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Abstract
The key problem for option pricing in Garch models is that the risk

neutral distribution of the underlying is known in explicit form only one
day ahead and not at maturity. This problem was solved in the Heston-
Nandi model (1997), where it is possible to compute the characteristic
function of the underlying by a recursive procedure and options can be
priced by Inverse Fourier Transform, see Heston (1993). Following the
same idea, Christo¤ersen Heston and Jacobs (2004) proposed a Garch-
like model with Inverse Gaussian Innovations and recently Bellini and
Mercuri (2007) obtained a similar recursive procedure in a model with
Gamma innovations.

In this work, we present a new Garch-like model with Tempered Sta-
ble innovations that encompasses both the CJH and the BM models as
special cases. As it is costumary for this class of models, the pricing mea-
sure is chosen by means of the Conditional Esscher Transform (Siu et al.
2004). The TS model is calibrated on SP500 closing option prices and its
performance is compared with the CJH, the BM and the Heston Nandi
models.

Keywords Option Pricing, Garch model, Tempered Stable distribution,
Semi-analytical valuation

1 Introduction

It is well known that, from an empirical point of view, the Black-Scholes model
is not able to capture some "stylized facts" such as skewness, heavy tails and
volatility clustering that are observed in real �nancial time series. To model
these stylized phenomena, Mandelbrot (1963) proposed the use of �-Stable dis-
tributions. Unfortunately this class of distributions has in�nite variance and
hence the tails might be too heavy to model real �nancial data.
In order to gain more adaptability, a new family of distributions, called

Tempered Stable (TS), was obtained by multiplying the density of the positively
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skewed �-Stable (0 < � < 1) with an exponential function. In this way, the
tails are thinner than �-Stable but heavier than normal. This class was �rst
introduced by Tweedie (1984), see also Hougaard (1986) for applications in
survival analysis. This kind of distributions was also used by Barndor¤-Nielsen
and Shephard (2002) to build an Ornstein-Uhlenbeck�based model.
Recently, Rosìnski (2006) generalized the Tempered Stable distributions and

classi�ed them according to their Levy measure. In this way the Tempered
Stable family admits a parametrization similar to the Stable distributions one;
with this generalization it is also possible to obtain distributions with the whole
real axis as support.
Kim et al. (2006) applied the Tempered Stable de�ned on the real axis to

the Garch option pricing model but unfortunately the price for a call option
must be evaluated by using MonteCarlo simulations.

Garch-like models are useful way to capture the aforementioned "stylized
facts", therefore it is natural to apply these models for option pricing issues. In
order to compute the price of a European call option, we need to know the risk-
neutral distribution of the underlying at maturity, but usually we know it only
one day ahead. This problem was solved by Heston and Nandi (2003). They
proposed a Garch-like model with normal innovations where it is possible to
compute the characteristic function of the underlying by a recursive procedure
and price options by Inverse Fourier Transform (Heston (1993)).
Unfortunately the Heston-Nandi model (HN) is not su¢ ciently �exible to

explain some observed option biases, in particular when we consider options
with very short maturities. As suggested by Christo¤ersen et al. (2004), this
is due to the fact that the single period innovations are normal in these model.
For this reason, Christo¤ersen et al. proposed a model with Inverse Gaussian
innovations (CJH model) and recently Bellini and Mercuri (2007) built a model
with Gamma innovations. These new Garch-like processes are able to capture
the conditional Skewness and the conditional Kurtosis; moreover it is possible
to obtain a recursive procedure for the evaluation of the characteristic function.
In this work, we present a new Garch-like model with Tempered Stable

(proposed by Tweedie (1984)) innovations that allows a semi-analytical formula
for option pricing. Moreover our model incorporates, as special cases, the BM
and CJH model.
The paper is organized in the following way: in the �rst section we review

some classical results about the Tempered Stable, in the second we present the
model, we show how to determine an equivalent martingale measure and to
obtain a recursive procedure for the characteristic function. In the last section
we present the empirical results of the calibration on real data.

2 Tempered Stable distributions

Before introducing our Garch-like model with Tempered Stable innovations, we
review some classical results. It is well known that the �-Stable distributions
have in�nite p� th order moments for all p > � because the tails are too heavy.

