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Abstract

The Dirichlet family owes its privileged status within simplex distributions to easyness
of interpretation and good mathematical properties. In particular, we recall fundamen-
tal properties for the analysis of compositional data such as closure under amalgamation
and subcomposition. From a probabilistic point of view, it is characterised (uniquely)
by a variety of independence relationships which makes it indisputably the reference
model for expressing the non trivial idea of substantial independence for compositions.

Indeed, its well known inadequacy as a general model for compositional data stems
from such an independence structure together with the poorness of its parametrisation.

In this paper a new class of distributions (called Flexible Dirichlet) capable of handling
various dependence structures and containing the Dirichlet as a special case is presented.
The new model exhibits a considerably richer parametrisation which, for example,
allows to model the means and (part of) the variance-covariance matrix separately.
Moreover, such a model preserves some good mathematical properties of the Dirichlet,
i.e. closure under amalgamation and subcomposition with new parameters simply
related to the parent composition parameters. Furthermore, the joint and conditional
distributions of subcompositions and relative totals can be expressed as simple mixtures
of two Flexible Dirichlet distributions.

The basis generating the Flexible Dirichlet, though keeping compositional invariance,
shows a dependence structure which allows various forms of partitional dependence
to be contemplated by the model (e.g. non-neutrality, subcompositional dependence
and subcompositional non-invariance), independence cases being identified by suitable
parameter configurations. In particular, within this model substantial independence
among subsets of components of the composition naturally occurs when the subsets
have a Dirichlet distribution.

Key words: Compositional data, Generalized Dirichlet distribution, Compositional
invariance, Neutrality, Subcompositional independence.



1 Introduction

Historically the Dirichlet distribution has represented the first tool for modeling compositional data
thanks to its simplicity and good mathematical properties. It can be considered as the model en-
tailing the most extreme forms of independence for compositional data. As remarked by Aitchison
(2003, p.60) and others, such characteristic feature heavily restricts its potential for applications.
In the light of such inadequacies Aitchison (1980, 1982) proposed a powerful methodology based on
log ratio transformations of the original variables. In such approach parametric models are built
on the unconstrained transformed sample space.

Here we shall instead work directly on the original sample space with the aim of finding distributions
which include the Dirichlet but allow to model weaker forms of independence.

Several generalizations of the Dirichlet distribution have been proposed in the literature, e.g. the
scaled Dirichlet (Aitchison, 2003, pp.305-306), the Liouville (Rayens and Srinivasan, 1994 and the
references therein), Connor and Mosimann’s distribution (Connor and Mosimann, 1969). However
it is still an open problem to find a tractable parametric class which contains the Dirichlet but
also models showing significant departures from its strong independence properties (see Aitchison,
2003, p.305).

This paper proposes a new generalization of the Dirichlet (called Flexible Dirichlet) and gives an
in-depth study of the theoretical properties most relevant for the analysis of compositional data.
In particular, special emphasis will be given to various independence concepts for proportions
developed in the literature.

The present work is organised as follows. Some important properties of the Dirichlet distribution
are briefly recalled in Section 2 whereas some of the main forms of independence for compositional
data are summarised in Section 3. The Flexible Dirichlet distribution is then defined by introducing
its generating basis (Section 4) and its great tractability is shown through a number of useful
properties (such as closure under permutation, amalgamation and subcompositions) and simple
expressions for moments, marginals and conditionals. A detailed analysis of the independence
relations holding within the Flexible Dirichlet model together with simple characterisations in
terms of marginal distributions are given in Section 5. Section 6 contains some final remarks and
hints for future developments, while, for clarity of exposition, the most involved proofs are reported
in the Appendix.

2 The Dirichlet distribution

The Dirichlet distribution has density function

fD (x;α) =
Γ
(∑D

i=1 αi

)
∏D

i=1 Γ (αi)

D∏
i=1

xαi−1
i (1)

where x = (x1, . . . , xD) ∈ SD =
{

x : xi > 0 , i = 1, ..., D and
∑D

i=1 xi = 1
}

, i.e. x takes values on

the unitary simplex and α = (α1, . . . , αD) ∈ RD
+ is the parameter vector. We shall denote it by

X ∼ DD(α). For our purposes we shall allow some (although not all) αi’s to take the value zero;
in such a case the corresponding components must be interpreted as degenerate at zero.

In this section we shall recall some important properties of the Dirichlet family particularly relevant
for the analysis of compositional data.

Let us first introduce some useful definitions. Let 0 < a1 < . . . < aC−1 < aC = D and let

X1, . . . , Xa1 |Xa1+1, . . . , Xa2 | . . . |XaC−1+1, . . . , XaC
(2)

be a general partition (of order C − 1) of the vector X into C subsets. Often it is of interest
to study the behaviour of the C groups by analyzing the subcompositions and by comparing the



corresponding totals. The ith subcomposition is defined as

Si =

(
Xai−1+1, . . . , Xai

)
Ti

where Ti = Xai−1+1 + . . . + Xai
, (i = 1, . . . , C). The amalgamation is the vector of totals T =

(T1, . . . , TC).

