vides a good description of such stress field and of the elastic energy, as produced by
dislocations in bulk materials or in finite size solids with simple geometries. In order to
assess the stresses and the energetics of plastically relaxed multifaceted structures, char-
acterized by an high surface to volume ratio and typical length scale in the order of tens
or hundreds of nanometers, linear elasticity theory numerically solved by finite element
methods is the most suitable tool, since in this approximation the dislocation-surface in-
teraction can be correctly taken into account. Moreover, the motion of dislocations in
nanostructures can be handled by using three-dimensional dislocation dynamics simula-
tions. This simulation technique, originally developed to study plasticity in bulk materials,
has been demonstrated to give accurate results also for nanometric systems, and is the
tool of choice to study the motion and interactions of a large density of dislocation in thin
films or three-dimensional nanocrystals. In this work, we employed the microMegas code
1 suitably modified in collaboration with Dr. B. Devincre and Dr. R. Gatti to handle
dislocation motion in realistic nanostructures which may expose many surfaces and form
both convex and concave domains. Important properties determined by the atomistic na-
ture of dislocations moving in a discrete lattice, can be included, both in the finite element
calculations and in dislocation dynamics simulations, by adopting simple rules that take
into account such atomistic features.

The first topic addressed in this work, is the investigation of plastic relaxation in SiGe
epitaxial films aimed at governing dislocation nucleation and positioning. In particular,
we show with the help of finite element calculations and dislocation dynamics simulations
that a turning point to direct dislocation formation and propagation in predefined regions,
is the introduction of preferential nucleation sites through substrate nanopatterning. The-
oretical predictions indicating effective dislocation trapping along the features of trench-
or pit-patterned substrates are discussed and compared with tailored experiments of SiGe
deposition on nanopatterned substrate.

The second issue investigated here concerns self-assembled SiGe nanoislands. In these epi-
taxial nanostructures an intriguing mechanism of dislocation ordering is observed. In this
work we reproduced such behavior by using a simple analytical model based on energetics
considerations. Furthermore, the plastic relaxation onset for dislocation formation has
been determined in epitaxial islands grown on pit-patterned substrates and nucleated in
pits. The key factors influencing dislocation formation in such structures have been identi-
fied, opening new possibility to grow large defect-free islands on nanopattered substrates.
The last topic considered here, is dislocation formation in core-shell nanowires. Elastic
and plastic strain relaxaion has been investigated in such structures and a mechanism for
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dislocation nucleation and propagation in core-shell nanowires is presented. This allowed
us to predict dislocation configurations that are more efficient in the strain relief process
and the expected misfit dislocation pattern at the core-shell interface.

In the following, it is outlined how the present manuscript is organized.
In Chapter 1, a brief introduction on the concept of dislocations is given, presenting the
main properties determined by the atomistic nature of dislocations and by the influence
of the crystal lattice on these defects.
In Chapter 2, the basic aspects of the heteroepitaxial growth are presented. In particular,
the growth of Si-Ge alloys on Si(001) substrates, leading to a two-dimensional layer by
layer growth or to three-dimensinal nanoscrystal formation, is reviewed and the principal
strain relaxation mechanisms in such a system are discussed. Moreover, the formation
of one-dimensional heterostructures, nanowires, with different architectures, among those
the core-shell nanowires, is illustrated.
In Chapter 3, the dislocation properties derived by elastic dislocation theory are described
and the methods adopted to model dislocations in heteroepitaxial nanostructures are pre-
sented. First, the relevant definitions and concepts extracted by linear elasticity theory
and classical dislocation theory are summarized. The analytical solutions for the energy
and the stress field induced by dislocations in bulk materials are discussed as a start-
ing point for the modellization of plastic relaxation in more complex systems. Second,
the methodology adopted to calculate the stresses and the energetics of elastically and
plastically relaxed heteroepitaxial nanostructures, as obtained by using finite element cal-
culations, is reported. Finally, the dislocation dynamics simulation technique, used to
address dislocation motion in nanostructures, is presented.
In Chapter 4, results on plastic relaxation in low mismatched SiGe films are reported. The
influence of trench- and pit-patterned substrates in the elastic and plastic relaxation of
conformal films grown on top of them has been investigated. In particular, by using finite
element calculations and dislocation dynamics simulations, it is shown that is possible to
direct preferential dislocation nucleation and positioning by growing SiGe films on suitably
patterned Si(001) substrates.
In Chapter 5, results on plastic relaxation in SiGe nanoislands are presented. First, misfit
dislocation formation and ordering in SiGe islands grown on flat Si substrates is addressed
by using a simple analytical energy balance model. Second, the onset of plastic relax-
ation in islands grown on pit patterned substrates and nucleated in pits has been studied
by finite element calculations in order to determine the coherency limits for growing such
nanostructures and the effect of the substrate patterning in delaying dislocation formation
at larger volumes is demonstrated.
In Chapter 6, results on dislocation formation in Si-Ge core-shell nanowires are discussed.
In particular, an analysis based on the effective stress responsible for dislocation nucleation
and propagation in the epitaxial shell is presented. This analysis followed by dislocation
dynamics simulations was used to determine the expected dislocation configurations in
nanowires and to estimate the critical shell size for growing coherent core-shell heteroepi-
taxial wires. Finally, the main results and the perspectives emerging from this work are
summarized in the Conclusions.






Dislocations in the Si-Ge lattice

The development of experimental techniques such as x-ray diffraction or trasmission elec-
tron microscopy, allowed to recognize and directly observe the presence of defects in crystal
lattice. Among them, particular interest has been dedicated to dislocations, because these
defects govern the crystal ability to flow and yield under stress, as well as many other
mechanical behaviors, such as creep, fatigue, ductility and brittleness. Moreover, they
influence crystal growth and affect optical and electrical properties of metal and semi-
conductor materials. Dislocations can develop in crystalline materials during the crystal
growth, either for kinetic or thermodynamic reasons, or after the crystal growth under
the application of stresses or strains. In fact, since dislocations induce a stress field in the
crystal lattice, the formation of this kind of defects represents an effective mechanism for
the elastic energy relaxation in systems undergoing tensile or compressive deformations.
In particular, in heteroepitaxial growth processes, large strains arise from the epitaxial
integration of one material on a different one and dislocations are formed in response to
such a deformation. One of the objectives of this work is to understand the mechanisms
of dislocation formation and propagation in such heteroepitaxial structures. The scope of
this Chapter is to recall the basic definitions and concepts about dislocations in crystals,
that are extesively used throughout this work, and to describe the main characteristics of
dislocations in diamond lattice materials, such as Si and Ge.

1.1 Introduction to crystal dislocations

Dislocations are defects of the crystal lattice topology and can be described by the dis-
placements of atoms in a perfect crystal from their equilibrium positions. A review of
the basic aspects of dislocations can be found in Ref. [1, 2], while we refer Ref. [3] for a
detailed and comprehensive analysis of the classical dislocation theory.

There exhist different types of dislocations. Among them the edge and the screw types
are the most important ones. All the other dislocations can be described as a combination
of the these two dislocations and for this reason are called mized type. As we will see, dis-
location position and type are defined by two important vectors, the Burgers vector b and
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FIGURE 1.1: Sketch of an edge (a) and a screw (b) dislocation.

the line direction &€, and by their reciprocal orientation. An edge and a screw dislocation
are sketched in Fig. 1.1 (a) and (b), respectively. The two dislocation lines are indicated
by the segments AB (parallel to the vector &) and the two Burgers vectors are drawn with
a red vector b. Let us consider a perfect structure and to cut it along the plane colored
in blue, as in Fig 1.1. If the regions above and below the cutting plane are displaced in
the opposite directions perpendicularly to the line AB, we obtain an edge dislocation, as
in Fig. 1.1(a). If instead the same two regions are displaced in the opposite directions
parallel to the line AB, a screw dislocation is formed, as in Fig. 1.1(b). In case they are
displaced in a general direction, which is neither parallel, neither perpendicular to the line
AB the dislocation is a mixed one. As can be observed in Fig. 1.1(a), an edge dislocation
can be identified in the crystal by the presence of an extra half plane in the deformed
region (see the grey plane). In this case the dislocation line can be identified with the
edge of the extra half plane. Instead, if in a crystal a screw dislocation is present, the
lattice planes perpendicular to the dislocation line are tilted around the dislocation line
AB, as in screw thread. Such a deformation is a shear deformation in the planes parallel to
the dislocation line, whereas in the planes perpendicular to it no deformation is observed.

From the description above, it is clear that the dislocation line represents the boundary
between a slipped and an unslipped crystal region. Consequently, a dislocation cannot end
at any point of a perfect crystal, but it has to terminate in correspondence to a boundary,
a free surface, or an other dislocation or defect position. Otherwise, it must form a closed
loop. This concept has been demonstrated in the linear elasticity framework [4], but it
also follows from the definition of b below.

1.1.1 Burgers vector and dislocation line

Dislocations are one-dimensional defects that can assume an arbitrary shape: straight
segments, closed loops or curved dislocation lines. In order to give a precise description
of their position and shape, it is useful to define a vector field that indicates the line
direction at any point r of the defect. The line direction &(r) is then defined as the
versor parallel to tangent of the dislocation line in 7 along its positive direction. While
the line direction can change along a single dislocation line, the direction of the atoms
displacements induced by the dislocation remain constant. The Burgers vector represents
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FIGURE 1.2: Burgers circuit in a perfect crystal (a) and around the dislocation line (b). The
Burgers vector is the vector (SF) connecting the start with the finish sites of the circuit. The sense
of the circuit is that of a right-hand (RH) screw. The convention adopted to define the Burgers
vector is the SF/RH convention.

the dislocation displacement vector. Let us consider a perfect simple cubic crystal and the
same crystal with an edge dislocation, as shown in Fig. 1.2. In order to define the Burgers
vector we need first to assign the dislocation line direction €. In Fig. 1.2(b) the positive
sense of & is taken to be into the paper. In fig. 1.2 two clockwise circuits are drawn;
the first in the perfect crystal and the second one around the dislocation line. Both start
at the position S and finish in F'. Each circuit segment (vertical and horizontal ones)
is made by the same number of lattice vectors. The circuit on the left, in the perfect
crystal, is a closed loop, whereas by doing the same displacements around the dislocation,
we found a vector F' — S upon closure of the circuit. This vector is the Burgers vector.
The Burgers vector can be also obtained by summing all the vectors Awu;, that are the
differences between the atom-pairs distances in a perfect crystal, Fig. 1.2(a), and in the
distorted one, Fig. 1.2(b), along the Burgers circuit:

b=F-S8=) Au;. (1.1)

This definition can be extended to a continuum medium, and the Burgers vector is given
by the integral of the atom diplacements u from the perfect crystal positions, along a close
circuit around the dislocation line:

ou

b= j @dﬂ , (1.2)
where C can be any close path around the dislocation line and du/9/ is the gradient of the
displacement field (see Section 3.3.1) along this path. The definition of b is not unique,
but depends on the convention adopted. Here we have reported the SF/RH convention
that will be used throughout this work (the vector closing the Burgers circuit, goes from
the finish site to the start poitn (SF) and the sense of the circuit is that of a right-handed
screw RH). By adopting this convention the position of the extra half-plane around an
edge dislocation can be found by using the right-hand rule. In particular, the unit vector
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FI1GURE 1.3: Mixed dislocation characterized by edge and screw components that vary along the
dislocation line. In (a) the dislocation starts with screw character. The line bends and assumes
a mixed character in B and terminates at an other surface in C as an edge type dislocation. The
slip region is colored in blue.

& x b/b, starting at the dislocation location, indicates the position and the direction of
the extra half-plane of atoms. We notice that by reversing the direction of £ in the above
definition of b, the Burgers vector would results in the same direction but opposite in sign.
This means that the same dislocation can be described by the two vectors € and b, or
equivalently, by —b and —€&.

The same Burgers vector definition can be applied to screw or mixed type dislocations.

In Fig. 1.1, the Burgers vector is found by following the convention adopted above, for
both the edge and the screw dislocation. The Burgers circuit is indicated by the grey
arrows.
It is now clear that the Burgers vector of a screw dislocations is parallel to the line direction
(b - &=b for a right-hand screw and b - €&=—b for a left-hand screw), while the one of an
edge dislocation is perpendicular to & (b - £&=0). In case of a mixed dislocation, £ can
assume an arbitrary direction with respect to b. The character or type of a dislocation
is defined by the angle between its line direction & and its Burgers vector b. When the
dislocation line is straight, the reciprocal orientation between b and £ is constant and
dislocations are denominated by the angle they form. Mixed type dislocations can be
described as the combination of a screw and an edge dislocation having as their Burgers
vectors, the components of original Burgers vector b projected onto the directions parallel
and perpendicular to the dislocation line, respectively. In particular, since & can change
along a dislocation, but b is invariant, the character of the dislocation along its line is
given by its Burgers vector screw and edge components bg and bg :

bs
be

(b-£)¢

(bx &) x¢&. (1.4)

In Fig. 1.3 we sketched a dislocation with variable character along its line. The region
where the slip displacement has occurred is colored in blue. The dislocation character

varies along the line as £ changes its direction, while b is conserved.
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FIGURE 1.4: An edge dislocation in a simple cubic crystal. When it moves on its glide plane by
one lattice spacing (b) no atoms need to be inserted or removed. When it moves perpendicular to
its glide plane (c) a row of atoms (white spheres) needs to be inserted. (d) A screw dislocation in
a simple cubic crystal. Regardless of which direction the dislocation moves, (e) and (f), no atom
needs to be inserted or removed. [5]

1.1.2 The dislocation motion

The motion of dislocations under an applied stress field provides an explanation for plastic
deformation in crystals. While the driving force for this motion can be derived from
continuum elasticity theory, as it is discussed in Section 3.3, the mechanisms for dislocation
motion and the response to this force are governed by the crystal lattice properties and
by atomistic mechanisms.

Two different mechanisms have been proposed to describe the dislocation motion: the
glide and the climb process. A simple explanation for these two mechnisms relies on the
different motion of screw and edge dislocation segments. Let us consider a straight edge
dislocation as drawn in Fig. 1.4(a) and let us move it by one lattice spacing along the
direction parallel to its Burgers vector in the plane indicated by A. To reach this position,
all it requires is for a row of atoms at the right of the dislocation core to break their bonds
and to exchange their neighbours with the atoms at the edge of the extra half-plane at
the dislocation position, as shown in Fig. 1.4(a,b). If the same dislocation is moved by
one atomic step along the direction perpendicular to b and parallel to the plane indicated
by B, up or down, we need to remove or add a row of atoms, respectively, as it shown in
Fig. 1.4(a,c). In (b) the dislocation move inside its glide plane, defined as the plane that
contains simultaneusly the Burgers vector and the dislocation line (the normal of the glide
plane is then defined by b x &), while in (c) it moves perpendicularly to it. The motion
along the glide plane is called, accordingly, glide, whereas the motion out of it is called
climb. Glide and climb are also called conservative and non-conservative motion, because
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FI1GURE 1.5: Sketch of a dislocation kink and jog.

in the first case the total number of atoms is conserved, while in the second case a row af
atoms should be provided or removed. Obiously, in real crystals atoms are neither added
or eliminated, but climb motion is possible thanks to atoms or vacancies diffusion, that
are absorbed or emitted by the dislocation. The definition of the glide plane for a screw
dislocation is not unique, since in this case b || £&. As a consequence, the motion of a screw
dislocation does not require the insertion or removal of atoms, regardless of the movement
direction, as shown in Fig. 1.4(e,f). Hence a screw dislocation can always glide. In case
of a mixed dislocation, the glide plane is determined by & x b, as for the edge case.

At moderate temperatures and stress the glide motion is governed by the thermally
assisted kink pair mechanism. The dislocation glide is assumed to involve the creation
and migration of kink pairs, which are two symmetric steps in the dislocation line, which
make a small segment of the dislocation line to be displaced by one row of atoms to the
adjacent one, as shown in Fig. 1.5. By the lateral motion of the kinks away from each
other in opposite directions, the entire dislocation line is moved by one atomic step in the
glide plane. The formation of kink pairs is then followed by their migration (whith the
assistance of stress or thermal fluctuations), resulting in the progressive dislocation glide
motion. In this regime the dislocation motion is thermally activated, due to the energy
barrier for kink formation and the mobility drastically increases with temperatures. At
high temperature and stress, glide is no more thermally activated and can be described as
a simple dissipative motion where the dislocation velocity is proportional to the stress and
it is limited by the lattice resistance due to dislocation interaction with lattice vibrations.
In this regime the glide motion is governed by a viscous drag mechanism.

The equivalent of kinks for the climb motion are called jogs, see Fig. 1.5. This motion
can developed similarly to glide, creating a symmetric pair of steps (jogs) perpendicularly
to the glide planes. However, climb requires atoms or vacancies diffusion and is generally
more difficult. In general dislocations can move by a combination of glide and climb
motion. At low and moderate temperatures climb is tipically neglected, and dislocations
are assumed to move by glide motion only since it requires less energy. The climb motion
can be activated only at sufficiently high temperature or under the condition of vacancy
super-saturation. Even in this case, the time scale for the two kinds of motion is usually
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very different, being climb slower than climb, and for this reason they are rarely treated
together. In this work, we have neglegted the climb motion, as it does not play a significant
role in the systems investigated.

1.1.3 Slip systems

As glide motion is expected to be the favorite mechanism for dislocation motion in most
conditions (e. g. low and moderate temperature), it is fundamental to understand which
are the planes in a crystal structure where dislocations can effectively glide. The motion of
dislocations is defined by the active slip systems. A dislocation slip system is defined as the
combination of the Burgers vector and the glide plane which characterize the dislocation,
i.e. the direction of the displacements induced by the dislocation and the crystallographic
plane where it moves. Once the possible Burgers vectors and glide planes are defined, the
limits for dislocation motion in a crystal are established. In the previous paragraph, we
have associated the Burgers vector with a unit lattice vectors in a simple cubic structure.
In general, it is possible to associate dislocation Burgers vectors with lattice vectors, and
among them, it is reasonable to consider the ones small in magnitude. Dislocations with
Burgers vector equal to a lattice vector, or a multiple of it, are called perfect disloca-
tions. Instead, if the Burgers vector cannot be decomposed in a sum of lattice vectors the
dislcoations are called partial dislocations. Here and throughtout this work we will con-
sider only perfect dislocations. In between all the possible perfect dislocations, typically,
only those with the shortest Burgers vector are stable. This has been explained in terms
of dislocation energy by Frank [6]. Since the energy of a dislocation is proportional to b?
(see Section 3.3), he proposed that in a first approximation it is possible to neglect the
other terms contributing to the dislocation energy. In particular, in order to establish the
stability of a dislocation, he proposed that a perfect dislocation with Burgers vector b,
that can dissociate into perfect dislocations b, + by will disssociate if:

b2 > b3+ b3 . (1.5)

A more precise procedure would require to include the exact expression for the dislocation
energy, which is known to depend also on the character of the dislocation. However,
this criterion, tells us immidiately that the shorter is the Burgers vector, the lower is the
dislocation energy and the more stable is the dislocation itself. Also, if b, is a multiple of
a lattice vector so that b, = 2b, = 2bg, the dislocation will dissociate into b, + bg.

Single crystalline materials deform by glide in the close packed directions. In fact,
planes with the highest density of lattice sites have the largest spacing between two adja-
cent planes. As a consequence they have a lower resistance to the glide motion with respect
to the other crystallographic planes. Following first the Frank criterion, perfect disloca-
tions with Burgers vectors equal to the minimum lattice vectors are expected. Moreover,
among the possible glide planes that contain such Burgers vectors, the closest packed
planes in the crystal structure are the favorite ones to promote dislocation glide motion.
By following these two simple criteria, it is possible to identify the preferential slip systems
in most of the crystal structure and materials.
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FIGURE 1.6: (a) Diamond lattice cubic cell and the Thompson tetrahedron highlighted in blue,
illustrating the possible slip planes and the Burgers vectors of dislocations in a diamond crystal.
(b) Two-dimensional representation of the Thompson tetrahedron [7].

1.2 Dislocations in the diamond structure

In Face Centered Cubic (FCC) and diamond structure materials, the minimum lattice
vectors are the a/2(110) and the planes containing them with the highest lattice site
density are the {111}. Thus in these structures the most favorite slip systems, the primary
slip systems, are are the (110){111}, characterized by {111} glide planes and Burgers
vectors along the (110) directions. This prediction has been confirmed by a series of
experiments. The number of slip systems of this type is 12, and is given by all the
possible combinations of {111} slip planes and (110) Burgers vectors. These are visulized
in Fig. 1.6 by using the Thompson tetrahedron construction. In Fig. 1.6(a) a tetrahedron
bounded by the four different {111} planes in the diamond cubic cell is shown. In Fig.
1.6(b) the same tetrahedron is represented in two dimension with three lateral facets of the
tetrahedron bounded to a central one. In this construction the facets of the tetrahedron
represent the four {111} glide planes and its edges represent the possible Burgers vector
along the (110) directions.

1.3 Dislocations in the Si-Ge heteroepitaxial system

In the heteroepitaxial Si-Ge system, the most commonly observed dislocations are the
following three types:

e screw dislocations. Burgers vector and dislocation line are parallel and aligned to
one of the (110) directions; b and & lie in the same glide plane and parallel to each
others.

e G0°dislocations. Burgers vector and dislocation line are parallel to the (110) direc-
tions; b and £ lie in same glide plane and form a 60°angle

e edge dislocations. Burgers vector and dislocation line are parallel to the (110) di-
rections; b and & are perpendicular to each others and they do not lie in same glide
plane.
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Throughout this manuscript, we will call 60°and 90°dislocations, the above described
dislocation types. In heteroepitaxial Si-Ge structures, the most important dislocations
are the 60°dislocations, as they can nucleate and propagate in the low energy {111} glide
planes. On the contrary, edge dislocations aligned to the (110) directions have Burgers
vector and dislocation lying in a {100} plane, so that they cannot propagate easily by glide
motion. However, these edge dislocation can be formed by reaction of two 60°dislocations
giving rise to the well known Lomer-Cottrell junction.






Si|_,.Ge; heteroepitaxy

The epitaxial integration of different materials on top of a Si substrate is fundamental in
order to obtain devices integrated in the actual Si-based technology. This achievement can
be reached by controlling the growth morphology, the strain accumulated in the heteroepi-
taxial deposition and the defect microstructure. In this chapter, we recall the basic aspects
of the heteroepitaxial growth of lattice mismatched materials and the main mechanisms
of strain relaxation observed in such systems. In particular, we focused on the crystal
growth of Si;_,Ge, alloys deposited on a Si(001) substrate, and on the possible growth
modalities, leading to two-dimensional (2D) or three-dimensional (3D) heteroepixial ar-
chitectures. Finally we introduce the catalyst assisted growth of Si-Ge nanowires and the
principal one-dimensional heteroepitaxial structures that can be produced.

2.1 Heteroepitaxial growth modes

Heteroepitaxy consists in the single-crystal growth of a material A on the substrate surface
of a different crystalline material B. This can be achieved by using deposition techniques
such as Molecular Bean Epitaxy (MBE), Chemical Vapor Deposition (CVD) or Metalor-
ganic Vapor Phase Epitaxy (MOVPE). Advancements in this field allowed for the deposi-
tion of different species on a variety of substrate materials and orientations. A review of
these growth techniques can be found in Ref. [8, 9]. Both lattice matched and mismatched
materials can be grown. In the latter case, strain relaxation mechanisms are present that
strongly influence the morphology of the epilayer.

Three different growth modes are distinguished in heteroepitaxy [10]: the 2D layer by
layer or Frank-van der Merwe (FM) growth, the 3D island formation or Volmer-Weber
(VW) growth modality and the Stranski-Krastanow (SK) mechanism, characterized by
the initial formation of a 2D layer, followed by 3D island nucleation and evolution. The
FM growth consists in the formation of a complete monolayer on the flat substrate surface
before starting the nucleation of the second layer. The subsequent development of one
monolayer on top of another one leads to the formation of a thick 2D film. On the
contrary, the VW growth is characterized by the formation of 3D isolated clusters, also
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FIGURE 2.1: Heteroepitaxial growth modes. (a) Layer by layer, or Frank van der Merwe (FM)
growth. (b) 3D island formation on top of thin wetting layer, or Stransky Krastanov (SK) growth.
(c) 3D island formation on top of the substrate surface, or Volmer Weber (VW) growth mode.

called islands, directly on top of the substrate surface. Finally, in the SK growth modality
the deposition proceeds through the initial formation of a 2D thin layer that wets the
substrate surface, named wetting layer (WL), followed by 3D island nucleation on top of
it. These three growth modalities are schematically shown in Fig. 2.1. In the equilibrium
theory of heteroepitaxy, the growth mechanisms observed can be explained in terms of
surface and interfacial energy minimization. In absence of strain, the favorable growth
mode can be identified by considering the areal change in the surface energy Ay associated
with the covering of the substrate with an epitaxial layer. If . and ~5 are the surface
energy of the epilayer and of the substrate and ~; is the interfacial energy between the two
materials, then:

Ay =+ — Vs - (2.1)

Following the surface energy minimization criterium, if Ay <0 the preferential growth
mechanism will be two-dimensional, while if Ay >0, 3D island formation will be expected.
Assuming that the interface contribution ~; is negligible with respect to the surface terms,
2D growth occurs when 7, < 75, so that the epilayer will cover the exposed substrate
surface decreasing the total energy. On the contrary, if 7. > s, the surface energy
minimization leads to 3D clusters formation. However, if a lattice mismatch exists between
the substrate and epilayer, even in the case of 7, < s, the misfit strain can induce islanding
after the initial 2D wetting layer formation. This is because the elastic energy stored in
the system increases linearly with the layer thickness, and after some monolayers it can
be energetically favored to create 3D islands, that can relieve the mismatch strain thanks
to the exposed sidewalls. Therefore, the SK mechanisms is expected in case of wetting
epitaxy (7e < vs) and high film/substrate mismatch. Whereas, the VW growth mode is
favored in case of non-wetting epitaxy (ve > vs).

The morphological evolution of realistic SK systems is generally more complex and
needs further considerations. An early attempt to elucidate this mechanism was devel-
oped by Daruka and Barabdsi [11]. Their model captures the main features of this growth
modality and they succeeded in building an equilibrium phase diagram for heteroepitaxy
of a wetting material A on a substrate B, as a function of the deposited material volume,
expressed in monolayers, and of the mismatch strain, that can help predict the heteroepi-
taxial growth mode. Still, in order to capture the realistic island evolution with the
increasing deposition volume, a more detailed approach is needed that takes into account
the surface energies of the exposed facets and the elastic strain relaxation variation with
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the island shape and volume.

This scenario is further complicated by kinetic factors (e.g. diffusion barriers at step
edges, the Ehrlich-Schwoebel barrier) or different growth conditions (e.g. temperature,
deposition flux, or introduction of surfactants) that can play a significant role and modify
the expected epilayer growth mode [12]. Investigation of the competitive strain relaxation
mechanisms in the different growth conditions is fundamental in order to predict the final
heteroepitaxial structure and to drive the growth towards the desired morphology. In the
next sections we will discuss in more details the Si;_,;Ge;/Si(001) growth and the key
thermodynamic and kinetic factors that are relevant for this system.

2.2 Si-Ge alloy properties

Silicon, Germanium and Si-Ge alloys have the same diamond crystallographic structure.
This can be described as a face centered cubic (FCC) lattice characterized by a basis of
two atoms at each lattice point: one at origin of the unit cell and the second one displaced
by one quarter of the diagonal unit cell from the origin. Si and Ge share the same cubic
structure but have different lattice parameters, the Ge lattice constant being ~4% larger
than the Si one. The two materials can be alloyed as Si;_,Ge, with any value of 0 < x < 1.
Throughout this work, we considered the lattice constant of the Si-Ge alloy to change with
x according to the Vegard’s law:

asiGe = aGe T + ag; (1 — ) (2.2)

where age, as; and ag;ge are the Ge, Si and Si;_,Ge,, alloy lattice parameters, respectively.
Also the misfit strain f is assumed to vary linearly with the Ge concentration in the
Siy_,Ge, alloy:

f _ aSiGe — QS _ aGe — A8 = foe (2'3)
ags; ags;

with fge being the misfit between pure Ge and Si. Deviations from such a linear relation
are expected [13]. However, due to the high mismatch between these two materials, the
approximation adopted does not affect significantly the misfit strain value. The values of
the Si and Ge lattice constants measured at room temperature (300K) are ag. = 0.5658
and ag; = 0.5432 nm. With the increasing temperatures these values increase due to
thermal expansion. Even though Si and Ge have a different thermal expansion coefficient,
the lattice constants difference at high growth temperatures (~ 1000K) is only the 0.2%
larger with respect to the lattice mismatch measured at 300K (one order of magnitude
smaller than the 4%) [14, 15]. Throughout this work we neglected the dependence of the
Si/Ge lattice constants on temperature, since it is a minor contribution and we used the

values observed at room temperatures and reported above.

