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Abstract

According to a new hypothesis based on implicit egotism, people gravitate toward cities,

states, and careers with names similar to their own names. To support this hypothesis,

Pelham, Mirenberg, and Jones (JPSP, 2002, 82(4) 469-487) report a series of results

regarding distributions of names in different cities, states, and jobs. In the present article new

analyses of the original data are reported, showing that the hypothesis is not supported for

the large majority of names considered by the authors, and for some names even the opposite

result is found. In addition, a meta-analysis reveals that either the data are unreliable, or the

hypothesis can not be supported in the whole population of names. Overall, the original data

give no support of the idea that implicit egotism influences major life decisions.
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The fascinating history of scientific enterprise is studded with hypotheses that have

challenged our understanding of reality, the way we look at our world, and our

comprehension of the causes underlying every-day life events. Among those challenging

hypotheses, we can surely number a new social psychological hypothesis, recently proposed

by Pelham, Mirenberg, and Jones (2002), which states that people prefer to live in places and

to pursue careers with names similar to their own names. Behind this hypothesis is the notion

that people like to feel good about themselves (Allport, 1961; Greenwald & Banaji, 1995),

thus they like objects associated with the self (Beggan, 1992), including the letters of their

names (Nuttin, 1985; 1987) or the numbers of their birthdays (Miller, Downs, & Prentice,

1998). Consequently, they prefer things (like cities, states, or jobs) that have associations

with those objects. The consequence of this notion, the hypothesis goes, is that people named

Louis prefer to live in Saint Louis and people called Florence choose to live in Florida. 

To test this intriguing hypothesis, Pelham et al. conducted a large number of studies,

reported a series of significant results, and concluded that the data support their hypothesis.

The aim of my contribution is to challenge this conclusion. I propose that the original

analyses can be questioned on the following ground: In all the studies reported by Pelham et

al., the sampled units are not the individuals, as the authors' analyses implicitly assume, but

rather the names, towns, and jobs the authors consider. The data structure in each of the

original studies is a nested data structure, with individuals nested under names and towns (or

jobs). Pelham et al.'s analyses seem to ignore this nesting structure and treat the individuals

as units, casting doubt on the adequacy of the statistics that are used, the test of the

hypothesis, and the generality of the effects. 

In this contribution I have re-analyzed all of the data reported by Pelham et al. in the

original article, and found little evidence in support of their hypothesis. Using statistical

analyses that take into the account the structure of the data, I show that the hypothesis is not
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supported in the great majority of the tests, and in some cases its opposite is statistically

verified. Specifically, the data allow reliable tests of the hypothesis for 74 names or numbers.

Fifty-five of these 74 cases give no significant result whatsoever, four yield a significant

result contrary to the hypothesis, and only 15 yield a significant result in support of the

hypothesis1. For the remaining data which do not guarantee a reliable test of the hypothesis, I

show that the method used by the authors can yield significant results due to spurious effects

and sampling biases. Finally, treating all the names used by the authors as randomly

sampled, I use Bernoulli's law of large numbers to show that, within the boundaries of my

approach, either the hypothesis is not supported in the population, or that the data are likely

to be biased. Overall, my analyses suggest that the data reported by the authors do not

support their hypothesis. 

The Original Data and Method

The original research deals with the hypothesis that people gravitate toward cities,

states, or careers that have names similar to their personal names or birth dates. For the sake

of brevity, in this contribution I will talk about names whenever I refer to objects related to

self (names or birthdays), and to places whenever I refer to the target of decisions (cities,

states, careers). Therefore names are sometimes birthdays, and places are sometimes cities,

sometimes states, and sometimes careers, depending on the specific study under discussion. I

will use the expression name-place match to refer to the combination of name of a person

and name of a place that share the same initial letters (Louis-Saint Louis), whereas I will use

the term name-place mismatch to refer to pairs of personal name and name of a place that do

not share the same initial letters (Louis- Toronto). 

The original empirical evidence is based on 10 studies using data collected from

archival records publicly available on the internet. In each study, the authors chose a number
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of personal names and a number of places, and counted how many people with each name

lived in places with names similar to the personal name. As a general method, the authors

looked at the probability of occurrence of name-place matches, they estimate the expected

probabilities due to chance, they compare the two probabilities, and draw conclusions

concerning the hypothesis. Because the 10 studies reported by Pelham et al. differ in the

number of names considered, in the way the expected probabilities are computed, and the

way statistics should be applied, I will treat the studies in different sections, grouping the

studies depending on their shared characteristics2.

Overall, there are three groups of studies that share the same characteristics: a) Study

5, the "Saint cities study", where only name-place matches are considered and the expected

probabilities of names are drawn from the entire population of American names; b) Studies

2, 3, 4, and 6, where a set of names (more than two) and a set of places (more than two) are

cross-tabulated, providing data about both name-place matches and mismatches; c) Studies 1,

7, 9, and 10 where two name-place matches are compared in 2x2 tables. 

As I presently show, those three categories of studies are not equivalent, for they have

different degrees of reliability, different sampling biases, and require different

considerations. The first category includes the best and most accurate data, the  second

category includes data which are less reliable but still workable, the third category represents

poor sampling and share features of anecdotal data. I therefore start my analysis with the best

data set available (the first category or Study 5 in the original article).

