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Introduction 
The assessment of bioequivalence for different drug formulations is based on the following fundamental bioequivalence 
assumption: “When two drug formulations are equivalent in the rate and extent to which the active drug ingredient or 
therapeutic moiety is absorbed and becomes available at the site of drug action, it is assumed that they will be therapeutically 
equivalent”. The purpose of bioequivalence trials is to identify pharmaceutical equivalents or pharmaceutical alternatives that 
are intended to be used interchangeably for the same therapeutic effects. Thus, bioequivalent drug formulations are therapeutic 
equivalents and can be used interchangeably (Chow and Liu, 2000).  
Because the response of individual subjects participating in the study may differ considerably, it is recommendable to remove 
the inter-subject variability from the comparison between formulations. Thus, a two-period crossover design (Table 1) on 
univariate characteristics of rate and extent (for example, area under the concentration curve, AUC and maximum 
concentration, Cmax) is usually used. To claim bioequivalence in average bioavailability, the ±20 rule requires that the ratio of 
the mean of the test formulation (T) and the mean of the standard formulation (S), called /= T SR µ µ , for AUC and Cmax be 

within (80%, 120%) limits (Berger and Hsu, 1996). In the last two decades, several statistical methods based on 
untransformated data have been proposed, including the confidence intervals (CIs) approach, the method of interval hypotheses 
testing, the Bayesian approach and nonparametric methods. For the parametric CIs approach, several authors proposed the 
application of the Fieller’s theorem to construct a CI for /T Sµ µ  and compare it with (80%, 120%) limits (Mandallaz and Mau, 

1981; Locke, 1984; Liu, 1990; Hsu, Hwang et al., 1994; Vuorinen and Tuominen, 1994). However, the Fieller method (FM) 
does not always exist, i.e. the CIs are unbounded for the ratio of the two formulation means. We propose a new parametric 
technique for the construction of  100(1-α)% CIs, based on the exact distribution of the two estimated formulation means. 
 
Material and methods 
Suppose that in “Sequence 1” the standard formulation is given first and the test formulation is given second. In “Sequence 2”, 
the formulations are given in the reverse order, as reported in Table 1. 
 
 

Table 1 – Two-period crossover design for comparing a test formulation and a standard 
formulation of a drug product. 
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Let ijSX  and ijTX  be the responses (e.g., AUC and/or Cmax) of the jth subject (with j=1,…,n) in the ith sequence (with i=1,2) for 

the standard formulation and the test formulation, respectively. For simplicity, assume that each sequence has the same number 
of subjects n. However, this restriction can be removed and the statistical methodologies can be easily extended to the more 
general setting (Locke, 1990; Chow and Liu, 2000). The model has these following assumptions. The subjects are considered 
to be a random sample from a large population. For each sequence, ijSX  and ijTX  have a Bivariate Normal (BN) distribution.  

It is assumed that the covariance matrix of ijSX  and ijTX  is the same for both sequences. In addition to the effects of the 



formulations, the means of ijSX  and ijTX  are affected by period effects. Sequence effects are also included in the model. The 

four means for the model are the following: 
 

1 1 1 1 2 1

2 2 2 2 1 2

( )        and      ( )

( )       and      ( )

= + + = + +

= + + = + +
jS S jT T

jS S jT T

E X E X

E X E X

µ π α µ π α
µ π α µ π α

 

 
where Sµ and Tµ  are the population means for the standard and test formulations, 1π  and 2π  are the period effects, and 1α  

and 2α  are the sequence effects. The constraints 1 2 0+ =π π  and 1 2 0+ =α α  are assumed.  

The parameter of interest is defined as the ratio of the two formulation means, called /= T SR µ µ , with 0≠Sµ .  By means of 

data from a comparative bioavailability study, we obtain the maximum likelihood estimators (MLE) for the means 

( )ˆ ˆ ˆ,= T Sµ µ µ  and covariance matrix Σ̂ , as follows: 
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These MLEs are consistent for the true values and by the invariance property of the MLEs the consistent MLE of R is 
ˆ ˆ ˆ/= T SR µ µ  (Stuart, Ord et al., 1999).  

The aim is to construct a 100(1 )%−α  CIs for R with the FM and the new method and to provide comparisons between the two 

methods. 
 