2.3 Si;_,Ge, epitaxial growth

The deposition of a Sij_,Ge, alloy on top of a Si(001) substrate starts with the formation
of a thin pseudomorphic 2D layer, since the Ge(001) (or Si-Ge alloy) surface energy is lower
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strained 2D layer, followed by a layer by layer growth for Si rich alloys and by island formation for
Ge rich alloys. Strain relaxation is obtained via plastic or elastic strain relaxation, respectively.

than the Si(001) one. Assuming that the epilayer is much thinner than the substrate, the
Ge (or SiGe) cubic unit cell is tetragonally deformed, in order to match the Si lattice
constants in the two orthogonal in-plane directions. In the attempt to preserve the unit
cell volume, the lattice constant perpendicular to free surface is expanded with respect to
the equilibrium value. As a consequence, this Ge (or SiGe) layer is biaxially compressed
inside the growth plane and undergoes a tensile deformation in the direction perpendicular
to the exposed surface, as indicated by the red and blue arrows in Fig. 2.2(a). As the
epilayer thickness grows, the elastic energy stored in system linearly increases with it. The
deposition of Si rich Si;_,Ge, (x > 0.2-0.3) alloys proceeds with a layer by layer growth and
the elastic energy stored in the system is relaxed via the formation of interfacial defects,
such as misfit dislocations, see Fig. 2.2(c). On the contrary, the deposition of Ge or Ge rich
Sij_,Ge, alloys follows the SK growth modality and, on top of a thin tetragonally strained
wetting layer, 3D island formation is observed so as to elastically relieve part of the misfit
strain, see Fig. 2.2(b). Between low-mismatched and high-mismatched regimes, there are
important differences both in the morphology and in the strain relaxation process, which in
part are due to surface roughness and 3D structures formation during the heteroepitaxial
growth of highly mismatched layers. In the next sections we will describe the competitive
plastic and elastic strain relaxation mechanisms in these two regimes.

2.4 Plastic relaxation and 2D layer growth

In low mismatched heteroepitaxial systems (f < 1%), as Si rich Si-Ge alloys grown on
Si(001), a defect free pseudomorphic (or coherent) 2D layer is initially formed. Such an
epitaxial layer exhibits an in-plane lattice constant which is equal to the substrate one.
The layer is biaxially compressed and the in-plane strain || is given by the lattice mismatch
between the substrate and the epilayer material: ) = f. Since there is no constraint in the
direction perpendicular to free surface, the pseudomorphic layer is tetragonally distorted
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and the out-of-plane strain component €, has an opposite sign with respect to €. As the
film thickness increases, the elastic energy stored in the system also increases, and beyond
a critical value, it becomes energetically favorable to introduce misfit dislocations at the
interface, that reduce the in-plane strain. This value is called the critical film thickness h..
Beyond the critical thickness, part of the strain is accommodated thanks to the formation
of dislocations and their motion in the epilayer (plastic relaxation process). The residual
in-plane strain component can be written as:

€H = f -0 (2.4)

where 4 is the plastic strain induce by the misfit dislocations microstructure in the in-plane
directions. If ¢ is different from zero, there exist at the interface misfit dislocations with
an average spacing of:

S =befs/0 (2.5)

where b.s; is the effective Burgers vector, i. e. the interface plane component of the
Burgers vector in the direction perpendicular to the misfit dislocation lines, as explained
in the paragraph below. These two quantities are generally dependent on the initial misfit
f and on the layer thickness h. Kinetic limitations may prevent or delay the formation of
misfit dislocations, in this case coherent metastable films can be obtained.

In highly mismatched heteroepitaxial systems, the planar surface of the highly stressed
epilayer is unstable to the formation of undulations. This is because the energy reduction
associated with elastic relaxation induced by the surface roughening exceeds the increase
in energy due the extra surface exposed. The instability of the surface of a solid under
stress is known as the Asaro Tiller and Grienfield (ATG) instability [16, 17]. The ATG
instability occurs at moderate and high Ge concentration, hindering the layer by layer
growth and eventually resulting in the SK growth. The critical misfit for island formation
in the SiGe/Si(001) is ~ 1% equivalent to an average Ge concentration in the Si-Ge alloy of
0.2. [18]. However at large deposition volumes, islands coalesce and thick Ge rich films are
formed. In such systems, the elastic relaxation provided by surface corrugation or island
nucleation is not sufficient to relieve the in-plane deformation in the entire film volume.
Also several growth methods have been developed that inhibit island growth, thanks to
the use of surfactants such as hydrogen during the deposition process [19], and allow for
high misfit 2D film formation. Hence also in Ge rich 2D layers plastic relaxation occurs
and influence the morphology of the growing epilayer structure.

2.4.1 Dislocations

Dislocations are crystallographic line defects that induce a lattice deformation that de-
pends on the dislocation line position and on the Burgers vector. In heteroepitaxy, disloca-
tions are formed in order to relax the misfit strain. In Fig. 2.3 an edge (a) and a screw (b)
dislocations lying at the interface between two mismatched materials are sketched. Here
the epilayer has a larger lattice parameter than the substrate one, as for the SiGe/Si(001)
system. From Fig. 2.3, it is clear that the edge dislocation having b parallel to the inter-
face (a), induce a displacement of the atoms parallel to b and equivalent to the removal
of an half-plane of atoms. Hence a tensile strain parallel to b is induced by the edge
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FIGURE 2.3: Tllustration of an edge (a) and screw (b) dislocation at the interface between the
substrate and the epilayer.

dislocations in the epilayer, that partially relieve the in-plane compression in the direc-
tion perpendicular to the dislocation line. On the contrary, the deformation induced by a
screw dislocation does not modify the in-plane lattice parameter of the epitaxial layer and
it does not help in relieving the in-plane compression. We notice that the strain relaxation
efficiency of the edge dislocation shown in 2.3(a) is directly related to the orientation of
its Burgers vector. In particular, the maximum efficiency in the strain relaxation of the
epilayer is found when an edge dislocation is produced at the interface and its Burgers
vector also lie in the interface plane. In this case a plastic strain equal to b is induced in
each plane of the epilayer. Considering the more general case of a mixed dislocation lying
at the interface with an arbitrary Burgers vector, the efficiency of such a defect in relieving
the misfit strain can be quantified, evaluating the effective Burgers vector b.ss, which is
the projection of the Burgers vector in the direction perpendicular to the dislocation line
in the interface plane:

befr = bcos Bcost (2.6)

where (8 is the angle between the misfit dislocation line and its Burgers vector and 0 is
the angle between its Burgers vector and a line in the interface drawn perpendicular to
the dislocation line direction.

In heteroepitaxial Si-Ge structures grown on Si (001) interfacial dislocations are ob-
served along the [110] and the [110] directions. In particular two kinds of them are typically
recognized in experiments: the 60°and the edge, or 90°, dislocations. 60°dislocations are
the most commonly observed ones, especially in low misfit SiGe films, and are the favorite
ones, since they can glide on the low energy {111} glide planes. Their Burgers vectors lie
in one of {111} planes parallel to one of the (110) directions, so that their effective Burgers
vector is begr = b/2. 90°dislocations are more efficient in relieving the interfacial strain,
since their Burgers vector lie in the (001) glide plane, i.e. the interface plane, perpendic-
ular to the dislocation line (beyy = b). They are typically observed in high-mismatched
SiGe films and they are probably formed by reaction of two misfit dislocations. Their
formation is still debated in literature, since they cannot nucleate and propagate easily by
glide motion in the (001) slip plane.
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Most of the dislocations are located at the interface between the epitaxial film and the
substrate, so as to relax the maximum in-plane strain. These defect lines are called misfit
dislocations (MD). Still, dislocations cannot terminate at perfect crystal positions. As
a consequence, a certain density of dislocations crossing the film volume and connecting
the misfit dislocation segments to the surface are observed. These are called threading
dislocations (TD). Since dislocations can degrade the performances of devices built using
semiconductor heteroepitaxial layers, a lot of effort has been devoted to determine both
the thermodynamic and the kinetic conditions at which misfit dislocations form.

2.4.2 Critical film thickness

Early theoretical works by Frank and van der Merwe, elucidate the film growth process
and evaluated the thermodynamic critical thickness h. for misfit dislocation formation
in lattice-mismatched hetero-epitaxial films [20, 21]. In this work, they predicted h. on
the basis of elastic energy minimization. This model was then modified and applied
to the diamond structure in low lattice mismatch systems such as SiGe/Si [22, 23]. A
similar approach has been followed by several authors to determine h, for different material
systems and mismatch values. Here we report the results obtained by Matthews [24],
where the energy of a coherent uniformly strained film and the energy associated with a
misfit dislocation array with a regular spacing were calculated as a function of the layer
thickness. The h. value is obtained when the energy cost associated with such crystal
defects formation is equal to energy gain due to the strain reduction in the layer induced
by the dislocations. This leads to the following equation of the critical thickness h.:

~ b(1 —wvcos?B) [ he
¢ T 8alfll+v)cosd b

+1] (2.7)

where [ is the angle between the misfit dislocation line and its Burgers vector, 6 is the
angle between its Burgers vector and a line in the interface drawn perpendicular to the
dislocation line direction, v is the Poisson’s ratio and f = ¢ is the misfit strain. Adapting
Eq. 2.7 to (001) SiGe films, it is assumed that cos 8 = cosf = 1/2, b = agige/V2,
corresponding to the Burgers vector for a 60°dislocation on a/2(110){111} slip systems.
The critical thickness obtained by using Eq. 2.7 is plotted in Fig. 2.5 as a function of the
misfit f, by assuming b=4 Aand v=0.33.

An other simple and helpful model, developed by Matthews and Blakeslee [26] and
widely used to study plastic relaxation in mismatched epitaxial systems, is based on a
force balance instead of the aforementioned energy balance. Here it is assumed that a pre-
existing threading dislocation that cross the film connecting the interface to the surface, as
shown by the segment in Fig. 2.4(a), can bend (Fig. 2.4(b)) and move under the applied
stress field depositing a misfit dislocation segment at the film/substrate interface once the
critical layer thickness h. is exceeded (Fig. 2.4(c)). Two forces act on the dislocation.
The first is caused by the epitaxial stress field Fr, and this contribution drives the motion
of the threading dislocation so as to elongate the misfit segment length and promote the
plastic relaxation. On the contrary, the line tension contribution F7 opposes to such a
motion, taking into account the additional crystal deformation associated with the misfit
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FIGURE 2.4: Schematic illustration of the Matthews and Blakeslee model of critical thickness. A
pre-existing threading dislocation in a coherent interface (a); critical interface (b), and incoherent
interface. Critical thickness h, is determined by the equality of the force exerted in the dislocation
line by misfit stress Fip and the line tension in the dislocation line F,. [25]

segment extension. For a given misfit value f, the layer thickness at which the two forces
are equal is h.. For h < h,, the line tension contribution dominates and the threading
segment is immobile, as shown in Fig. 2.4(a). By increasing the film thickness to h > h,
the elastic energy budget in the system increases and the force Fr induced by strain field
overcomes the Fy, contribution. As a consequence the threading dislocation propagates in
the epitaxial layer progressively elongating the misfit dislocation segment deposited at the
interface and relieving the in-plane strain, as shown in Fig. 2.4(c).

This force balance model is essentially equivalent to the energy balance model. In fact,
the expression for h. as a function of f turned out to be exactly the same as in Eq.
2.7. Moreover, this model explains how the plastic strain relaxation in epitaxial layers
proceeds. In an overcritical film (h > h.), once a certain density of threading segments
are formed, independently of how they are nucleated (e. g. from the interface, surface, or
defects, etc... ), their motion leads to the formation of long misfit segments at the interface
and progressively promotes the layer strain relaxation. This process continues until the
in-plane strain in the film is reduced to a critical value, referred as channeling strain e.
This is found when the total force acting on the threading segments in the epilayer is null.
The residual strain in a film with a thickness h is then equal to such ., value, that can
be obtained by inverting Eq. 2.7:

b(1 — vcos? 3) h

- 8mh(1 + v) cosf [In 5 1 (28)

Ech

Obviously, this model depicts a simplified scenario. In fact, threading dislocations can
interact or react with each others or can be stopped by other obstacles, as planar or
point defects, or in presence of local fluctuations in the stress field. Also the nucleation
of dislocations, which is still debated in literature, may limit the strain relaxation process
and metastable coherent films or partially relaxed layers with a residual strain larger than
the predicted e., value can be produced.

In literature, experimental works of MBE deposition of SiGe films on Si(001) sub-
strates, conducted at a growth temperature of 550°C [27, 28], reported significantly larger
critical thicknesses than the h. values predicted by Eq. 2.7. In an attempt to explain
this discrepancy, People and Bean developed an alternative expression for h. by taking
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FIGURE 2.5: Critical layer thickness h. versus lattice mismatch strain f. [33]

into account the extra energy required for the generation of a regularly spaced misfit dis-
location network. The critical thickness, as a function of the misfit f, was calculated by
equating the areal energy density of pseudomorphic layer with the one of a dense network
of misfit dislocations at the interface. Dislocations were assumed to have screw charac-
ter and a uniform spacing S = 2v/2a. Although this model is in good agreement with
the critical thickness measured for the Si;_,Ge,/Si(001) heteroepitaxial system by Bean
et al. [27] and by Bevk et al. [29], their interpretation depends on their rather ad hoc
estimation of the energy of the misfit dislocation array, assumed to have a fixed spacing
S. The dominant reason causing the discrepancy between theory and experiments seems
to be the non-equilibrium growth conditions for strain-relaxed SiGe films. In fact, such
experimental data were measured after the deposition of SiGe films at low growth tempera-
tures, suggesting that such SiGe layers are metastable. On the contrary, high temperature
(900°C) post-growth annealing of SiGe films grown at 500-600°C [30, 31], rapid-thermal
CVD deposition experiments at 900°C [32] or SiGe growth by an UHV evaporation tech-
nique at 750°C, are few examples that lead to excellent agreement of the experimental
critical thickness with the predicted h. values of the Matthews and Blakeslee model, as
shown in Fig. 2.5. The latter is in agreement with most of the experimental results in
literature and it is the most widely accepted model for the thermodynamic critical layer
thickness of dislocation formation.

In general, kinetic effects such as the energy barrier for the formation or motion of misfit
dislocations give rise to non-equilibrium behavior and deviations from the Matthews and
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FIGURE 2.6: Sketch of the nucleation of a dislocation half-loop at the surface. The loop expands
and thanks to the lateral motion of the threading dislocations a misfit segment is deposited at the
interface. [25]

Blakeslee predictions. An early attempt to describe the influence of kinetics on the critical
thickness was proposed by Matthews et al. [34], where they included in the force balance
derived in Ref. [26] an additional term opposing to the dislocation motion which takes into
account the lattice friction, known in literature as the Peierls stress [3], which is typically
large in crystals with the diamond structure. An other example of a kinetic model taking
into account the activated nucleation and propagation of dislocations was proposed by
Dodson and Tsao [35, 36], obtaining results in remarkable agreement with the previous
experimental data [22, 27]. However, kinetic effects are strongly related to the peculiar
growth condition (e.g. temperature, growth rate, initial dislocation or other defect density)
and all of them significantly affect the final strain state and morphology making reliable
predictions very challenging. Still, the models presented capture the essential features of
2D layers relaxation process and remain useful to predict the thermodynamic or kinetic
limit for the plastic relaxation onset. In the next paragraph we will briefly describe the
nucleation and propagation of dislocations in epitaxial layers, discussing the conditions
and factors that may enhance or hinder these two processes.

2.4.3 Dislocation nucleation mechanisms

The model of Matthews and Blackeslee relies on the assumption that pre-exhisting dis-
locations coming from the substrate can bend and propagate so as to promote plastic
relaxation. This mechanism, however, it is not sufficient to explain the large density of
dislocation typically observed in films, considering that substrates with a very low defect
density are available. Hence nucleation of new dislocations during the growth must take
place. The detailed nucleation mechanisms of misfit dislocation in heteroepitaxial systems
are still controversial and currently object of study. In general two mechanisms can be
distinguished: the homogeneous and the heterogeneous dislocation nucleation.
Homogeneous nucleation consists in the formation of a dislocation half-loop at the sur-
face [24, 37]. This mechanism is illustrated in Fig. 2.6. A small half-loop is created at the
epilayer surface; the loop glides towards the interface and a misfit segment is deposited at
the interface and two threading segments are associated with it. In particular, in a refer-
ence stress field there exists a critical radius R., above which the loop continues to expand
untill it reaches the interface. Then, the two TDs move apart depositing a misfit segment
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and lengthen it, promoting further strain relaxation. On the contrary, subcritical half-
loops will shrink and self-annihilate. Matthews calculated R, as a function of the misfit
strain between film and substrate in Ref. [24]. In the simplest approximation (neglecting
the extra energy for the surface step created by the dislocation loop), by considering the
dislocation line energy and the strain energy released by a perfect dislocation half loop
formation and by minimizing it with respect to R, he found:

b(1 — vcos? ) he 1
= Sep—, 2.9
87| f|(1+ v)cosb " * ]smqb (29)
that by looking at Eq. 2.7, can be rewritten as:
R. = h/sin¢g, (2.10)

where ¢ is the angle between the glide plane and the (001) interface plane. It means
that, the critical radius for half-loop formation is related to the critical film thickness h.
by a simple geometrical relation. In fact, h. is found by projecting the critical radius
calculated in the dislocation glide plane into the plane perpendicular to the free surface
and containing the misfit segment at the interface. The activation energy for half-loop
nucleation may be determined by the energy required to form a half loop with radius
R.. By looking at Eq. 2.9, it is clear that the larger the misfit strain f the smaller is
the critical loop radius R.. The activation barrier for homogeneous nucleation is then
expected to decrease with the misfit strain (i.e. with the Ge content in SiGe films). This
trend has been shown by Hull et al. in Ref [38], where the energy of dislocation half-loops
was calculated for SiGe/Si(0 0 1) systems.

Heterogeneous nucleation consists in dislocation formation at an existing heterogene-
ity or defect in the film. The local stress field induced by such a defect can lower the
energy required to form a dislocation loop or half-loop. In low misfit film, where the en-
ergy barrier for homogeneous nucleation is high, any defects, starting from surface steps
or cusps, to precipitates or stacking fault regions, could be possible dislocation sources.
Therefore, homogeneous nucleation of half-loops is physically justified at moderate and
high mismatches, while heterogeneities play a significant role in the dislocation nucleation
mechanisms at low mismatch [39]. Among the possible defects, the presence of defects or
roughness at the surface plays a crucial role in the dislocation nucleation. Local stress
concentrations at surface cusps or defects may lead to barrierless nucleation of disloca-
tion half-loops [38, 40, 41]. In some cases, dislocations are found as a result of island
coalescence at the position where the different islands merge.

In the final stage of 2D layer strain relaxation, when a large density dislocations is
present, dislocation interact and react with each other and, from the interaction between
different misfit and threading dislocations, multiplication events can occur. So far, sev-
eral mechanisms for dislocation multiplication have been proposed, as the Hagen—Strunk
sources [42], the Frank—Read sources [43-45], cross-slip and pinning [46, 47]. As we have
seen in this paragraph, dislocation nucleation is governed by many factors, that affect
the whole plastic relaxation process and dislocation nucleation is still a crucial issue to
understand and govern the growth and relaxation of 2D SiGe films.
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FIGURE 2.7: (a) STM topograph of strained Ge nanocrystals on Si(001), showing both pyramids
and domes. (b) Higher magnification images of the nanocrystals: (left) a mature dome and (right)
a nanocrystal entering the transition stage and a small pyramid. [53]

2.5 Elastic relaxation and 3D nanoisland formation

The deposition of Ge on Si(001) is known to result in self-assembled nanoisland formation
following the Stranski-Krastanow growth mode. An example of SiGe islands on Si(001) is
shown in Fig. 2.7. The first evidence of island formation in the Ge/Si(001) system was
found more than 30 years ago [48, 49] and a huge number of works followed it in order
to understand this growth modality and to exploit such self-assembled nanometric islands
for different applications. Several reviews collected the main findings in this field [50-52]
and reported a large variety of island morphologies.

Ge deposition results in the initial formation of a uniformly strained wetting layer
(WL), that grows pseudomorphically up to a thickness of 3-4 monolayers (ML). Then, the
growth continues with the transition from 2D layer by layer growth to 3D nanoislands
formation. The initial WL is produced by the lower surface energy of Ge with respect to
Si, which converges to bulk values in three to four monolayers (ML) [54, 55]. Whereas, 3D
coherent islands formation on top of it, is driven by the thermodynamic. The formation
of 3D structures is an attempt to recover the bulk in-plane Ge lattice parameter and
allowing for a better elastic energy relaxation. It is clear that different island shapes relax
differently the epitaxial strain, steep islands are generally more efficient than shallow ones.
This is confirmed by the observed experimental trend, as shown in Fig. 2.8, where the
island aspect ratio (AR), defined as the ratio between the height h and square root of
the basal area B;s, AR = h/+/B;s, is plotted as a function of the island volume V. The
increase of coherent island AR with V is evident by looking at Fig. 2.8.

In literature, several island morphologies have been observed. At the early stages of Ge
deposition very shallow islands (AR lower the 0.1) called prepyramids or mounds have been
observed [56]. Proceeding with the deposition, prepyramids transform into huts (truncated
pyramids with rectangular base) or square based pyramids, both bounded by {105} facets
(AR=0.1) [48, 53]. In general, huts are observed at low growth temperatures and growth
rates, while pyramids are found at higher growth temperatures. With the increasing Ge
deposition volume, {105} pyramids evolve into steeper multifaceted islands called domes
[53, 57], as shown in Fig. 2.7. Such islands are characterized by the appearance of {113}
and {15 3 23} facets and by AR=0.22-0.26. A third island morphology, called barn,
characterized by {111} facets in addition to the ones observed in domes and by higher
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FIGURE 2.8: Left:(a) Evolution of the island aspect ratio versus volume for different samples with
Ge coverages varying between 6 and 15 ML. The line marks the critical volume for dislocation
in- troduction at 700 °C. (b) Average aspect ratio values for islands having similar volumes vs
volume. [58] Rigth: Top-view STM images of coherent Si;_,Ge, islands on Si(001). Gray scale
in the images encodes local slope on the surface. (a) Hut. (b) Dome. (¢) Barn. Families of facets
bounding these island shapes are labeled. [59]

AR=0.26-0.33 is also observed [58, 59]. Finally, large plastically relaxed islands, called
superdomes, are formed [60]. These evolve cyclically [61], maintaing on average a constant
AR, as shown in Fig. 2.8.

The morphological evolution of coherent islands, relies on the delicate balance between
the decreased elastic load for steeper islands and the higher surface energy caused by the
increased surface to volume ratio. A simple model based on thermodynamic arguments
can explain the morphological evolution of the islands with deposition (i.e. volume). The
stability of SiGe islands on Si(001) can be explained by considering the variation of the
elastic energy density stored in the island and of the surface energy with respect to the WL
[52]. In particular, assuming that the wetting layer critical thickness for island formation
is reached (h 23 ML, as shown in Ref. [18, 62]), for a fixed island shape and for a given
volume V, the total energy difference between the island configuration and an additional
flat layer on the WL can be written as:

AE = Eijy — Ewr, = (pis — pwi) V 4 Yis ¢s V3 =y ey V3. (2.11)

In equation 2.11, the first term takes into account the elastic relaxation gained by the island
formation, which scales linearly with V', being p;s and pywr, the elastic energy densities in
the island and in the WL. The last two terms quantify the energy increase caused by the
exposed island free surface and the energy gain due to the covering of the WL surface by
the island base, which are both proportional to V2/3. Here ~;s and vy, are the surface
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FIGURE 2.9: Energy difference between the WL and a shallow (full line) a steep island (dashed
line), as a function of the Ge volume.

energy density of the WL and of the island and ¢; and ¢, are geometrical parameters
depending only on the island shape, such that ¢; = S;s/ Vzi/ % and ¢y = Bis/ Vli/ 3, where
Sis is the island free surface and B;s represents the area of the WL covered by the island
basis. In Fig. 2.9, a typical plot representing the energy variation expressed in Eq. 2.11
for a shallow and a steep island is shown. This graph illustrates that, initially the surface
term dominates and the wetting layer is more stable than any island. With the increasing
volume, the volumetric term associated with the elastic energy relaxation becomes more
and more important favoring shallow islands, first, and steep islands formation.

Actually a continuous evolution of islands AR as function of their volumes is observed
experimentally, that reflects the fact that the island facets may assume different extension
leading to a slightly different island morphology. An analytical solution based on Eq.
2.11 was used to explain such progressive variation of the AR with volume in an idealized
two-dimensional case, [63] and extended for realistically shaped islands to give a more
quantitative predictions, that can be useful for the interpretation of the experimental
results in Ref. [64].

2.5.1 Si-Ge alloying

Even in the case of nominally-pure Ge deposition on Si(001), Ge-Si alloying occurs from
the very beginning of the the growth. In fact, the Ge composition of the wetting layer was
found to be lower than 1, reaching values ~0.8, as shown by recent photoluminescence
experiments [66]. The Si-Ge intermixing process becomes even more significant during
island formation leading to a Ge content in the island significantly smaller than 1. The
incorporation of Si into islands is promoted by the presence of trenches around the island
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FIGURE 2.10: (a) TEM cross section of a dome grown at 600°C. (b) Ge average content z in the
epilayer as a function of the growth temperatureTge,. [65]

perimeter, as shown at the border of SiGe islands in the cross section TEM image of Fig.
2.10(a). In fact, the island growth towards high AR is accompanied by the formation
of trenches carved in the WL and in the substrate in correspondence of the island edges
[67]. This allows for a partial strain relaxation along the island basal border, where a
large compressive strain is induced by the bending of the island. As a second effect, Si
atoms can diffuse at the surface and mix with Ge atoms [68]. During the island growth
these trenches evolve with the islands, moving laterally with the increasing island base
and augmenting their depth, continuously providing Si atoms for the intermixing process.
Si incorporation in islands is driven, first, by the entropy of mixing that leads to alloy Si
and Ge and second, by the elastic energy minimization [69]. In fact, the island enrichment
in Si results in a lower mismatch between the island and the substrate.

The extent of the Si-Ge alloying process is known to increase with temperature [70, 71].
Thus, the average island Ge content decreases with the growth temperature T [65, 72, 73],
as shown in Fig. 2.10(b) where the Ge concentration in SiGe islands is plotted as a function
of the deposition temperature of Ge/Si(001). This alloying process is a competitive strain
relaxation mechanism. In fact, the island enrichment in Si results in a island lattice
parameter smaller than the Ge one and closer to the Si bulk value, causing the reduction
of the lattice mismatch and of the elastic budget stored in the island. This, in turn,
influences the evolution of islands, delaying the transition from shallow to steep island
morphologies (as the pyramid to dome transition) [65, 74] and the critical dimension for
the onset of plastic relaxation [75], as discussed in the following paragraph.

Si-Ge exchange process can also produce a non homogeneous Ge composition profile
inside islands. In particular, partial segregation of Ge at the island surface has been
observed and predicted [69, 76]. However, variation in the composition profile are small
(variation < than the 10% in composition have been measured across the island profile)
and in most cases it is reasonable to assume an unifrom Ge distribution inside SiGe islands.