The Saint City Study

The rationale of Study 5 is the following. If people gravitate toward cities that remind

them of their own name, we should observe that cities featuring a personal name (as Saint

Louis, Saint Joseph, Saint Marie, etc.) should attract people named with that name (Louis,
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Joseph, Marie), more than what we would expect by chance. Upon this idea, the authors

considered all the 35 American cities named after a Saint (eight with a female name, 27 with

a male name), collected the actual frequencies of people with the Saint name living in the

city, and compared those frequencies with the frequencies of each name in the whole

American population (see Table 1 here and table 8 in the original contribution3). 

To test the hypothesis, the authors used an overall test, which is based on the

comparison between the sum of the actual probabilities of name-place matches (column 3 in

Table 1) and the sum of the expected probabilities given by chance (column 2 in Table 1)4.

Because this overall test ignores the fact that the units of analysis are names and states rather

than individuals, this overall test does not test the hypothesis. The overall test tells us only if

the two distributions (actual and expected probabilities) are different (Cramer, 1999).

Obviously, this is necessary but not sufficient to test the hypothesis. This overall test, in fact,

might be significant even if only one name-place match out of 27 is significantly different

from chance, while the rest of the name-place matches are as likely as chance or even less

likely than chance. 

The correct test of the hypothesis should generalize the effect across names. We

therefore need to test how many names reveal a significant effect in support of the

hypothesis, how many are not in support of the hypothesis and how many, if any, are against

the hypothesis (i.e., significantly less than chance). Only by considering this consistency of

the effect across different names we can evaluate if the hypothesis is supported by the data.

Table 1 reports the tests and the significant effects I found for the "Saint" data set. As regards

female names, I observe that the expected and actual name frequencies are different

(
� 2(7)=69.0 p < .01), but only two names (Mary and Clair) are statistically significant from

chance. This case exemplifies the aforementioned inadequacy of the overall test. For female

names, in fact, the overall test (
� 2=69.0) is significant in that one name-place match (Mary
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� 2=59.89) accounts for almost all the differences between the expected and the actual

frequency distribution. 

As regards male names, the expected and observed frequency distributions are also

different (
� 2(26)=606.9 p < .01), and 10 individual name-place matches are significantly

different from chance. Of these 10 significant results, however, six are in support of the

hypothesis and four are against the hypothesis, that is people with a name matching the city

name are significantly less likely to live in that city. For male names, the inadequacy of the

overall test is even more pronounced than for female names: In Saint Louis the observed

frequency of the name Louis is 2266 and the expected frequency is 1495, clearly in support

of the original hypothesis. But if this one city is left out and the data for all the individuals

for the 26 cities are used, the observed frequency of name matches is 1729 and the expected

frequency is 1981, clearly in the opposite direction from the hypothesis. So, the result

reported in the original article, ignoring cities and names as the unit, derives simply from a

single city-name matching5.

All things considering, the best data set available from the original research yields

results that can hardly be considered supportive of the name-place matching hypothesis. Out

of 35 names, for 23 there is no evidence in support of the hypothesis, for eight the hypothesis

is supported, and for four the opposite of the hypothesis is found6. Disregarding test of

significance, the analyses for all 35 names reveal a difference between the observed and the

expected frequency in the predicted direction for 16 names, whereas for 19 names, this

difference is in the wrong direction. 

Such small probability of significant effects should also be evaluated in light of the

sampling effects that might exist. I will discuss the meaning of those results in light of

potential sampling errors in a more detailed and statistical fashion later on. I now turn to the

second type of studies Pelham et al. described in their article, and show that the situation is
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not much different from the one above.

The Cross-tabulation Studies

Studies 2,3,4, and 6 are conducted as follows: N names and N states (or cities) are

selected, such that each name (e.g., Florence, Georgia, Louise, and Virginia) can be matched

with a state (e.g., Florida, Georgia, Louisiana, Virginia) according to its initial letters. The

frequency of people living in each state with each of the names are collected from public

archives, and an NxN table is constructed. To test their hypothesis, the authors computed an

overall test (with 1 degree of freedom), based on the difference between observed and the

expected probabilities of the name-place matches. All of the studies, according to the

authors, yield significant results in support of the hypothesis. 
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As for the Saint city study, an overall test is not informative in that one name can be

responsible for the overall effect, as for Saint Louis. In contrast to the Saint city study,

however, we can not simply test each name-place match in order to count the number of

significant results, because we do not have the expected distributions in the whole

population. Thus, the expected frequencies (due to chance) can only be computed using the

marginal frequencies of the tables. Because the tables include very few names and cities

(from four to eight), those data pose several different problems: First, the population-wise

distribution of a name is computed out of four, seven, or eight cities, rather than across the

thousands of cities that form the real population. Thus, substituting only one city in a table

may be enough to change all the results. Second, the expected frequency of a given name in

the letter-matching place is not computed based on the population of other names in that

place, but rather on the  few particular names selected in the study. Thus, changing only one

name in the table can yield completely different results. Third, the effects one might find can

be due to the proportion of people in the mismatching cities rather than in the matching city

(see below for examples).

To avoid arbitrary effects, we should test the hypothesis on the NxN tables using a

logic that considers names as units of analysis, across which generalization is sought.