1. Genesis.

The Dirichlet distribution can be obtained by normalizing a basis of independent, equally
scaled Gamma random variables (r.v.s) Wi ∼ Ga(αi). Formally, if X = C(W ) ≡ W/W+

where W+ =
∑D

i=1 Wi then X ∼ DD(α).

2. Moments.

If X ∼ DD(α) then expressions for the first and the second moments are particularly simple:

E(Xi) =
αi

α+

V ar(Xi) =
αi(α+ − αi)

(α+)2(α+ + 1)
=

E(Xi)(1− E(Xi))
(α+ + 1)

Cov(Xi, Xr) = − αiαr

(α+)2(α+ + 1)
= −E(Xi)E(Xr)

(α+ + 1)

where α+ =
∑D

i=1 αi. It follows that no constraints on the means of the components are
imposed, though only one parameter α+ is devoted to modeling the whole variance-covariance
structure. In particular all covariances are proportional to the product of the corresponding
means.

3. Marginals and conditionals.

The Dirichlet distribution is essentially closed under operations of marginalization and con-
ditioning, the consequent distributions being simply related to the full one. More precisely,
given a partition of order 1 X = (X1, . . . , Xk|Xk+1, . . . , XD) = (X1, X2) then

(X1, 1−
k∑

i=1

Xi) ∼ Dk+1(α1, . . . , αk, α+ −
k∑

i=1

αi).

Furthermore, the normalized conditional

X1

1− x+
2

| X2 = x2 ∼ S1 | X2 = x2

has distribution Dk(α1, . . . , αk).

Notice that the only effect of conditioning is on the support of the r.v., so that after normal-
ization the conditional and the marginal distributions do coincide. This can be interpreted
as a strong form of independence for subsets of unit-sum constrained random vectors.

4. Permutation

The Dirichlet family is closed under permutation and the permuted r.v. has Dirichlet dis-
tribution with parameter vector permuted accordingly. This apparently trivial property
expresses the fact that the Dirichlet distribution treats in a completely symmetric way all
the components, which allows to freely rearrange the order of the components.



5. Amalgamation

The Dirichlet family is closed under amalgamation, i.e.

T ∼ DC(α+
1 , . . . , α+

C)

where α+
i = αai−1+1 + . . . + αai

.

6. Subcomposition

The Dirichlet family is closed under subcomposition. In particular we have

S1 =
(X1, . . . , Xa1)

T1
∼ Da1(α1, . . . , αa1),

analogous expressions holding for all the other subcompositions.

3 Independence concepts for compositional data

Obviously the components of a r.v. X defined on the simplex cannot be independent because of
the unit-sum constraint. Therefore a large variety of forms of independence has been developed in
the literature. Here we shall briefly recall some particularly relevant ones. We shall mainly follow
Aitchison (2003) which the reader is referred to for a deeper discussion and further references on
the topic.

A first idea of independence somewhat related to a r.v. X defined on the simplex concerns the
basis W generating the composition. More precisely, a basis is compositionally invariant if
the corresponding composition X = C(W ) obtained by normalizing W is independent of its size
W+ =

∑D
i=1 Wi.

A concept which is often considered as the analogous of independence for unconstrained r.v.s is
complete subcompositional independence. A r.v. X possesses such property if the subcom-
positions Si formed from any partition of the vector form an independent set.

Many other independence definitions are present in the literature, most of which can be expressed
in terms of subcompositions Si (i = 1, . . . , C) and amalgamation T . For the sake of simplicity we
shall illustrate such ideas focusing on partitions of order 1, i.e. partitions formed by two subsets
(C = 2). In such case all the forms of independence involve the three r.v.s S1, S2 and T . The
following table reports a list of the main independence properties, with ⊥ standing for independence
and A⊥B⊥C denoting a set of independent r.v.s.

Table 1: Independence properties for partitions of order 1.

Property Independence
Partition independence S1 ⊥ S2 ⊥ T
Subcompositional invariance (S1, S2)⊥ T
Neutrality on the right S2 ⊥ (S1, T )
Neutrality on the left S1 ⊥ (S2, T )
Subcompositional independence S1 ⊥ S2

The Dirichlet distribution can be shown to possess all the above independence properties and
therefore it can be properly considered as the model of maximum independence compatible with
unit-sum constrained r.v.s.

In particular, its generating Gamma basis is compositionally invariant. Moreover, all other inde-
pendence properties are a consequence of the following well known result. Suppose X ∼ DD(α)



and let (S1, . . . , SC) be the subcompositions and T the amalgamation derived from an arbitrary
partition of X into C subsets. Then the C + 1 r.v.s S1, . . . , SC , T are independent.

4 The Flexible Dirichlet

The new distribution, called Flexible Dirichlet, has been derived by normalizing an appropriate
basis of positive (but dependent) r.v.s as follows.

4.1 Generating basis

We shall define a basis through a parametric family of positive and dependent r.v.s which contains
Gamma independent variates as a particular case. This is achieved by starting from the usual basis
of independent equally scaled Gamma r.v.s Wi ∼ Ga(αi) and randomly adding to one of such D
r.v.s an independent Gamma r.v. (with the same scale parameter) U ∼ Ga(τ). The latter variate
is allocated to the ith component of the basis with probability pi, (i = 1, . . . , D).