2.5.2 Plastic relaxation

SK growth allows to partially relieve the misfit strain in Ge islands by elastic relaxation.
However, at large deposition volumes, plastic relaxation becomes a competitive strain
relaxation mechanism also in 3D islands. By looking at island AR vs. V plot in Fig. 2.8,
we can clearly distinguish between two regimes. The first, at relatively small V', represents
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FiGURE 2.11: TEM image of a SiGe islands showing an array of perfect dislcoations at
SiGe/Si(001) interface. [77]

the coherent island evolution, where island AR increases almost linearly with the volume.
Whereas, the second one, shows the evolution of plastically relaxed islands. The volume at
which the transition between these two regimes is observed is called critical island volume
V.. As we have seen for films, the introduction of a misfit dislocation introduces a in-
plane deformation equal to bess (see Eq. 2.6) that allows for further strain relaxation (in
addition to the elastic one). The most commonly observed dislocations in SiGe islands, as
for films, are the 60°dislocations, especially at high growth temperatures [78]. In Fig. 2.11,
a cross-section TEM image of a SiGe islands with an array of 60°dislocations is shown.
These defects are believed to nucleate from the island surface, at the positions where the
stress is maximum, and glide in the {111} planes depositing a straight misfit segment
along the [110] or [110] direction. Several theoretical models have been developed in order
to study the interaction between dislocations and the epitaxial strain field of the island.
In particular, 60°dislocations are expected to nucleate close to the island edges where the
stress is maximum [63] and to segregate to one side of the island, allowing for a better strain
relaxation [79]. In literature, only few models have been developed for the calculation of
the critical volume V¢ for dislocation formation. These are generally based on an energy
balance between the energy cost E.,s for introducing a dislocation, which produces a
deformation in the crystal, and the energy gain Fy.;, due to relaxation of the misfit strain
induced by the dislocation itself. Also, they differ in the approximation of the island
geometry and of the energy evaluation. The critical volume for the formation of a straight
60°dislocation segment Vi has been evaluated by considering 2D and simplified island
shapes [63, 80, 81], or 3D realistic shaped islands [75, 82]. In particular, in Ref. [75] the
equilibrium critical volume was calculated as a function of the average island Ge content
x (which is known to depend on the growth temperature), showing that Vo augment
with the decreasing island Ge concentration. The authors also compared their theoretical
predictions with a set of deposition experiments of Ge/Si(001) at different temperatures,
showing a remarkable agreement between experiments and results. This suggests that
plastic relaxation in epitaxial islands does not present severe kinetic limitations as for 2D
layers.

Several experiments have shown that plastic relaxation strongly influences the mor-
phological evolution of islands. In-situ observations of Ge/Si(001) growth by using an
ultra-high-vacuum transmission electron microscopy (UHV TEM) showed that plastically
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FIGURE 2.12: (a) AFM scan of the tree-ring structure left over by a single superdome (grown
at 800 °C) after etching. (b) Cross-sectional profile of the same superdome before and after
etching taken along the dashed line shown in (a). The bottommost curve represents the numerical
second derivative (in arbitrary units) of the AFM topography of the profile after etching. The
solid triangles indicate the position of the rings. (c) Schematic representation of the mechanism
leading to the formation of ring structure. (d) Number of rings vs island volume for different
temperatures. Note that the scatter plots of the number of rings are vertically shifted by a constant
factor proportional to the estimated average Ge fraction x. [83]
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relaxed islands evolve according to a cyclic growth mechanism [61, 78], that can be sum-
marized as follows. When a dislocation nucleates, close to the island edges, the island
expands rapidly in base by decreasing its AR and incorporating the dislocation into the
island. Then, by incorporating new material, it slowly increases its volume recovering
the original AR. As soon as a new dislocation is nucleated, the same process is repeated
and continues cyclically during the island growth. In Ref. [84] a pattern of concentric 60
°dislocations is shown, that was probably produced by this cyclic mechanism. The oscil-
lation in AR due to the periodic drop and the recovery of the island height, explains the
almost constant AR value (~ 0.3), observed at large volumes in Fig. 2.8. Moreover, the
cyclic growth guided by the periodic nucleation of dislocation segments, allows to interpret
the results of selective etching experiments performed on SiGe islands on Si(001). The
AFM analysis of the island footprints leaved on the substrate after the selective etching
process, shows a tree-ring like structure at the position where large dislocated islands were
grown [83], as shown in Fig. 2.12(a,b). The formation of such tree-ring structures is illus-
trated in Fig. 2.12(c). During the growth, islands carve trenches at the island edges (see
Fig. 2.10). When a dislocation is nucleated in the island, a sudden and fast expansion of
the island base at expense of its thickness is observed. As a consequence, the dislocation
is incorporated in the island and the trench is covered. Then the island grows in height,
recovering its original AR and carving new trenches around the larger base. When an
other dislocation is nucleated the process is repeated, until a stepped profile is carved in
the Si(001) substrate, as revealed by the experiments. In Fig. 2.12(d), are plotted the
number of rings carved in the substrate as a function of the original island volumes. In
agreement with the proposed mechanisms, the number of rings (i.e. dislocations) progres-
sively increase with the island volume. Moreover, the higher the growth temperature the
larger is the volume of dislocated islands, due to enhanced intermixing between Si and Ge.

In the experiments described above the observed dislocations are the 60°type. It is
worth to mention, that 90°dislocations are also observed, generally at low growth temper-
atures [78]. In literature, the formation of this kind of defects is controversial. A possible
mechanism is that at low growth temperature, islands are rich in Ge, and the high epitax-
ial misfit strain can induce the homogeneous nucleation of this dislocation directly at the
interface. An other possible explanation is that during the coalescence of two neighboring
islands a 90°dislocation can form at the interface at the position where the islands merge.

2.5.3 Island ordering

In the Ge/Si(001) system, a bimodal distribution in size is typically found, consisting of
pyramids and dome-shaped islands [53, 57]. However, islands in controlled positions and
with a narrow size distribution are desirable both for fundamental investigations and ap-
plications. Recently, it has been shown that the key to successfully create laterally ordered
islands, is the growth on nanopatterns, which can provide preferential nucleation sites for
the island growth. Several experimental techniques are available for patterning, including
the Focus Ion Beam (FIB) manipulation,[85-87] and the nano-imprint, holographic, or
electron-beam lithography assisted by reactive-ion etching.[88-92] Advancements in these
techniques allowed for the creation of different patterns, characterized by periodic arrays
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FIGURE 2.13: 3D topography of a patterned substrate (a) after Si buffer layer growth and (b)
after deposition of 4ML of Ge. (c) Zoomed single island taken from (b).

of pits, trenches or mesa templates. Depending on the specific features of the pattern, is-
lands nucleate at different positions. For example, in large shallow pits islands nucleate at
the center of the pits [89], while they occur in between the pits for narrow FIB patterned
pits [85]. Also, island formation on top of mesa structures or at the concave intersection
between two neighboring mesas has been observed, depending on the size and the sep-
aration in the pattern [90, 91]. A particularly efficient pattern geometry consists in an
ordered array of pits. Controlling the width, the depth and the separation of the pits, it is
possible to induce preferential nucleation inside the pits, obtaining a high degree of island
ordering [93] . Moreover, islanding on the terraces in between the pits can be avoided by
suitably tuning the growth conditions. An example of Si(001) substrate patterned with a
regular arrangement of pits, where islands are selectively nucleated inside the pits is shown
in Fig. 2.13. The morphological evolution of islands nucleated in pits is similar to the one
observed on flat Si substrates: {105} pyramids are found for low Ge deposition volume,
which evolve in steeper islands with dome and barn shape at larger deposition volumes
[94]. Interestingly, islands in pits are homogeneous in shape and size. In fact, a narrow
size distribution is observed for islands grown on pit-patterned, compared to the typical
spread in volumes reported for islands on flat Si(001) substrates [95]. Strain relaxation
via Si-Ge intermixing, leading to a lower average Ge composition with the increasing T,
and via dislocation nucleation is observed. Recent experimental evidence and preliminary
calculations have shown that SiGe islands nucleating in shallow pits on Si(001) are more
relaxed than on flat Si(001) [93, 96, 97]. Interestingly, such extra relaxation is expected
to delay the onset of plasticity [93]. This aspect will be investigated in Chapter 2.5



40 CHAPTER 2. SI,_xGEx HETEROEPITAXY

2.6 Nanowire heterostructures

The last heteroepitaxial structures we study in this work are the nanowires (NWs). The
growth of one-dimensional(1D) Si wires catalyzed by a liquid metal droplet has been
demonstrated by Wagner et al. in the early 1960s, for structures with typical width in
the micrometer scale called whiskers[98]. This growth method is well known as vapor-
liquid-solid (VLS) technique and it is widely used to grow wires with typical width in
the nanometer scale (< 50 nm) of a variety of semiconductor materials on different sub-
strates and with different orientation. [99-102]. Togheter with the VLS synthesis, other
growth techniques have been exploited, such as the growth on nano-patterned substrates
to produce arrays of nanowires uniform in size and in ordered position, or the catalyst-free
self-assembling to produce random arrays of wires. Here, the VLS mechanism and the two
main wire ”architectures”, referred as axial and radial heterostructures, are briefly dis-
cussed and the Ge/Si core-shell nanowires, our system of interest, introduced. For more
details about the various nanowires synthesis techniques and the progress made in this
field see for example Ref. [103-105] and references therein.

2.6.1 Vapor Liquid Solid Growth Process

The Vapor Liquid Solid (VLS) mechanism is a widely used method to grow 1D structures
which involves metal nanoparticles as catalysts to continuously supply material and favor
the vertical growth. The mechanism was early proposed by Wagner & Ellis [98] and more
extensively developed by Givargizov [106] and can be summarized in the following steps.
First the metal nanoparticles are deposited on top of the substrate. The as-prepared
sample is placed in a reaction chamber or tube and the temperature is increased until the
particles melt forming a liquid droplet. Second, the gas precursors of the growth materials
are injected into the reaction chamber. Since the sticking coefficient at the droplet surface
is higher than the sticking coefficient at the substrate free surface, the atom precursors
are deposited preferentially at the droplet surface and form a liquid alloy. The continuous
incorporation of the semiconductor precursor leads to the supersaturation of this alloy
component. As a consequence, the semiconductor component precipitates and the crystal
growth starts at the solid-liquid interface leading to the wire formation, as sketched in
Fig. 2.14(a,b). The lateral growth of the wire is typically limited by the size of the
liquid droplet, while the orientation is not necessary perpendicular to the surface. For
example, group IV and zincblende structure wires are preferentially oriented along the
[111] direction, and wurzite wires along the [0001]. This synthesis process it is highly
diffuse, because it is possible to grow a wide range of NW materials, from group IV,
to III-V and II-V, and to select different substrate material and orientation. Moreover,
this approach allows a precise control of the NW composition and dopants concentration,
through fine control of the growth parameters.

2.6.2 Axial and Radial Nanowire Heterostructures

Another advantage of the VLS process is that, along with homogeneous single crystal wires,
it is possible to grow heterostructures adding one or more layers of a second material axially
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FIGURE 2.14: NWs of different structures based on the “bottom-up” growth mode: a) Exposure
of a metal-droplet-coated substrate to reactant precursors; b) a monophase NW grown outwards,
with the metal droplet acting as catalyst; ¢) a superlattice NW grown by consecutively alternating
the reactant precursors; d) a coaxial NW formed by conformal coating of the preformed nanowire
in (b) with a different material. [103]

or radially with respect to the initial NW, as shown respectively in Figs. 2.14 (c) and (d).
This allows, for example, the fabrication of p-n junctions, perpendicular or parallel to
wire axis direction. The synthesis of these structures is based on the control of radial
versus axial growth. As we discussed in the previuos section the axial growth is achieved
when the precursor decomposition and incorporation occurs at the nanoparticle site and
not on the NW surface. Axial heterostructures are obtained by switching the material
gas precursor and controlling the growth condition so that the deposition of the second
material still occurs at the catalyst site. This operation can be repeated several times
so as to form a superlattice NW, as shown in Fig. 2.14(c). On the contrary, by altering
the growth condition it is possible to favor the deposition of the second material at the
pre-existing NW surface (core) and to drive the conformal growth of a second component
shell around the core, as shown in Fig. 2.14(d). Such structures are also called core-shell
nanowires. NWs with the desired doping level in the subsequent layers are produced by
the controlled introduction of reactants and dopants.






Dislocation Modelling in
Nanostructures

Dislocations are complex objects, that induce a strong distortion of the atomic bondings
close to dislocation line position, but they also produce a long range deformation field in
the entire crystal. The latter is well described by linear elasticity theory. In this work we
want to investigate plastic relaxation in epitaxial structures, such as thin film, nanoislands
and nanowires. Even if we are dealing with nanostructures, the characteristic length of
such systems can be as wide as tens or hundreds of nanometers. As a consequence, atom-
istic simulations are computationally too demanding in order to simulate such structures.
Moreover, dislocation formation and propagation in heteroepitaxial systems is driven by
the attempt to relax the epitaxial stress field. Therefore, an accurate description of the
long range deformation field is needed to understand how these defects interact with each
other and with structures under stress. For these reasons, we believe that continuum sim-
ulations are the appropriate tool to investigate plastic relaxation in such systems. One of
the peculiarity of nanostructures, is the high surface to volume ratio, thus, the influence
of the free surface on the elastic and plastic relaxation process cannot be neglected. In
particular, an accurate description of the epitaxial stress field in nanostructures with mul-
tiple facets and the interaction of the dislocation stress field with it, is actually possible
by using linear elasticity theory solved by finite element method. This method is the tool
of choice for precise calculations of the elastic energy in elastically and plastically relaxed
nanostructures. The second issue we need to address, is the dynamics of dislocations in
the epitaxial nanostructures. To this aim, three-dimensional dislocation dynamics is the
natural tool to access the evolution of a large density of dislocation lines. This simulation
method is known to give accurate results in many problems of crystal plasticity. More-
over, the interaction of dislocations with the epitaxial field and with the free surfaces can
be treated with suitable approximations that have been successfully tested for the plastic
relaxation in micro and nanometer size objects.

In this Chapter, we first outline the definitions of linear elasticity theory necessary to
describe the deformed state of epitaxial nanostructures and the analytical solution for the
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stress field of a dislocation in bulk materials or semi-infinite solids. Then, we describe how
to address elastic and plastic relaxation in nanostructures by using finite element method.
Finally, we summarize the main features of the dislocation dynamics code employed (mi-
croMegas) and how we set up the simulations to tackle plastic relaxation in nanostructures.
Also, we present a new stochastic procedure to handle the dislocation nucleation process
that has been implemented in the dislocation dynamics code microMegas.

3.1 Linear elasticity theory framework

A solid body responds to an applied force by exhibiting a deformation. Linear elasticity
theory provides a mathematical description of such deformations for a vast class of solids
(linear elastic media), whose mechanical response is well described by a linear relation
between stresses and strains. In this section are recalled the main concepts of linear
elasticity theory that has been used throughout this work. For a more complete insight
into linear elasticity theory, see for example Ref. [107, 108].

3.1.1 Displacement vector and strain tensor

Let {e,-}?zl be a set of three orthogonal unit vectors forming a coordinate system for the
vector space 2. The position of a material point inside a medium in the undeformed state
is given by the vector @ = z;e;. If the medium considered undergoes a deformation the
position in the deformed state is given by @’ = zfe;. The dispacement produced by the
deformation is then:

u=z —=x. (3.1)

The vector w is called the displacement vector. Since wu(x) is defined at each point @ in
the domain {2, it constitutes a vector field. In linear elasticity theory, the displacements
and their derivatives are assumed to be small: |u| < 1 and |[Vu| < 1.

Throughout this chapter, the convention of the repeated index has been adopted, i.e.
any index which is repeated once in a product is assumed to be summed from 1 to the
the number of dimensions N of the problem: a - b = a;b; = Zf\i 1 a;b;. Furthermore, the
directional derivative of a given function f is written as f; = %.

A displacement field u(x) # 0 does not necessarily lead to deformation, as it can be
related to rigid-body translation or rotations. A deformation results when the the relative
positions between the points in {2 change. A Taylor expansion to the first order of the

displacement fields leads to:
wi(x) = u) +ujdr;
= u + %(ui,j + ujq)dj + %( i — Wji)d;
= u + ey daj + wijdz; (3.2)
where we introduce the following definitions:
(wij + ujz) (3.3)

(wi; — uji)

Eij

N[—= N

wl-j =
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F1GURE 3.1: Illustration of the effect of the strain tensor and the rotation tensor components in

a simplified 2D system.

€;j is the strain tensor and w;; is the rotation tensor. The strain tensor €;; is symmetric
in the (4,j) indexes, while the rotation tensor w;; is antisymmetric, i.e. €;; = € and
wij = —w;j. In the two dimensional case, strain and rotation can be easily represented
as shown in Fig. 3.1, where the x and y directions are parallel to the e; and ez basis
vectors. In this work, we will never have to deal with rotations of the body, so we will not
investigate further the properties of w;;.

We notice that the e; components represent the relative length change along the
reference axis e; of the chosen coordinate system, as illustrated in Fig. 3.1(a,b). On the
contrary, each ¢;; strain tensor component with ¢ # j describes the shear deformation
in the plane defined by the axis parallel to the basis vectors e; and e;, as shown in Fig.
3.1(c). In component-free notation, the strain tensor can be expressed as

1
E:§(V®u—|—u®V). (3.5)

The strain tensor can be decomposed in a traceless part and a multiple of the identity

part,
1 1
€ij = gTI“E 51'3‘ + <5ij — gTI“E 52]) , (36)

where ¢;; is the Kronecker delta. Since such decomposition is invariant under orthogonal
transformations, it is independent of the choice of the basis set {ei}?zl. It is possible to
demonstrate that only only the trace of € (the first term of Eq. 3.6) is related to the local
change of volume. In particular, if we consider an infinitesimal volume element dV prior
to a deformation €, the final element volume dV’ after the deformation is given by

av’ = dV(l + TI“E) = dV(l + 5ii) . (37)

Hence, the quantity Tr e represents the relative volume change of the infinitesimal volum
element dV that undergoes a deformation €. We notice that in epitaxial thin films, the
deformation is defined by only the diagonal part. Thus, in order to reduce such a defor-
mation dislocations that induce a strain field with non zero ¢;; strain components are the
one expected in the SiGe epilayer on Si.

On the other hand, the traceless part is called strain deviator tensor, and it is related to

distortion.
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3.1.2 Stress tensor

Another important tensor in elasticity theory is the stress field o;;, which is the force per
unit area exerted on the i-th face in the j-th direction. The stress tensor field is related
to the traction force T per unit area on any surface element with normal vector n as

T’i = oijnj . (38)

In linear elasticity theory, it is assumed that the stress and strain tensor are related through
the linear relation
oij = Cijricr (3.9)

where Cjji; are constants. The previous relation is the elastic constitutive law, and it is
usually known as generalized Hooke’s law. Cjjp is called elastic stiffness tensor (briefly,
stiffness tensor) and takes the elastic constants of the material as its components.

For a general anisotropic material, it is posssible to demonstrate that there are only 21
independent components out of the total 81 components, due to the symmetry of €;; and o5
and to thermodynamic reasons. However, real materials usually displays more symmetries,
due to their crystalline structure, which further reduces the number of independent Cj;,
components. An interesting class of materials exhibits cubic symmetry, e.g. body-centered
of face-centered cubic crystal structure. In presence of cubic symmetry, the number of
independent components reduces drastically to 3,

Cii11 = Co222 = C3333 = c11 (3.10)
Cr122 = Co233 = C3311 = c12 (3.11)
Ci212 = Ci313 = Ca323 = cus (3.12)

The elastic stiffness tensor can be inverted to give the compliance tensor S;ji, such
that
€ij = SijklOkl - (3.13)

Isotropic continuos media

The simplest possible case is the one of an isotropic homogeneous continuous medium, i.e.
all the directions are equivalent and the Cjji; tensor is independent from the coordinates x
of the point considered in the elastic medium. This is an important class of materials also
because most of the analytical expressions derived in the classical dislocation theory to
describe the dislocation stress field were obtained within the assumption of isotropic media,
and are not available for a general anisotropic materials. For an isotropic material there
exist only two independent components of elastic stiffness constants. In particular, the
isotropic case can be treated as a cubic one, in which the elastic constant are constrained
by

c11 = C12 + 2644 . (3.14)

In general, the Lamé constants A and pu, also called shear modulus, are used:

A =cpo = cyy - (3.15)



3.1. LINEAR ELASTICITY THEORY FRAMEWORK 47

Furthermore, it follows that ¢;; = A+ 2u. Therefore, Eq. 3.9 can be rewritten for this

important case as

o1 = (A+2u)err + Aeag + Aess

022 = Aepp+ (A4 2pu)e2e + Aess

033 = Ae11 + Aga + (A + 2u)ess

012 = He12

023 = Hé23

o135 = [E13 (3.16)

Instead of the Lamé constants, two other quantities can be used to described isotropic
materials, the Young’s modulus Y and the Poisson’s ratio v, which can be expressed
through the following relations:

vY Y
A= h=———.
(1+v)(1—2v) 21+v)

Let us consider the simple case of a isotropic homegeneous medium that undergoes an

(3.17)

uniaxial stress parallel to the e; direction, i.e. all the stress tensor components are null
expect for 017 = of;. It is easy to show by substituting Eq. 3.17 in Eq. 3.16, that the
responce to such a stress is

1

/ /
€ = —o

11 y 71

1%

! _ /o !
€22 = &2 = —?‘711
/ _ / ! _
€l = &3=¢€13=0.

As we can see, the Young’s modulus describe the length change along the direction of
the applied stress (¢],), while the Poisson’s ratio describe the deformation (contraction or
expansion) in the two directions perpendicular to the applied stress direction:

/Y A /
€99 = €33 = —VEqy -

3.1.3 Elastic energy density

The expression for the elastic energy of an continuum media is given by
1 1
E = / av Cijklffz‘jgkl = / dV Uijgij —/ av Pel (3.18)
2 Jo 2 )0 0
being p.; the elastic energy density at each point in (2. This expression can be written for
an elastic isotropic medium as

1
Pel = 5 0ij%ij
1
= 5 (2uej + Aewrdig)eis
1
= UEj;Eij + 5)\5kk5ii , (3.19)
(3.20)

where A and p are the Lamé coefficient introduced in the previous paragraph.
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3.1.4 Mechanical equilibrium condition

Given the domain (2, let us consider an arbitrary subdomain w and suppose there is a
traction T; per unit area on the surface Ow and a body force f; per unit volume. Then,
force equilibrium in w requires:

/ dyTjJr/dei:o, (3.21)
ow w

where the first term on the left represents the traction force on dw and the second one the
body force inside w. Introducing the definition in Eq. 3.8, the previous equation turns
out to be:

/ dry oiin; + / dV f; =0. (3.22)
ow w

Using Gauss’ theorem for o;;, we then have the following equation:

/dV (oijnj + fi) =0. (3.23)

Since the previus condition must hold for any volume w, the equilibrium condition at any
point inside the body is:
(Uij n; + fz) =0. (3.24)

3.1.5 Boundary value problem

In order to find the equilibrium values of u;, €;; and o0;; in a given system, the mechanical
equilibrium condition and the specified boundary conditions must be solved. Let us con-
sider a solid medium of volume {2 and boundary 02 = I'y | J I'p. Two types of boundary
conditions are generally imposed. A traction force g may be applied on a boundary of the
domain (Neumann boundary condition) or a certain values of the displacement u may be
fixed (Dirichlet boundary conditions).

The general expression of the elastic problem as a boundary value problem can be written:

—0ij; = fi on {2
uj = 0 onlp (3.25)
U,-jnj = 0 on FN

The first equation simply describes the mechanical equilibrium equation for a solid body
subjected to a volume force f. The Dirichlet boundary conditions for the displacement are
applied on I'p and the Neumann boundary conditions are applied on I'y. A free surface
is described by applying the Neumann boundary condition and imposing that the traction
force on I'y is null (g = 0). The boundary I'p is fixed, and the displacements u are zero
at this boundary position.

3.2 Elastic relaxation in epitaxial nanostructures

3.2.1 Biaxially strained films

Let us consider a flat homogeneous Ge film on top of a Si(001) substrate. The Ge film
is ideally infinite along the x = [001] and y = [010] directions and the free surface is
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FIGURE 3.2: Illustration of the the biaxial stress in a planar film, resulting for example from the
epitaxial integration of a Ge film on a Si substrate.

perpendicular to the z = [001] direction. As a result, the film is biaxially strained along
the z and y directions and it is free to expand in the positive z direction, as sketched in
Fig. 3.2. Let us assume that the unit vectors {e;}?_; of our reference system are parallel
to the z, y and z directions, respectively. The in-plane strain components are fixed by the
epitaxial relation between the Ge film and the Si substrate €,, = €,y = €. Moreover,
because of the planar simmetry the strain components €;; with ¢ # j are null. The
only unknown strain component is €,,. In this simple case, the mechanical equilibrium
condition is found by solving the boundary condition o - n = g at the free surface with
normal n = [001]. Assuming isotropic elastic constants and no traction force g acting at
the free surface, this condition reduces to:

0=0., = Aegz + Aeyy + (A 4+ 2p)e22 (3.26)

where
Qi — Qo
Em = 35iGe — 95i (3.27)
aSiGe
By solving the boundary condition in Eq. 3.26, the strain component ¢, is found
A v
€2z = _2)\+2M€m: _21—nu€m'

The value of €., has an opposite sign with respect to the in-plane strain component, being
the deformation along z an attempt to recover the undeformed unit cell volume in the
biaxially strained Ge film. Once the stress and strain tensor components are known, the
elastic energy density in the film is given by

1
et = pEij€ij + GACkKEi

2

2

= em22u]1

o ”[ +A+2u]
2 Y

1—v "

(3.28)

E€m

For a pure Ge film, assuming v¥=0.26 and Y'=103 GPa, we have ¢,, = €,y = £,=0.04,
€., = 0.03 and p; = 1.38 eV-nm 3. For a Si;_,Ge, film, the values of €4, €., and Del
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can be found assuming e, to vary with the Ge composition according to Eq. 2.3 and by
linearly interpolating the Ge and Si elastic constants.

3.2.2 3D nanostructures

The elastic stresses and strains in an epitaxial flat film can be found analytically, due
to the simple film geometry and boundary conditions. However, epitaxial nanostructures
may have complex geometry and may expose many surfaces, so that numerical methods
are needed to solve the condition of mechanical equilibrium combined to the boundary
conditions. Since the elastic problem is described in terms of partial differential equations
(PDESs), it can be solved in a continuum approach using finite element method (FEM),
which is the most suitable technique for solving partial differential equations (PDEs) over
complex domains. The results shown in this thesis are obtained using the commercial
FEM code Comosol Multiphysics.

3.2.3 Epitaxial stress field by finite element method

The epitaxial strain or stress field of an arbitrary shaped nanostructure can be found by
defining the initial strain state of the system by using the eigenstrain formalism, as defined
in the Eshelby’s Theory of inclusions.

Suppose we have a continum region {2, which undergoes a permanent deformation.
The strain value needed to restore the zero-stress condition in the region {2 (assumed
unformly strained) is called eigenstrain. In general, we say that there is a condition of
eigenstrain €7 in a certain region of the body if the stress vanishes as &;; = €. As a
consequence, the eigenstrain tensor can be defined in the following way:

045 = Cijkl(f‘:ij — 82}-) . (329)

The previous relation defines the eigenstrain g;; as the value of the strain field to have the
stress field equal to zero. In fact,

gij = €ij = 0ij =0 (3.30)
Furthermore, the eigenstress is defined as

U;(j = Cijklg;f(j . (3.31)

Generally, the deformed region is not able to reach the state of eigenstrain, i.e. the
condition of zero stress. Instead, both the deformed region and the surrounding domains
will deform in order to lower the total elastic energy.

Initial conditions

In the case of epitaxial nanostructure, one can assume that the eigenstrain condition is
given by the lattice mismatch between the epilayer and the substrate, which is given by ¢,
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(Eq. 3.27), as for the planar film case. The internal stress condition assigned to simulate
the lattice mismatch between the epilayer and the substrate becomes:

oij = Cijri(eij —em) epilayer
oij =  Cijri(ei; —0) substrate

Thus, the epilayer acts as a stressor in the system.

Boundary conditions

In the calculation of the stress field of epitaxial nanostructures (films, islands or nanowires)
we assumed that there are no external body forces or acting on them, so that we set f;=0.
The epitaxial nanostructures are in contact with the substrate at the epilayer/substrate
interface. The boundary value problem is given by

—0ij,5 = 0 on{?
up = 0 onl'’p (3.32)
Uijnj =0 OHFN

where, the Dirichlet boundary condition is applied at the bottom surface of the substrate,
while at all the free surfaces the Neumann boundary condition is applied assuming that
there are no traction force acting on them (g;=0).