Consider a case with four names and four cities. The hypothesis states that if my name is A,

it should be more likely that I live in Apolis than in Bpolis, Cpolis and Dpolis7. Thus, the

first necessary condition is that the distribution of probabilities of people named A in the four

cities should be different from the expected (from chance) distribution. The second condition

is that the probability of A in Apolis should be higher than chance. The third condition is that

the probability of A in all the other cities excluding Apolis should be random (equal to the

expected). The necessity of those three conditions can be easily appreciated in Figure 1.

Figure 1a shows the  probabilities provided in Pelham's et al. Study 3, of living in eight
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Canadian cities if your name is Tor* (read names beginning with Tor). The values in the

figures are the differences between the expected probability and the actual probability of

each cell, such that 0 indicates chance probability, positive values mean more likely than

chance, and negative values mean less likely than chance. I chose this example in that for the

name Tor* , the hypothesis is clearly verified, so we can appreciate how the method I

propose applies to a positive case. 

As can been seen in Figure 1a, the probability of the match Tor-Toronto is higher than

chance, and the rest of the probabilities are uniformly low. This means that, as the hypothesis

predicts, people named Tor* are more likely to be found in Toronto than they are in the other

seven cities. This means also that if we test the distribution of Tor* in the eight cities against

the expected distribution, we find a significant effect, whereas if we remove Toronto, we find

no significant effect. The first test tells us that people named Tor* do not distribute randomly

in the eight cities, the second test tells us that this is due to the fact that people named Tor*

are over-represented in Toronto. 

Why do we need the second test? The reason is that the expected frequencies are

dependent on the frequencies of the few names in the table, thus without the second test we

can not attribute a significant effect to the name-place match. To appreciate this, consider the

probabilities of living in the eight Canadian cities if you are called Edm*, depicted in Figure

1b. Here also we see that the match Edm-Edmonton is more likely than chance, but in this

case the effect is due to the fact that people named Edm* are under-represented in Toronto

and Hamilton, with a consequent increase in the remaining cities. As a consequence, it seems

that people called Edm* gravitate toward Edmonton, whereas they actually gravitate, with

higher probability, toward Calgary and Vancouver, and, with around the same probability,

toward London and Winnipeg. Thus, for the name Edm*, the effect is not due to the letter

matching, but instead to the distribution of people in Toronto, Hamilton, and Calgary, clearly
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outside the reach of the hypothesis. 

The previous reasoning leads to the following test: a) Compute the Chi-square test for

the distribution of people named X in the N cities (against the expected values); b) compute

the Chi-square test for the distribution of people named X in the N-1 cities, excluding the

matching city (against the expected values re-computed after deleting the matching city).

Because the requirement of randomness in the second distribution may seem too

conservative, we should at least test that the distribution of people, excluding the matching

city, should be more similar to the expected distribution than the distribution including the

matching city. This can be accomplished by computing the ratio of the two Chi-squares (with

and without the matching city). The ratio of two Chi-squares, each divided by its degrees of

freedom, distributes as a F (cf. Isaac, 1999), and its significance can be evaluated as in the

ANOVA model, using the F distribution8. If the ratio is significant, the hypothesis is

supported for that particular name. Then we can count how many names support the

hypothesis.

Using this method I have re-analyzed all the tables cited by the authors in Studies

2,3,4, and 6 (see Tables 2 and 3 in this contribution). Study 2 considered one table of eight

names (table 2 in the original article). I obtained one significant result. Study 3 considered

one table of eight names (table 3 in the original article). I obtained one significant result.

Study 4 considered four tables of four names each (tables 4,5,6, and 7 in the original article).

I obtained two significant results for table 4, one significant result for table 5, two significant

results for table 6, and one significant result for table 7. Study 6 considered one table of

seven birthdays, cross-tabulated with seven cities featuring names which include numbers

(Two Harbours, Three Oaks, etc.). Here I found no significant result (see Table 4). In this

last study, the distribution of people with each birthday across the seven cities is equal to the

expected distribution, so no further test is necessary to reject the hypothesis.
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To test the validity of my method, it is worth noting that it yields a significant result

for Tor-Toronto, whereas it yields a non significant result for Edm-Edmonton, as we would

expect by looking at the graphs in Figure 1. To reinforce its validity, note also that my

method yields a significant result for Texa-Texas, and a non significant result for Illi-Illinois,

an outcome that we would expect after inspecting the probabilities depicted in Figure 2.

Overall, those studies allow us to test the hypothesis 39 times. I obtained eight

significant results in support of the hypothesis. This means that across those studies, 79% of

the names yield no effect whatsoever. It seems doubtful that these represent support for the

hypothesis when the hypothesis is refuted 79% of the cases9. Furthermore, this 21 % of

positive cases should be evaluated in view of nonrandom sampling of names used by the

authors, and the very small number of names employed to compute the probabilities (see the

meta-analytic section below).  

2x2 Table Studies

Four studies of the original research are based on 2x2 tables. In Study 1 two names

and two matching cities are selected, the frequencies of people with those names in those

cities are cross-tabulated, and the frequencies are evaluated with a Chi-square. In Studies 7,9,

and 10, the same operation is conducted for jobs instead of cities. 

For these studies, of course, no new analysis can show different results. Are those data

therefore reliable tests of the hypothesis? I propose that they are not, for a simple reason:

Because the unit of the analysis should be names and not people, each 2x2 table should be

treated as hardly more than a single observation. As with any test performed on an extremely

small sample size, serious problems soon arise: First, the fact that we find a significant result

in a 2x2 table does not imply that the effect will generalize if we enlarge the number of

names in the sample. Second, 2x2 tables can yield a significant effect for an infinite number



      13

of reasons beyond the correspondence between names and places. I now provide evidence

relevant to these two major problems.