Formally, let Z = (Z1, . . . , ZD) be a r.v. independent from U and from the Wi’s which is equal to
ei with probability pi where ei is a vector whose elements are all equal to zero except for the ith

element which is one. Here the vector p = (p1, . . . , pD) is such that 0 ≤ pi < 1 and
∑D

i=1 pi = 1.

Then the new basis Y = (Y1, . . . , YD) is defined as

Yi = Wi + Zi U i = 1, . . . , D. (3)

In the above definition we let αi ≥ 0 and τ ≥ 0, a Ga(0) r.v. being interpreted as degenerate at
zero. We only ask that α+ + τ > 0 to prevent all components of Y from being degenerate at zero.

By conditioning on Z one can easily obtain the joint distribution of Y = (Y1, . . . , YD):

F (y;α, p, τ) =
D∑

i=1

Ga(yi;αi + τ)
∏
r 6=i

Ga(yr;αr)

 pi (4)

where Ga(yi;λ) denotes the distribution function of a Gamma r.v. with shape parameter λ. Such
density is therefore a finite mixture of random vectors with Gamma independent components. In
particular the one-dimensional marginal distribution function takes the form:

F (yi;αi, pi, τ) = piGa(yi;αi + τ) + (1− pi)Ga(yi;αi). (5)

Notice that when τ = 0 the basis Y has independent Gamma components and coincides with the
Dirichlet basis.

Straightforward calculation shows that the first two moments of Y are equal to:

E(Yi) = αi + piτ

V ar(Yi) = αi + piτ + pi(1− pi)τ2 (6)

Cov(Yi, Yr) = −piprτ
2.

It is noticeable that the random allocation of the Gamma U variate leads to more flexibility in the
variance-covariance structure of the basis, inducing, in particular, negative correlation between its
components.



4.2 Definition and first properties

Definition Let Y be defined as in (3), then the normalized vector

X = C(Y ) =
(

Y1

Y +
, . . . ,

YD

Y +

)
(7)

where Y + =
∑D

i=1 Yi, has a Flexible Dirichlet distribution denoted by FDD(α, p, τ). �

Some important properties of such distribution are given and discussed below. In order to simplify
the notation, given a partition of order 1 X = (X1, . . . , Xk|Xk+1, . . . , XD) = (X1, X2) we shall
adopt the following definitions:

X+
1 =

k∑
i=1

Xi, X+
2 =

D∑
i=k+1

Xi

and in an analogous way we shall define the following quantities: α1, α2, α+
1 , α+

2 , p
1
, p

2
, p+

1 and
p+
2 . The following mixture representation and the moments of the Flexible Dirichlet can be easily

derived by conditioning on Z.

Property 1 (Mixture representation) The Flexible Dirichlet FDD(α, p, τ) is a finite mixture
of Dirichlet distributions:

FDD(α, p, τ) =
D∑

i=1

piDD(α + τei). (8)

In particular, the one-dimensional marginals are mixtures of two Betas:

Xi ∼ piBe
(
αi + τ, α+

−i

)
+ (1− pi)Be

(
αi, α

+
−i + τ

)
(9)

where α+
−i = α+−αi. Consequently, if all αi > 0 the density function of the Flexible Dirichlet can

be expressed as

fFD(x;α, p, τ) =
Γ (α+ + τ)∏D

r=1 Γ(αr)

(
D∏

r=1

xαr−1
r

)
D∑

i=1

pi
Γ(αi)

Γ(αi + τ)
xτ

i (10)

for x ∈ SD. �

Property 2 (Moments) The first two moments of the Flexible Dirichlet take the form

E(Xi) =
αi + piτ

α+ + τ
=

αi

α+

(
α+

α+ + τ

)
+ pi

(
τ

α+ + τ

)
V ar(Xi) =

αi(α+ − αi) + τ [αi(1− pi) + (α+ − αi)pi] + τ2pi(1− pi)(α+ + τ + 1)
(α+ + τ)2(α+ + τ + 1)

=

=
E(Xi)(1− E(Xi))

(α+ + τ + 1)
+

τ2pi(1− pi)
(α+ + τ)(α+ + τ + 1)

(11)

Cov(Xi, Xr) = −αiαr + τ(prαi + piαr) + τ2pipr(α+ + τ + 1)
(α+ + τ)2(α+ + τ + 1)

=

= −E(Xi)E(Xr)
(α+ + τ + 1)

− τ2pipr

(α+ + τ)(α+ + τ + 1)

It follows that the presence of 2D parameters allows to model the means and (part of) the variance-
covariance matrix separately. In particular, unlike the Dirichlet distribution the Flexible Dirichlet
accounts for components with the same mean but different variances or for covariances which do
not show proportionality with respect to the product of means. �



Property 3 (Marginals) As in the Dirichlet case, the Flexible Dirichlet distribution is closed
under marginalization, simple relationships holding between the parameters of the joint and the
parameters of the marginal distributions. More precisely