2



In order to have all moments �nite, it is possible to "temper" the tails with the
exponential function. This new class of distributions, called Tempered Stable
TS, was introduced by Tweedie.
Let s (x;�; �; c; �) be the density function of an �-Stable distribution, where

� � (0; 2] is the characteristic exponent, � � [�1; 1] is the skewness parameter, c
� (0;+1) is the scale parameter and � � (�1;+1) is the location parameter.
We say that an �-Stable distribution is positively skewed if � = 1. Notice that
if � = 1 and � = 0 then the density function is de�ned on [0;+1). It�s possible
to show that the Laplace Transform of a positively skewed �-Stable is given by
(See Carr and Wu (2003) or Zolotarev (1986)):

E [exp (��X)] = exp
h
��� � ��c� sec

�
�
�

2

�i
(1)

where sec (�) is the secant function de�ned as sec (�) = 1
cos(�) :

Let s

 
x;�; 1;

a

2� sec
�
��2
� ; 0! be the positively skewed �-Stable density

function with � � (0; 1) : We say that TS (�; a; b) is a Tempered Stable dis-
tribution with � � (0; 1) ; a > 0 and b � 0, if its density function is given
by

p (x;�; a; b) = exp (ab) s

 
x;�; 1;

a

2� sec
�
��2
� ; 0! exp��1

2
b1=�x

�
(2)

We note that the b parameter controls the tail behavior, indeed if b is equal
to zero we have a positively skewed �-Stable. When b increases we obtain a
distribution with thinner tails as shown in the following pictures.

Insert �gure 1 here.

Moreover, using (1) and (2), we obtain the characteristic function of the
Tempered Stable:

E [exp (i�X)] = exp
h
ab� a

�
b1=� � 2i�

��i
=

= exp
h
ab
h
1�

�
1� 2i�b�1=�

��ii
(3)

Remark 1 It is not di¢ cult to see that the IG(a,b) and Gamma(a1,b1) dis-
tributions are special cases of (3) if � = 1=2 and � ! 0; a =

a1
�
b = (2b1)

�

respectively. The convergence is illustrated in the following picture:

Insert �gure 2 here.
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The �rst four moments are given by:

E (X) = 2a�b(��1)=�

V ar (X) = 4a� (1� �) b(��2)=�

Skew (X) = (�� 2) (ab� (1� �))�1=2

Kurtosis (X) = 3 + [4�� 6� � (1� �)] [ab� (1� �)]�1

3 The Model

3.1 The Tempered Stable Garch process

We consider a market with two assets: the riskless asset given by

Bt = Bt�1e
rt (4)

where rt is a predictable process, for simplicity we assume constant.
The stock price:

St = St�1 exp (Xt) (5)

where Xt is the log-return process with the following dynamics under the real
measure:

Xt = r + �ht �
Zt

2
p
�a (1� �) b(��2)=�

(6)

The conditional distribution1 of Zt is TS (�; aht; b) and the process ht has the
dynamics speci�ed below:

ht = �0 + �1
Zt�1

2
p
�a (1� �) b(��2)=�

+ �1ht�1 (7)

From the properties of the Tempered Stable, the conditional mean and condi-
tional variance can be derived as:

Et�1 (Xt) = r +

 
��

p
�abp
(1� �)

!
ht

V art�1 (Xt) = ht

Moreover the unconditional variance is given by

E (ht) =
�0

1� (�1 + �1)

1 If we want a zero-mean stock return innovation we consider Z0t = Zt�
p
a�bp
(1� �)

ht instead

of Zt
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This model also captures the conditional skewness and the conditional kurtosis
often observed in �nancial time series, since we have:

Skewt�1 (Xt) =
(�� 2)p

�ahtb (1� �)

Kurtosist�1 (Xt) = 3 +
[4�� 6� � (1� �)]
[ahtb� (1� �)]

3.2 Change of measure

Our model represents a discrete time incomplete market with an in�nity of
states of nature. Therefore, in order to price a contingent claim, we have the
classical problem of choosing an equivalent martingale measure.
Looking at the functional form of moment generating function of Tempered

Stable, a natural choice is the Conditional Esscher Transform proposed by
Buhlmann et al. (1996) as a generalization of Esscher Transform when only
the conditional distribution is known (see also Siu et al. (2004) and Bellini
and Mercuri (2007) for applications of this approach when the log-return is a
Garch-like process).
We de�ne the conditional moment generating function:

MXkjFk�1 (�) = E [exp (�Xk) jFk�1 ] (8)

the change of measure is identi�ed by solving the Conditional Esscher equation:

MXkjFk�1 (�
�
t + 1)

MXkjFk�1 (�
�
t )

= ert (9)

By the m.g.f of TS the (9) becomes:

exp (��ht) =
Et�1

"
exp

"
� (��t + 1)