Assume that 2x2 tables were reliable ways to test the hypothesis. If so, I can test the

hypothesis in the 2x2 tables contained, for instance, in the 8x8 table of Study 2 or Study 3. In

each NxN table, in fact, there are (N-1)N/2 distinct 2x2 tables which cross-tabulate two

name-city matches. I can therefore use these data, which according to the authors provide

evidence in support of the hypothesis, to construct 28 2x2 tables that could be examined

individually. For each data set (original tables 2 and 3), the 28 tables can be formed

matching, in turn, every two names with the corresponding two cities (that is, the first table

cross-tabulates Tor and Vanc, with Toronto and Vancouver; the second Tor and Ott with

Toronto and Ottawa, and so on up to the last table which cross-tabulates Ham and Lo with

Hamilton and London). For each table we can compute the Chi-square according to Pelham

et al. method. 

The results I found clearly show the inconsistency of results yielded by 2x2 tables. As

regards the data of Study 2, out of 28 tests, I found 17 significant results, 14 in favor of the

hypothesis and three against the hypothesis. As regards to the data of Study 3, out of 28 tests,

I obtained 11 significant results in support of the hypothesis, and one against the hypothesis.

Thus, less than half of the tests show a significant effect and half a non-significant effect.

Consequently, the fact that one 2x2 table yields a significant effect for a name, does not

imply that the name would show a consistent effect when compared with other names. This

means also that when a name does not show a consistent effect when compared with many

names, it can still produce spurious effects when compared with only one name. We can find

evidence of this bias by analyzing the birthday study (Pelham et al.'s table 7). If we use a 2x2

approach on table 7, we obtain four significant results in favor of the hypothesis, despite that

fact that table 7 is not different from a random table, as indicated by my analysis of NxN
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tables and by a standard Chi-square test (
� 2(36)=42.95, p=.19). 

Do these analyses using 2x2 tables only fall short in generalizing the hypothesized

effect? Unfortunately not. The major problem we face by using 2x2 tables is that the sample

of names one uses is so small as compared with the population of names, that the effects can

be due to a variety of spurious factors affecting the data. To show the danger associated with

2x2 tables, I have taken the original table 2, and explicitly remove the possibility that any

effect is due to the name-letter matching. This can be done by exchanging column 1 with

column 8, column 2 with 1, column 3 with 2, and so on, with the resulting effect that the

hypothesis becomes supported when Georgi-California, Cali-Texas, Texa-Florida, Flori-

Illinois, Illi-Pennsylvania, Penny-Ohio, Ohi-Michigan, Michi-Georgia are more likely than

other pairs. I then constructed the 28 2x2 tables again, and ran my tests. Out of 28 tests, I

obtained 15 significant results, 12 in favor of the hypothesis and three against the hypothesis.

Consequently, even when I removed the possibility that the statistical effects are due to the

matching of names and places letters, I was able to produce about the same proportion of

significant results than by matching names and cities according to the letters in their names.

And this is not all. 

We can take this reasoning a step further. In a 8x8 table there are 40,320 possible

orders of the columns, in 14,833 of which no name is matched with the corresponding

original place (cf. Roberts, 1984). Those 14,833 orders produce 415,324 2x2 tables (14,833 x

28) in which names and places are mismatched. Importantly, because in these 415,324  tables

the correspondence between names and places is removed, almost no effect in the original

direction should be found (more exactly, no more than 5%), both under the hypothesis that a

name-letter effect does exist, and under the null hypothesis of no effect at all. That is, as

along as no spurious effect occurs, almost no effect should be found in these tables.  Instead,

using the data in table 2, I found 94,887 2x2 tables (22%) yielding a significant result in
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direction of the hypothesis (63,734 or 15% for table 3). Thus, even when non effect should

be found irrespective of the null hypothesis we intend to test, we still observe a substantial

number of statistical effects that are neither random nor justifiable with the authors'

hypothesis. Consequently, they are spurious effects due to the fact that a 2x2 tables samples a

very tiny part of the  existing population of names and places. On the basis of these

considerations, we can reasonably ask whether single 2x2 tables presented in Pelham et al.

Studies 1,7,9, and 10 yield a real effect or are drawn from the same population of our 94,887

tables producing spurious effects. The answer is that we simply do not know. This is another

reason why 2x2 tables are not suitable for testing the name-place matching hypothesis10.

Meta-Analysis: Is There a Sampling Problem?

Throughout this contribution, I have argued that in light of the potential sampling

problem of the studies conducted by Pelham et al., even the few significant results I obtained

can be used to show that the hypothesis is not supported. In this section I provide evidence in

favor of my argument. 

It is clear that the sampling problem of the original contribution does not concern the

number of people involved in the studies (which is large), nor the procedure employed to

sample them (which is random). The sampling problem in the original studies concerns the

number of names (self-related objects) and cities (decision-targets) considered in each study.