(X1, 1−X+
1 ) ∼ FDk+1(α1, α

+ − α+
1 , p

1
, 1− p+

1 , τ). (12)

This can be easily seen by considering the distribution of (Y1, . . . , Yk,
∑D

i=k+1 Yi). �

Property 4 (Conditionals) The (normalized) conditional distributions of a Flexible Dirichlet
are mixtures of a Flexible Dirichlet and of a Dirichlet. More precisely, the normalized conditional

X1

1− x+
2

| X2 = x2 ∼ S1 | X2 = x2

has distribution
p+
1

p+
1 + q(x2)

FDk

(
α1,

p
1

p+
1

, τ

)
+

q(x2)
p+
1 + q(x2)

Dk(α1) (13)

where

q(x2) =
Γ(α+

1 + τ)
Γ(α+

1 )(1− x+
2 )τ

D∑
i=k+1

pi
Γ(αi)

Γ(αi + τ)
xτ

i . (14)

Notice that in general, unlike the Dirichlet distribution, the normalized conditional does depend
on X2. Necessary and sufficient conditions for independence will be discussed in the next section
where all independence relationships will be analyzed.

For the Proof see the Appendix. �

Property 5 (Permutation) The Flexible Dirichlet is closed under permutation. Furthermore,
the parameters α and p of the permuted random vector are obtained by applying the same per-
mutation to the original parameters. As already noticed for the Dirichlet case, this means that
all the components are treated symmetrically and that any rearrangement of their order can be
straightforwardly dealt with.

The proof directly follows from the definition of the generating basis. �

Property 6 (Amalgamation) The Flexible Dirichlet is closed under amalgamation:

T ∼ FDC(α+
1 , . . . , α+

C , p+
1 , . . . , p+

C , τ)

where α+
i = αai−1+1 + . . . + αai

and p+
i = pai−1+1 + . . . + pai

. Notice that the parameters of the
amalgamation T are easily obtained by summing up the αi’s and pi’s within each group of the
partition (as in the Dirichlet case). This can be shown by proving that the generating basis is
closed under amalgamation, the latter property deriving from the infinite divisibility of Gamma
r.v.s. and from the structure of the allocation scheme of the Ga(τ) r.v.. �

Property 7 (Subcompositions) The distribution of subcompositions from a Flexible Dirichlet
is simply related to such family being a mixture of a Flexible Dirichlet and of a Dirichlet. Formally

S1 =
(X1, . . . , Xa1)

T1
∼ p+

1 FDk

(
α1,

p
1

p+
1

, τ

)
+ (1− p+

1 )Dk(α1)

where α1 = (α1, . . . , αa1), p
1

= (p1, . . . , pa1) and p+
1 = p1+. . .+pa1 . Clearly, analogous expressions

do hold for any other subcomposition.

The proof can be given following the same argument as in the proof of Property 4. �

Notice that Properties 6 and 7 were expressed in terms of partitions of the type defined in (2),
which, strictly speaking, are all derived from the same given order of the components Xi. However,
as the Flexible Dirichlet family is closed under permutation (with new parameters simply obtained
by permutation of the original ones) such properties hold for a completely arbitrary partition.



5 Independence relationships for the Flexible Dirichlet

The Flexible Dirichlet exhibits a sophisticated dependence structure we shall thoroughly study in
the present section. Various forms of independence are admitted corresponding to suitable param-
eter configurations, compositional invariance being the only one (among those listed in Section 3)
always holding.

Property 8 (Compositional Invariance) The basis Y generating the Flexible Dirichlet
distribution is compositionally invariant, i.e. the size of the basis Y + and the composition X are
independent.

Proof

Compositional invariance can be proved by deriving the conditional density function of X given
Y + and further conditioning on Z:

fX|Y +=y+(x) =
D∑

i=1

fX|Y +=y+,Z=ei
(x)Pr

(
Z = ei|Y + = y+

)
.

In particular, from definition (3) it immediately follows that Y + =
∑D

i=1 Wi + U and Z are
independent so that Pr (Z = ei|Y + = y+) = pi. Besides, conditionally on Z = ei, X has a
Dirichlet distribution and, consequently, it is independent of Y +. It follows that the conditional
density fX|Y +=y+(x) does not depend on Y +. �

Before further investigating the independence properties of the Flexible Dirichlet it is necessary to
determine all parameter configurations which produce the Dirichlet, the latter being the reference
model for complete strong forms of independence.

Proposition 1 The Flexible Dirichlet coincides with the Dirichlet if and only if one of the two
following conditions holds:

1. τ = 0

2. τ = 1 and pi = αi/α+, ∀i = 1, . . . , D.

In both cases FDD(α, p, τ) = DD(α).

For the proof see the Appendix. �

As a consequence, to make the model identifiable we have to adjust the parameter space so as to
exclude one of the two cases. We shall address this problem after having discussed the dependence
properties and their relation with the parameters. For the time being we keep both cases.

Let us now focus on independence properties for partitions of order 1 as described in Section 3.
All such properties can be derived from the following characterization of the joint distribution of
(S1, S2, T ).