The Fieller Method (FM) 
The FM refers to a general approach to obtain CIs for the ratio of means in a BN random variable (rv) (Fieller, 1954). The FM 

assumes that numerator and denominator of the ratio estimator ˆ ˆ ˆ/= T SR µ µ  follow a BN distribution, so that ̂ ˆ−T SRµ µ  is 

normally distributed with expected value equal to zero. By means of the standardization of ˆ ˆ−T SRµ µ , Fieller found a pivotal 

quantity for the unknown parameter R, called Q as follows:  
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Therefore, the CIs for R, if they exist, are derived from the following inequality: ( )
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ˆSµ  is significantly different from zero at level α (Locke, 1984; Liu, 1990; Hsu, Hwang et al., 1994; Vuorinen and Tuominen, 

1994). When this condition is verified, the lower limit ( ˆ
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The Exact Distribution Method (EDM) 
On the same parametric assumption of FM, the distribution of ( )ˆ ˆ ˆ,= T Sµ µ µ  is a BN rv with means ( ),= T Sµ µ µ , variances 

( )2 2ˆ ˆ/ 2 ; / 2T Sn nσ σ  and coefficient of correlation 2 2ˆ ˆ ˆ ˆ/= ST S Tρ σ σ σ . Therefore, ̂ ˆ ˆ/= T SR µ µ  is the ratio of two correlated Normal 

rvs jointly distributed as a BN rv, and its distribution is a finite non-standard mixture density with dichotomous proportions 

with a Cauchy component (Marsaglia, 2006; Galeone, 2007). The simultaneous CIs for ˆ ˆ ˆ/= T SR µ µ  can be obtained by using 

the inverse cumulative density function of R̂ , as follows:  
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R̂ . This method warrants the existence of the CIs, since the cumulative density function (CDF) is a monotonic non-decreasing 
function that can always be inverted.  
 
Simulation study 
Monte Carlo experiment was used to assess the performances of the FM and EDM for computing 90% CIs for R, by differing 
levels of correlation between numerator and denominator. We started using a simulated population with known means (0.25, 
1.20) and variances (9, 16) of the two formulations, respectively, known correlations between test and standard formulations 
(0, |0.3|, |0.6|, |0.9|) and a known R. The sample size varied from 25 to 1,600 with the rule of the doubling technique. Overall, 
there were 49 combinations of simulation parameters. For each combination of parameters, we simulated 5,000 independent 
samples for each treatment group from this population. The criterions used to evaluate the performances of the methods were 
the probability of coverage of the intervals (denoted as ( )ˆ1−α ), the average width of the intervals (denoted as Amp) and the 

symmetric miscoverage of the intervals (denoted as %ds). 
 
Results 
The performances of the two methods for the construction of 90% CIs for R, for 0.6=ρ , were reported in Table 2. For small 

values of n (n≤200) there was at least one unbounded CI that yielded the average widths not to be expressed as a real number. 
Consequently, the corresponding coverage probabilities were very low. For elevated values of n, the performances of the CIs 
based on FM and EDM were very close.  
 
 

Table 2 – Performances of the two methods 
for the construction of 90% CI with 0.6=ρ . 

   FM  EDM 

n      

( )ˆ1−α   0.1999  0.9169 

%ds  0.8376  0.5321 25 

Amp  -  4.2393 

( )ˆ1−α   0.3164  0.9104 

%ds  0.8266  0.6004 50 

Amp  -  2.8690 

( )ˆ1−α   0.8224  0.9064 

%ds  0.7635  0.6106 100 

Amp  -  1.5660 

( )ˆ1−α   0.8703  0.9004 

%ds  0.6810  0.4960 200 

Amp  -  0.6908 

( )ˆ1−α   0.8960  0.8996 

%ds  0.5192  0.5180 400 

Amp  0.3953  0.3442 

( )ˆ1−α   0.9028  0.9028 

%ds  0.5374  0.5342 800 

Amp  0.2631  0.2628 

( )ˆ1−α   0.9032  0.9029 

%ds  0.5353  0.5372 1600 

Amp  0.1817  0.1816 
 
 
Extending the simulation results to all other values of ρ considered, the FM always failed for 50≤n , with corresponding non-
acceptable coverage probabilities. For ρ  equal to -0.6 and -0.9, the FM failed also for n equal to 100, but in these cases the 

coverage probabilities were higher as referred to those for n<100. For other values of ρ , i.e. equal to –0.3, 0 and 0.3, the FM 

failed also for n equal to 200. The simulation results highlighted that the FM less frequently produces unbounded confidence 
intervals for R with increasing values of n. Finally, the performances of the two methods were satisfactory and very close to each 
other for high values of n. 
 



Conclusions 

The EDM for the construction of CIs for ˆ ˆ ˆ/= T SR µ µ  always exists and produces bounded intervals with satisfactory and very 

close performances to the FM. Although the calculus of the limits of the CIs by means of the new method is more complicated, 
as this involves the calculation of the inverse of a CDF that can be obtained only by a computer support, the EDM always 
allows to obtain bounded CIs, also when the FM produces unbounded intervals. The implementation of procedures and 
functions to construct CIs with the EDM is already available in Matlab and will soon be available in SAS package, too. 

Differently from other parametric methods for the construction of CIs for ˆ ˆ ˆ/= T SR µ µ , these two methods are preferable 

because they take into account not only the variability of ˆSµ  but also the intersubject variability. Finally, the EDM is easily 

extended to the general crossover designs, as was the FM proposed by Locke (1990). 
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