Zt

2
p
�a (1� �) b(��2)=�

##

Et�1

"
exp

"
���t

Zt

2
p
�a (1� �) b(��2)=�

## (10)

By substituting:

u = � 1

2
p
�a (1� �) b(��2)=�

(11)

in (10) we can write:

exp (��ht) = exp
h
a
��
b1=� � 2��tu

��
�
�
b1=� � 2 (1 + ��t )u

���i
(12)

An analytical solution for this equation does not exist; therefore we need to
solve it numerically.
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One of the advantages of the Esscher transform is that the conditional m.g.f
of the log-returns under the martingale measure can be obtained by the following
relation:

M 0
XkjFk�1 (c) =

MXkjFk�1 (�
�
t + c)

MXkjFk�1 (�
�
t )

(13)

In our case, the formula (13) becomes

M 0
XkjFk�1 (c) = exp

�
c (r + �ht) + a

�
b1=� � 2��tu

���
1�

�
1� 2cu

b1=� � 2��tu

����
(14)

We note that, under the new measure, the innovation is distributed again as TS
but with a new parameter b0 =

�
b1=� � 2��tu

��
and the conditional variance is

a linear function of the conditional variance under real measure as:

h0t = V ar
0
t�1 (Xt) =

�
b0

b

�(��2)=�
ht (15)

then, by using equation (15), and imposing8<: �0 = �
�
b
b0

�(��2)=�
; a0 = a

�
b
b0

�(��2)=�
�00 = �0

�
b0

b

�(��2)=�
; �01 = �1

�
b0

b

�(��2)=� (16)

the model can be rewritten as8>>>><>>>>:
Xt = r + �

0h0t �
Zt

2

q
�a0 (1� �) (b0)(��2)=�

h0t = �
0
0 + �

0
1

Zt�1

2

q
�a0 (1� �) (b0)(��2)=�

+ �1ht�1

(17)

where Zt � TS (�; a0h0t; b0).
If we compare the model under real measure with the same under martin-

gale measure we see that the functional form is similar but with a di¤erent
speci�cation of the parameters.

3.3 Option pricing

In the previous section we have seen how to use the conditional Esscher Trans-
form for selecting an equivalent martingale measure. Moreover we proved that
the conditional distribution one period ahead is again a Tempered Stable. In
order to price an option, we need the conditional distribution of the underlying
asset at a generic maturity T . Following Heston-Nandi�s approach, we show how
a recursive procedure for conditional characteristic function of log-price can be
obtained and then a call option can be priced by Inverse Fourier Transform.
Moreover we will see that our model contains, as special cases, the BM model
and the CJH model with slight modi�cations in the variance dynamics.
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We claim that the conditional m.g.f. of log-price has the following form:

Et [exp [� ln (ST )]] = S
�
t exp [A (t; T; �) +B (t; T; �)ht+1] (18)

therefore we assume that this equation holds at time t and by the iteration
property of conditional expectations we determine the conditional m.g.f. at
time t in the following way:

Et [exp [� ln (ST )]] = Et

h
S�t+1 exp [A (t+ 1; T; �) +B (t+ 1; T; �)ht+2]

i
=

= S�t Et [exp [�r +A (t+ 1; T; �) + �0B (t+ 1; T; �)+

+��ht+1 + �1B (t+ 1; T; �)ht+1+

+
(�1B (t+ 1; T; �)� �)

2

q
�a (1� �) (b)(��2)=�

Zt+1

3535 (19)

By the m.g.f. of TS we have:

Et [exp [� ln (ST )]] = S
�
t exp [�r +A (t+ 1; T; �) + �0B (t+ 1; T; �)+

+��ht+1 + �1B (t+ 1; T; �)ht+1+

+aht+1b

"
1�

 
1� (�1B (t+ 1; T; �)� �)p

�ba (1� �)

!�##
(20)

If we compare equation (20) with equation (18) we obtain the following system
for the coe¢ cients A (t; T; �) ; B (t; T; �):8><>:

A (t; T; �) = �r +A (t+ 1; T; �) + �0B (t+ 1; T; �)

B (t; T; �) = ��+ �1B (t+ 1; T; �) + ab

"
1�

 
1� (�1B (t+ 1; T; �)� �)p

�ba (1� �)

!�#
(21)

with terminal conditions �
A (T; T; �) = 0
B (T; T; �) = 0

We complete this section by proving that the recursive system in the BM
model can be obtained, as a special case, by setting b = 2�; a =

a1
�
and com-

puting the following limit in the coe¢ cient B (t; T; �)

lim
�!0+

2�
a1
�
ht+1

26641�
0BB@1� (�1B (t+ 1; T; �)� �)r

�2�
a1
�
(1� �)