3.3 Dislocations in linear elasticity theory

Linear elasticity theory, is a very useful tool to describe the elastic field (in particular
the long range field) produced by dislocations. In the following, we report the results
concerning an isolated straight dislocation in a continuous isotropic medium, because
the treatment of such dislocations is quite straightforward and analytical solutions have
been provided for such defects. In general, dislocation displacements, stresses and strains
depend on the finite size of the structure they are in. In case of a semi-infinite solid,
as planar thin films, the simple image construction, as we will see below, can satisfy
the boundary value problem, mimicking the effect of the free surface. Except for some
simple geometries, in a multifaceted nanostructure the exact solution of the boundary value
problem is quite difficult and the effect of the free surface on the dislocation must be solved
numerically. In this Section, we describe the displacements, stresses and elastic energy of
a straight infinite dislocation in a continuous isotropic medium. This is a helpful example
to understand the deformation field induced by a dislocation with arbitrary orientation.
The concept of force on a dislocation is introduced and the image construction in few
simple geometries is presented. Analytical solutions exist also to describe the stress field
of finite size straight dislocation segments [3, 109, 110] and they are qualitatively similar
to the ones of an infinite straight dislocation (at least in the middle of the segments). It
is worth to notice, that a curved dislocation line can be approximated by a sum of small
straight segments.
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FIGURE 3.3: Stress tensor components for an infinite straight dislocation line &€ in a Si bulk
material, parallel to the positive sense of the z direction with Burgers vector aligned to the z
direction (screw dislocation), as sketched in (a). The stress tensor component (b-e) are plotted in
a plane perpendicular to the dislocation line.

3.3.1 Dislocation displacements and stresses

As the dimensions of a solid body increase, the effect of the surfaces on a dislocation in
the middle of it becomes smaller. In the limit of an infinite medium analytical solutions
are provided for dislocation displacements, stresses and strains. Let us consider an infinite
isotropic medium and let us choose a reference system where the z axis is parallel to the
dislocation line € and the origin of the reference system is located exactly at the dislocation
position. For the sake of clarity, we rewrite each components of the displacement field u;

as Uy = U, Uy = v and u, = w.

From the equilibrium equations (Eq. 3.24, combined with Eq. 3.3 and Eq. 3.8), con-
sidering static conditions, the exact expressions of the displacements around a dislocation
can be obtained by imposing the following condition. If a close loop around the dislocation
is taken, the displacement of the final point with respect to the initial one has to be equal
to the Burgers vector length. From the displacement expressions the stress and strain
terms can be obtained by simply exploiting the strain stress tensor definitions, expressed
by Eq. 3.3 and Eq. 3.8.

Screw dislocation

In case of a pure screw dislocation, with € parallel to the z axis and such that its tangent
vector is aligned to the positive orientation of z, the Burgers vector will be in the same
direction (b = b 2). The displacement field satisfying the equations of elasticity induced
by such a screw dislocation is:

2T x
u = v=0 (3.33)
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FIGURE 3.4: Stress tensor components for an infinite straight dislocation line £ in a Si bulk
material, parallel to the positive sense of the z direction with Burgers vector aligned to the z
direction (edge dislocation), as sketched in (a). The stress tensor component (b-e) are plotted in
a plane perpendicular to the dislocation line.

and the stresses associated with such displacements are:

Orz = 'u_b Y
21 22 + ¢
B ub
i
Opg = Oyy =0z =0gy =0. (3.34)

In Fig. 3.3(b-c) the non zero stress tensor component induced by an infinite straight screw
dislocation in a bulk material, as sketched in Fig. 3.4(a), are plotted in a plane perpen-
dicular to the dislocation line. The color maps in Fig. 3.4 were obtained by substituting
v=0.27 and b = 3.841 A, which are the Poisson ratio and the Burgers vector expected in
a Si bulk material in standard condition.

Edge dislocation

For an edge dislocation, the Burgers vector is parallel to one of the directions perpendicular
to the dislocation line. Let us consider the Burgers vector in the z direction (b =b &), and
@1 oriented as the positive z axis, as shown in Fig. 3.4(a). In this case the displacement
field in a bulk material induced by such an edge dislocation is:

b Yy o Atpu  wy
= —— t Z
" 2m [arcanx+)\+2u:p2+y2

o - b B By Aty
T T 20r 20 BT 0 Tt 2uata e
w = 0. (3.35)
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The C coefficient is inserted to adjust the units of the argument of the logarithmic term.
Since both the strain and the stress tensors depend on the derivatives of the displacement
field, an arbitrary value of C' can be assigned. The stresses associated with the same edge
dislocation are given by:

pb  y(3a® +y?)
2r(1 —v) (2% 4 y?)?

oo b y@® =y
v 2m(1 —v) (22 + y?)?

ph x(2® —y?)

Oxx —

T (i) (P )
B B urby
Oz = V(0gp+0yy) = Y P
Oz = 0y =0. (3.36)

In Fig. 3.4(b-e) the non zero stress tensor component induced by an infinite straight
edge dislocation in a bulk material, as sketched in Fig. 3.4(a), are plotted in a plane
perpendicular to the dislocation line. The hydrostatic stress field, i.e. the trace of stress
tensor oy, = 1/3Tro = 1/3(04s +0yy +022), is plotted in Fig. 3.4(f); this is a key quantity
to visualize the actual stress field, since it is invariant with respect to the reference system
choice. In the color map the red color indicate an expansive region, while the blue color
indicate a compressive one. The color maps in Fig. 3.4 were obtained by substituting
v=0.27 and b = 3.841 A.

Mixed dislocation

Let us now consider a general straight dislocation, characterized by & parallel to the pos-
itive z axis and b forming an arbitrary angle 8 with & The Burgers vector can thus be
decomposed in a screw component bg parallel to the dislocation line and in an edge com-
ponent be perpendicular to it. By the superposition principle, holding in linear elasticity
theory, the expressions of stresses, strains and displacements of the mixed dislocation can
be written as the sum of the component’s solution.

As an example of a mixed dislocation, we considered a 60°dislocation, typically observed
in epitaxial Si-Ge systems, as sketched in Fig. 3.5(a). The dislocation line £ is parallel
to the [110] direction (here z) and lie in a plane perpendicular to the [001] direction (i.e.
the interface normal). The Burgers vector is b = b[101]/v/2. The z and y directions are
parallel to the [110] and the [001] directions. In Fig. 3.5(b-h) the stress tensor components
and the hydrostatic stress field o}, induced by an infinite straight 60°dislocation in a bulk
material, are plotted in a plane perpendicular to the dislocation line. In the color map the
red color indicate an expansive region, while the blue color indicate a compressive one.
The color maps in Fig. 3.5 were obtained by substituting »=0.27 and b = 3.841 A.

It is interesting to notice that directly from the mathematical form of the dislocation
displacements (or stresses) we can derive the limit of elasticity theory in describing dis-
locations. In fact, by looking at Eqgs. 3.33-3.36, it is clear that both the displacements
and the stress components induced by the dislocation diverge when the distance from the
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FIGURE 3.5: Stress tensor components for an infinite straight dislocation line £ in a Si bulk
material, parallel to the positive sense of the z direction and having Burgers vector oriented so as
to form a 60°angle with the dislocation line, as sketched in (a). The stress tensor component and

the hydrostatic stress field are plotted in a plane perpendicular to the dislocation line.

dislocation line (d = /22 4 y?) is close to zero. One of the assumptions in linear elas-
ticity theory is that |u| < 1. Thus, linear elasticity theory is inadequate to descibe the
displacements in the proximity of the dislocation line. In that region the atomistic nature
of solids can not be neglected and atomistic simulations are needed to capture the actual
atoms position close to dislocation lines (d < 5b).

3.3.2 Dislocation elastic energy

A solid undergoing a deformation accumulates elastic energy. The elastic energy induced
by the deformation field of a dislocation is also called dislocation self energy. In general, a
dislocation induces in a crystalline material an extended deformation field. Its self-energy
is given by the integration of the elastic energy density (see Eq. 3.18) in the entire body.
This calculation is not always straightforward, due to the complexity of the dislocation
or the solid body geometry. However, in few simple cases it can lead to an analytical
expression of the dislocation self-energy.

Let us consider a straight dislocation line, as described above, in an isotropic and homo-
geneous elastic medium, in a region bounded by a cylindrical surface of radius r. and an
other coaxial cylinder with radius R > 7., being the dislocation parallel to the axis of the
cylinders and having all length L. It is found that the elastic energy per unit length is
given by:

Esay R pb? 9 sin? 3 R

7 —E(ﬂ)logT—c—E cos” B + T logr—C (3.37)
where E(f) is called prelogarithmic energy factor which depends on the angle between the
dislocation line and the Burgers vector, b is the Burgers vector length and 7. is a parameter
called core radius. Eq. 3.37 diverges for the two limits r. — 0 and R — co. The divergence
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for r. — 0 arises from the limit of linear elasticity theory to describe the deformation in the
proximity of the dislocation line. In such a core region, characterized by highly distorted
or dangling bonds, stresses are large and an accurate atomistic description is needed being
at distance similar to the bonds length. As a result, equations derived by linear elasticity
theory are restricted in a region outside a cylinder of radius r., called core radius, around
the dislocation line. The total energy is found by adding an additional energy core term.
When the core energy of a dislocation is known, for example from atomistic simulations,
this term can be included in the elastic energy expression by choosing a smaller r. values
so as to make Eq. 3.37 to give the total energy. In particular, r. = b/« is usually taken,
and « is adjusted to match atomistic calculations for the core energy. In Si crystals, r,
is usually set by assuming 1 < o < 4. In this work we assumed a=2.7 as in Ref. [3, 26].
The divergence for R — oo shows that the elastic energy of the dislocation depends on a
characteristic size of the crystal that contains the dislocation. For a solid with arbitrary
shape a good choice of the cut-off radius R is the shortest distance between the dislocation
and the free surface. At larger distances, image stresses cancel the dislocation stresses.
Similarly, the presence of other dislocations (with both signs) may cancel such stresses. In
this case, the cut-off radius can be reasonably assumed to be equal to the average distance
between dislocations.

3.3.3 Force on a dislocation

The force on a dislocation is defined as the force arising from the change in the free energy
W associated with a dislocation displacement, which induces a variation in the dislocation
line £:
F__oWiL) (3.38)
L ot
Let us consider the case of a straight dislocation line that moves at each point by dr.
If a uniform stress field o exists at the dislocation position, the work done to move the

dislocation line by dr under o is

SW F
4 =7 0r = [0 (Exor)-b
= (b-o)-(§x0r)
= [(b-o)x§]-br. (3.39)

where o - (€ x dr) is the force produced by the stress tensor o on the surface & x dr.
Consequently, the force per unit length is
F

f:(b-a')xf. (3.40)
Eq. 3.40 represents the force acting on a dislocation line due to a given stress field o
existent at the dislocation position, that can be an external stress field applied to the
solid or can be induced by an other dislocation or defect present in the solid. Such force
is commonly called the Peach-Kohler force. In case of curved dislocations an additional
force due the dislocation interaction with itself, the so called line tension, should be added.
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3.3.4 Resolved shear stress

Dislocations move in crystalline materials in the favorable glide planes, as discussed in
Section 1.1.2. Such a motion is driven by the action of a shear stress in the dislocation
glide plane, while the component of the stress field normal to this plane does not influence
the glide motion. Hence, to quantify the effective force for dislocation glide one must
consider the shear stress resolved in the glide plane and in the slip direction, i.e. in the
Burgers vector direction. Once the stress field o acting on a dislocation is known, the
force per unit dislocation length can be evaluated by the resolved shear stress (RSS):

RSS=(b-0) x 7. (3.41)

where b and n arethe Burgers vector and the glide plane normal of the dislocation. This
quantity shows the effective stress that drives the dislocation nucleation and glide motion.
A large positive value of the resolved shear stress means high probability of dislocation
nucleation or large forces promoting the dislocation motion in the glide plane of the selected
dislocation [3]. Thus, the RSS allows one to determine which slip systems are expected
to be activated under an external stress field or the sites where dislocations are expected
to preferentially nucleate in an system characterized by an heterogeneous stress field.
Together with the temperature, the resolve shear stress determines the dislocation motion.

3.4 Dislocation modelling in nanostructures

Different strategies have been developed to deal with dislocations in thin films or in other
nanostructures. We have seen that dislocations can be described either with a discrete
approach, by considering the atom displacements from the perfect crystal positions, either
with a continuos method, by defining a deformation field at each point of the solid con-
taining such defects. Atomistic simulations can be carried out in order to obtain the atom
configurations around dislocation lines, core geometries and energies (e.g. Ref. [111]).
The main disadvantage of this approach is the long computational time required for atom-
istic simulations. In fact, only prototypical systems, with reduced sizes with respect to
the typical length scale observed in experiments, can be simulated and even considering
simplified systems the simulation times are considerably long. A continuum approach,
instead, provides an accurate description of stress and strains, except for the core region
surrounding the dislocation line. The most challenging issue to address plastic relaxation
in nanostructures, is how to handle the interactions between dislocations and surfaces.
In a restricted number of configurations the dislocation-surface interaction can be solved
analytically by using image dislocations. However, in order to investigate structures with
arbitrary shape and dislocation geometry, the numerical solution of the elasticity equations
by FEM is the most adequate tool. This approach allows for a precise calculation of the
dislocation stress field (except for the core) and the exact solution of the boundary value
problem in complex systems. Additionally, this technique requires short simulation times.
This method has been successfully tested by Gatti et al. in Ref. [82], where this approach
is discussed in details, to investigate dislocation formation in epitaxial SiGe islands.
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FIGURE 3.6: A screw dislocation parallel to the free surface and its image dislocation.

3.4.1 Analytical approach: image dislocations

For few simple dislocation geometries it is possible to solve the boundary value problem
by using the so called image construction. Let us consider the case of a straight screw
dislocation in a semi-infinite continuous medium, parallel to the free surface and aligned
to the z axis. If the distance between the dislocation line and the free surface is [, the
boundary condition o;;n; = 0 is satisfied by superposing to the bulk stress field of the real
screw dislocation the stress field of an imaginary screw dislocation, of the same strength
but opposite in sign, which is at the mirror position outside the solid, as sketched in Fig.
3.6. In this case, an analytical expression for the dislocation stress field at a distance ! from
the free surface (which is given by 0 screw + Timage) and for the force exerted by the surface
to the dislocation is provided. The latter is given by substituting in the expression of the
Peach-Kohler force (Eq. 3.40) the stress field produced by the image dislocation at the real
dislocation position. In general, the image construction does not provide an exact solution
of the boundary value problem. In fact, if we only consider an edge dislocation parallel to
the free surface, instead of a screw one, the condition o;;n; = 0 is not met anymore. An
analytical solution for the stress field of an edge dislocation in a semi-infinite solid and
parallel to the free surface was provided by Head in Ref. [112]. By combining the image
construction for a screw dislocation and the analytical expressions proposed by Head, it is
possible to exactly calculate stresses, strains, force and elastic energy of a general straight
dislocation parallel to a flat free surface in a 2D layer. This can be very useful, to study
the energy and the interactions of straight misfit dislocations in planar films. Still, if
we are interested in the stress field of a dislocation with arbitrary shape in multifaceted
structures, no analytical solution is provided. To this aim, we decided to use a FEM
code to numerically solve the boundary value problem of a dislocation in a multifaceted
nanostructure.

3.4.2 Numerical approach: finite element method

The problem of finding the stress field of a dislocation in an arbitrary shaped nanostructure
has been addressed in this work by following the methodology reported in Ref. [82], where
the onset of plastic relaxation in epitaxial SiGe islands has been determined by FEM
calculations and successfully compared with experimental results. This approach is based
on the superposition method, discussed in more details for example in Ref. [113, 122].
Let us start with of the calculation of the stress field due to a dislocation segment in a
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solid body (2, with boundary 0{2. Equilibrium equations can be written in a boundary
value problem, as for the case of a coherent nanostructure, and the solution to elastic

problem can be solved numerically by FEM by applying the proper initial conditions. The
g
contribution to it. In particular, starting form the bulk solution or the dislocation stress
field, the total the stress field in the finite size body {2 can be written as

superposition principle allows one to write the total stress field ¢¢¢* as the sum of different

tot __ _surf int disl

surf

where J%?Sl is the dislocation stress field in bulk condition, 05 is the correction due

to the interaction between the dislocation and free surfaces (i.e. the correction needed
to satisfy the boundary conditions at the free surfaces), while Uf?t is the correction due
to the interaction between the dislocation and the interface (i.e. the correction needed
to satisfy the boundary conditions at the internal boundaries among different materials).
Analytical expression for the bulk solution of the dislocation stress field are available and
can be used as initial condition to solve the boundary value problem. In particular, we used
the non-singular expressions derived by Cai et al. [110], that reproduce the stress tensor
components as derived in the classical dislocation theory [3], removing the singularity in
correspondence of the dislocation line position. Once the initial condition is defined, the
contribution to the total stress field induced by the free surfaces and by the interfaces is
obtained by FEM, that allows one to numerically solve the boundary value problem.

In any epitaxial system, both the elastic field due to lattice misfit with the substrate
and to the dislocations are present. The superposition principle allows one to simply sum
the two initial stress fields and solve one unique boundary value problem. The initial
strain condition is then given by imposing simultaneously the eigenstrain condition for

the epitaxial field and the bulk dislocation stress field:

oij = Ciri(eij —em) + O—Zdjisl epilayer
0 = afj”l substrate
The same boundary conditions described in Section 3.2.3 are then applied to solve the
elastic problem, obtained accurate values of the stresses, strains, displacements and con-
sequently the elastic energy in the examined nanostructures.

3.5 Dislocation dynamics simulations

The FEM method presented above, is a very useful tool to study static configurations
of dislocations in realistic nanostructures and to compare the energetics and the strain
state in few relevant geometries. However, it is not adequate to predict the microstructure
formed by a large density of dislocations in epitaxial layers and to analyze the dynamic pro-
cess of plastic relaxation, that eventually lead to dislocation pattern formation in strained
nanostructures. In order to achieve this, it is fundamental to accurately describe the 3D
shape of dislocation lines, their motion and their interactions in realistic-shaped nanos-
tructures. Dislocation formation and motion is a complex phenomenon that involve the
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breaking and distortion of atomic bonds close to the dislocation line, but also the de-
formation of an extended crystal region where the atoms are slightly displaced by their
equilibrium positions. In the previous sections, we have seen that the description of such
defects in the linear elasticity framework allows one to describe both the energetics and
deformation field induced by dislocations into the crystal lattice. In order to provide a
good description of dislocation motion, it is necessary to take into account also atomic
scale features. 3D dislocation dynamics (DD) simulations can capture the fundamental
aspects of dislocation evolution in time and space, by using a continuum framework to
describe the dislocation stress field and by including atomistic features that govern dis-
location motion and interactions as input parameters of the simulations, as taken from
experiments or atomistic simulations. This technique is a unique tool that allows one to
establish a connection between atomistic properties of dislocations and plastic behavior
at the mesoscale and to directly compare the simulation results with experiments. This
simulation method has been demonstrated to give accurate results in many problems of
crystal plasticity including plastic relaxation in micro and nanometers size objects [115—
117]. In the past 20 years, varius research groups have been developed different 3D-DD
codes[118-124]. All of them are based on the following steps. First, the dislocation lines
in a given configuration are discretized in smaller segments. The forces on the segments,
mainly defined by the applied stress field and by the dislocation segments interactions,
are calculated. The velocity of each portion is determined by applying a mobility law and
the segment positions are updated according to a time step. This procedure is repeated
to obtain the trajectory of dislocation lines and the resulting plastic behavior. Differ-
ent DD codes may differ in the approximation adopted, for example in the discretization
procedure, the core treatment the dislocation interactions, etc ..., and they all present ad-
vantages and disadvantages. In this work, we employed the microMegas code', developed
at the Laboratoire d’etude des Microstructures (LEM) in Chatillon (France). This code
was originally developed by Kubin and Devincre [118, 119], who presented the very first
3D-DD code, and further improved to include original features in the past years. A review
article about this code can be found in Ref. [115], while a more general discussion on the
DD technique compared with other simulation methodologies can be found in Ref. [5].
The dislocation dynamics simulations presented in this work were obtained in collabora-
tions with Dr. B. Devincre and Dr. R. Gatti, presently working at the LEM, by using the
microMegas code and by implementing a new procedure to handle dislocation nucleation
in time.

In this section we present the methodology used in DD simulations to describe the
motion and interactions of dislocations under an applied stress field. In particular, we
summarize the key features of the microMegas code, highlighting its peculiar features
with respect to other DD codes, when it is the case, and we describe the relevant elements
to study plastic relaxation in thin films and nanostructures.

Lsee mM home page at: http:zig.onera.frmm_home_page
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FIGURE 3.7: (a) Schematic representation of the elementary vectors used for each slip system to
discretize dislocation lines in microMegas. The vectors ¢1_g (in black), are used for the definition
of the segments directions and the vectors d;_g (in grey) for the corresponding displacement
directions. (b) Discretization of a continuos dislocation line on the discrete lattice.

3.5.1 The dislocation dynamics code microMegas

The microMegas code has been originally developed to study plastic behavior of crystalline
bulk materials, but DD simulations in epitaxial thin films [117, 121] and nanoislands [125]
demonstrated that this simulation tool is suitable to address plasticity also in objects with
typical lengths in the order of tens or hundreds nanometers. Like usual DD simulations,
3D curved dislocation lines are discretized into a finite number of straight segments and
the dislocation configuration is updated by moving each of them at discrete time steps.
The main peculiarity of the microMegas code is that also the space is discretized. This
means that the origin and the end of dislocation segments are positioned on a discrete
simulation lattice. The latter should in principle be homothetical with respect to the
real lattice of the investigated material (FCC,BCC,HCP,...). By scaling the simulation
lattice it is possible to describe systems from the nanometer to the micrometer range. DD
codes where the space positions are discretized are also referred as discrete dislocation
dynamics (DDD) codes. Like in most DD simulations, the microMegas code treats perfect
dislocations. Also, the motion and interactions of dislocations is restricted inside the glide
planes. Thus, only the glide motion is allowed in our DD simulations. We remind that
dislocation climb typically occurs at a different time scale with respect to glide, which
is orders of magnitude faster, and, contrary to glide motion, it requires point defects or
atoms diffusion. For these reasons, the two kind of motion are generally treated separately
in literature. Also, at the typical growth conditions of epitaxial films and nanostructures
glide is expected to be the dominant mechanism for dislocation motion, so that we can
reasonably neglect the climb mechanism.

The materials we are dealing with in this work, are Si, Ge or Si-Ge alloys. Thus,
in the following we will used as a reference simulation lattice the FCC one, since these
materials can be described as a FCC lattice characterized by a basis of two atoms at each
lattice point. Also, the slip systems considered for the glide motion of dislocations are the
(110){111}, which are the favorite ones in FCC crystals and the most commonly observed
in Silicon and Germanium.
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Dislocation line discretization

As stated above, curved dislocation lines are described as the sum of elementary straight
segments in a DD simulation. In microMegas, the positions of the segments are defined by
the coordinates of the origin of the segment and by its vectorial length. Since each segment
is restricted to start and finish at a simulation lattice position, the dislocation segments
must be lattice vectors. In particular, only a finite set of lattice vectors is used to described
the whole dislocation microstructures. In our DD simulations, curved dislocations lines,
lying in the {111} planes of an FCC structure, were described by using a set 8 elementary
directions (two screw,two edge and four 60°character) for each slip system, as shown in Fig.
3.7(a). This number is sufficient to accurately describe the dislocation lines with a reduce
number of segments and to treat of the most important dislocation reactions in the FCC
crystal symmetry. In the microMegas code, when the elementary cell matches the size of
the real lattice a,the length of the elementary screw dislocation is exactly the modulus
of the Burgers vector. Since we are considering only the (110){111} slip systems, there
are four possible {111} glide planes and three Burgers vectors for each of them for a total
number of 12 slip systems and 96 elementary directions (8 segments for each slip system).
The dislocation lines are typically described by a sequence of segments that are multiple of
the elementary directions. The length of the dislocation segments are close to an average
value which is a parameter of the simulation, called the discretization length £4;, and can
be suitably tuned to accurately describe dislocations in a given geometry with a specific
length scale. In Fig. 3.7(b), it is illustrated how a curved dislocation can be approximated
by the sum of the elementary directions. It is easy to show, that the smaller are the
segments, the more the discrete dislocation description resembles a continuum dislocation
line (orange line). However, the smaller is the discretization length the larger is the
number of segments needed to describe the whole dislocation length and, consequently,
the number of computation operations required to model the dislocation evolution. Since
the dislocation shape (length and curvature) evolve with time, the discretization procedure
is applied at each time step and segments can be added or removed at the beginning of a
time step to better describe the updated dislocation configuration.

Force calculation

The formation and motion of dislocations in a crystal structure is driven by the reduction of
the total elastic energy. As derived in the classical dislocation theory [3], the force exerted
on a dislocation can be expressed as the elastic energy variation due to an infinitesimal
modification of the dislocation line configuration. This force per unit length is given by the
Peach-Koehler (PK) force, as reported in Eq. 3.40, and by a local line tension correction
7r,. In a DD simulation the calculation of the forces is the most important step. Once
the forces acting on the dislocation segments are determined their displacements, and
consequently the updated dislocation microstructure, is found accordingly to a mobility
law, as we will see below. In the microMegas code, the forces acting on each segment
are computed at their middle point, except for segments close to a discontinuity (e.g. a
discontinuity in the curvature of the dislocation line). In these peculiar cases the forces
are calculated at a distance A (typically set A. ~10b)from the singularity defined in the
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simulation parameters.

The Peach-Koehler force acting on each dislocation segment is given by two contri-
butions. The first derives from the applied stress field (04pp) driving dislocation motion,
which in our case is the epitaxial stress field of the coherent structure. Whereas the sec-
ond one arises from the whole dislocation microstructure (gjn¢). The stress field gj,; is
found by summing up all the individual contributions to stress field produced by all the
segment in the simulated volume except for the considered segment and the neighboring
ones. Several analytical expressions for calculating these interaction stresses have been
derived in the isotropic linear elasticity framework. In the microMegas code, the stress
field produced by a dislocation segment is calculated with the formulation given in Ref.
[109]. These expressions are mechanically correct only for closed dislocation loops in bulk
materials. Hence, the correct expression of the stress field of dislocation lines ending at
free surfaces in finite simulation volumes should be considered [113, 126] or corrected by
using suitable approximations [121]. The PK force expressed in Eq. 3.40 can be rewritten
by highlighting the two stress contributions:

Fpr =5 (Uapp + a'int) X £ (3.43)

where b and & are respectively the Burgers vector and the dislocation line direction of
straight segment i.
The local line tension contribution 77, takes into account the local line curvature close to
the segment considered and, in some cases, an image correction arising from the presence
of surfaces and interfaces. Since the stress field that a curved dislocation exerts on itself
diverges at short distances, as derived by elastic dislocation theory [3], a regularization
procedure is typically adopted to avoid this artificial stress singularity in the force calcula-
tion. Therefore an alternative expression, called the local line tension, is used to calculate
the force induced by the segment itself and by its neighbors, replacing the calculation of
the Peach-Kohler force on a segment induced by itself and by the neighboring ones. In
literature, different expressions have been proposed to describe this self-interaction and
most of them are proportional to 1/R[In(R/r.) + O(1)] [127-130]. R is the local radius of
curvature, r. is the core radius tipically set r. ~ |b| and O(1) takes into account additional
first-order geometrical terms. As we have seen in Section 3.3, the choice of the the core
radius, used to take into account the core energy, leads to significant errors. It is worth
to notice, that all the expressions derived in the continuum framework to substitute the
atomistic core structure with an approximated treatment of the self-interaction lead to
errors up to 20%, when R/r. approaches unity, i.e. in case of simulations at the nanome-
ter scale. In the microMegas code four different expressions for the line tension have been
already implemented and can be used. All the results presented in this work were obtained
by using the expression derived by Foreman [128].

In order to compute the effective force on a dislocation segment, the Peach-Kohler
force must be projected on the glide plane of the segment (7pg). The total effective force
acting on the straight segment ¢ in the glide plane then becomes:

Teffi = TPK,i+ TL - (3.44)
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Mobility law and time integration

Once the forces on the segments are known, their velocities are assigned according to
a mobility law. The latter takes into account the resistance that the lattice opposes
to the dislocation motion. This may give rise to thermally activated motion, simple
dissipative motion or takes into account some peculiar mechanism at the atomic scale.
Also a character dependent mobility law can be assigned. In this work, we assumed that
dislocations move everywhere with a velocity which is directly proportional to the local
force: b
Teff,i0i

v; = T (3.45)
where B is a viscous drag coefficient. Although in the present work we used a simple ve-
locity equation, in general, and especially in materials with an high lattice resistance like
Si, the mobility is strongly dependent on the temperature [35, 131]. Also, at low temper-
ature, the dislocation glide motion in Si is typically thermally activated since it depends
on complex kink pairs nucleation and propagation mechanisms, which is characterized by
high activation barrier [132, 133]. The constant proportionality factor between the forces
and the velocities adopted here, can be justified by the fact that we are interested in Si-Ge
nanostructures grown at high temperatures and subjected to very high stresses, larger
than ~ 1GPa, arising from the lattice mismatch between the substrate and the epilayer.
We notice that in the microMegas code the entire segment move as a whole in the same
direction.