Proposition 2 If X ∼ FDD(α, p, τ) then the joint distribution of (S1, S2, T ) can be expressed
as follows:

T ∼ FD2(α+
1 , α+

2 , p+
1 , p+

2 , τ)

and the distribution function FS1,S2|T=t(s1, s2) of (S1, S2 | T = t) is

FDk
(
s1;α1, p1

/p+
1 , τ

)
DD−k (s2;α2) p(t) +Dk (s1;α1) FDD−k

(
s2;α2, p2

/p+
2 , τ

)
(1− p(t)) (15)

where FDk
(
w;α, p, τ

)
denotes the distribution function of a Flexible Dirichlet and the weight p(t)

is given by

p(t) =
p+
1

p+
1 + p+

2

(
1−t

t

)τ Γ(α+
1 +τ)Γ(α+

2 )

Γ(α+
2 +τ)Γ(α+

1 )

.



For the proof see the Appendix. �

Let us now examine when the independence properties of Table 1 hold for the Flexible Dirichlet.
To avoid trivial independence relations suppose in the following that Si contains at least two
components, i.e. k ≥ 2 and D − k ≥ 2.

Property 9 (Subcompositional independence) The Flexible Dirichlet FDD(α, p, τ) has
subcompositional independence, i.e. S1⊥S2, if and only if at least one of the following conditions
is satisfied

1. X ∼ DD(α);

2.a p+
1 = 0;

2.b p+
2 = 0;

3.a τ = 1 and pi

p+
1

= αi

α+
1

, (i = 1, . . . k);

3.b τ = 1 and pi

p+
2

= αi

α+
2

, (i = k + 1, . . . D).

Proof

By marginalization of the distribution given in Proposition 2, the joint distribution function of
(S1, S2) can be written in the form

FDk
(
s1;α1, p1

/p+
1 , τ

)
DD−k (s2;α2) p+

1 +Dk (s1;α1) FDD−k
(
s2;α2, p2

/p+
2 , τ

)
(1− p+

1 ).

It follows that S1⊥S2 if and only if at least one of the following four conditions is satisfied:
FDk

(
s1;α1, p1

/p+
1 , τ

)
= Dk (s1;α1), DD−k (s2;α2) = FDD−k

(
s2;α2, p2

/p+
2 , τ

)
, p+

1 = 0, p+
1 = 1.

The last two conditions coincide with cases 2.a and 2.b. Thus suppose now p+
1 > 0 and p+

2 > 0.
Then by Proposition 1 we have FDk

(
s1;α1, p1

/p+
1 , τ

)
= Dk (s1;α1) if and only if τ = 0 or

condition 3.a is satisfied. Similarly, DD−k (s2;α2) = FDD−k
(
s2;α2, p2

/p+
2 , τ

)
if and only if τ = 0

or condition 3.b holds. �

Property 10 (Neutrality on the left) The Flexible Dirichlet FDD(α, p, τ) is neutral on the
left, i.e. S1⊥(S2, T ), if and only if at least one among conditions 1., 2.a, 2.b and 3.a of Property
9 is satisfied.

Proof

First notice that we can have left neutrality if and only if the conditional distribution of (S1, S2 |
T = t) factorizes as

FS1,S2|T=t(s1, s2) = FS1
(s1)FS2|T=t(s2).

Inspection of expression (15) shows that this can happen if and only if FDk
(
s1;α1, p1

/p+
1 , τ

)
=

Dk (s1;α1) or p(t) = 0 or p(t) = 1 ∀t ∈ (0, 1). The result then follows from the proof of Property
9 as p(t) is identically equal to zero if and only if p+

1 = 0 and it is identically equal to one if and
only if p+

1 = 1. �

Notice that Property 10 allows to derive conditions for independence between X2 and the nor-
malized version of X1 (see the conditional distribution given in Property 4). More precisely, such
independence is equivalent to neutrality on the left as there is a one-to-one correspondence between
X2 and (S2, T ).

In complete analogy conditions for right neutrality can be obtained.

Property 11 (Neutrality on the right) The Flexible Dirichlet FDD(α, p, τ) is neutral on
the right, i.e. S2⊥(S1, T ), if at least one among conditions 1., 2.a, 2.b and 3.b of Property 9 is
satisfied. �



Property 12 (Subcompositional invariance) The Flexible Dirichlet FDD(α, p, τ) has sub-
compositional invariance, i.e. (S1, S2)⊥T , if at least one of the following conditions is satisfied

1. X ∼ DD(α);

2.a p+
1 = 0;

2.b p+
2 = 0;

3.a τ = 1 and pi

p+
1

= αi

α+
1

, (i = 1, . . . k) and 3.b τ = 1 and pi

p+
2

= αi

α+
2

, (i = k + 1, . . . D).

Proof

Expression (15) does not depend on t if and only if p(t) is constant (for all t ∈ (0, 1)) or
FDk

(
s1;α1, p1

/p+
1 , τ

)
= Dk (s1;α1) and DD−k (s2;α2) = FDD−k

(
s2;α2, p2

/p+
2 , τ

)
. The former

condition is satisfied if and only if either τ = 0 or p+
1 = 0 or p+

2 = 0. The latter condition is fulfilled
if and only if τ = 0 or both 3.a and 3.b hold. �

Property 13 (Partition independence) The Flexible Dirichlet FDD(α, p, τ) has partition
independence, i.e. S1⊥S2⊥T , if and only if it has subcompositional invariance.