Specifically, the number of cities and names used to compare the probabilities of the target

names is so small that we cannot confidently draw reliable conclusions from these studies. If

we could, we would conclude that the hypothesis is not supported. That is, I now show that if

the original studies are unbiased, they indicate that the hypothesis is not supported in the

whole population. Conversely, if one still sustains that the hypothesis is supported in the

population, than the studies must be necessarily biased and therefore inconclusive. 
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How can I prove my point? By employing Bernoulli's well-known law of large

numbers (cf. Isaac, 1995), we can determine, a priori, the relationship between a) the number

of sampled units (i.e., the number of names in a study) and b) the probability of obtaining a

supporting result. Fortunately for my case here, the relationship between number of sampled

units and probability of a supporting result is different, depending on whether the hypothesis

we are testing is verified in the population (i.e., supported if all possible members of the

population are considered) or falsified in the population (i.e., not supported if all possible

members of the population are considered). 

Let me clarify the nature of this relationship using an example. Assume I want to test

the hypothesis that Jack is taller than the average American person. Assume further that Jack

is indeed taller than average, thus my hypothesis is verified in the population. In the first

experiment, I compare Jack with one person I randomly choose from a given population, in

my second experiment I compare Jack with 10 people, in my third with hundred people and

so on. In the first experiment, I might find someone who is taller than Jack or smaller than

him, and thus find some non supporting result, more or less depending on my luck. Also in

my second experiment I might find some group that is on average taller than Jack, but the

chance of finding such a group is smaller than the chance to find a single person taller than

Jack. Bernoulli's law of large numbers assures us that the larger is the sample of cases I

compare Jack with, the more the average of the sample will be similar to the average of the

population, and thus the higher the probability of finding supporting results. Thus, if the

hypothesis is verified in the population, the larger the number of sampled units, the higher

the probability to verify the hypothesis.

Assume now that Jack is shorter than the average American person, so my hypothesis

is falsified in the population. In my first experiment, I might very well find a person taller

than Jack, but I might also select a person smaller than him. In larger samples, however, the
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probability of finding a comparison group with an average height lower than Jack's

decreases, because Jack is indeed smaller than the population average. Thus, if the

hypothesis is falsified in the population, the larger is the sample of units we employed, the

lower is the probability of verifying the hypothesis11. 

To summarize, from the foundations of statistical sampling we know that if a

hypothesis is supported in the population, the correlation between the probability of

supporting results and number of sampled units is positive, whereas if a hypothesis is not

supported in the population, the correlation is negative. Pelham et al.'s studies allow us to

compute such a correlation, because the authors provide 15 databases of different numbers of

names. In (original contribution) tables 1a, 1b, 10a, 10b, 12 and 13, two names are

compared, so the sampled units are two; in tables 4, 5, 6, and 7, the sampled units are four, in

tables 2, 3, and 8a the units are eight, in table 8b there are 27 units, and in table 9 there are

seven units. Table 5 in this contribution summarizes these numbers: For each original table

the number of names involved in the test and the probability of significant supporting result

is reported, upon which the correlation is computed. 

The correlation between the number of names in the study and proportion of

supporting results is -.54, which is negative, high and significantly different from zero, even

with only 15 observations. We therefore observe a strong negative association between the

number of sampled units tested in the studies and the proportion of significant results one

obtains in support of the hypothesis. As we know, this is the signature of hypotheses that are

not supported in the population. In fact, if we accept the data as unbiased, we should expect

that by enlarging the sample of names, the probability of supporting results would decrease,

vanishing as we approach a perfect sampling. If the hypothesis is supported in the population

despite this negative correlation, we could explain this result only as the effect of a

fundamental fault in the data, which makes studies with more names less and less reliable.
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Thus, by simply looking at the number of significant results and the number of names

involved in each study, we can conclude that the hypothesis and the data cannot be both valid

at the same time. Sustaining otherwise would be as paradoxical as saying that the height of

one person randomly chosen in a population is a better estimate of the population mean that

the mean computed across hundred persons12. 

An important characteristic of the previous meta-analysis it that it helps us

understand the status of the hypothesis even beyond and independently of the tests I have

conducted on the original data. In the previous meta-analysis, in fact, I computed the

probability of significant results according to the results I obtained. It is however possible to

conduct the same meta-analysis using the statistics reported by Pelham et al.'s original

article. According to the authors, each data set can be considered in favor of the hypothesis

because their analyses yielded significant results. Thus, the probability of supporting results

can be obtained by simply counting, in each data set, how many names show an actual

frequency higher than the expected frequency. Figure 3 presents the probability of supporting

results according to the authors' analyses as a function of the number of names considered in

each data set. The correlation between number of names and supporting results is now -.74,

which is even more negative than in the previous analyses. Figure 3 clearly suggests that the

probability of finding a supporting result tends toward zero as we increase the number of

names in the sample. Thus, also using Pelham et al.'s statistical approach, the original results

presented by the authors are still not in favor of the hypothesis13.

Conclusions

Pelham et al. have carried out a very intriguing line of research guided by a new and

original hypothesis: Major life decisions are influenced by unrelated items that assume a new

meaning when associated with the self. Their effort should be applauded for it is rare to find
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such enthusiasm in applying social psychological concepts to real life decisions, decisions

that are undoubtedly more important than letters on a computer screen. Pelham et al.'s

hypothesis, furthermore, might have challenged our idea that such important decisions as

moving to a city or choosing a career are influenced not only by future prospects, salaries,

opportunities for the family, migration flows, economical trends, potential improvements of

life conditions, and realization of personal dreams, but also by supposedly unrelated things,

like letters in a name. Strangely enough, this is one of the fundamental aims of science, to

challenge common sense and pre-existing views of reality.