Since inertial effects can be usually neglected and dislocations glide with a steady state
velocity (dislocation mass is small and the line energy very large), the segment positions x;
are updated by using the explicit Euler forward method (which is the standard integration
method in DD simulations):

ml(t) = a:z(At) + v; At (3.46)

where x;(t) is the position at the time ¢ and At is the time step chosen to run the
simulation. In the simulations presented in this work the time step was set to be ~1x 10712
s. We finally notice, that even if the segment positions are defined on a discrete lattice, the
displacements are performed in a continuum space. In particular, the discretized positions
(z;(t)) are defined on the lattice sites nearest to the positions in the continuum calculated
using the real coordinates (r;(t)) and are used to efficiently detect the other segments or

obstacles encountered by the segments, during their displacements.

Dislocation reactions and interactions

In the microMegas code elementary dislocation mechanisms that involve core process,
such as cross slip, contact reactions (junctions formation, annihilations) or interactions
between dislocations, are taken into account during the dynamics, thanks to local rules
implemented in the code. When two dislocations come close to each other, their elastic
field interact affecting their dynamics. Depending on the two dislocation types and on
their reciprocal orientation, their interaction can be attractive, leading to dislocation an-
nihilation at the contact position, junction formation or the formation of a cross state,
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(b) N

~"intersection

FIGURE 3.8: Tllustration of ajunction formation in the microMegas code. (a) In the area swapped
by a segment during its displacement an other dislocation segment is present. The intersection
point between the two is found and the first segment is stopped exactly at the intersection point.
(b) If the junction formation is favorable, it results by the lateral motion of the dislocation segments
belonging to the different dislocation lines (indicated in blue and red), that promote the elongation
of the two dislocation lines along the junction direction (dashed grey line), i.e. the intersection
between the glide planes of the two dislocations.

where no reaction is taking place but their interaction affect the dislocation configuration.
In microMegas, the discretization of the space allow to deal with dislocation reaction, even
of non-coplanar segments, in a quite simple way. In fact, once the segment displacements
are predicted, the code test if during an elementary displacement the segment encounters
an other dislocation segment in the area swapped. In this case, the segment is stopped
in correspondence to the second dislocation position. A junction is formed if the force
drives the elongation of the two dislocation along the junction direction, as illustrated in
Fig. 3.8. Otherwise, the two dislocations move apart, without reacting with each other.
In the microMegas code junction segments are considered immobile, so that junction for-
mation (or removal) is controlled by the dynamics of the segments adjacent to a junction.
Annihilation reactions consists in the overlapping of two segments with opposite Burgers
vector along the intersection of the glide planes of the two moving dislocations (dashed
grey line in Fig. 3.8). In this case, the segments along this line are removed and the two
dislocations involved in the reaction are connected to each other.

Cross-slip

Cross-slip is a process that allows a dislocation to change glide plane from its original
glide plane to an other allowed glide plane, called cross slip plane. This process is possible
when a dislocation segment sufficiently long is aligned to the screw direction, so that in
this configuration the segment belongs to two possible glide planes (i.e. two possible slip
systems characterized by the same Burgers vector). If the dislocation experiences a larger
resolved shear stress on the cross slip plane with respect to the original one, the dislocation
can cross slip and propagate in the new glide plane.This process usually involve a core
transformation and it is thermally activated in most experimental conditions. However,
in case of high stress, cross-slip is mostly mechanically activated. The rules for cross-slip
in FCC crystals were reported for example in Ref. [115]; since the cross-slip process is not
crucial for the interpretation of the simulation results of this work we will not go into the
details of this mechanism.



66 CHAPTER 3. DISLOCATION MODELLING IN NANOSTRUCTURES

1[001] [010]

N : ”Nlon Cap
S M h Film 0°° pf_\ rcnn " Layer
Q

SEATE T A
=m0 =m0
bl (111) Substrate bl (111) Substrate
. '

FI1GURE 3.9: Tlustration of the cap layer approximation to model the effect of the free surface. A
planar film with a free surface of thickness h (h) is replaced by a layer bounded by two specular
interfaces with thickness 2h (b).

3.5.2 Dislocation dynamics in nanostructures

The microMegas code is certainly a robust technique to model plasticity in bulk conditions.
This is achieved by applying periodic boundary conditions (PBCs) at the boundaries of
the simulation box. By reducing the size of the simulated systems the elastic interaction
of dislocations with surfaces becomes important. As we seen in Section 3.4.1, in a first
approximation the influence of the surface on the dislocation stress field can be described
by introducing image dislocations. The effect of the surface is inversely proportional to
the distance between the dislocation and the free surface, so that this contribution is
expected to be important in systems with linear dimensions smaller than 1 gm. Since we
are dealing with nanostructures, as thin films and nanowires, it is important to include
such contribution in the DD simulation. In the case of planar thin films, the effect of the
free surface can be considered by using the so called cap-layer approximation. The latter
consists in substituting a thin film with a planar surface at a distance h from the interface
with a layer of thickness 2h bounded by two equivalent interface, as shown in Fig. 3.9.
This approximation is similar to the image construction and provides a a correction to
the elastic field of a dislocation in a bulk mimicking the effect of the free surface. Such an
approximation has been proven to be useful to model the plastic relaxation in planar thin
films, giving accurate results in agreement with analytical model available in few simple
cases and to experiments [116]. The disadvantage of this approach is that it cannot be
easily extend to geometries different from the planar 2D film. However, in many cases it is
possible to describe effect of the surfaces by using a simpler approximation. As discussed
in in details by Schwarz [120, 121, 125], it can be sufficient to correct the force acting on
the segments touching the free surfaces to describe the motion of dislocation in thin films
or nanostructures. When the applied stress field is high compared to the stress field induce
by the dislocation microstructure, the modification of the stress field due to image effect
can be neglected as it only modifies the velocity of the threading segments. However,
a second effect arises from the presence of the free surface. In particular, the surface
maintain the contact angle of a dislocation segment emerging at the free surface constant
with respect to surface normal. A physical approximation, provided by classical dislocation
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Free surface

FIGURE 3.10: Projection of a segment touching a free surface on its glide plane. Two competing
forces act on this segment. One arises from image forces. It depends on the angle 6 and tends to
rotate the segment towards the normal to the surface. The second one depends on the character
via the angle 8 and tends to rotate it towards the screw direction. [115]

theory [3] and first employed by Schwarz in DD simulations[120, 125], takes into account
the two competing forces arising from the interaction with surfaces and determining the
configuration of the dislocation segments touching a free surface, as illustrated in Fig. 3.10.
The first term tends to rotate the dislocation perpendicularly to the free surface and takes
into account that the shorter the dislocation length, the lower is the elastic energy induce
by the dislocation into the system. On the contrary, the second term tends to rotate the
dislocation segment parallel to the screw direction, which is the lowest energy orientation,
as can be easily deduced by Eq. 3.37. These two contributions can be taken into account
by substituting to classical expression of the local line tension 77, the following equation
for the segments touching a free surface:
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(7] (1 — cos? ) tan d)| + R2|(2v cos Bsin B)|] (3.47)
Here, n1 and mno are the unit vectors parallel to the surface normal and to the Burgers
vector, forming, respectively, an angle of § and § with the dislocation line orientation
of the segment touching the free surface. In Eq. 3.47, X is the distance from the point
at which the dislocation segment intersects the free surface to the point of the segment
where the modified line tension contribution is applied. is applied\ is a parameter of the
simulation and was tuned in order to reproduce the critical thickness for plastic relaxation
in epitaxial flat films [117], as calculated in Ref. [26]. It is worth to notice that 7/
is typically small compared to the total force acting on most segments, especially when
the applied stress field is large. However, it corrects the orientation of the threading
segments, influencing the interactions and reactions with other segments. Thus, it is a key
contribution to define the final dislocation microstructure. For the systems investigated
in this work, the modified line tension approximation is the most suitable one, as we have
to deal with complex geometries bounded by many free surfaces. Improvements have been
made in the last ten years to accurately take into account different boundary conditions.
This has been possible by coupling DD simulations with FEM codes to numerically solve
the mechanical equilibrium condition. We notice, that coupling with a FEM code would
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increase significantly the computation time needed to run DD simulations, limiting the
dimension of the simulated volume.

3.5.3 Dislocation nucleation procedure

Dislocation dynamics simulations typically start from a fixed number of dislocation sources
and predict the evolution of such an initial configuration driven by an applied stress
field and taking into account dislocation interaction with other dislocations, surfaces and
interfaces. In epitaxial growth experiments, dislocations nucleate in epilayer at different
times, so that the number of mobile threading segments increases during the early stages
of the growth process. In order to reproduce such a behavior, the microMegas code has
been modified to include a simple stochastic procedure to nucleate small dislocation loops,
periodically in time, during DD simulations. In particular a constitutive local rule has
been added, that simply tests the possibility to expand a new dislocation loop with a
small initial radius R at a random position of the simulated volume under the applied
stress field. More precisely, at a predefined time periodicity At, we randomly select the
coordinates of a nucleation site inside the simulated volume. Secondly, the resolved forces
on the segments discretizing the elementary loop are calculated in the dislocation glide
plane. If the resulting forces act, on average, to expand the loop, we create effectively the
loop and leave it free to evolve together with the other existing dislocations. Otherwise,
the procedure is repeated until a favorable site for the loop expansion is found. The initial
circular loop shape is defined inside the dislocation glide plane and it is discretized in 8
segments forming an octagon. These segments were chosen to be for simplicity parallel
to the 8 eight elementary vectors used in the code to discretize the whole dislocation
microstructure. This procedure is particularly useful to investigate plastic relaxation in
structures characterized by a non-uniform stress field and to predicted the preferential
sites for dislocation nucleation and propagation.

By testing in the simulation volume only dislocation loops belonging to a selected slip
system, it is possible to investigate separately the formation and evolution of dislocation
belonging to different slip systems. This approach has been employed to study the for-
mation mechanism of dislocation in core-shell nanowires, as discussed in Chapter 6. The
nucleation procedure can also be applied to assess simultaneously the preferential sites of
dislocations of different slip systems in an heterogeneous stress field, as has been done to
analyzed the plastic relaxation process in thin film grown on pit-patterned substrates and
discussed in Chapter 4. This procedure may be further modified to include new features
of the nucleation process as derived by experiments or atomistic simulations.



Dislocation engineering by
substrate nanopatterning

Single crystalline, semiconductor SiGe films have been extensively studied in the past
decades because of their crucial importance in the micro- and opto-electronics industry.
In the electronic field, the development of SiGe heterojunctions bipolar transistors and
strained Si/SiGe CMOS technology have promoted a large research aimed to control the
SiGe layer growth and to tailor the desired material properties. [134] However, the possi-
bility to use thick SiGe or Si layers is hindered by the nucleation of dislocations, which have
been demostrated to be detrimental to device performances in diamond and zincblende
semiconductors. This is true also for metastable layers, which eventually evolve disloca-
tions because of subsequent thermal treatments. Pseudomorphically strained, semicon-
ductor heterostructures, are also important for the fabrication of optoelectronic devices.
Even though in low mismatched material systems, such as AlGaAs/GaAs or InGaAsP /InP
the interfacial strain can be elastically accommodated. In heterostructures characterized
by a larger mismatch, such as Si/Ge or InAs/GaAs, defects, are typically observed af-
ter the deposition of only few nanometers of the epilayer material. Among them, the
generation of interfacial misfit dislocations is typically observed with the increasing layer
thickness. These defects are often charged and act as non-radiative recombination centers
and electrical shorts and can rapidly degrade the operation of light emitting diodes or
lasers.

It is clear, that in the epitaxial integration of Ge or different semiconductor materials on
Si(001), controlling and possibly confining dislocations in pre-defined regions, would allow
for device positioning in selected areas far from the detrimental dislocations. Moreover,
defined access to the electrical conductivity of dislocations [135] and electroluminescence
measurement [136, 137] are other fields that would benefit from the possibility of governing
the position of dislocations on a nanometric scale. However, this goal has always been
hindered, because heterogeneous nucleation of dislocation loops at unpredictable defects
on the surface of the growing film prevents any meaningful control.

In this Chapter, we first summarized the main features of the plastic relaxation process
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FIGURE 4.1: (Left) Plan-view dark-field TEM of 100 nm Sip 7Geg 3 on (001) Si showing orthogonal
arrays of misfit dislocations. The curved features at the dislocation intersections are moiré fringes
due to superimposed diffraction from the layer and the substrate [138]. (Right) TEM image of the
cross-section (110) of the GeSi/Si(001) heterostructure after annealing at 350°C during 10 min.
The schemes below show misfit dislocations with threading branches and dislocation half-loops
propagating from the surface. 1-Si substrate, 2-GeSi film. Two-beam condition, g=[220]. [139]

in low-mismatched films and the advantages and limitations of several techniques existing
in literature aimed to govern dislocations in epitaxial semiconductor two-dimensional (2D)
layers. Then we present a novel strategy for efficient dislocation engineering. In particular,
we demonstrate that by suitably patterning Si(001) substrates with {111} trenches or
pits, it is possible to select preferential nucleation and positioning sites for dislocations
and confine them in pre-determined Si;_,Ge, film areas. Finite element calculations
and dislocation dynamics simulations are presented in order to prove this concept and
are successfully compared with tailored experiments of SiGe deposition on nanopatterned
Si(001) substrates, performed at the University of Linz in the group of Prof. F. Schéffler.

4.1 Plastic relaxation in heteroepitaxial films

4.1.1 Threading dislocation reduction

In heteroepitaxial films most of the dislocations are located at the interface, so as to re-
lieve the misfit strain, but a certain density of misfit dislocations will have segments that
‘thread’ from the substrate, and interfaces to the surface and into the epitaxial layer re-
gion. These segments are the so called threading dislocations. Some of these are visible in
the image in Fig. 4.1 (right panel). Over the past decades, several approaches have been
proposed that aim to reduce the threading dislocation density or to segregate dislocations
in non-active areas of the devices. For example stepped graded layers allow to relax the
misfit strain by dislocation formation at the different interfaces, reducing the threading
dislocation density close to the surface where the device is placed [140, 141]. Recently, Ge
[142] or GaAs [143] selective area deposition in oxide windows, or on small SiGe or GaAs
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FIGURE 4.2: Dislocation geometries in Si/Ge films grown on top of Si(001) substrates. Dislocations
with (110) Burgers vectors, (AC, AD, BC and BD), propagate in the {111} slip planes that intersect
the (001) interface along the [110] (a) and [110] directions. (c¢) Dislocations are expected to nucleate
as half-loops at the film surface, propagate in one (111) slip plane and deposit a 60°misfit segment
at the film/substrate interface.

mesas [144, 145], have allowed the blocking of threading dislocations. Still, the nucleation
sites are hard to control and the growth on oxide regions provides defects or polycrystalline
material.

The goal of the following work is to propose a new strategy for efficient dislocation en-
gineering and to fabricate large film areas free of detrimental dislocations, without using
non-connected substrates or growing the epitaxial layer in oxide windows.

4.1.2 Dislocations in heteroepitaxial SiGe films

In low misfit SiGe films on Si(001) substrates, 60°dislocations are commonly observed at
the substrate/epilayer interface. This is in good agreement with the prediction that, in
materials with FCC or zinc blend crystal structures, the favorite dislocations are character-
ized by (110){111} slip systems, i.e. they have Burgers vector in the (110) directions and
{111} slip planes. These defects propagate by glide in the low energy {111} slip planes,
eventually depositing a misfit segment at the intersection between their slip planes and the
(001) interface, as drawn in Fig. 4.2. As a consequence, a network of 60°misfit dislocations
along the [110] and the [110] directions is produced. An example of such dislocation pattern
is shown in the transmission electron microscopy (TEM) image in Fig. 4.1. The presence
of a dislocation network usually results in a characteristic undulating surface morphology
known as cross hatch that is readily observed by Atomic Force Microscopy (AFM), allowing
for preliminary experimental characterization without employing destructive techniques.
This behavior and morphology occurs in many lattice-mismatched semiconductor systems
including SiGe/Si and various III-V compound heterostructures [146-151].

In a perfectly flat epitaxial film, there are no preferential sites for dislocation formation,
because the stress field is homogeneous in the entire volume. Consequently, dislocations
nucleate at unpredictable positions, most probably, where a defect coming from the sub-
strate, a heterogeneity in composition or a surface step is present [152, 153]. Point defects,
resulting from contamination of the substrate surface and agglomeration of impurities, as
SiC precipitates [154], crystalline inclusions and Ge-rich platelets [139, 155], can be active
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dislocation sources [39], especially in the very low temperature growth regime. These de-
fects can be reduced by optimization of the growth process and surface preparation prior
to epitaxial deposition, in order to avoid dislocation nucleation at random heterogeneities
(growth defects) positions. Nucleation of dislocation half-loops at the film surface is an
other competitive mechanism for dislocation formation, as confirmed by several experi-
mental observations [156, 157]. In particular, this mechanism is expected to be dominant
during the deposition of epitaxial layers close to the thermodynamic conditions (low rates
and high growth temperatures may help in this direction) and by using substrates with
a small defect densities. In Fig. 4.2(c) this process is schematically described. First a
small dislocation half-loop nucleates at the surface. If the loop reaches a critical size [24],
it expands in its slip plane under the epitaxial stress field and eventually deposits a misfit
segment at the film/substrate interface. The misfit segment length increases through the
motion of the two dislocation segments connected to the surface (threading dislocations),
further promoting the plastic relaxation. Even though, in low misfit films, the predicted
nucleation barrier for homogeneous nucleation is considerably high [158], atomistic sim-
ulation of dislocations emitted by a surface step on the (100) surface of Si and parallel
to (011) directions under uniaxial stress (tension or compression) have demonstrated that
the nucleation barrier can be reduced in correspondence of a surface step [159-161]. This
strongly supports the mechanism of dislocation nucleation from surface steps.

4.2 Dislocation trapping by substrate nano-patterning

The nucleation of dislocation loops or semi-loops at a surface or interface or at a heteroge-
neous site, relies on the formation of critical-size loops. The critical size for loop expansion
depends on the magnitude of the stress field. The higher is the stress field, the smaller is
the critical loop size and the energy barrier for dislocation nucleation [158, 162], as can
be also deduced form Eq. 2.9. In particular, stress concentrations are demonstrated to
be preferential nucleation sites for dislocations [40, 162-165]. The main idea at the base
of our strategy to confine dislocations, is to produce regions, at regular positions in the
epitaxial layer, where the magnitude of stress field is locally higher than in the rest of
the film volume, so as to induce preferential dislocation nucleation at controlled sites. In
particular, we show that this result can be achieved by growing an epitaxial film on top
of a Si(001) substrate patterned with a regular array of {111} trenches or pits. Moreover,
by elastic energy calculations it is possible to demonstrate that {111} interface planes are
preferential sites, with respect to the {001} planes, not only for dislocation nucleation,
but also for their positioning. By exploiting stress induced nucleation at predetermined
sites and preferential positioning on {111} interface planes, we expect to trap dislocations
in selected areas, leaving large film regions, free of detrimental defects and suitable for
device integration.

In this work, we will consider low misfit SiGe films. These are characterized by a lower
dislocation density, with respect to high misfit layers, and can be used to determine some
features of the processes of dislocation formation, propagation and trapping by performing
computationally less expensive simulations. Also, in high-mismatched systems, islands nu-
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FIGURE 4.3: (a) Elastic energy of a 60°MS parallel to the [110] direction with b = ag.[011]/2 as a
function of the x position along the Ge/Si interface. (b) Hydrostatic strain map of the dislocation
in its energy minimum. Nucleation of such dislocations is favorable at the upper edge of the (111)
plane, where RSS is maximum (c).

cleate after the deposition of few monolayers. However, the dislocation trapping behavior
presented below is expected to be quite general, at least for Si;_,Ge, and III-V epitaxial
films on patterned Si (001) substrates, leading to a confinement of detrimental dislocations
in selected regions.

4.3 Dislocation trapping in {111} trench arrays

As introduced in the previous section, in epitaxial SiGe planar films, there are no prefer-
ential sites for dislocation nucleation or positioning. This generally lead to a cross network
of 60°misfit segments (MS) parallel to the [110] and [110] directions and connected to the
surface by threading dislocation (TD) segments at random positions in the film volume.
The lattice deformation induced by a straight 60°dislocation is composed of an expanded
and a compressed lobe, which are mirror symmetric with respect to the {111} plane. It
is easy to show by suitable Finite Element Method (FEM) calculations [82, 166], that the
lowest elastic energy is obtained when the MS lie on a {111} interface between SiGe and
Si. In this configuration the Burgers vector lies in the interfacial plane and the relaxation
of in-plane strain components is maximized. It is clear, that the strain relief induced by
(110){111} MS is enhanced in {111} oriented flat films. Still, the film is homogeneous
and no selective dislocation formation can be induced. However, by growing SiGe films on
top of nano-structured substrates which expose {111} facets adjacent to the conventional
(001) planes, it is feasible to create preferential sites for MS positioning. In Fig. 4.3(a),
we report the elastic energy of a MS parallel to the [110] direction, with Burgers vector
b = age[011]/2 (age is the Germanium lattice parameter), as a function of the x position
along the Ge/Si interface, patterned as shown in Fig. 4.3(b). The pattern consists of two
(001) and one (111) oriented surfaces. The energy minimum corresponds to the MS in
the (111) interface plane, where the stress field generated by the dislocation enhances the
total strain release. The map of the hydrostatic strain in such a position is shown in Fig.
4.3(b). Fig. 4.3(c) maps the variation of the Resolved Shear Stress (RSS) in a (110) cross
section of the same pattern. The RSS is maximum at the upper intersection between the
(111) and (001) planes. Here, dislocations will nucleate [3] and eventually glide within the
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FIGURE 4.4: Trench pattern geometry. {111} facetted trenches, carved in the Si substrate, run
parallel to the 110 direction and are homogeneously spaced along the perpendicular [110] direction.
A conformal SiGe film is deposited on top of it.

(111) interface plane to the energy minimum position.

Starting from this behavior, we show that for low misfit SiGe films characterized by
thicknesses far above the predicted thermodynamic [24, 26] and kinetic [33] critical values
at the same Ge content, it is possible to find a suitable pattern geometry in order to
confine such MS.

Let us consider a Si (001) substrate patterned with 350 nm wide trenches, periodically
repeated along the [110] direction, and covered by a conformal, 160 nm thick Sip;Geg 3
film, as shown in Fig. 4.4. Since the trenches length is considerably larger than their
width and periodicity, we have adopted a simplified 2D geometry. Both the trenches and
the MS are assumed to be ideally infinite and parallel to the [110] direction. We see from
the FEM strain map in Fig. 4.5(a) that the presence of {111}-terminated trenches allows
for a significant elastic relaxation of the €,, component in the epilayer even in the absence
of dislocations. We found that in the coherent system with a trench spacing of 1.5 pym the
average residual strain e,, in the epilayer is ~-6.7-1073, i.e. much lower than expected
for a Sig.7Geg.3 film (1.2-1072). Moreover, the elastic strain field is highly modulated both
in the x and z direction. Hence, we expect a reduced number of dislocation lines in the
[110] direction. Considering the same pattern geometry, we calculated the equilibrium
configuration of multiple dislocations in order to demonstrate that substrate patterning
with {111} trenches is a suitable strategy for confining MS. In particular, for a given
number of dislocations and their initial positions, we can calculate the force acting on
each of them using the Peach-Koehler equation, as defined in Eq. 3.40:

F=(o(r)-b) x &(r), (4.1)

where b and & are the Burgers vector and the line vector of the dislocation, respectively, and
r = (z,y, z) is the dislocation position. o (r) = ¢pi(r)+04s(r) is the position-dependent
stress tensor given by the superposition of the FEM-calculated epitaxial stress field o,
and the elastic field provided by all the dislocations in the system o4;5. The latter was
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FIGURE 4.5: Map of the strain €., in the xz-plane for the coherent (a) and dislocated (b) system
with a trench period of 1.5 ym and a film thickness h of 160 nm. Up to trench periods equal to
1.5 pm all dislocations (21 for the reported periodicity) are confined inside the trenches (b), while
for larger periods (here: 1.8 um), a few dislocations are expected between the trenches (c).

calculated using the analytical formulation given in Ref. [110]. In the forces computation,
the surface-dislocation interactions have been neglected. This assumption is quite good,
considering that this contribution is less than 1% of the total force when the dislocation is
tens of nanometers far from the surface and the here considered film thickness is greater
than 100 nm. The equilibrium configuration was computed by using the steepest-descent
algorithm. A random distribution of dislocations is generated, forces are calculated using
Eq. 4.1, and dislocations are moved along the force directions in the film volume, until
the forces acting on each of them is zero. The equilibrium configuration is then obtained
by repeating the elastic energy minimization for different initial dislocation positions and
increasing their number up to the maximum allowed by the film thickness and trench
periodicity.

In the minimum energy configuration the dislocations are distributed exclusively in the
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{111} interfaces inside the trenches, as long as the trench period is <1.5 pm, (Fig. 4.5(b)).
When the trench period exceeds 1.5 pm, full dislocation confinement in the trenches is
lost. For a trench period of 1.8 pum, for instance, we predict that a few dislocations are
also located in the (001) interface between the trenches, as highlighted in the inset in
Fig. 4.5(c). Thus, by varying both pattern geometry and Ge content it is possible to tune
the range of trench periods where misfit dislocations become entirely confined inside the
trenches.

Interpretation of MBE deposition experiments of SiGe on {111} trench pat-
terned Si(001) substrate

The validation of our model predictions by tailored experiments, performed at the Uni-
versity of Linz and published in Ref. [167], is presented below. Moreover, we reported the
analysis of the RSS for MS perpendicular to the trench length, that allowed us to interpret
some of the experimental observations described above.

Trenches with well-defined {111} facets, with a periodicity of 2 pm (i.e. slightly beyond
the critical value obtained by the above described simulations) were fabricated by fol-
lowing a similar procedure as described in Ref. [168]. Regular arrays of trenches oriented
along the [110] direction were defined by electron beam lithography on a Si (001) substrate
covered with 70 nm of SiN,. The pattern was transferred into the SiN, layer via reactive
ion etching to provide a hard mask for the subsequent anisotropic Si etching in Tetram-
ethylammonium Hydroxide at 80°C. Since the etching rate in the Si <001> directions is
~ 0.3 um/min whereas the one for Si <111> is as small as ~ 0.01 gm/min, trenches with
well defined {111} side facets result [169]. The width and the depth of these trenches
were defined by the size of the hard mask openings, here 350 nm and 250 nm, respec-
tively, to match the model assumptions. The patterned substrates were then chemically
pre-cleaned with a final dip in hydrofluoric acid and transferred to a Riber SIVA 45 solid
source molecular beam epitaxy (MBE) system. After in-situ annealing at 700°C for 45
minutes, a 45 nm thick Si buffer layer was deposited at a rate of 0.6 A/ s at a temperature
that was ramped up from 450°C to 550°C. An overcritical [26, 33] 160 nm thick Sip7Geg 3
layer was subsequently grown at Tg.= 550°C, with rates of 0.18 A/s and 0.41 A/s for Ge
and Si, respectively.

Fig. 4.6(a), shows an AFM image taken at the boundary of the trench patterned area.
Evidently, most of the [110] oriented dislocations propagate as bundles from the sidewall
areas of the trenches into the non-patterned area. Since the AFM measurements are only
sensitive to the surface-footprint of several bunched dislocations, TEM investigations were
carried out to identify individual misfit and threading segments. Also in this case, the
region between the patterned and the non-patterned areas was analyzed . In Fig. 4.6(d)
one can see that most dislocations parallel to the [110] direction are confined along the
trenches and extend into the non-patterned area, confirming the model predictions and
supporting the interpretation of the AFM results. As predicted, only few [110] oriented
dislocation lines are observed between trenches, since we are slightly overcritical with
respect to the 1.5 pum trench spacing. Both the AFM and the TEM images also reveal
that perpendicular to the trenches MS run from trench to trench as a dense network with
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FIGURE 4.6: AFM images of the areas, where the {111} trench pattern ends (a), from the middle
of the patterned (b) and non-patterned field (c), obtained after deposition of 160 nm Sig7Geg 3.
Color coding corresponds to surface sensitive derivative. TEM image of the end of a trench (d),
where dislocations are confined in bunches along the trench. Trenches are outlined to guide eye.
(e) RSS calculated for a 60°dislocation perpendicular to the trenches (parallel to the [110] with

b = agice[011]/2 and (111) glide plane). [167]
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narrow, rather regular spacing, (Fig. 4.6(b,d)). This is probably due to the high RSS
at the upper trench edges, which provides preferential sites for homogeneous dislocation
nucleation in the patterned area. In Fig. 4.6(e) the RSS calculated for a 60°straight
dislocation parallel to the [110] direction (i.e. perpendicular to the trenches), with Burgers
vector b = agiGe[011]/2 (asice is the Sig.7Gep s alloy lattice parameter), is plotted. Since
the RSS reaches its maximum at the upper trench edge where it is much higher than
in flat films, we expect dislocations to be more easily nucleated in films grown on such
patterned substrates. This effect allows for the formation of a homogenous distribution
of dislocations perpendicular to the trenches. In contrast, in the non-patterned area,
Fig. 4.6(c), an irregular network of bundles of dislocations is observed, giving rise to a
superficial cross hatch morphology along the [110] and the [110] directions[170]. We see
that most TDs are located in the trenches, where they end on a sidewall surface, Fig.
4.6(d). The area between the trenches has a much lower density of TD. Their occurrence
is mainly associated with occasional stacking faults caused by not-yet optimized growth
conditions on the {111} sidewalls of the trenches.