1CCA
�3775 =

= �a1ht+1 ln
�
1 +

�� �1B (t+ 1; T; �)p
a1

�
(22)
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Moreover it is possible to obtain the recursive equations for coe¢ cients in
the CJH model by imposing � = 1

2 ; a =
1
�2 ; b = 1 and considering the variance

dynamics speci�ed below:

ht = �0 + �1Zt�1 + �1ht�1 (23)

where Zt is conditionally distributed as IG
�
ht
�2
; 1

�
:

4 Calibrations and comparisons

In this section we test the ability of our model to �t real option prices and
compare it with the HN, CJH and the BM model. These models are de�ned by
the following conditions:

� HN Model 8>>>><>>>>:
Xt = r � ht

2 + "
0
t

"0tjFt�1 � N(0; ht)

ht = �0 +
�1("

0
t�1�(�+ 1

2+
)ht�1)
2

ht�1
+ �1ht�1

(24)

� CJH Model 8>>>>>>>><>>>>>>>>:

Xt = r + �ht + "t

"tjFt�1 = �0Yt, with �0 = �

[ 1��+
�2�
2 ]2

Yt � IG(�0t) with �0t =
h0t
�02

h0t = �
0
0 + �1h

0
t�1 + �

0
1"t�1 +


0h02t�1
"t�1

(25)

� BM Model 8>>>>>><>>>>>>:

Xt = r + �
0h0t + "t

"tjFt�1 = � 1p
a01
Yt

Yt � Ga(a01h0t; 1) with

h0t = �
0
0 + �1h

0
t�1 + �

0
1"t

(26)

We consider a dataset composed of 270 daily closing prices of European call
options on S&P500, and we identify each price by the triple (t;K; T ); where
t is the quotation day (varying from 06/22/06 to 07/10/06), K is the strike
price (9 equally spaced values ranging from 1250 to 1290) and T is the maturity
(July, August, September). The parameters of the models are determined by
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mean squared error minimization. That is, we minimize the di¤erence between
observed option price Callobs(t;K; T ) and the theoretical price Calltheo(t;K; T ):

argmin
�

MSQ (�) =
1

N

X
t

X
K

X
T

[Callobs (t;K; T )� Calltheo (t;K; T )]2

where � is the vector of parameters of the analyzed model. The minimization
procedure is carried in MatLab environment.
The following table reports the calibrated parameters of the considered mod-

els:

Parms TS CJH BM HN
�0 147.29 110.6489 68.2202 21.685
�00 3.0217e-006 1.7131e-005 2.5773e-005 4.7878e-006
�01 0.00079467 5.1586e-005 0.0067051 3.4539e-013
�1 0.82861 0.017339 0.00073407 0.88532


0

0.033306
�0 0.033306
a01 4721.8
a0 12411
�0 0.32834
b0 3.5999
RMSQ 0.1212 0.1281 0.1315 0.1419

As expected, our model achieves the smallest total root mean squared error
(RMSQ). In order to further investigate the pricing error, we consider the
RMSQ for each quotation day t as:

RMSQ (t; T ) =
1

NK

sX
K

[Callobs (t;K; T )� Calltheo (t;K; T )]2

and the RMSQ for each strike price K as:

RMSQ (K;T ) =
1

Nt

sX
K

[Callobs (t;K; T )� Calltheo (t;K; T )]2

where NK = 9 is the number of strike prices and Nt = 12 is the number of days.
Then in the following �gure we plot the RMSQ(t; T ) and RMSQ(K;T ) for
four models and for two maturities (July and August. We discarded September
data since only a few quotations were available).

Insert Figure 3 here

The �gure shows that our model outperforms quite uniformly the CJH and
BM with respect to the strike and to the day. The situation is less clear if we
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compare it with the HN model. Indeed, for options with maturity July, the
RMSQ(K;T ) of the HN model seems to be an increasing function of the strike
price while in other cases the relation seems to be decreasing. For options with
maturity August, we have the same upward and downward movements. In both
cases, our model outperforms systematically the HN model only for options out
of the money.
As observed in Bellini and Mercuri, we see also that the time dependence of

average daily error is the same for all models considered. Moreover, our model
seems to outperform the others if we consider options with very short maturities.
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Figure 1: Behavior of the Tempered Stable density as function of b, for top to down � = 0:5;
� = 0:7 and � = 0:9, a = 1:
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Figure 2: Convergence of the Tempered Stable density to the Gamma density (upper part)
and the Inverse Gaussian (lower part).
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Figure 3: Dependence of the Root Mean Square Error (RMSE) on the strike price (upper
part) and the day (lower part) for options with maturity July (right) and August (left).
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