Proof

Clearly partition independence always implies subcompositional invariance. By using formula (15)
it is then easy to check that if any one of the four conditions in Property 12 holds, then S1, S2

and T are independent. �

The above independence properties can be analyzed and restated in a more compact form by exam-
ining the marginal distributions of S1, S2 and T . More precisely, from Property 6 (amalgamation)
and Property 7 (subcomposition) such distributions can be directly specified for the various cases
listed above:

1. S1 ∼ Dk(α1), S2 ∼ DD−k(α2) and T ∼ D2(α+
1 , α+

2 );

2.a S1 ∼ Dk(α1), S2 ∼ FDD−k(α2, p2
/p+

2 , τ) and T ∼ D2(α+
1 , α+

2 + τ);

2.b S1 ∼ FDk(α1, p1
/p+

1 , τ), S2 ∼ DD−k(α2) and T ∼ D2(α+
1 + τ, α+

2 );

3.a S1 ∼ Dk(α1), S2 ∼ p+
2 FDD−k(α2, p2

/p+
2 , 1)+(1−p+

2 )DD−k(α2) and T ∼ FD2(α+
1 , α+

2 , p+
1 , p+

2 , 1);

3.b S1 ∼ p+
1 FDk(α1, p1

/p+
1 , 1)+(1−p+

1 )Dk(α1), S2 ∼ DD−k(α2) and T ∼ FD2(α+
1 , α+

2 , p+
1 , p+

2 , 1).

Thus, careful inspection of the above distributions leads to the following concise characterization
of the independence properties.

Corollary Consider the three marginal distributions of S1, S2 and T . The Flexible Dirichlet
FDD(α, p, τ) has:

• partition independence (or subcompositional invariance) if and only if at least two such marginals
are Dirichlet;

• neutrality on the left if and only if at least two such marginals are Dirichlet or S1 is a Dirichlet;

• neutrality on the right if and only if at least two such marginals are Dirichlet or S2 is a Dirichlet;

• subcompositional independence if and only if at least one of the two marginals S1 and S2 are
Dirichlet. �

Let us consider the implications of such independence results in terms of choices of the parameters
of the model.

Setting τ = 1 and the αi’s proportional to the pi’s for a given group (say A) of components gives



rise to a first type of asymmetric independence between the group A and the group B of the
remaining variables: the subcomposition relative to group A is independent of the vector of the
components of group B.

Equating to zero the pi’s of group A leads to a stronger and symmetric independence between the
two groups: not only do we have independence between the subcomposition relative to group A and
the remaining components, but conversely we also get independence between the subcomposition
formed by the components of group B and the components of group A.

To shed some light on independence relations for higher order partitions, let us consider the case of
subcompositional invariance for a partition of order 2, case which can be easily extended to higher
order partitions.

Property 14 Let X ∼ FDD(α, p, τ) be partitioned into three subsets as X1, . . . , Xa1 |Xa1+1, . . . ,
Xa2 |Xa2+1, . . . , XD and denote by Si (i = 1, 2, 3) the corresponding subcompositions (see Section
2). To avoid trivial independences suppose each subset contains at least two components (i.e.
a1 ≥ 2, a2 − a1 ≥ 2, D− a2 ≥ 2). Then X is subcompositional invariant if and only if at least one
of the following conditions holds

1. X ∼ DD(α);

2. two out of the three p+
i ’s are equal to zero;

3. τ = 1 and in at least two of the three subsets the αi’s are proportional to the pi’s;

4. τ = 1, one of the three subsets has all pi’s equal to zero and one of the other two has propor-
tionality among the αi’s and the pi’s.

Equivalently, X is subcompositional invariant if and only if at least two of the Si’s have a Dirichlet
distribution.

Proof

Clearly if τ = 0 we have joint independence. Thus suppose τ > 0. Let Z1, Z2 and Z3 be defined
according to the above partition and denote by Z+

i the corresponding partial sums (i = 1, 2, 3).
By conditioning on the Z+

i ’s we obtain

FS1,S2,S3
(s1, s2, s3) =

3∑
i=1

FS1,S2,S3|Z
+
i =1(s1, s2, s3)Pr(Z+

i = 1) =

= FDa1(s1;α1, p1
/p+

1 , τ)Da2−a1(s2;α2)DD−a2(s3;α3)p
+
1 +

+Da1(s1;α1)FDa2−a1(s2;α2, p2
/p+

2 , τ)DD−a2(s3;α3)p
+
2 +

+Da1(s1;α1)Da2−a1(s2;α2)FDD−a2(s3;α3, p3
/p+

3 , τ)p+
3 .