Tge | trench width | film thickness | max. periodicity
0.10 700 nm 200 nm 3.0 pm
0.15 250 nm 160 nm 1.5 pm
0.30 300 nm 160 nm 0.8 pm

TABLE 4.1: Maxmimum trench periodicity predicted to lead to full MS confinement inside the
trenches obtained by varying both the geometrical parameters (trench width and film thickness)
and the Ge content z in Si;_,Ge, films grown on a {111}trench-patterned Si (001) substrate.

In conclusion, the predictions based on our simplified 2D model and the presented ex-
perimental results clearly suggest that substrate patterning with {111}-terminated trenches
is an effective method for trapping MS parallel to the trenches. Their density is low, be-
cause the trench geometry allows for a significant elastic strain relaxation. In contrast,
the strain component along the trench direction is plastically relaxed by a quite regular
array of misfit segments that run from trench to trench. The threading dislocations are
effectively trapped on the open sidewalls of the trenches. Even though the model does not
capture the evolution of dislocation lines in 3D, our approach can be used to predict the
expected maximum periodicity which allow for full MS (parallel to the trenches) confine-
ment inside the trenches, varying the pattern geometry (trench width, film thickness) and
the epilayer Ge content. In Tab. 4.1 we summarized some of these calculations. As a re-
sult, by tuning Ge content, film thickness and trench periodicity, it is possible to tailor the
residual £, strain in the large film areas (~1 um?) free of threading dislocations between
the trenches. In Section 4.4, we present 3D discrete dislocation dynamics simulations, in
films conformal to pit-patterned substrates, that fully capture the evolution of dislocations
in 3D structures and confirm our predictions based on 2D FEM calculations.
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FIGURE 4.7: (a) Scanning electron microscopy image of a Si(001) template patterned with an array
of pits with 111 side facets. (b) Pit pattern geometry used in the simulations. The periodicity is
1.5 pm. (c) DD simulation cell. The SiGe/Si interface is colored in blue.

4.4 Dislocation ordering induced by pit-patterned substrates

In Section 4.3, we have shown by FEM predictions that {111} faceted and (110)-oriented
trenches in Si (001) substrates are favorable trapping sites for MS parallel to the trenches in
conformal low misfit SiGe films. In addition, we investigated the formation of dislocations
at the Si/SiGe interface and orthogonal to the periodic trench array, which form a rather
regular network minimizing elastic energy. The latter dislocations are found to start and
end at the trenches (~2 pum apart), because the calculated resolved shear stress (RSS)
at the trench edges is considerably higher than in the rest of the film, hence promoting
preferential dislocation nucleation and stress trapping sites. However, for virtually infinite
trench arrays, only MS parallel to the trenches were successfully confined and no planar
region free of dislocations was ever produced, as suitable for device integration.

In order to achieve dislocation gettering along both the two orthogonal [110] and
[110] directions we studied dislocation evolution in SiGe films grown on top of Si(001)
substrates patterned by a regular array of {111}-faceted pits. These are similar in size
and spacing to the trench case, and oriented in a square network along (110) directions.
If the heterogeneity induced by the pits in the epitaxial stress field is as effective as for
the trenches in producing large stresses at the pit edges, a pattern of dislocations confined
along the pit lines is expected. This pattern should ideally leave squared areas in the
order of one-two microns per side free of misfit segments. As the pit array is expected to
produce a complex inhomogeneous strain field in the SiGe film, it is not easy to predict
the extent of the dislocation gettering process. To this end, three-dimensional dislocation
dynamics (DD) is the natural tool to access the evolution of a large density of dislocation
lines.

Pit induced epitaxial stress field in SiGe films

Before investigating dislocation propagation in SiGe films grown on pit patterned sub-
strates, let us analyze the epitaxial stress field produced by such a structure. The elastic
field solution for a plastically unrelaxed structure, as sketched in Fig. 4.7(c), was cal-
culated by FEM. Here, a conformal 250 nm thick SipgsGeg 15 film grown on a {111}
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FIGURE 4.8: Elastic strain field in a conformal, Sipg5Geg.15 film grown on {111} pit patterned
substrate. The strain component e, is plotted (a) in a plane orthogonal to the [110] direction (y
axis), which cut in two halves the pits, and (b) in a plane perpendicular to the [001] direction (z
axis), 125 nm deep from the top (001) surface. (c) The in-plane strain €;,, in a plane perpendicular
to the [001] direction (z axis) as in (b).

pit-patterned Si(001) substrate has been considered. The pits are 540 nm in width and
250 nm in depth, and the pattern periodicity is 1.5 um. Pits are regularly repeated along
the [110] and the [110] directions. These parameters were selected in order to compare our
results to tailored MBE deposition experiments of SiGe films on top of Si(001) substrates
patterned by a regular array of {111}-faceted pits.

The heterogeneity of strain in the film is visualized in Fig. 4.8(a-b), where the £,,
strain tensor component is plotted in a (110) plane (the y axis) and in (001) plane (the
z axis), respectively. In the two cutting planes, we see that the pit surfaces allow for a
partial elastic relaxation of the in-plane strain close to the pits, while in the other film
regions, €, is almost equal to the value expected in a flat film with the same Ge content
(~ —6 x 1073). Similar conclusions can be extracted by looking at the biaxial strain map,
in Fig. 4.8(c), plotted in a (001) plane. In Tab. 4.2, we compared the average values of
the biaxial strain, the €4, strain tensor component and the elastic energy density in a 250
nm thick Sigg5Gep.15 film grown on a flat and on a pit-patterned (as described above)
Si substrate. By looking at the values in Tab. 4.2, it is evident that the total elastic
relaxation induced by the pits is weak and large areas in the film are as strained as in
the flat film case. However, a second important effect associated to the existence of the
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FIGURE 4.9: Variation of the resolved shear stress (RSS) calculated for the [011](111) slip system,
in a conformal 250 nm thick (a) and 60 nm thick (b) Sig.s5Geg.15 film, at the (001) film/substrate
interface and in a (111) possible dislocation glide plane of the film.

pits can be realized in the two stress maps. Some edges at the top and bottom surface of
the pits induce stress concentrations and provide in the film very high stress sites where
dislocation nucleation and multiplication is going to be more favorable.

flat pit-pattern (periodicity 1.5 pm)
Erz -6.0 x1073 -5.5 x1073
Ebiazial -6.0 x1073 -5.5 x1073
Pelastic (€V/nm?) | 4.0 x1072 3.8 x1072

TABLE 4.2: Average values of the biaxial strain, the x strain component and the elastic energy
density of a 250 nm thick Sig.g5Geg.15 grown on a flat substrate and grown on the {111}pit-pattern
geometry with periodicity of 1.5 ym both in the [110] and the [110] direction. The pit base is 540
nm.

To better quantify such an effect, we plot in Fig. 4.9(a), for one of the active slip system
experimentally observed ([011](111)), the variation of its resolved shear stress (RSS) at
the (001) film/substrate interface and in a (111) dislocation glide plane cutting the film
close to a pit. From this figure, it is clear that the RSS is maximum in the proximity of
the pit edges, while it is considerably lower in the remaining film volume (approximately
equal to the value expected for a flat SipgsGeg 15 film, ~ 0.42 GPa). Therefore, close
to the pits a small area exists where dislocations on the tested slip system should be
preferentially nucleated. Similarly to Fig. 4.9(a), we show in Fig. 4.9(b) the variation of
the RSS for the [011](111) slip system, calculated for a 60 nm thick film. We observe that
with the decreasing film thickness, the areas where the RSS is high become more localized
close to pit edges. Thus, selective dislocation nucleation should be effective from the very
beginning of the film growth, provided that the critical thickness for dislocation nucleation
is overcome [159, 162]. Similar results were obtained for the other active slip systems.
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Dislocation dynamics simulations
Enhanced dislocation loops evolution from the pit sites

To prove that the stress field modulation induced in a film by {111 }pit substrate patterning
leads to dislocation trapping along the pit lines, dislocation dynamics simulations were
performed. This simulation method is known to give accurate results in many problems
of crystal plasticity including plastic relaxation in micro and nanometer size objects [115—
117]. Following the approach first proposed in Ref. [125] for epitaxial islands, we addressed
the evolution of the dislocation microstructure in a pit patterned film by applying the
epitaxial strain field calculated above by FEM, as external load in the DD simulations.
For the simulation results presented in this section we considered the Sigg5Geg.15 film
geometry used for the FEM calculations (see Fig. 4.7(c)). Periodic boundary conditions
are applied in the [100] and [010] directions to reproduce the pit pattern periodicity.

As the early stages of dislocation nucleation from atomic defects cannot be reproduced
at the DD simulations scale, we explore the film volume by testing the possibility to
expand a new dislocation loop with a small initial radius R, corresponding to a reference
critical stress for nucleation. In a homogeneous flat film, a dislocation half-loop nucleated
at the surface, will evolve in the film provided that it reaches the critical size R.. [24, 26]
In particular, neglecting kinetic limitations, a half-loop will expand and deposit a misfit
segment, when its radius R is such that the following relation is satisfied:

R-sing > R - sing = h,

where ¢ is the angle between the glide plane and the (001) interface plane (here ¢=>54,7°,
sing = 1/2/3) and h. is the thermodynamic critical layer thickness for dislocation for-
mation as derived in Ref. [26] and reported in Eq. 2.7. Similarly, in an overcritical film
dislocation loops with radius R > R, will expand and deposit a misfit segment, while
loops with radius R < R. will collapse on themselves. In our simulations we exploited the
equivalence of these two criteria in order to test where dislocation loops would preferen-
tially nucleate in the highly heterogeneous stress field, as for epitaxial SiGe films deposited
on top of pit-patterned substrates. In Fig. 4.10, 4.11 and 4.12, we show the evolution of
a random distribution of dislocation loops with different loop size. Results obtained by
inserting loops with radius R of 32, 30 and 25 nm, are shown in Fig. 4.10, 4.11 and 4.12
respectively. The three values were chosen in order to study the evolution of dislocation
loops with an over-critical, critical and sub-critical radius for dislocation formation in a flat
Sig.g5Geg 15 film. As we can see in Fig. 4.10, evolution of dislocation loops with R > R,
is similar to the results obtained for a flat film: all the loops expand in time creating a
random network of misfit (along the [110] and [110] directions) and threading dislocation
segments. Decreasing the loop radius R until the critical value R., we observe that some
loops in between the pits do not expand themselves, because the stress field is slightly
reduced there, thanks to the elastic relaxation induced by the pit free surfaces (see Fig.
4.8 and Fig. 4.9). Still, a random network of dislocations is observed, as shown in Fig.
4.11. If we consider now the evolution of loops with a sub-critical radius, shown in Fig.
4.12, a different result is obtained. As expected, such dislocation loops expand only where
the RSS is significantly higher than the RSS value obtained in a biaxially strained thin
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(c) : (d)

FIGURE 4.10: Dislocation evolution a different times in Sip g5Geg.15 film grown on a {111} pit-
patterned Si (001) substrate, starting from an initial random distribution of dislocation loops. The
pattern periodicity is 1.5 ym in both the [110] and the [110] directions. The loop radii are larger
than 30 nm.

film with the same Ge content. Thus, only dislocation loops close to the pit edges will
expand. As a result, misfit dislocations are deposited only in between the pits, or parallel
to the pit lines but close to the pit edges, leaving large areas dislocation free.

Dislocation dynamics simulations: progressive plastic relaxation with time and
threading dislocation trapping

Dislocation dynamics simulations starting from a fixed number of dislocation sources
demonstrated that nucleation and propagation of dislocations is favorable at the pit edges.
In experiments, dislocations nucleate in time at different film sites eventually covering large
distances before the mobile TD are effectively stopped, by interacting with other threading
or misfit segments. In order to reproduce such a behavior, we employed the nucleation
procedure, described in Section 3.5.3, to nucleate small dislocation loops, periodically in
time, and describe the progressive plastic relaxation process in thin films. In this case the
nucleation rule applied can be summarized as follows. At predefined time intervals At, we
randomly select the coordinates of a nucleation site inside the simulated volume. First,
a loop discretized in eight elementary segments is defined in its glide plane. Second, the
forces on each segment are calculated and resolved in the dislocation glide plane. These
two steps are repeated repeated for all the active slip systems and the dislocation loop
undergoing the maximum forces is selected. If the resulting forces act, on average, to
expand the loop, we effectively insert it in the simulated volume and leave it free to evolve
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FIGURE 4.11: Dislocation evolution a different times in Sip g5Geg.15 film grown on a {111} pit-
patterned Si (001) substrate, starting from an initial random distribution of dislocation loops. The
pattern periodicity is 1.5 gm in both the [110] and the [110] directions. The loop radii are equal

to 30 nm.

FIGURE 4.12: Dislocation evolution a different times in Sig g5Gep.15 film grown on a {111} pit-
patterned Si (001) substrate, starting from an initial random distribution of dislocation loops. The
pattern periodicity is 1.5 um in both the [110] and the [110] directions. The loop radii are equal

to 25 nm.
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together with the other existing dislocations. Otherwise, the procedure is repeated until
one nucleation event is achieved. Plastic relaxation is achieved when no new dislocation
loop can be nucleated and all the existing dislocations are immobile.

In Fig. 4.13, the results obtained by inserting dislocation loops of radius R ~22 nm at time
intervals At = 1ns, are presented. For the simulation the same Sig g5Geg 15 film geometry
used for the FEM calculations and the previous simulations was used (see Fig. 4.7(c)) and
periodic boundary conditions were applied in the [100] and [010] directions. Dislocation
nucleation is observed only in regions close to the pit edges, as illustrated by the small
loop marked with an arrow in Fig. 4.13(a). This is why, misfit dislocations are deposited
at the interface only in between the pits or close to the pit edges. The trapping of misfit
dislocation in bundles between pits leaves the place for large areas free of dislocation in
the partially relaxed film.

An other important result of the simulations is the following. All the dislocation loop
radii we considered for the nucleation process in the simulation shown in Fig. 4.13 (R ~22
nm) and for the evolution of the loop distribution in the simulation reported in Fig. 4.12
(R ~25 nm), are lower than the corresponding solution in a flat Sig.g5Gep.15 film (R ~ 28
nm) as simply defined from classical theoretical models [24, 26]. This suggests that during
the film growth, dislocation nucleation close to the pit takes place at earlier growth states
than in a flat film or flat area. Hence, a large density of threading dislocations between
pits have enough time to form before nucleation can take place in the other areas of the
patterned film. This result justified the cross hatch morphology observed in the AFM
images (Fig. 4.14(a-d)) and the dislocation microstructure found in the TEM characteri-
zation (Fig. 4.14(e-f)) of Sig.g5Gep.15 films deposited on top of {111} pit patterned Si(001)
substrates, reported in the Section below. A last interesting feature indicated by the sim-
ulation is illustrated in Fig. 4.13(c). The mean free path of the dislocations nucleated at
pits edges is relatively short. Indeed, mobile threading dislocation are found during the
simulations to slow down or to stop in some regions close to the pit surfaces where the
stress is much lower than in the rest of the film. This dynamical effect, explains why most
threading segments terminate at the pit surfaces and justify the small density of threading
segments observed between the pits in the experiments (see Fig. 4.14(e-f)).

Interpretation of MBE deposition experiments of SiGe on {111} pit patterned
Si(001) substrate

In the following, we describe the experimental observations that further corroborate the
possibility to use patterned substrates to confine dislocations. These experiments were
performed at the University of Linz and published in Ref. [171].

The above presented simulations of dislocation evolution in SiGe films conformal to {111}
pit patterned substrates shed light on the interpretation of such experimental findings.
Pits with {111} facets were defined on (001) oriented Si substrates, as shown in the
scanning electron microscopy image reproduced in Fig. 4.7(a). Three different patterned
samples with pits distanced by 1, 1.5 and 2 um and aligned to the (110) directions were
defined by following the technique described in Ref. [168, 171] and recalled in Section 4.3.
The average pit area size (of quadratic shape) is ~ 540x540 nm? and the corresponding



CHAPTER 4. DISLOCATION ENGINEERING BY SUBSTRATE
86 NANOPATTERNING

FIGURE 4.13: Intermediate (a) and fully relaxed microstructure of misfit dislocations (b) in a
Sip.g5Geg.15 film grown on a {111} pit-patterned Si (001) substrate. Dislocation nucleation, as
marked with an arrow in (a), are periodically tested in time. See the large area free of misfit dislo-
cations in the final state (b). (¢) A simulation magnification show that most threading dislocations
(TD) in the microstructure end on the pit facets as indicated by arrows.
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depth is ~300 nm. On such substrates, first a Si buffer and then Ge is deposited by solid
source molecular beam epitaxy and then a 250 nm thick Sigg5Geg.15 layer was grown.
Details on the pattering and growth processes can be found in [171].

In Fig. 4.14, are shown the AFM images taken from the sample characterized by a pit
distance equal to 2 pym. Lines connecting the pit sidewalls are clearly visible, suggesting
that most of the dislocations are bunched together and run from pit to pit [148]. Since the
AFM measurements are only sensitive to the surface-footprint of bunched dislocations,
and do not provide information about the type and origin of the surface roughness, TEM
investigations were carried out to identify individual dislocations. In Fig. 4.14(e,f), plan
view TEM images of the array with pits distanced by 1 pum are presented. One can see
that most dislocations parallel to both the [110] and the [110] directions are confined along
the pit lines, confirming our predictions and supporting the initial AFM interpretation.
From the TEM analysis, additional information is obtained on the threading dislocations
(TD) which bend to the surface. As observed in Fig. 4.14(e,f), most dislocations appear
as running from pit to pit, hence suggesting that most of the TD terminate at the pit
surfaces which creates large dislocation free areas. Many pits are also the origin of planar
defects, such as multiple stacking faults and microtwins. This is probably due to the
conformal growth on top of the {111} facets, which enhances Shockley partial dislocations
formation, and thus the corresponding stacking faults. Examples of such extended defects
can be seen in TEM cross section, as can be seen in Fig 4.14(e).

4.5 Dislocation engineering

In conclusion, our model predictions demonstrate that by suitably patterning the Si sub-
strate with {111} pits, it is possible to introduce high stress concentrations in low misfit
SiGe films, which operate as preferential sites for dislocation nucleation and threading
dislocation trapping. This produces a regular array of misfit dislocations trapped along
the pit lines, and provides large dislocation free areas, suitable for device integration. It
is therefore possible to fabricate relatively large film areas (~1 pum?) free of detrimental
dislocations, without using dielectric masks or non-connected substrates. Moreover, our
approach can provide efficient dislocation engineering and can be exploited to conduct
tailored experiments to directly assess optical and electrical properties induced by the
dislocations. The fine level of agreement obtained between real and simulated dislocation
microstructures proves the strength of the modelling methodology proposed here. We
believe that our approach can be useful to investigate the full plastic relaxation process
in different epitaxial structures, assessing the influence of the substrate patterning geom-
etry on dislocation gettering, and to obtain at least qualitative insight into the relevant
dislocation nucleation mechanisms.
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2

F1GURE 4.14: AFM inclination images showing the morphology of a 5 x 5 um* areas of a Si
template after deposition of a 250 nm thick Sip g5Geg .15 layer. The pit pattern periodicity is 1 (a),
1.5 (b) and 2 um (c). (d) 20 x 20 um? area of the sample characterized by a 2 ym pit periodicity.
The lines between the pits are the footprints of underlying dislocation bundles. (e¢) TEM plan view
images of the 1 ym period sample. Dislocations parallel to the (110) directions run from pit to pit,
leaving large areas dislocation-free. Examples of threading arms (TA) and of stacking faults (SF)
are indicated. (b) Dislocation distribution in the vicinity of a single pit. The facets of the pit are
highlighted in this plan-view image.



Plastic relaxation in nanoislands

Self-assembled nanoislands are three dimensional crystals with nanometric size that are
in principle suitable for lots of applications within semiconductor technology. Due to
their reduced size and their 0-dimensionality, nanoislands present new properties that
cannot be achieved in higher dimensionality systems, that can be exploited, for example,
in quantum-dot lasers , IR photo-detectors [172] and transistors [173]. The electronic
and optical properties of nanoislands are strongly dependent on the morphology (volume,
shape, composition). In the past years, a lot of effort has been devoted to govern the island
growth process in order to tailor such properties. Moreover, crystal defects and in par-
ticular dislocations, have been shown to affect the opto-electronic response of nanoislands
deteriorating the performances of potential applications. Hence, it is fundamental to deter-
mine the coherency limits in such nanostructures and establish how dislocations influence
island growth and morphology. Among the different semiconductor heteoepitaxial system,
Ge on Si(001) is considered a prototypical system to understand the Stranki-Krastanow
growth and the strain relaxation mechanisms, which characterize also more complex sys-
tems, such as GaAs/Si(001) or other mismatched ITI-V or II-VI semiconductors. Shedding
light on SiGe island plasticity, not only would allow to control island morphology and es-
tablish the coherency limits for growing such structures, but the modelling and the key
mechanisms predicted for dislocation formation in the SiGe islands could probably be ex-
tended to other semiconductor systems, at least to diamond structure materials, allowing
for coherent island growth that can be exploited as buffer layers for many applications.

In this Chapter, we first investigate plastic relaxation in SiGe islands grown on flat
Si(001) substrates, addressing the self-ordering of misfit dislocations in such epitaxial
nanoislands. The understanding of the organization of dislocations in an ordered pat-
tern can be useful for dislocation engineering in other epitaxial structures. Moreover, a
study on plastic relaxation in SiGe islands grown on pit-patterned Si(001) substrates is
presented, aimed to establish the coherency limits of islands nucleated in pits and to de-
velop a new strategy to delay the plastic relaxation onset in epitaxial islands by substrate

nanopatterning.
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FIGURE 5.1: TEM image of a Ge island (dislocated dome) grown by UHV-CVD on Si(001) in situ
in the TEM. This image has been obtained by superimposition of two dark field (g, 3g) weak bean
images with g = (220) and g = (220). [84] Right: Approximation of the dislocation line formed
by the intersection of four 60°dislocation segments as a circular path.

5.1 Dislocations in SiGe nanoislands

The nucleation of misfit dislocations in heteroepitaxial 3D islands present some differ-
ences with respect to the case of continuous flat films. First, the shear stress (and conse-
quently the resolved shear stress relevant for dislocation nucleation) at the base perimeter
of Stranki-Krastanow (SK) SiGe islands, increases with island aspect ratio AR (height to
square root of the base ratio) [80]. Thus, in "mature” islands (domes, barns), the basal
borders are natural stress concentrations and are the expected dislocation sources. Second,
because of the small island size, dislocations need to glide very short distances (10-100
nm) to deposit a misfit segment at the interface and reach their final configuration. The
combination of reduced size of the islands (down to some tens nanometers in lateral size),
and the significant variations in misfit strain (induced by the multifaceted free surface),
increasing from top centre to the island edges [80, 174], in turn, generates the ideal site
for homogeneous nucleation of dislocations [39]. Hence, whenever the island dimensions
are sufficiently large to reach a critical elastic budget, dislocation nucleation should occur.
In the CoSiz/Si(111) system, it has been shown, by transmission electron microscopy
(TEM) in situ investigations and dislocation dynamics simulations [125], that misfit dis-
location segments effectively nucleate at the base borders of epitaxial CoSiy islands, and
subsequently move by glide on the (111) plane towards the island base centre. In the case
of Ge (or SiGe) on Si (001), no dislocation gliding is possible along the island base plane.
Still an ordered pattern of misfit dislocation lines is observed, as shown by the TEM plan
view image in Fig. 5.1. This pattern should be produced by the periodic incorporation of
60°dislocation segments at the island edges, as observed in Ref. [61, 78, 175]. The dislo-
cation nucleation is accompanied by sudden lateral expansions of the island, at expense
of the island thickness, and followed by a slow recovery of the original shape (and elastic
budget), during accumulation of the deposited material at the top. This phenomenon
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FIGURE 5.2: (a) He-ion image of the Si surface obtained after removal of a dislocated SiGe island
grown at 740 °C showing a characteristic ring structure. (b) 3D view of an AFM image of a
similar ring structure (the depth of the trench around the tree-ring is about 16 nm). (c), (d)
Statistical analysis of the ring width as a function of number of rings obtained from AFM and
He-ion microscopy images of several islands growth at 620 °C (c) and 740 °C (d). The average Ge
content was estimated to be X=0.36 at T=740 °C and X=0.48 at T=620 °C, using AFM. [176]

was named cyclic growth[61] and it is expected at the usual growth temperatures (T, >
600°C) [175].

In the following, we explain the intriguing ordering of misfit dislocations, as obtained
with no gliding rearrangements, by cyclic occurrence of the thermodynamic critical con-
ditions for plastic events. Quantitative predictions by a simple analytical model, which
includes the dependence on island shape and composition in the generation of misfit dis-
locations, matched very well experimental measurements.

5.2 Self-ordering of misfit dislocations

5.2.1 Dislocation spacing in nanoislands

Ordering of misfit dislocation segments in a regular pattern at the base of SiGe epitaxial
islands on Si(001) has been also indicated by the regular spacing of the footprint carved
in the Si substrate by the plastic events, observed by atomic force microscopy (AFM)
[83]. A very interesting result is found by analyzing these structures escaveted in the
substrate during islands growth. In Fig. 5.2, we show the tree-ring structures imaged
by AFM (a) and by helium-ion microscopy (HeIM) (b), obtained after molecular bean
epitaxy (MBE) deposition of Ge/Si(001) and subsequent selective etching experiments
that selectively remove Si;_ xGex over Si. Details on the growth and etching experiments
leading to the results plotted in Fig. 5.2 can be found in Ref. [176]. As described
in Section 2.5.2, the surface morphology, imaged after the selective etching, reveals the
footprints left on the surface by large dislocated islands, consisting in a central Si plateau
surrounded by a staircase of several nearly concentric rings. These are produced during
the island cylic growth. In fact, as the deposition proceeds, islands accumulate material
on top, increasing their AR and meanwhile carve a progressively deeper trench in the
Si substrate at the perimeter of the island base. After selective SiGe etching, this stage
corresponds to a short steep profile in the AFM scan of the Si substrate. As the critical
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conditions for one dislocation nucleation are met, sudden lateral expansion of the island
has been observed [78], providing a full coverage of the trench bottom line. This stage
corresponds to a small plateau in the etched samples. Periodic repetition of these two
stages gives rise to a clear stepped profile in the Si substrate, which appears in form of
a tree-ring structures of concentric steps in the surface morphology [83], as shown in Fig.
5.2. From the microscopy images, the distances between subsequent rings (ring width) has
been measured, starting from the central plateau and moving towards the periphery of
the islands along two orthogonal directions [176]. Fig. 5.2(c) and (d) display the average
ring width measured over many islands for two different growth temperatures. The AFM
results are shown in black circles, while the values obtained by HelM are shown in red
squares. The measured ring width shows a slight decrease from the island centre to the
island borders, in the range of 20 to 10 nm for the sample grown at 620°C and between
~30 and ~20 nm for the sample grown at 740°C, converging to an almost constant value, 15
and 22 nm, respectively, for the two samples. The average island composition determined
using AFM is X ~0.36 and X ~0.48 at 740°C and 620°C, respectively.

5.2.2 Multiple dislocation modelling

In order to interpret the experimental findings, we propose an analytical modelling of
multiply dislocated islands, similar to the one commonly used in the calculation of ther-
modynamic critical thickness for flat films [26], and recently adopted in the calculation of
the critical dimension for the first dislocation nucleation in SiGe islands on Si(001)[82], in
InGaAs islands on GaAs(001)[81] and nanowires[177]. This simple approach fully captures
the essential energetics of the system, just assuming circular paths (representing the misfit
dislocation lines forming concentric polygons at the interface), which are nucleated right
at the perimeter of the growing island. Obviously, the real dislocation microstructure is
more complex: 60°misfit segments along the [110] and the [110] direction nucleated at the
different island edges and their threading arms produce the concentric dislocation lines, as
shown in Fig. 5.1. However, our geometrical simplification is able to capture the average
dislocation length and density, which is the essential feature in an energetic analysis. In
Fig. 5.1, we show the expected dislocation lines forming the pattern (color full lines) and
the circular path (dashed line) used to approximate such a dislocation geometry.

At the typical deposition temperatures of Ge on Si(001), islands with a different Ge con-
centration are found because of the alloying taking place during the epitaxial growth
[65, 73]. This issue will be addressed by considering Si;_ x Gex islands with a different Ge
concentration compatible with the typical alloying observed (X=0.3-0.6) in the relevant
temperature range for deposition of Ge on Si(001) (T;=550-750 °C).

Analytical model for misfit dislocation spacing in nanoislands

The model we propose simply consists in the calculation of the critical condition for

introducing a new misfit dislocation line, in a Si;_ xGex island. This condition is obtained
(n)

when the energy cost for creating a new n-th dislocation E,

matches the energy gain
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FIGURE 5.3: (a) Schematic representation of a barn island. The barn shape is built using experi-
mentally reported facets [58, 59] ({15 3 23}, {1 1 3}, {1 0 5} for domes; {1 1 1}, {4 20 23}, {3 15
23}, {11 3} {1 0 5}, for barns) arranged to yield the typical experimental average aspect ratio,
resulting in close similarities with the observed shapes. In the analytical model used here, islands
are approximated by a cylinder with the same base area and volume of a realistically shaped island
(a), as shown in (b).

Eéggp due to the strain relaxation induced by the dislocation itself:
Eégs)t + EQZZYL =0. (5.1)

The estimation of the critical island dimension for the nucleation of the n-th dislocation
is then obtained by calculating the two energy contributions as a function of the island
volume V and finding the value of V' for which Eq. 5.1 is satisfied. In the following we
: (n)
illustrate how E;;
Here, we considered a Si;_ xGex island with an aspect ratio AR=0.3 and barn shape, as

. and Eggs)t have been evaluated.
shown in Fig. 5.3, but the model can be more generally applied to any island shape by
suitably changing the geometrical parameters.

An analytical expression for the misfit strain energy stored in the island and in the sub-
strate can be formulated in analogy to the case of a continuous film [81, 82]:

W, = 1 H F(AR,X)(&M2 + 2vEppEyy + Eyyz)V , (5.2)

— UV

where p1 is the shear modulus, v is the Poisson ratio, €;, and €,, are the in-plane strain
tensor components, V' is the island volume, and F(AR, X) is the reduction factor of the
elastic energy stored in the three-dimensional island and substrate, as compared to the
flat film case. In particular, F/(AR, X) is given by the ratio between the elastic energy
stored in island and substrate divided by the island volume and the elastic energy density
in a biaxially strained two-dimensional layer. F(AR, X) depends on the island shape and
decreases significantly when AR increases. Here F(AR, X') was numerically evaluated for a
barn shaped island with an aspect ratio AR=0.3 (Fig. 5.3) and for different compositions
by FEM. Assuming the elastic constants of a Si-Ge alloy can be linearly interpolated
between the bulk values of pure Ge and Si, we found that F(AR,X) depends on the
Ge content X by F(AR,X) = a(AR) + b(AR)X. Notice that in this analytical model
islands are approximated by a cylinder with equal base area and volume[82]. The realistic
geometry shown in Fig. 5.3 was used to define the relaxation function F(AR, X) and the
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geometrical ratio V/r3, where V and r are the island volume and base radius, respectively.
The values of ¢ = 0.32 and b = 0.030 were evaluated for islands with barn shape as drawn
in Fig. 5.3.

The decrease in energy (E(n)

p aim) due to the misfit strain reduction provided by a new n-th
dislocation is given by

gain

=W, — Wn_1, (5.3)

where W), is the elastic energy stored in an island when n dislocations are present. W,, can
be calculated by evaluating the misfit strain reduction due to the n dislocations. Here, we
considered the = and y axis parallel to the [110] and the [110] directions, respectively. For
a coherent island, W,, = Wy is obtained by substituting ;, = ¢,y = f in Eq. 5.2, being f
the lattice misfit strain between the island and the substrate. For a dislocated island, W,
is found by substituting in Eq. 5.2 the in-plane strain components €,, = €,y = f —caisi(n),
corresponding to the lattice misfit f, as reduced by the presence of the n circular dislocation
lines by £4;5(n). Due to the decomposition of the circular shape into [110] and [110] misfit
segments, each virtual curved portion can be interpreted as relieving b.sf/2 on the average,
along the two orthogonal strain components, multiplied by an effective linear density of

dislocations (Z?:l ﬂ’l\ég), where \; = 27w R; is the length of each dislocation nucleated at
a different island base radius R;. This simply means that, on the average, half dislocation
length is parallel to the [110] direction and reduces the ¢, strain tensor component, while
the remaining half dislocation length is parallel to the [110] direction and relaxes the &,
component. R is the actual island base radius, b.fs = b/2 is the effective Burgers vector
for a 60°misfit dislocation with Burgers vector b = asiceV2 /2 and J\; is the length of each

dislocation. Thus, the island misfit in presence of n circular dislocations is reduced by

beff o Ai
e 1
edist(n) = 5 ;:1 R

(5.4)

A second contribution to the total energy is the cost related to the lattice distortion
provided by the dislocation itself. Es(gl)f can be analytically calculated as for the case of a
flat film, by considering again that each segment of the circular path is decomposed into
two straight components, along the x and the y directions. In this case:

(5.5)

sin2 I5} aReyi—off
1
1-— V> ©8 b

2
(n) _ y Mb 2
EselfiAiE (COS B"_

where (3 is the constant angle between each dislocation component and the Burgers vector
b, « is the parameter taking into account the atomistic core energy (usually set to 2.7 for
Si and Ge materials [26]). Reyi—ofs is the cut-off radius of the dislocation strain field, i.e.
the average distance of the dislocation line from the free surface, taken as the height of a
cylinder equal in volume and in base area to the island [82], as shown in Fig. 5.3(b), so
that Rcutfoff = V/(?TR2)

Except for the first dislocation, an additional increase in energy due to dislocation for-
mation is also given by the interaction energy between the n-th dislocation and the other
(n — 1) dislocations already present in the island. Here it is taken as the sum of the well
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established pair-interaction energies between straight dislocation segments located near a
free surface [178]:

n—1
Ejy) = > — 2= E1(dny) (5.6)
=1
where
pb? sin? Bsin? ¢ 9 4a?(12a2 + 1)
Er(di;) = In4 1l——————-
I( J) 47T(nu) nda” + (4@2 + 1)2
2 (102 B i 2 2( 42
pb* sin® B sin® ¢ Inda? 41+ 4a”(4a” + 3)
(1 —v) (4a? +1)2
ub? cos? B 9
——— (In4 1 .
47T(1_V)(na+ ) (5.7)

Here d;; is the separation distance between dislocations, a = Reyt—ofy /di; and ¢ is the
angle between the glide plane of either the two components of the misfit segment and the
vertical [001] direction. Therefore, by summing the last two contributions into one “energy
cost” term, one obtains:

+E® (5.8)

cost *

cost T self

It should be noted that the change in the average Ge composition X of the island
affects both the misfit f and the elastic constants entering the two terms of Eq. 5.1. Since
we assumed that all the dislocation circles nucleate exactly at the island edge, the ring
spacing (and the dislocation spacing) as a function of the number of dislocations in the
island is obtained directly by subtracting subsequent critical base radii R, as obtained by
solving the critical condition in Eq. 5.2. The dislocation spacing in a Si;_ xGey island is
then evaluated by the difference in the radii of the circular paths adopted to describe the
dislocations.

Equilibrium position of misfit dislocations in nanoislands

In Fig. 5.4 we report how the critical condition (Eq. 5.1) is periodically satisfied by
increasing the dislocation number and island base radius for a barn with X=0.36 (black
arrows), corresponding to the average value experimentally determined for samples grown
at Ty=T740 °C. From the left to the right in Fig. 5.4, the solid blue curves give the Eg4r,
terms calculated increasing the number of dislocations from 1 to 5 as a function of the
island radius. Similarly, the dashed red curves give the E.,s terms obtained by varying
the dislocation number n from 2 to 5 (from left to right), while the dotted green line
represents the Fger term. This curve increases monotonically because Eye i, (see Eq.
5.5), depends just on the last length of the dislocations and on the cut-off radius Reut-
off, which in our model are both directly proportional to the island radius R. The first
dislocation is nucleated when F; (dotted line) is equal to Eyqi, (first solid line left), while
all the others are nucleated when E..s (dashed lines), including both the self energy and
the repulsive term, crosses Eyqin (solid lines). We note that the radial spacing between
dislocations rapidly decreases to a nearly constant value, and that the repulsive term
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is the only energy cost term. Subsequent critical radii are also influenced by dislocation-dislocation
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total energy cost E o5t (dashed, red curve), i.e. the sum of Esorp and Eipy. (b) Distance between
dislocations (ring width) versus the number of rings, with (full boxes, blue) and without (full
circles, red) including the FE;,: term. The ring width saturation value at T=740 °C is reported
using a dashed line within a shaded rectangle representing error bars.
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contributes significantly to the spacing. These issues are better seen in Fig. 5.4(b) and
Fig. 5.5, where we report the ring width between two plastic events vs. the increasing
number of rings for the same system. In Fig. 5.4(b), the ring width was calculated with
(solid line with boxes) and without (dashed line with circles) the interaction term. We
see that the solid curve correctly reproduces the experimental trend observed at 740 °C,
as reported in Fig. 5.2(d), and converges to the ring width value of 22 nm, which is
the experimental indication. The dashed curve obtained neglecting the repulsive term is
shifted by a nearly constant value far below this experimental data, outside the relative
error bar (grey band in Fig. 5.5(b)). The results in Fig. 5.5 show that the ring width
initially decreases with the dislocation number, but after the nucleation of the very first
dislocations the spacing between two subsequent circles becomes almost constant. The
shape and the size of the island clearly affect the early plastic events, dislocations interact
with free surfaces and with each other in small volumes, so the spacing between circles is
larger than the value provided by the theory for the continuous film case[26]. Increasing
the island radius the size effect is lost and the plastic relaxation events occur periodically.
With or without the dislocation interaction, the calculation gives qualitatively the same
behavior, but quantitatively different results, as highlighted in Fig. 5.4(b). Hence the
dislocation interaction cannot be neglected in the thermodynamic balance, if we want an
accurate prediction of the critical island radii and dislocation spacing. As one should
expect, increasing the Ge content inside the island the elastic energy stored in the system
is also increased and the dislocation spacing becomes smaller with the increasing misfit.
In fact, by tuning the island Ge content x from 0.3 to 0.5, as reported in Fig. 5.5, a
downward shift and flattening of the ring width curve is obtained, in agreement with the
experimental trend observed by decreasing the growth temperature, outlined in Fig 5.2.
In particular, we observe that at any Ge concentration the ring width quickly converges
to a nearly constant value, which is lower for higher island Ge content. Together with the
theoretical calculations at different island Ge concentrations we plotted in Fig. 5.5 the
saturation ring width values (dashed lines) for the two growth temperature examined in
Ref. [176] and shown in Fig. 5.2(c,d). Comparing the experimental ring width values with
the theoretical curves, we see a good agreement between the ring width measured at 740
°C and 620 °C and the curve obtained for X=0.36 and X=0.48, respectively. Recently, the
in-plane distance between two interfacial 60°dislocations is epitaxial Si;_ x Gex islands has
been measured in Ref. [179] by a in situ non-destructive method, based on x-ray diffuse
scattering close to forbidden reflections. In this work, a decrease of the average in-plane
distance between interfacial dislocations with increasing Ge volume deposited is observed,
in good agreement with the values predicted by our model.

In conclusion, we have shown that the regular spacing of the misfit dislocation segments
arranged in concentric polygons at the base of heteroepitaxial GeSi islands on Si(001)
is a feature determined by periodically matching the thermodynamic critical conditions
for plastic events onset. Due to the absence of glide rearrangement in the island basal
plane it was an interesting issue to understand if and how the misfit dislocation repulsion
acts in providing such regular spacing, especially because of the high dislocation density
obtained in the limited island volume. By a quantitative agreement between experimental
measurement of plastic event spacing and predictions of a very simple, fully analytical
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model we have shown that the dislocation repulsion is important in determining the ring
spacing, but the repulsion is not essential to generate the periodic pattern.

5.3 Nanoislands on pit patterned substrates

Deposition of Ge on Si(001) substrates leads to the formation of SK islands, as we have
seen in Section 2.5. At low Ge coverage islands are small and coherent while proceeding
with deposition, larger dislocated islands appear [61, 75]. Typically, islands nucleate at
random sites on the exposed surface and a bimodal distribution of island sizes, due to the
coexistence of shallow pyramids and steeper domes, is observed [180]. In view of exploiting
islands for any application (e.g. in electronic devices as metal oxide field effect transistors
MOSFETSs [181]), two main issues must be tackled. First, islands should be homogeneous
in size, shape and chemical composition, and must be laterally ordered. Second, plastic
relaxation must be avoided. Growth on suitably-patterned Si(001) substrates allows to
solve the first problem. As shown in Ref. [95], Ge deposition on substrates where an ordered
array of pits is created by nano-lithography leads to extremely ordered islands positioning
within the pits. Moreover, the island distribution is strikingly uniform in shape and size
and islands in pits evolve in a more synchronized fashion [182]. If controlling nucleation
inspired the idea of patterning substrates, a second advantage came out as an unexpected
bonus. In Ref. [93] experiments showed that coherent islands in pits were still present
for typical volumes where, instead, plastic relaxation was observed in islands grown on
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planar Si(001) substrate. Preliminary calculations suggested that this observation could
be linked to the higher degree of elastic relaxation due to the partially filled pit with the
island ontop [183]. A direct proof of such extra-relaxation was recently given exploiting
X-rays measurements [97]. However, no direct attempt of predicting the critical volume
V. for misfit-dislocation insertion in islands was provided.

In this work, we theoretically evaluate the critical volume for dislocation formation
in SiGe islands nucleated in pits and we demonstrate that there is a delay in the plastic
relaxation onset in epitaxial islands grown on nanopatterned substrates. Our predictions
clarify the causes for the plastic relation delay in islands nucleated in pits and are suc-
cessfully compared with a set of measurements of V, in islands grown on a pit patterned
Si(001) substrate after the deposition of Ge by MBE.

5.4 Plastic relaxation in nanoislands on pit patterned sub-
strates

The plastic relaxation onset in epitaxial islands grown on flat Si(001) substrate have been
investigated by several authors, considering simplified or realistic island shape for different
semiconductor materials[75, 80-82]. However, we did not found any previous attempt to
predict the critical volumes for dislocation formation in islands grown on pit-patterned
substrates. This is of fundamental importance in order to obtain coherent islands at reg-
ularly spaced positions, that can be used as buffer layers for devices. Here we considered
dislocations in the primary < 110 >{111} slip systems, following the experimental evi-
dences that this kind of defects (leading to the deposition of 60°misfit segments at the
interface) are the most commonly observed, at least in the high T, range. In this work,
we investigate the critical condition for the introduction of the first dislocation in epitaxial
islands nucleated in pits. To this aim, we adopted a more accurate method with respect
to the simple analytical model used in Section 5.2.2 to explain the ordering of multiple
dislocations in the Ge/Si(001) system. In fact, we believe that dislocation formation in
islands nucleated in pits depends strongly on the heterogeneous epitaxial stress field pro-
duces by both the material filling the pit and the islands on top of it. For this reason, the
onset of plastic relaxation, defined by Eq. 5.2, was found by calculating the elastic energy
in coherent and dislocated islands by FEM, which is known to give accurate results for the
elastic energy produced by complex 3D structures, as nanoislands, and by the dislocations
therein. In the following, we first describe a set of experiments relevant for validating the
model and for the discussion of the results obtained. Then we present our theoretical pre-
dictions for dislocation formation in islands grown on pit patterned substrates and finally
we compared them with the experimental results performed at the University of Linz and
reported in Ref. [184].

5.4.1 Critical volume measurement in nanoislands

Depositing Ge on Si(001) substrates patterned with pits, defined as described in [92, 184],
on the pit-patterned fields, islands eventually nucleate in the middle of the pits (see e.g.
Fig. 5.6(b)). The morphological evolution of SiGe islands grown on pit-patterned Si(001)
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substrates and nucleated in pits is similar to the one observed on the same unpatterned
flat substrates [94]. Islands in pits evolve augmenting their AR with their increasing
volume in order to enhance the elastic strain relaxation. This trend changes when plastic
relaxation occurs: islands continue to grow with no significant change in their AR and
reduce their elastic energy by progressively nucleating new dislocations. In Fig. 5.6(a), it
is shown a typical plot of the island AR (here calculated as the height to square root of
the base ratio) versus the island volume (V) for islands grown on a Si(001) pit patterned
substrate at 690°C and nucleated in the pits [184]. Two groups of islands can be identified
in this plot. Coherent ones at low V (here reported by black downward triangles) and
a ”tail” of red upward triangles which represents the dislocated islands that have similar
AR but significantly larger V. There exists a volumetric gap between these two groups of
islands where only few islands are statistically found. Since islands quickly increase their
volume as soon as a dislocation nucleate into the island, and further cyclic growth occurs
for additional dislocations[61], the lower V of the volumetric gap can be taken as V.. A
representative AFM image of an island grown in the middle of a shallow pit is shown in
Fig. 5.6(b). Such an island has an AR in the range ~ 0.22-0.26 and exposes {105} and
{113} facets typical of dome islands. The pit geometry can be described as a downward
pyramid with {105} sidewalls, as can be seen in Fig. 5.6(b) or in Ref. [93]. In Fig. 5.6(c)
we reproduced the experimental pit and island shape by using geometrical objects with
well defined facets closely representing the observed morphology.

5.4.2 Modelling plastic relaxation in islands on pits

In order to model the onset of plastic relaxation for the typical dome-shaped islands grown
in the pits, we considered a {105} pit (closely representing the experimental shape, see
Fig. 5.6(b) half filled with a SiGe alloy, i.e. a downward {105} pyramid (DP) with a
(001) base, hosting a dome island on top. This geometry is sketched in Fig. 5.6(c), and
directly compared with the experimental AFM micrograph of a typical dome presented in
Fig. 5.6(b).

We considered dislocations in the primary {111}(110) slip systems, the most favorable
one in the Si/Ge system [3], and the most commonly observed, when SiGe islands are
grown at sufficiently high temperatures [78]. In particular, we selected one of such slip
systems, characterized by {111} glide plane and b = ag;g[011]v/2/2 Burgers vector, with
asiGe = aGgeTp +asi(1 —xp), being ag. and ag; the Ge and Si lattice parameters and xp
the dome island Ge composition. When such a defect nucleates in SiGe islands grown on
flat Si(001) substrates, a 60° misfit segment is deposited at the (001) interface, along the
[110] or the [110] direction. Its equilibrium position lies between the center and the edge of
the island [75, 185], as indicated by the dashed red line in Fig. 5.6(c) (referred as line L; in
the following). Actually, it would be the expected position also when the DP composition
is very rich in Si. When the island and the DP have the same Ge content, no real interface
exists between these two domains. Thus, a misfit dislocation with {111}(110) slip system
is expected to eventually glide towards the DP/Si interface, depositing two joint misfit
segments (threading arms are expected to be short for the present geometry, and will be
neglected) at the intersection between the glide plane and the {105} DP facets.
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Selective etching experiments performed on SiGe islands grown at T=720°C, on analogous
pit-patterned substrates revealed a DP Ge content (~ 10%) sensibly lower than the typical
ones for the islands presented in this work (30-50%) [186]. Similar results confirming a
lower DP Ge content (approximately 10%) with respect to the island one were presented
in Ref. [184], where the experiments reported in the Section 5.4.1 are described in detail.
Also the DP appears to be rather sharply separated from the dome shaped island on top.

To model plasticity in nanoislands, we followed the approach described in Section 3.4.2,
where the combined effect of elastic and plastic relaxation is tackled using elasticity theory
suitably solved by Finite Element Methods. In particular, the critical volume for plastic
relaxation was evaluated as the minimum volume at which the energy of the system with
a single dislocation was equal to the coherent one, for a suitable position of the dislocation
segment as chosen among a grid of points built at both of the interfaces [82]. We notice
that this condition is equivalent to the one expressed in Eq. 5.2, i.e. the energy cost
required to insert the first dislocation £ (l)t is counterbalanced by the energy gain in terms

Ccos

. : ) .
of strain relaxation F gain

P B, =0 e B = B + 50, + 6]

gain gain

= Euon (5.9)

where F.,, and thl-iz are the total elastic energy of an epitaxial island before and after the
formation of one dislocation. In particular, assuming that the dislocation can nucleate at
the surface and move in the selected glide plane to reached the most favorable position
(one of the two interfaces), the dislocation line configurations we considered, are found
at the intersection between the dislocation glide plane and the two interfaces, as shown
in Fig. 5.6(c). The elastic energy of the dislocated island has been calculated in these
configurations, moving the dislocation line at both the dome/DP and the DP /substrate

interfaces.

5.4.3 Pit composition dependent plastic relaxation

Let us now show how zpp affects the favored dislocation position and, in turn, the critical
volume for plastic relaxation onset. The critical volumes obtained for a Ge content xp=0.3
in the dome are shown in Fig. 5.7(a) where both V. and the optimal dislocation position
are reported. For xpp=0 we obviously find V. >~ V}, the critical volume for a dome on flat
Si(001), the dislocation position being analogous. By slightly augmenting the Ge content
in the DP, V. becomes increasingly larger than V. This is because the dislocation still
remains at the dome (001) interface, but the island is less strained than on flat Si as due
to the extra-relaxation effect provided by DP, as reported in Ref. [93] and further clarified
by the calculations reported in Fig. 5.8. By increasing the Ge content above zpp ~ 0.11,
the dislocation position changes in order to relax also the DP. While it remains true that
V. > Vg, plasticity delay with respect to the flat case is reduced, since the total stressor
volume is augmented. Upon increasing xpp (beyond ~ 0.28), a third change in the optimal
dislocation position is seen. The main stressor is now the DP, so that the dislocation
position is the one maximizing the relaxation inside the DP. This is better understood by
looking at Fig. 5.7(b-d), where the hydrostatic stress is reported for the case zpp=0.2.
By looking at the topmost island region, it is clear that the island strongly benefits by
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FIGURE 5.8: Elastic energy density in Si;—, ,Ge,, islands on pit-patterned Si(001) substrates as
a function of the DP Ge content xpp. The curves are calculated by considering dome islands with
an avarage Ge content values xp of 0.3, 0.4 and 0.5 respectively.

the dislocation presence when the latter is positioned as in Fig. 5.7(b) (equivalent to the
dashed red line in Fig. 5.6(c), L;). However, this requires further compressing the pit. At
the other extreme, in the configuration of Fig. 5.7(d) (dislocation line Ls in Fig. 5.6(c)),
the DP relaxation is enhanced, at the expense of the island one. The best compromise for
the analyzed Ge content is given by the configuration of Fig. 5.7(c) (dislocation line Ly in
Fig. 5.6(c)).

We have demonstrated that the interaction between the dislocation and the coherent
stress field of the system is important in order to explain the equilibrium position for
the dislocation in the system and the delay of plastic relaxation in islands grown on pit
patterned substrates. In the following, we show how xpp affects the elastic relaxation of
the dome island and, as a consequence, the V. values obtained. In Fig. 5.8, it is plotted
the elastic energy density per unit of Ge volume, as a function of the zpp. The elastic
energy density per unit of Ge volume pge, which is the total elastic energy of the system
divided by the total Ge volume, is given by:

Ep+ Epp+ AEgy [y dE
VGe VGe

PGe = (5.10)
Here Ep and Epp are the elastic energy stored in the island and in the pit, AFE,,; is the
elastic energy introduced in the substrate due to the presence of both island and pit, Vg, is
total germanium volume and V' is the total volume (dome, DP and substrate). As we can
see from the curve in Fig. 5.8, starting from xpp=0 (DP filled with pure Si), the elastic
energy density pg. initially decreases with the increasing Ge content inside the {105} pit.
The curve has a minimum when the SiGe alloy in the pit has a Ge content equal to 14%.
Then the energy density increases, reaching the same value of pg. obtained for an island
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grown on a flat substrate, when the pit Ge content is ~ 31%. Thus, whenever the pit Ge
content is lower than the island one, the elastic energy density is reduced with respect
to the flat case. This can be explained by the fact that, even if we augment the stressor
volume in the system, the presence of a small Ge volume distributed in the DP allows
for a large strain relaxation of the Ge rich island on top of the DP. The same trend is
obtained when islands with a different avagare Ge content xp are considered. The total
elastic energy of islands on pits pge initially decreases with the increasing DP Ge content.
and a minimum is found approximately when zpp ~ zp/2. Notice that the minimum
in the elastic energy density curve (zpp ~ 14%) in Fig. 5.8 is closed to the maximum
in the V. curve (zpp ~ 11%) in Fig. 5.7(a). Therefore, the elastic relaxation due to the
difference in the Ge content between island and DP has a significant effect on the critical
island size for the introduction of the first dislocation. This behavior is quite general and
can be expected in the whole experimental island AR range (0.2-0.35), see Fig. 5.6(a). To
demonstrate that the influence of xpp on the critical volume V. on xpp does not depend
on the details of the island geometry (in the relevant AR range 0.2-0.35) considered, we
repeated the calculations of the critical volumes V. and of the elastic energy density pge,
by considering a barn-shaped island (AR=0.3) with barn Ge content xp=0.3, as shown
in Fig. 5.3(a). In Fig. 5.9 and in Fig. 5.10, it is plotted V. and pg. as a function of the
DP Ge content zpp for a barn island. The trends observed are qualitatively the same as
the ones predicted for dome-shaped islands. We notice that larger values of V. are found
considering barns, since the barn geometry allows for a better strain relaxation than the
dome one.
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5.4.4 Comparison between prediction and experiments

While the above analysis is particularly useful to understand the competition between
dome and DP relaxation, in order to compare the predicted V. values with experiments,
as based on selective-etching measurements (see above and Ref. [186]), only results
for low zpp Ge content are relevant. We therefore repeated the calculation by setting
xpp=0.1 and varying xp in the experimentally accessible range. Calculations repeated
for zpp=0.15 yielded analogous results, as shown in Fig. 5.11. While in the first case
(xpp=0.10) the dislocation equilibrium position is L; in almost the whole examined dome
Ge content range (xp 2> 0.3), in the latter one, it correspond to line L; only for xp = 0.45.
For the other pairs of xp and xpp values reported in Fig. 5.11, we found the dislocation
line to assume the geometry denominated Lo in its energy minimum. In the figure, filled
circles (squares) represent experimental values for V, on flat (pit-patterned) Si(001) sub-
strates. The delay in plastic relaxation onset by patterning is quite evident in the whole
Tee range also compared to a Ge content variation. We notice that V. values in Fig. 5.11
refer to the dome island only. By considering the whole stressor volume (island+DP),
comparison with the flat case would give an even larger delay. Theoretical results, re-
ported in Fig. 5.11, correctly capture experimental trends, both in terms of larger V. on
patterned substrates and of dependence on the Ge content. For low zp (high Tge) the
model quantitatively reproduces experimental values. A tendency towards underestimat-
ing V. for high xp values is however found. This could be attributed to the simplifying
assumption of a uniform SiGe distribution in the islands (resulting in an overestimate of
the elastic budget, expected to be more critical at low temperatures [76]), and to kinetic
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limitations acting at lower temperatures, delaying the plasticity onset beyond the here-
explored thermodynamic limit. Such effects seem to influence in the same way results for
patterned and flat Si(001), leading in both cases to theoretical volumes ~3 times smaller
than experimental ones.

In conclusion we provide theoretical description of the role played by pit-patterning
substrates in delaying plasticity onset in SiGe islands grown on Si(001). The critical
volume V. for islands grown in pits has been determined for the relevant island composition
range and successfully compared to experiments. As attention was here focused on shallow
pits, further research on optimal pit shapes/inclination could lead to growing even larger,
fully coherent islands of potential interest as defect-free virtual substrates.