Another aim of science is to promote hypotheses with compelling empirical evidence.

The empirical findings, I have argued, do not support the name-place matching hypothesis. I

have built my argument as follows: First, I have accepted the hypothesis as derived by the

original authors, without changing it or criticizing their theoretical apparatus. Second, I have

assumed that the data reported by the original authors were sufficient to verify the

hypothesis. Thus, starting from the same theory and the same data, I have approached the

hypothesis with a series of statistics which are, in my opinion, more appropriate than the

original ones. I have also tried to attribute the statistical effects I found to their likely causes,

avoiding the confusion between undistinguished significant effects and significant effects

supporting the hypothesis. Finally, I have generalized the results in order to identify the

effects of sampling biases and limitations of the empirical data, using consolidated statistical

theory and logical arguments.

My analyses suggest that the original data provide little evidence in support of the

hypothesis. As compared with the original authors' analyses, I found that very few name-city

pairs are more likely than chance, some pairs are even less likely than chance, and the

majority are as likely as chance. I also found that there is a strong association between the

number of names in the sample and the probability of finding a significant result, suggesting
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that if the data are reliable, we can conclude that the hypothesis is not supported in the

population.

In conclusion, my analyses strongly suggest that implicit egotism does not influence major

life decisions such as moving to a city or pursuing a career. Of course, new data, better

statistics, and more accurate sampling may challenge my conclusions as well. After all, the

first and most important aim of my contribution is to stimulate supporters of this hypothesis

to provide more robust evidence and more careful analyses in support of it. The second aim

of mine, fortunately, is to assure my dear friend Jack Priston that he is not doomed to end up

in jail and be a prisoner for the rest of his life. 
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Footnotes

1 In this contribution significance is evaluated at � = .05, even when multiple tests would

require a lower �  (Bonferroni's correction). I made this choice in favor of the authors'

hypothesis and because a lower � would decrease the power of the tests, an issue that may

result important when the null hypothesis is not rejected. When Bonferroni's correction is

considered, out of 74 cases I obtained 61 (82%) non significant results, 3 (4%) significant

results contrary to the hypothesis, and 10 (13%) in support of the hypothesis.

2  I will consider 9 out of 10 studies because the data of Study 8 are not reported in the

original article.

3 To avoid confusion, I refer to tables in Pelham et al.'s as tables in the original article. In

addition, I do not capitalize the word "table" when it refers to a table in the original article,

and I capitalize the word when it refers to a table in the present article.

4 Although the authors did not specify which test they used, I was able to infer it (a

squared z-test on proportions that distributes � 2), thanks to the careful calculations of an

unanimous reviewer of this paper. I am grateful for this help. Note that this method of testing

the difference between the expected and the observed distribution is highly questionable

(Cramer, 1999), because it is based on 1 degree of freedom rather than k-1 degrees of

freedom (where k is the number of names in the sample). I do not discuss this problem in the

text, because the overall test is not appropriate to test the hypothesis even if it is conducted

with a less questionable approach, such as a Chi-square test with k-1 degrees of freedom.

5 I wish to thank Charles Judd for suggesting this intriguing result. Note that this result is

not affected by the statistical power of the tests I have conducted, so it can help to rule out

possible concerns related with this issue.

6 A possible limitation of the analysis conducted on single names in Table 1 (original table
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8), is that the expected frequencies for some of the names are very small (<5). To overcome

this limitation, one can analyze only the names that yield expected frequencies greater than 5

(reported in boldface type in the original table 8). Considering only those names, one finds

that the percentage of supporting results goes from the original 22% to 33%, but also the

percentage of results against the hypothesis increases from the original 11% to 26%. Thus,

the fact that some names yield small expected frequencies does not influence the conclusions

of the analysis.

7 Note that, in favor of the authors' case, I am not considering the "priming effect", that is

parents that name their children after the state or the city the children are born in (people in

Rome are often called Romolo because Romolo was the founder of Rome). Considering this

effect, however, yields very interesting results: In Study 3 data about residents of four states

and data about immigrants in those states are presented. From those data can be evinced that,

for every name and across names, non-immigrants (total minus immigrants) are more likely

than immigrants to live in a matching state. For instance, for female names (tables 4 and 6),

the difference between observed and expected probabilities of name-place matches is .06 for

immigrants, and it is .12 for non-immigrants. Because the effect of implicit egotism is ruled

out by design in the non-immigrant sample, we can consider non-immigrants as a control

group. Thus, I found that the hypothesized effect is stronger in the control group than in the

experimental group (immigrants), another result in the opposite direction of the hypothesis.

8 More precisely, the ratio of two chi-squares, 
�

1
2 with n degrees of freedom, and 

�
2
2 with

m degrees of freedom, each divided by its degrees of freedom, distributes as F with n and m

degrees of freedom. That is, Fn,m=(
�

1
2/

�
2
2)(m/n). In our particular case, the degrees of

freedom are obtained subtracting 1 from the number of places we consider. For 8 cities, for

instance, the chi-square with the matching city has 7 degrees of freedom, whereas the chi-

square without the matching city has 6 degrees of freedom. The F ratio is than obtained as
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F7,6=(
� 2

with/
� 2

without)(6/7).

9 It should be noted that the analyses I have conducted on the NxN tables are by no means

conservative tests. A more stringent test of the hypothesis should also test the distribution of

names within one city. In fact, the hypothesis not only implies that people should prefer

places with their names more than places with different names (an effect column-wise), but

also implies that places should attract more people with a similar name than people with a

different name (an effect row-wise). When the hypothesis is tested also row-wise, out of the

39 places, four places show a significant result in favor of the hypothesis, and one against the

hypothesis. Thus, a more stringent test of the hypothesis reduces the proportion of significant

results to 10%. I gratefully thank Marco Perugini for suggesting this argument. 

10 Given the unusual nature of the previous analysis, some detail is in order. First, for the

sake of completeness, is worth mentioning that I obtained 28% of significant results in the

opposite direction of the hypothesis (27% for table 3). Note that if the original data were in

support of the hypothesis, this percentage should have been around 50%, because 50% of the

mismatching tables are exactly the opposite of a matching tables. Thus, independently of

what direction our hypothesis goes, we obtain an error rate of about 22%. Second, the careful

reader may notice that in the 415,324 2x2 tables discussed in the text, every table appears

more than once. This is not a problem because those repetitions are independent of the

significance of the test performed on the table. For completeness, however, I have also

performed the tests on the 1204 unique 2x2 tables produced by any possible orders of

columns (with name-place mismatching), and I found 270 tables (22%) significantly in the

direction of the hypothesis, corresponding to the same proportion of significant results I

found for the 415,324 tables (15% for table 3). Third, it is important to note that the previous

analysis is not meant to draw conclusions regarding tables 2 or 3, already discussed in the

section about cross-tabulation studies. If we were to use the analysis for this purpose, in fact,
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we would draw contradictory conclusions. On the one hand, we can test the null hypothesis

that the original order in table 2 (table 3) is equivalent to any other mismatching order.

Because only 2% (6%) of the  mismatched orders produce an equal or greater number of

significant results than the original order, we can reject this null hypothesis of equivalence

with p=0.02 (p=0.06). This result can be surely interpreted in favor of the authors' case. On

the other hand, we can test the null hypothesis that the effects are due to the name-place

correspondence, by assessing the probability of obtaining no significant results when the

correspondence is removed. Because this probability is 0.009 (0.003), we can reject the null

hypothesis that the effects are due to the name-place correspondence with p=0.009

(p=0.003). Taken together, these results can be interpret either against or in favor of the

authors' hypothesis, depending on one's viewpoint. Either way, these results do not contradict

the analysis conducted on tables 2 and 3 in the  cross-tabulation section, and certainly do not

invalidate the evidence regarding the spurious effect produced by 2x2 tables. For readers

interested in performing this kind of analyses, ad hoc SAS macros are available on request

from the author. Without a fast computer, however, running these analyses requires a lot of

patience.

11 The third case is that in all the experiments the probability is equal to the probability in

the population, which entails a zero correlation but requires that all the experiments show the

same proportion of significant results, which is not the case here.

12 It is important to note that the previous analysis is quite robust even if it is based only

on 15 data sets. It is in fact very difficult to change the negative correlation I found into a

positive one, without decreasing the proportion of significant results. As an example, given

the present data, the correlation would become positive if we add a new data set with 50

names showing 100% of significant results, or four data sets of 20 names each showing

100% of significant results. 
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13 Note that the meta-analysis conducted on the original authors' results is not based on

the acceptance of the statistical null hypothesis of single tests, so it is not influenced by the

statistical power of those tests. 
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Table 1

Distribution of names in the Saint cities and corresponding test of the hypothesis (Study 5)

Name
Proportion City 

Expected Actual Population

� 2 p.

Agatha .000091 .000000 183 .02 .90

Anne .001305 .000000 1703 2.22 .14

Bernice .001381 .000000 133 .18 .67

Clair .000155 .000315 25376 4.21 .04

Helen .009068 .010676 1405 .40 .53

Marie .004591 .005975 5021 2.09 .15

Mary .022972 .033901 11504 59.82 <.01

Rose .004141 .003431 583 .07 .79

Anthony .002508 .003858 1296 .94 .33

Augustine .000084 .000000 13057 1.10 .29

Bernard .001523 .001600 1250 <.01 .94

Charles .014408 .015509 21343 1.80 .18

David(s) .004549 .002035 2948 4.57 .03

Elmo .000126 .000000 1083 .14 .71

Francis .002432 .004752 2315 4.17 .04

Gabriel .000148 .000000 276 .04 .84

George .014347 .012532 6942 1.59 .21

Henry .006720 .033755 474 56.33 <.01

Ignance .000007 .000000 1328 .01 .92

Jacob .001111 .005319 376 5.99 .01

James .020204 .015049 10499 13.75 <.01

Joe .002471 .005117 2345 6.64 .01

John .029861 .022749 5187 8.83 <.01

Joseph .013665 .008143 36349 81.29 <.01

Leonard .002038 .002132 469 <.01 .96

Louis .004168 .006206 358699 397.62 <.01
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Table 1 (continued)

Name
Proportions City

Expected Actual Population

� 2 p.