Suppose first no p+
i ’s are equal to zero. Then S1, S2 and S3 are independent if and only if for at

least a couple of them, say Sj and Sj′ , the conditional distributions given Z+
i ’s (i = 1, 2, 3) are

the same (Dirichlet). But this is possible if and only if τ = 1 and the αi’s are proportional to the
pi’s within the subsets j and j′. Furthermore in this case S1⊥S2⊥S3 whatever the p+

i ’s may be.
Suppose now one of the p+

i ’s, say p+
j , is equal to zero. Then we have independence if and only

if for at least one of the other two subsets the conditional distributions are identical (Dirichlet),
i.e. if and only if τ = 1 and at least one of the other two subsets has the proportionality property.
Finally, suppose only one p+

i is positive. Then S1⊥S2⊥S3 always holds. �

After having examined the various forms of independence, let us come back to the identifiability
issue raised after Proposition 1. In order to make the Flexible Dirichlet model identifiable we need
to exclude either the case τ = 0 or the case τ = 1 and complete proportionality among the αi’s and
the pi’s. The exclusion of the first case, namely τ = 0, seems to be preferred as this is a boundary



point of the parameter space, thus leading to less convenient inferential procedures. Moreover, the
case τ = 1 and complete proportionality can be interpreted as an extreme case of various types of
partial proportionality which give rise to (partial) forms of independence as shown above. Notice
that if we exclude the value τ = 0 we can drop case 1. in all the above properties as the situation
where the Flexible Dirichlet coincides with the Dirichlet distribution is included both in condition
3.a and condition 3.b.

6 Conclusions

The Flexible Dirichlet model has been originated by normalizing a correlated basis of D Gamma
mixtures depending on 2D parameters. It contains the Dirichlet distribution as an inner point
of the parameter space, but it also allows for a more general variance-covariance structure and
various forms of independence/dependence for compositional data. Therefore the Flexible Dirich-
let may accommodate both for the most extreme form of independence for unit-sum constrained
r.v.s (Dirichlet case) and for various weaker independence relations. It keeps several good mathe-
matical properties of the Dirichlet distribution such as “essential” closure under marginalization,
conditioning, permutation, amalgamation and subcomposition, the derived distributions displaying
quite simple expressions.

Suitable simple parameter configurations allow to model subcompositional independence, neu-
trality as well as partition independence. Such forms of partial independence can be characterized
through the marginal distributions of subcompositions and amalgamation. In particular they quite
naturally occur when one or more of the marginals are Dirichlet.

The Flexible Dirichlet allows to account for other special situations such as essential zeroes and
multimodality. Let us just briefly comment on these issues. The former can be modeled by equating
to zero some αi’s. For example, if we wish to allow the ith component not to be present we can
set αi = 0. In such a case pi > 0 assumes the meaning of probability that Xi > 0. Multimodality
derives from the general mixture representation (8). In particular bimodality can be easily obtained
for the generic one dimensional marginal Xi as its distribution is a mixture of two Betas (see (9)).
More generally, by Property 3 one has that k-dimensional marginals can display k + 1-modality.

As far as inferential properties of the model are concerned, we investigated the estimation issue
(Migliorati et al., 2008). In particular, the maximum likelihood estimates of the parameters can
be found by means of a suitable adaptation of the E-M algorithm which considers as missing data
the values of the Zi’s (see expression (3)). The choice of the starting values for the algorithm
deserves special attention and a solution which combines the k-means clustering algorithm for
estimating the pi’s and a two-step method of moments for τ and α has proved fruitful. Moreover
distributions and properties of the estimators together with their variance estimators have been
analyzed through simulation studies.

Further analysis of inferential aspects is needed, in particular about hypothesis testing relative to
the various forms of independence. Moreover, an analysis of the Flexible Dirichlet from a Bayesian
point of view is also desirable and promising as it is easily seen to be conjugate with respect to the
Multinomial model. We plan to tackle these issues in future work.
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Appendix

Proof of Property 4

Expression (13) can be proved by partitioning the vector Z = (Z1, . . . , Zk|Zk+1, . . . , ZD) =
(Z1, Z2) which enters definition (3) of the basis and conditioning on

∑k
i=1 Zi = Z+

1 . More precisely,
we write the conditional distribution of S1 | X2 = x2 as

FS1|X2=x2
(s1) = FS1|X2=x2,Z+

1 =1(s1)Pr
(
Z+

1 = 1 | X2 = x2

)
+

+FS1|X2=x2,Z+
1 =0(s1)Pr

(
Z+

1 = 0 | X2 = x2

)
where FZ|W=w denotes the conditional distribution function of Z given W = w. It is easy to
check that, conditionally on Z+

1 = 1, X is distributed as FDD(α, (p
1
/p+

1 , 0), τ). From this one can
directly compute the distribution of X1 |

(
X2 = x2, Z

+
1 = 1

)
and then normalize it by dividing

each component by 1−X+
2 to obtain

X1

1− x+
2

|
(
X2 = x2, Z

+
1 = 1

)
∼ S1 |

(
X2 = x2, Z

+
1 = 1

)
∼ FDk

(
α1,

p
1

p+
1

, τ

)
.