S1Ge Nanowires

Semiconductor nanowires research is a flourishing field because of the unique properties
of the nanowires, as their one-dimensional structure, their large surface to volume ratio,
and the possibility of building advanced bottom-up architectures that are suitable for
opto-electronic devices. Several research groups have demonstrated that nanowires can be
exploited in different fields, as electronics, photonics and chemical sensors, allowing in the
future to overcome the limits of the present technology. In the semiconductor research field,
a lot of effort has been made in order to control the strain state in different heterostructures
and to tailor the energy band-edge properties, as enhanced charge carrier transport [187,
188] and photoemission properties [189]. In growing such strained heterostructures, as two-
dimensional films or islands, the plastic relaxation process is often an unavoidable strain-
relief mechanism, as we have seen throughout the previous chapters. Nanowires represent
a novel flexible geometry that can be exploited to obtained defect-free heterostructures
with the desired properties. Obviously, dislocation formation remains a competitive strain
relaxation mechanism also in these structures. For this reason, it is crucial to predict
the critical condition for dislocation nucleation and to elucidate the mechanisms of their
formation.

The work presented in this chapter is focused on a specific nanowire geometry, which
is the core-shell heterostructure. In particular, we studied the Ge/Si material system.
While there are several theoretical predictions for the coherency limit of both axial and
radial nanowires [177, 190-196], the mechanisms for the nucleation and propagation of
dislocations in core-shell nanowires are not yet clear. The strain relaxation in coherent and
plastically relaxed core-shell Si/Ge nanowires has been analyzed and a possible mechanism
for dislocation formation in such heterostructures has been proposed. We believe that most
of the results obtained considering this system can be relevant also for other materials with
zincblende structure, as III-V and II-VI semiconductors.

6.1 Core-shell Ge-Si nanowires

Core-shell nanowires of different material systems are currently object of interest [197—
201]. Among them, the Ge/Si system is one of the most interesting from technological
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plane. The three possible Burgers vector lying in the (111) plane are indicated by the the arrows.

Here Ge(core)/Si(shell) NWs
grown on top of Si(111) substrates are investigated. Since the Ge/Si wires preferentially

and basic band gap engineering perspectives [202-204].

grow along the (111) directions, this substrate choice allows the alignment of the NWs
perpendicularly to the substrate surface. The morphology of (111)-oriented Si/Ge NWs is
not well established. Some groups reported cylindrical NWs, with no discernible faceting
observed in cross-sectional TEM imaging[205], while others observed NWs with six {112}
[206] or {110} [207] side facets. It is worth to mention that for the Si/Ge system there are
no stable facets parallel to the (111) growth direction, and surface roughness or sawtooth
faceting [208] is typically observed on the NWs sidewalls. In this work we considered a
simplified geometry of the NWs, with well defined sidewalls, as sketched in Fig. 6.1(a-c).
In particular, we considered NWs aligned to the (111) direction and with hexagonal base in
the two observed configurations, characterized by {110} and {112} side facets respectively.
As can be seen in Fig. 6.1(b,c), these two NW geometries differ only in the orientation of
the six sidewalls; the first one can be obtained by rotating the NW around its axis by 90°
and vice versa.

6.2 Elastic relaxation in core-shell nanowires

Dislocations originate in semiconductor heterostructures because of the difference in the
lattice parameter between two different materials. In order to understand the plastic re-
laxation processes in Ge/Si core-shell NWs it is important to quantify the strain state in
the examined structures. In the previous chapters, we have analyzed SiGe islands and
films grown on top of a Si substrate, where the misfit strain originates by the mismatch

between the substrate and the epilayer. In core-shell NWs, due to the large height to
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FIGURE 6.2: Maps of €4, €y and €., strain components in a cross section of a Ge/Si core—shell
NW perpendicular (top panels) and parallel (bottom panels) to the NW axis for a core radius
Reore=32 nm and a shell thickness tsp;=6 nm. The z, y and z directions were set to be parallel
to the tangential, radial and axial directions relative to the (112) facet. The maps were calculated
by FEM.
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FIGURE 6.3: (a) Variation of the €., €yy and €., strain components, along one of the radial
direction ([110]), starting from the NW center to its surface. The z, y and z directions were set to
be parallel to the tangential, radial and axial directions relative to the (112) facet. (b) Axial strain
in the Ge core and the Si shell as function of the shell thickness. The core radius is set equal to
32 nm.
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diameter ratio, strains arise by the mismatch between the core and the shell materials.
In a first approximation, the misfit between the NW and the substrate can be neglected,
because this strain only affects a small NW volume close to the substrate, due to the small
NW base compared to its height. The three principal strain components in a simplified
cylindrical core-shell geometry are the following: €., along the axis of the NW, ggg, tan-
gentially to the NW circumference, and ¢, along the radius of the NW, as shown in Fig.
6.1(d). At each point of the NW, the first two components are parallel to the core-shell
heterointerface, while the third one is perpendicular to it. While in the cylindrical geome-
try the tangential and radial directions change continuously, in NWs with hexagonal base,
these directions remain constant for each NW facet and change discontinuously from one
facet to the others. Let us analyze the elastic strain relaxation due to presence of the free
surfaces. The misfit fg; between pure Si and pure Ge is given by:

foi = ECe (6.1)
aGe

here we assumed ag; = 5.432 Aand age = 5.658 A, so that fg; = 0.042.
In Fig. 6.2 the maps of the principal strain components €,;, €,y and e.. are plotted,
assuming a reference system where z indicate the positive direction of the NW axis, x
is parallel to the [112] direction (tangential to the [111] facet) and y is parallel to the
[110] direction (i.e. perpendicular to the (110) NW facets. The strain field was calculated
by FEM using the geometry sketched in Fig. 6.1(a,c); the core radius is 32 nm and the
shell thickness is 6 nm. Isotropic elastic constants are assumed, so that the analysis of
the strain components parallel and perpendicular to the selected facet, the (110), can be
extended by symmetry to the other facets. Also we can extend the strain analysis to the
other NW configuration of interest, the one characterized by hexagonal base and {112}
facets, as in 6.1(a) and (b). The three strain components shown at the top of Fig. 6.2
are plotted in a NW cross section parallel to basal plane and intersecting the NW center,
while at the bottom of Fig. 6.2 are displayed in a cross-section parallel to the NW axis
and perpendicular to the [112] direction. As expected, the Si undergoes a tensile strain
and the Ge core is under compression to partially relieve the misfit and to minimize the
total elastic energy. Moreover, we observe no significant elastic relaxation of the tangential
component, which is nearly equal to the misfit fg; across the whole facet, except for the
NW corners. On the contrary, the €., strain component is ~0.027, significantly lower than
the 0.042 misfit value. In Fig. 6.3(a) we show the variation of the three strain components
along the radial [110] direction, starting from the center of the NW to the limit of the Si
shell. The position of the core shell interface is indicated in Fig. 6.3(a) by an arrow. We
notice that ., is homogeneous across the core and the shell of the NW. In Fig. 6.3(b),
we plot with blue circles (red squares) the variation of the axial strain in the NW core
(shell) as a function of the shell thickness. From Fig. 6.3(b), it is clear that the thicker
the shell the lower is the strain therein at expense of a larger core deformation. This is a
consequence of the increased shell-thickness/core-radius ratio. When the shell volume is
small compared to the core one, the strain is mainly accumulated in the thin shell. On
the contrary when the shell volume becomes comparable or larger than the core one, the
strain is redistributed between the shell and the core in order to minimize the total elastic
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FIGURE 6.4: Diagram of dislocation lines and Burgers vectors for two possible geometries of the
defects for core—shell nanowire heterostructures adopted in literature to calculate the critical shell
thickness for dislocation formation. (a) The first, is a straight edge dislocation line parallel to the
NW axis. The second is a Frank dislocation, i.e. pure edge or prismatic dislocation loop, around
the nanowire core.

energy.

6.3 Plastic relaxation in core-shell nanowires

The deposition of the Si shell on the Ge core, causes initially the coherent growth of a
thin Si layer which induces strain accumulation in both the shell and the core of the NW,
as illustrated in the previous paragraph. As the deposition proceeds, the elastic energy
accumulated in both the core and the shell layers eventually lead to defect formation
in the NW. Previous works have considered edge dislocation lines or prismatic loops as
possible sources of strain relief in core-shell heterostructured NWs. [191-196] The first
set of dislocations is expected to lie within the shell parallel to NW axis, relieving the
tangential strain, in the Burgers vector direction, as shown in Fig. 6.4(a), while the
loops should follow the circumference of the NW core and relax the axial strain, as shown
in Fig. 6.4(b). These two sets of dislocations can relax very efficiently the strain and
several examples of pure edge dislocations observed in NW heterostructures are reported
in literature.[209-211] However, such dislocations are unlikely to form by low energy glide
processes, at least in the here examined NW structure, since their Burgers vector do not
sit in low energy slip planes (the {111} planes). In contrast, perfect dislocations with
b = a/2(110) Burgers vector can form through the glide of dislocation half-loops from the
free surfaces to the core/shell interface. Reactions of two such dislocations have been used
to explain the existence of pure edge dislocation lines in (001)-oriented ZB InAs-GaAs
core shell NWs [212]. Recently, the critical shell thickness for plastic relaxation in ZB
core-shell NWs has been investigated assuming the formation of a full misfit dislocation
loop around the interface by glide but not demonstrating the formation mechanism.[213]
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In this work, we theoretically predicted the formation of perfect dislocation segments
in (111)-oriented Si/Ge core-shell NWs, which is possible by gliding in the low-energy
{111} slip planes, unlike the pure edge straight dislocations or the prismatic loops shown
in Fig. 6.4. We determined the preferential nucleation sites and dislocation line directions
of such defects and we demonstrated that the full loop formation by the gliding of a
single dislocation is not favorable in the investigated system, as explained in the following
paragraphs.

6.3.1 Resolved shear stress analysis

For [111] oriented NWs, there are three {111} slip planes {(111), (111), (111)} at angles
of 19.5° from the growth axis and one parallel to the basal plane, the (111), (see Fig.
6.1(e)). A dislocation could nucleate on one edge of the NW and move in one of these
slip planes by glide so as to deposit a misfit line at the Si/Ge interface. In order to
elucidate the formation mechanism of perfect dislocations by glide and to identify the
preferred nucleation sites, we first analyzed the heteroepitaxial stress field of the NW. The
two simplified NW geometries characterized by {112} and {110} facets, as drawn in Fig.
6.1, were considered. The core radius and the shell thickness were set equal to 32 and 6
nm. The key quantity to identify the dislocation type (defined by slip plane and Burgers
vector) which is favored in an existent stress field is the resolved shear stress (RSS), which
is the stress resolved in the glide plane along the Burgers vector direction, as defined in
Eq. 3.41. This is directly related to the force exerted by the external stress field on a
given dislocation, moving in its glide plane. In Fig. 6.5(a-c), we plotted the resolved shear
stress for dislocations having one of the three possible ag;/2(110) Burgers vectors lying
on the (111) slip plane, indicated by the three arrows in Fig. 6.1(e), in a NW with {112}
side facets. In the three panels, the RSS is visualized in a (111) plane across the NW
and the three possible Burgers vectors are indicated by an arrow in the (111) planes. A
large positive value of the RSS indicates a preferred site for dislocation nucleation and
propagation. On the contrary, in case of zero or negative RSS the propagation of the same
dislocation is hindered. Also, a negative RSS is found when the dislocation having the
same slip plane but the opposite sign of the Burgers vector is favored. By looking at the
RSS map in Fig. 6.5(a-c), we expect dislocations to nucleate at the NW corners where
the RSS is maximum and to propagate in the Si shell volume where the RSS is positive,
depositing a misfit line at the intersection between the glide plane and the Ge/Si interface,
until it reaches the adjacent facet where the RSS assumes a negative or zero value. The
RSS calculation for the [011](111) and [110](111), in the NW geometry characterized by
{110} facets is reported in Fig. 6.6(a-b). The RSS map for the [011](111) slip system is
mirror symmetric to the one calculated for the [110](111) slip system with respect to the
[121] direction drawn in 6.6(b) and it is not reported here. Similarly to the previous case,
we expect dislocations to preferentially nucleate at the NW corners and evolve towards
the facets where the RSS is positive.
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FIGURE 6.5: Resolved shear stress (RSS) variation in a (111) plane crossing a [111]-oriented NW
with {112} facets for a dislocation with (111) slip plane and Burgers vector b; (a) and by (b) and
bs(c). (d) Scheme of the NW geometry and (e) and a drawing of a (111) glide plane intersecting
the Si shell (e). Equilibrium dislocation positions obtained by dislocation dynamics simulations
through inserting small dislocation loops in the Si shell volume having (111) slip plane and Burgers
vector by (f) and b (g) and b3(h).
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FIGURE 6.6: Resolved shear stress variation in a (111) plane crossing a [111]-oriented NW with
{110} side facets, for a dislocation with (111) slip plane and Burgers vector b; (a) and bs (b).
Equilibrium dislocation positions obtained by dislocation dynamics simulations through inserting
small dislocation loops in the Si shell volume having (111) slip plane and Burgers vector b; (c) and

by (d).
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6.3.2 Dislocation dynamics simulations

In order to support the shear stress analysis and to determine the equilibrium dislocation
positions we performed dislocation dynamics (DD) simulations in the two NW configu-
rations described above. The approach is similar to the one proposed for nanoislands in
Ref. [125] and adopted for 2D thin films grown on pit-patterned substrates, reported in
Chapter 4. First, the coherent stress field of the NW, calculated by FEM, is applied as
external load in the simulations. Second, the dislocation-surface interaction is approx-
imated by using the line-tension expression in Eq. 3.47, modified with respect to the
typical bulk expression in order to mimic the force acting on segments touching the free
surfaces [116, 125]. Finally the dynamics is solved by taking into account the epitaxial
stress field, the line tension contribution and the stress field due to all the dislocations in
the system. Dislocation loops with a 5 nm radius are periodically introduced in the DD
simulations, following the procedure described in Section 3.5.3, testing at random position
in the simulated Si shell volume if the newly introduced dislocation loop will expand in
time in the actual stress field. Since we are interested in the mechanism of formation and
evolution of a single gliding dislocations, we considered separately different slip systems
and we stopped the simulations after the introduction and evolution of few loops. In Fig.
6.5(f-h) we show the simulation results in {112} facetted NWs, obtained by considering
dislocations with (111) glide plane and Burgers vector by (f), bs (g) and b3 (h). Results
obtained for NWs characterized by {110} facets are shown in Fig. 6.6. In agreement with
the RSS analysis, we observed the nucleation of dislocation loops preferentially at the
NW corners, as shown in Fig. 6.5(f), where a small new loop is located at the NW edge
position. Moreover, dislocations evolve from the NW corners in their slip plane, swapping
the area in the Si shell where the RSS is positive, and depositing a misfit line at the Ge/Si
interface. As a consequence, we observed some straight dislocation segments crossing a
single NW facet, as in panel (f) in Fig. 6.5(f) and in Fig. 6.6(c,d), or dislocation segments
that cross a NW corner depositing a misfit line on two adjacent facets, as in 6.5(g,h).
Dislocations with (111) slip plane and negative by, by or b3 Burgers vector are colored with
dark lines. In agreement with the RSS calculations, these dislocation lines are found at
positions where a negative RSS value is predicted.

In order to highlight the (110){111} dislocation formation mechanism, we report in Fig.
6.7 several snapshots taken from a DD simulation and showing a dislocation loop evolution
in a {112} facetted NW. The loop is nucleated on one NW corner (a); it expands under the
tensile stress field touching the free surface (b). Then the two threading segments move
towards the opposite sides further expanding the dislocation semi-loop (c) and depositing
a misfit segment at the core-shell interface (d,e) until they reach the adjacent NW edges
and they stop (f). Since the residual strain affects the optical and electronic properties of
NW heterostructures, it is important to evaluate how efficiently the predicted dislocation
segments can relieve the axial and the tangential strains in the NWs. To this aim, we
calculated the effective Burgers vector component b, by projecting the edge component of
the Burgers vector into the core-shell interface per each NW facet and the b. ¢y projections
along the axial bcsr. and tangential b.frg directions. In Tab. 6.1, we reported the
predicted misfit line directions £ and the b.ys values obtained by considering one of the
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FIGURE 6.7: Snapshots showing the evolution of a dislocation loop with [110](111) slip system by
dislocation dynamics simulations in a [111]-oriented core-shell Ge/Si NW.

three oblique slip plane, the (111), and the three Burgers vectors lying in such a plane.
The misfit segments directions & are given by the intersection of the analyzed slip plane
with the interface planes. The normal vectors to these planes are indicated in Tab. 6.1
by ny. Moreover, we indicate with a + or a — the Burgers vector sign which is expected
to relax the misfit strain in the Si volume adjacent to the facet n¢l. For NWs with {112}
facets the misfit lines observed in the DD simulations are parallel to the (110) directions
lying in the (111) basal plane or aligned with the (123) directions. The dislocation lines
perpendicular to the NW growth axis, as shown in Fig. 6.5(g,h), have an edge component
of the Burgers vector projected along the NW axis equal to b, = ag;/3[111] (equal to 0.817
b) and relieve the maximum axial strain but not the tangential one. The position of the
extra half-plane in the Si shell connected with such dislocation geometry is aligned to the
[211] direction, in excellent agreement with recent experimental observations [214] reported
below. The oblique (123) segments can relax both the axial and the tangential strains.
Of these dislocation types, we never observed in our DD simulations, dislocation lines
which have the smallest b.rs value (0.154b), see Tab. 6.1, probably because the energy
gain due to the strain reduction induced by this dislocation geometry is low compared
the cost of creating such a defect. By looking at the b.yrr. and besrp values we expect
that NWs with {112} facets undergo a larger strain relaxation of the axial component
compared to the tangential one. On the contrary, in NWs with {110} facets, the misfit
lines as obtained by DD simulations are parallel to the (110) directions and relax more
effectively the tangential strain component. By observing the results in Tab. 6.1, it is
clear that a single perfect dislocation is not expected to form a full loop around the core,
because it can effectively relax the misfit strain only at the interface of one or two adjacent
NW facets. Thus, the threading dislocation motion, and consequently the deposition of a
misfit segment, is stopped at the border of the NW interface facet where the dislocation
geometry induce any strain relief in the NW heterostructure. This prevent the formation

'Keeping fixed the dislocation line direction &
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Dislocations with (111) slip plane

[111]-oriented NW with {112} facets
b ny | € bepr | beprz | bepro | bsign
[121] | [321] | 0.463 b | 0.428 b | 0.175b | —
as;/2[011] | [211] | [011] 0 0 0 none
[112] | [312] | 0.463 b | 0.428 b | 0.175b | +
[121] | [321] | 0.154 b | 0.058 b | 0.143 b | —
as;/2[110] || [211] | [011] | 0.817 b | 0.817 b 0 +
[112] | [312] | 0.310 b | 0.117b | 0.286 b | +
[121] | [321] | 0.310 b | 0.117b | 0.286 b | +
asi/2[101] | [211] | [011] | 0.817 b | 0.817 b 0 +
[112] | [312] | 0.154 b | 0.058 b | 0.143b | —
[111]-oriented NW with {110} facets
b ny g beff beff,z beffﬂ b sign
[110] | [110] | 0.701 b | 0.408 b | 0.577 b | —
as:/2[011] | [101] | [101] | 0.701 b | 0.408 b | 0.577 b | +
[011] | [211] 0 0 0 none
[110] | [101] | © 0 0 | none
asi/2[110] || [101] | [101] | 0.701 b | 0.408 b | 0.577 b | +
011 | [211] | © 0 0 none
[110] | [101] | 0.701 b | 0.408 b | 0.577 b | +
asi/2[101] || [To1] | [101] | O 0 0 | none
011 | [211] | © 0 0 none

TABLE 6.1: Misfit dislocation line directions x and their effective Burgers vector b.ss values in
[111]-oriented core-shell NWs with {112} and {110} facets. Dislocations with (111) slip plane and
the three Burgers vectors b lying in such a plane are considered. ny indicate the vector normal
to each NW interface facet, x the dislocation line direction deposited at the corresponding facets.
befs. and berrg are the projections of the edge component of the Burgers vector on the NW
interface planes ny.

of a perfect dislocation loop around the NW core.

Dislocation evolution in the other two oblique slip planes (111), (111) led to similar
dislocation line arrangements in the adjacent NW facets, that contribute to axial and
tangential strain relaxation in the whole Si volume. On the contrary, no propagation of
loops in the basal (111) plane was ever observed. This can be explained by considering
that the possible Burgers vector b lying in the (111) planes can always be decomposed
into two components, which are, respectively, parallel to the lateral NW facets (along the
tangential direction) and parallel to the NW facets normal (along the radial direction).
We notice that the b component parallel to the tangential direction is also aligned to the
misfit dislocation direction at the core-shell interface; hence, it is screw in character and it
cannot relieve the misfit strain. The edge component of b can only be parallel to the radial
direction. Since this component is perpendicular to the core-shell interface, it does not
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contribute to the interfacial strain relaxation. Hence, we do not expect such dislocations
in the examined NW structures, as confirmed by our DD simulations.

A critical shell thickness for dislocation formation, can be extrapolated by the DD
simulation results. We notice that, dislocation loop expansion, followed by misfit segments
deposition, has been observed in the DD simulations by introducing small loops of radius
R=5 nm. It follows that the critical radius R, for loop expansion in the examined NW
geometry (32 nm of Ge core radius), must be R. < R <5 nm. From this information
we can extrapolate an upper limit for the critical shell thickness by using Eq. 2.10, as
derived in Section 2.4.3: h, = R.sin¢, where ¢ is the angle between the glide plane
and the NW interface facets. In particular, for NWs bounded by {110} facets the angle
between the oblique {111} glide planes and the {110} side facets is constant and we obtain:
heito = Resingiig < Rsingrip < 2.5 nm. Similarly h. can be evaluated for different
dislocation and NW geometries, facet orientations and misfit values, providing at least a
rough estime of the expected critical shell thickness in the desire NW heterostructure.

6.3.3 Comparison with experiments

The theoretical predictions presented in this chapter, allowed us to interpret recent exper-
iments performed by Dr. S. A. Dayeh and coworkers on Si-Ge core-shell NWs [214], where
dislocation glide in {111} planes has been observed in [111]-oriented Ge/Si core-shell NWs,
mostly characterized by {112} side facets. In particular, perfect dislocations with Burg-
ers vector ag;/2(110) have been identified at the core-shell interface after post-annealing
processes at 600 °C. Such dislocations were observed in NWs with a 16 nm core radius at
a thickness of 3.2 nm up to 5 nm, and were by identified by the additional strain relieving
Si (111) planes with respect to Ge, observed along the growth axis of the NW that had a
projected component of the Burgers vector of b, = ag;/3[111], as shown in Fig. 6.8. The
norm of the latter vector is 0.817b, as expected for dislocations with (111) slip plane and
Burgers vector ag;/2[110] and ag;/2[101], as reported in Tab. 6.1, and dislocations with
similar geometry but gliding in the other two oblique {111} slip planes. An example of a
dislocation with such a geometry is shown in Fig. 6.5(g,h), where the dislocation segments
parallel to the (111) basal plane have bers = besf,.=0.817b, fully compatible with the mea-
sured value. Moreover these predicted dislocation lines produce an extra half-plane in
the Si shell perpendicular to the interface and along the dislocation line (in the direction
defined by & X bedge), which is in agreement with the extra Si plane observed in the ex-
periments and indicated by the red signs in Fig. 6.8. As we can see in Fig. 6.8(b), the
extra Si planes associated with the dislocations are observed in the NW cross-section only
at one surface of the Si shell on the same (111) plane orthogonal to the growth direction,
which further confirms that these dislocations are not pure edge loop as the one sketched
in Fig. 6.4(b) and considered in previous works [192, 193, 196]. Therefore, our predictions
based on the resolved shear stress analysis and on dislocation dynamics simulations are
in good agreement with experimental observations in core-shell Ge-Si NWs and shed light
on nucleation sites, propagation, and termination of dislocations in the Si volume.

In conclusions, a mechanism for strain relief in core-shell Si-Ge nanowires via dislo-
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FIGURE 6.8: HRTEM images of Ge/Si core/shell NW imaged from a j110; zone axis. (a) Sideview
image (beam direction (011)) over a sufficient axial distance to observe several ag;/2 < 110 >
perfect dislocation segments formed by glide along the circumference of the NW. The insets are
enlarged portions from the same image indicating the locations of extra Si (111) planes. (b) Nw
cross section showing that the extra half-planes observed at one side of the NW are not present
at the opposite side, confirming that no edge dislocation loops (Frank dislocations) parallel to the
(111) NW base exist in the NW. Scale bar is 5 nm. Courtesy of S. A. Dayeh.
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cation nucleation and glide on {111} planes is presented. The latter should lead to the
development of a periodic pattern of misfit segments deposited at the core-shell interface
with a different orientation depending on the specific facet where the dislocation nucleate.
These dislocation segments contribute differently to the axial and tangential strain relax-
ation. The critical shell size for dislocation formation has been evaluated in the analyzed
configuration, but further investigations can lead to the determination of the coherency
limits in core-shell nanowires characterized by different misfit values and core radii.



Conclusions

Plastic relaxation in different epitaxial nanostructures has been investigated by using a
continuum approach. In particular, finite element calculations allowed us to determine
the strain state and the energetics of coherent and dislocated epitaxial heterostructures.
As a consequence, we found the equilibrium configuration of dislocations in thin films
grown on trench-patterned Si substrates, in epitaxial islands nucleated in pits and in
core-shell Ge-Si nanowires. Also the stress field analysis in epitaxial films grown on pit
and trench patterned substrates and in core shell nanowires allowed us to determine the
preferential nucleation sites for dislocations in such nanostructures. Dislocations dynamics
simulations have been performed to confirm this analysis and to determine the dislocation
pattern expected in the same nanostructures.

The predictions obtained from our models on plastic relaxation in SiGe film, demon-
strated that by suitably patterning the Si substrate with {111} trenches or pits, it is
possible to introduce high stress concentrations in low misfit epitaxial films grown con-
formally to the template. These operate as preferential sites for dislocation nucleation
and threading dislocation trapping. In particular, by using trench patterned substrates,
misfit dislocations parallel to the trenches are effectively confined at the {111} sidewalls.
Moreover, threading segments running perpendicularly to the trenches are found to be
stopped at the trench facets. By using pit patterned substrates, a regular array of misfit
dislocations running along the pit lines is found, providing large dislocation free areas,
suitable for device integration. It is therefore possible to fabricate relatively large areas
free of detrimental dislocations, without using non-connected substrates or selective area
deposition in oxide windows.

Investigation of dislocation formation in nanoislands allowed us to explain the order-
ing of misfit dislocation segments at the base of heteroepitaxial SiGe islands on planar
Si(001) substrates, by using a simple analytical model. This is determined by the periodic
matching of the thermodynamic critical conditions for dislocation formation in the island.
A theoretical description of the role played by pit-patterning substrates in delaying plas-
ticity onset in SiGe islands grown on Si(001) was provided. The critical volume for islands
grown in pits has been determined for the relevant island composition range and suc-
cessfully compared to experiments. Further investigation of different pattern geometries,
could lead to the growth of fully coherent and even larger islands, that can be exploited
as defect-free virtual substrates.

A framework for understanding strain relaxation in core-shell nanowires was provided.
In particular, we have verified the possibility to form perfect dislocations via nucleation
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and glide on the low energy {111} slip planes. This leads to a periodic pattern of misfit
segments at the interface, with orientation dependent on the specific nanowire facet where
the dislocations nucleate. The formation of these misfit dislocation segments can lead to
different degree of axial and radial strain relaxation. It follows, that it becomes conceivable
to tailor axial and tangential stresses separately, opening new possibility for strain and
band-gap engineering. Finally, the coherency limits for core/shell nanowires was evaluated
in the specific nanowire configuration we analyzed, but further investigations can lead to
the prediction of the critical shell thickness for different core radii and misfit values.

Our predictions on films, islands and nanowires were successfully compared with ex-
periments. The accurate level of agreement obtained between real and simulated disloca-
tion microstructures in all the systems investigated proves the strength of the modelling
methodology here proposed. We believe that our approach can be useful to investigate
the full plastic relaxation process in different heteroepitaxial architectures addressing key
issues, such as determining the coherency limits in realistic shaped nanostructures, assess-
ing the influence of the substrate patterning geometry on the onset of plastic relaxation
and on dislocation gettering processes, and to obtain at least qualitative insight into the
relevant dislocation nucleation mechanisms. The behavior predicted in Si-Ge heteroepitax-
ial structures is expected to be quite general, at least for other semiconductor materials
with zincblende structure, and opens up the possibility to exploit substrate patterning
with different geometries to govern dislocation nucleation and propagation in mismatched
nanoislands and thin films.
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