Mark(s) .000679 .000000 113 .08 .78

Martin .001477 .000000 77 .11 .74

Matthew(s) .000536 .001037 1928 .90 .34

Michael .003717 .013210 757 16.33 <.01

Paul .005469 .005445 119736 .01 .91

Peter .002414 .002956 2706 .33 .57

Stephen(s) .001221 .000549 1823 .67 .41

Thomas .007796 .013746 873 3.57 .06

Vincent .001080 .000000 56 .06 .81

Note. Names yielding a significant result ( � = .05) are in boldface type. Names yielding a

significant result ( � = .05) opposite to the hypothesis are underlined.



      29

Table 2

Test of the hypothesis for names in Study 2 and 3

Name
� 2

with Match
p.

� 2

without
Match

p. F Ratio p.

Cali 132.59 <.01 89.32 <.01 1.27 .39

Texa 121.8 <.01 8.46 .21 12.34 <.01

Flori 91.86 <.01 51.19 <.01 1.54 .31

Illi 108.54 <.01 108.92 <.01 .85 .59

Penny 395.33 <.01 381.44 <.01 .89 .57

Ohi 69.69 <.01 56.64 <.01 1.05 .48

Michi 95.34 <.01 52.93 <.01 1.54 .31

Georgi 41.87 <.01 41.3 <.01 .87 .58

Tor 149.39 <.01 24.48 <.01 5.23 .03

Vanc 16.91 .02 16.9 .01 .86 .58

Ott 43.07 <.01 43.13 <.01 .86 .58

Edm 12.92 .07 12.15 .06 .91 .55

Cal 84.09 <.01 51.43 <.01 1.40 .35

Win 51.83 <.01 42.5 <.01 1.05 .49

Ham 70.78 <.01 49.95 <.01 1.21 .41

Lon 37.94 <.01 19.48 <.01 1.67 .27

Note. The second and third column report the Chi-square test and significance concerning

the distribution of people with the corresponding name in the four states considered. The

fourth and the fifth report the test excluding the matching state. The sixth and seventh

column report the Chi-square ratio and level of significance. Names yielding a significant

result ( � = .05) in support of the hypothesis are in boldface type.
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Table 3

Test of the hypothesis for names in Study 4

Name
� 2

with Match
p.

� 2

without
Match

p. F Ratio p.

Florence 2374.30 <.01 175.24 <.01 9.03 .05

Georgia 1434.40 <.01 137.03 <.01 6.68 .07

Louise 1031.79 <.01 602.69 <.01 1.14 .43

Virginia 2094.59 <.01 151.45 <.01 9.22 .05

George 806.63 <.01 614.71 <.01 .87 .50

Kenneth 319.05 <.01 161.37 <.01 1.32 .39

Louis 4779.23 <.01 96.74 <.01 32.94 .01

Virgil 1338.61 <.01 865.24 <.01 1.03 .46

Florence 596.33 <.01 2.36 .31 168.80 <.01

Georgia 323.13 <.01 181.15 <.01 1.19 .42

Louise 165.83 <.01 139.41 <.01 .79 .53

Virginia 170.74 <.01 4.59 .10 24.82 <.01

George 30.01 <.01 28.21 <.01 .71 .56

Kenneth 3.79 .29 3.66 .16 .69 .57

Louis 126.85 <.01 2.09 .35 40.42 .01

Virgil 158.73 <.01 77.35 <.01 1.37 .38

Note. The second and third column report the Chi-square test and significance concerning

the distribution of people with the corresponding name in the four states considered. The

fourth and the fifth report the test excluding the matching state. The sixth and seventh

column report the Chi-square ratio and level of significance. Names yielding a significant

result ( � = .05) in support of the hypothesis are in boldface type.
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Table 4

Test of the hypothesis in Study 6

Birthday
� 2

with Match
p.

2.2 4.21 .65

3.3 11.75 .07

4.4 4.55 .60

5.5 5.19 .52

6.6 6.87 .33

7.7 4.97 .55

8.8 5.42 .49

Note. The second and third columns report the Chi-square test and significance concerning

the distribution of people with the corresponding birthday in the seven cities considered. No

other test is reported because the first necessary condition is already not satisfied, that is, for

each birthday, the distribution of people in the seven cities is equal to the distribution

expected from chance.
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Table 5

Proportion of significant results supporting the hypothesis as a function of number of names

considered in the study

Original Table
Number of

names in the
study

Proportion of
significant

results

1 2 1

1 2 1

2 8 .125

3 8 .125

4 4 .500

5 4 .250

6 4 .500

7 4 .250

8 8 .250

8 27 .220

9 7 1

10 2 1

12 2 1

13 2 1

14 2 1
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Figure Caption

Figure 1. Differences between actual and expected probabilities of living in eight Canadian

cities given a name. a) Names beginning with Tor. b) Names beginning with Edm. �

indicates the observed probability minus expected probability, where probability is the

frequency of a cell divided by the sample size. The probability of the name-place match is

emphasized with a darker bar. 

Figure 2. Differences between actual and expected probabilities of living in eight American

states given a name. a) Names beginning with Texa. b) Names beginning with Illi. �

indicates the observed probability minus expected probability, where probability is the

frequency of a cell divided by the sample size. The probability of the name-place match is

emphasized with a darker bar. 

Figure 3. Probability of obtaining a result in support of the hypothesis as a function of the

number of names included in a study, under the assumption that the analyses conducted by

the original authors are appropriate.
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Figure 1

a) Names beginning with Tor

b) Names beginning with Edm
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Figure 2

a) Names beginning with Texa

a) Names beginning with Illi
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Figure 3
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