The factor Pr
(
Z+

1 = 1 | X2 = x2

)
can be computed as

fX2|Z
+
1 =1(x2)Pr

(
Z+

1 = 1
)

fX2
(x2)

where fZ|W=w denotes the conditional distribution density function of Z given W = w. It
is then straightforward to see that, conditionally on Z+

1 = 1, (X2, 1 − X+
2 ) is distributed as

DD−k+1
(
α2, α

+ + τ − α+
2

)
whereas unconditionally by the marginal property 3 (X2, 1 − X+

2 ) ∼
FDD−k+1

(
α2, α

+ − α+
2 , p

2
, 1− p+

2 , τ
)
. Some algebraic computation leads then to expression (14).

Finally, by analogous arguments one can prove that S1 |
(
X2 = x2, Z

+
1 = 0

)
∼ Dk (α1). �

Proof of Proposition 1

Sufficiency

Condition 1. is obvious by the definition of the Flexible Dirichlet and condition 2. can be easily
checked by examining (10) if all αi > 0. If some αi’s (and therefore some pi’s) are equal to zero
then the corresponding random components are degenerate at zero. The remaining components
are easily seen to be Dirichlet distributed. It follows that the whole vector is Dirichlet with some
degenerate components.

Necessity



We shall prove that if neither condition 1. nor condition 2. is satisfied, then the Flexible Dirichlet
is not a Dirichlet. So we can assume τ > 0.

Suppose first that the αi’s are all strictly positive. Careful inspection of (10) shows that the
Flexible Dirichlet coincides with the Dirichlet if and only if

∑D
i=1 pi

Γ(αi)
Γ(αi+τ)x

τ
i is constant. This

can happen only if τ = 1 and pi
Γ(αi)

Γ(αi+τ) = k (k ∈ <+), which is equivalent to τ = 1 and pi

αi
= k.

Notice that
∑D

i=1 pi
Γ(αi)

Γ(αi+τ)x
τ
i can not be proportional to xτ

i for some i as no pi’s is allowed to be
equal to one (see Section 4.1).

Suppose now some αi’s are equal to zero, say αi1 , . . . , αik
. If even a single one of the corresponding

pi is positive (say pi1) then the component Yi1 is zero with probability pi1 . It follows that in this
case X can not have a Dirichlet distribution. Therefore pi1 , . . . , pik

must be all equal to zero, the
corresponding components being degenerate at zero. Notice that k ≤ D − 2 since the pi’s have
sum one and each pi is strictly less than one. The remaining D−k ≥ 2 components have a density
of the form (10) which is a Dirichlet density only if τ = 1 and pi

αi
= k. �

Proof of Proposition 2

The distribution of T derives from Property 6.

The conditional distribution (15) is derived by conditioning on Z+
1 =

∑k
i=1 Zi, Z being the Multi-

nomial vector entering the generating basis Y (see (3)). Thus we obtain

FS1,S2|T=t(s1, s2) = FS1,S2|T=t,Z+
1 =1(s1, s2)Pr

(
Z+

1 = 1 | T = t
)
+

+FS1,S2|T=t,Z+
1 =0(s1, s2)Pr

(
Z+

1 = 0 | T = t
)
.

Let us consider FS1,S2|T=t,Z+
1 =1(s1, s2): we shall prove that S1, S2 and T are independent condi-

tionally on Z+
1 = 1.

Thus in the following let us suppose Z+
1 = 1 so that all the distributions are to be interpreted

conditionally on it. By definition Y 1 = (Y1, . . . , Yk)⊥Y 2 = (Yk+1, . . . , YD). Define Ỹ 1 = Y 1/Y +
1

and Ỹ 2 = Y 2/Y +
2 and notice that Ỹ 1 = S1 ∼ FDk(α1, p1

/p+
1 , τ) and Ỹ 2 = S2 ∼ DD−k(α2).

As Ỹ 1⊥Y +
1 (by compositional invariance of the Flexible Dirichlet) and clearly (Ỹ 1, Y

+
1 )⊥Y 2, it

follows that Ỹ 1⊥Y +
1 ⊥Y 2. This, in particular, implies that

Ỹ 1⊥(Ỹ 2, Y
+
2 , Y +

1 ). (16)

In an analogous way, as Ỹ 2⊥Y +
2 (by compositional invariance of the Dirichlet), one can prove that

Ỹ 2⊥(Ỹ 1, Y
+
1 , Y +

2 ). (17)

Independence relations (16) and (17) imply that Ỹ 1⊥Ỹ 2⊥(Y +
1 , Y +

2 ) and therefore that

Ỹ 1⊥Ỹ 2⊥
Y +

1

(Y +
1 , Y +

2 )

which coincides with S1, S2, T . An analogous argument shows that, conditionally on Z+
1 = 0,

S1⊥S2⊥T with Ỹ 1 = S1 ∼ Dk(α1) and Ỹ 2 = S2 ∼ FDD−k(α2, p2
/p+

2 , τ).

Finally, the weight p(t) = Pr
(
Z+

1 = 1 | T = t
)

can be computed by applying Bayes formula and
noting that T | Z+

1 = 1 ∼ D2(α+
1 + τ, α+

2 ). �


