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Abstract

This paper presents some techniques which bound the proof search space in propo-
sitional intuitionistic logic. These techniques are justified by Kripke semantics and
are the backbone of a tableau based theorem prover (PITP) implemented in C++.
PITP and some known theorem provers are compared using the formulas of ILTP
benchmark library. It turns out that PITP is, at the moment, the propositional
prover that solves most formulas of the library.
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1 Introduction

The development of effective theorem provers for intuitionistic and construc-
tive logics is of interest both for the investigation and application of such

logics to formal software/hardware verification and to program synthesis (see
ie. [19,8,12,21,13,6,1)).

In this paper we present a proof strategy and an implementation based on a
tableau calculus for propositional intuitionistic logic. Our decision procedure
implements the tableau calculus of [2] (this calculus is an enhancement of
the calculus given in [15] and is related to the tableau and sequent calculi of
[25,18,11]).
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We introduce some new techniques utilized by our decision procedure to nar-
row the search space and the width of the proofs (some of these techniques have
already been described in our previous work [4]). The PSPACE-completeness
of intuitionistic validity [30] suggests that backtracking and branching cannot
be eliminated. In order to improve the time efficiency of the implementations
and make them usable, strategies have to be developed to bound backtracking
and branching as much as possible.

The optimizations we present are justified by the Kripke semantics for intu-
itionistic logic. Such semantical techniques are related to the fact that tableau
calculi are strictly joined to the semantics of the logic at hand. Loosely speak-
ing, a tableau proof for a formula is the attempt to build a model satisfying
the formula. The construction of such a model proceeds by increasing, step
by step, the information necessary to define such a model (thus, step by step
the accuracy of the model increases). If the proof ends in a contradiction,
then there is no model for the formula. Otherwise, a model satisfying the for-
mula is immediately derived from the proof. With this machinery at hand,
we first adapt Simplification, a technique introduced in [20] for classical and
modal logics, to intuitionistic logic. Then we present a technique to deduce
the satisfiability of a set of formulas S, when the satisfiability of a set S’ and a
substitution 7 such that S = 7(5’) are known (where with 7(5") we mean the
application of 7 to S’ in the obvious way). Such a technique allows us to bound
backtracking. Next we discuss a technique suitable to bound branching on the
formulas which only contain conjunctions and disjunctions. Such a technique
is an adaptation of regularity, a technique well known to people engaged in
classical theorem proving (see [17] for further details). Finally we discuss a
criterion which allows us to establish that a set of formulas is satisfiable. In
this way it is not necessary to search for a proof of contradiction.

Besides the strategy and its completeness, in the final part of the paper we
present some experimental results on the implementation of PITP (we mention
that a system description of PITP can be found in [5], where no account of
the theoretical results related to the optimizations is given). PITP is written
in C4++ and it is tested on the propositional part of ILTP v1.1.2 benchmark
library [28]. Of 274 propositional benchmarks contained in ILTP v1.1.2, PITP
decides 234 formulas within the time limit of ten minutes (we point out that
this version of PITP outperforms the previous one described in [4], where,
since Simplification was not implemented, only 215 formulas were decided).
To give the reader more elements to evaluate PITP optimizations, comparisons
with different versions of PITP are provided.



2 Notation and Preliminaries

We consider the propositional language £ based on a denumerable set of
propositional variables PV, the boolean constants T and 1 and the logi-
cal connectives =, A,V,—. An atom is either a propositional variable or a
boolean constant. (Propositional) Kripke models are the main tool to seman-
tically characterize (propositional) intuitionistic logic Int (see [7] and [15] for
the details). A Kripke model for £ is a structure K = (P, <, p,IF), where P
is a set of worlds, (P, <, p) is a poset with minimum p and IF is the forcing
relation, a binary relation on P x (PV U{T, L}) such that: (i) if a IF p and
a < 3, then § I+ p; (ii) for every o € P, a IF T holds and « IF L does not
hold. The forcing relation is extended in a standard way to arbitrary formulas
of L as follows:

) alF AANBiff alF A and a IF B;

) alF AV Biff alF Aor alF B;

) alF A — B iff, for every § € P such that o < 3, g IF A implies § IF B;
) alF —Aiff for every g € P such that a < 3, §IF A does not hold.

We write a ¥ A when a IF A does not hold. It is easy to prove that for every
formula A, if o IF A and o < 3, then (|- A. A formula A is valid in a Kripke
model K = (P,<,p I} if and only if p IF A. It is well-known that Int coincides
with the set of formulas valid in all Kripke models.

If we consider Kripke models K = (P,<,p,F) such that |P| = 1 we get a
classical interpretation for (propositional) classical logic Cl. Classical inter-
pretations are usually seen as functions o from PV to {true, false}. Given
a formula A and a (classical) interpretation o, we use o = A with the usual
meaning of satisfiability of a formula in a classical interpretation. Given a set
S, the set PV(S) denotes the elements of PV occurring in S.

In the following presentation, we give a brief overview of the tableau calculus
Tab of [2] which is implemented by our decision procedure. The rules of the
calculus are given in Fig. 1. The calculus operates on signed well-formed for-
mulas (swif for short), where a swff is a (propositional) formula prefixed with
asign T, F or F..

The sign F. was first introduced in [27] and later published in [22,23]. This
sign, which intuitively represents certain falsehood, partially solves a problem
mentioned in [15], where the tableau calculus for intuitionistic propositional
logic contains an implicit rule, which allows the duplication of formulas fol-
lowing the application of a rule. Without this implicit rule, the calculus in [15]
would not be complete; technically, the calculus uses multisets S of signed for-
mulas, where the same signed formula SA can be repeated in S disregarding
the order of elements of S. The rules in relation to sign F. guarantee that rule
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where S, = {TA|TA € S} U{F A|F.A € S} and

p is a new atom

Fig. 1. The Tab calculus

T—, which introduces sign F., does not require the duplication of the negated
formula to which it applies and therefore, for instance, all proofs of doubly
negated classical propositional tautologies, which do not contain implications,
can be proved without duplications. As we are dealing with semantic tableaux,
we can say that sign F. captures within the syntax the semantics of intuition-
istic negation in terms of Kripke models in so far as the truth of a negation
—A in a node I' implies that A is always false in every A node connected



with I and sign F. is the syntactical witness of this. In [16] Fitting points out
that sign F. is optimal w.r.t. the treatment of negation in tableau calculi for
intuitionism and still in [16] Waaler and Wallen present sign F in the frame-
work of sequent calculi for the same logic. Since in rule T — duplication on
its left-hand side was still necessary, the problem of obtaining a propositional
calculus without duplication remained unsolved. The same problem, mutatis
mutandis, arose in sequent calculi (contraction rule) and natural deduction
calculi (reuse of assumptions). In [29] (pp. 624-625), where ft, one of the first
sequent based ATP for intuitionistic predicate logic is presented, we can find
a lengthy and detailed discussion about the computational and applicative re-
strictions related to the necessity of duplication. Finally, in [11] a correct and
complete contraction-free sequent calculus for intuitionistic propositional logic
is presented, while in [25] the ideas outlined in [11] are successfully applied to
obtain a correct and complete tableaux calculus for intuitionistic first-order
logic, which does not require any duplication in its propositional part!. The
rule T — is subdivided into five rules according to the logical structure of
the antecedent of the implication. This treatment of implication is more syn-
tactical than semantical. The implications are rewritten in formula(s) intu-
itionistically equivalent, which are less complex as regards implications, and
the subformula property is lost, but in any case a duplication-free calculus,
which is optimal w.r.t. computations, is obtained. The calculus of Fig. 1 (first
introduced by Fiorino in his PhD thesis [14] and published in [2]), which is
the logical basis of the prover PITP and of its variants described here, is op-
timized by including in rule T —— some ideas introduced by Hudelmaier in
[18] in order to obtain an O(nlogn)-space decision procedure for intuition-
istic propositional logic by using a particular sequent calculus. The calculus
of Fig. 1 is of the same complexity as Hudelmaier’s. The logical complexity
of the formula(s) obtained by applying the rules of Fig. 1 is in a sense less
than the logical complexity of premises, and this guarantees a computational
bound of proofs containing branching and backtracking. This property will be
explained in detail at a later stage. To conclude, we reaffirm that the calculus
of Fig. 1 does not allow the duplication of formulas and therefore the sets S
of signed formulas cannot be considered multisets.

Given a Kripke model K = (P,<,p,IF), a world a € P, a formula A and a set
of swifs S, the definition of > is as follows:

a> TA («arealizes TA) iff a IF A;
a>FAiff a ¥ A;

a> FAiff alk —A;

a > S iff a realizes every swif in S

K Siff pr> S.

L' The present version of ft [29] uses in its propositional part a contraction-free
sequent calculus derived from [11].



A proof table (or proof tree) for S is a tree, rooted in S and obtained by
the subsequent application of the rules of the calculus. As an example, let
S ={T(BAC),F(AV B)} and H = T(A A B). With “rule TA applies to
S U{H} taking H as main swiff” we mean that TA applies to S U {H} as
%TA. If no confusion arises, we say that a rule applies to S U {H} or,
equivalently, a rule applies to H. Finally, with Rule(H) we mean the rule
related to H (in our example Rule(T(A A B)) is TA). We emphasize that in
the premise of the rules the notation S, H means S U {H} and H does not

belong to S.

For every proof table for S, the depth of the tree and the number of symbols
occurring in nodes of a branch is linearly bounded in the number of symbols
occurring in S (see [2] for further details). This is the key feature to implement
a depth-first decision procedure whose space complexity is O(nlogn); as a
matter of fact, it is well-known that to generate all the proof tables in the
search space and to visit them with a depth-first strategy, it is sufficient to
have a stack containing, for every node of the visited branch, the index of the
main swif and a bit to store if the left branch has been visited [18].

Now, we give the tableau closure conditions. A set S of swifs is closed if at
least one of the following conditions holds:

(1) S contains a conjugate pair, that is {TA,FA} C S or {TA,F. A} C S,
(2) S contains FT, F.T or TL.

Proposition 1 If a set of swffs S is closed, then for every Kripke model
K=(P<pl), pi# S

The proposition is proved in Appendix A

A closed proof table is a proof table whose leaves are all closed sets. A closed
proof table is a proof of the calculus and a formula A is provable iff there
exists a closed proof table for {FA}.

For every rule of the calculus it is easy to prove that if there exists a Kripke
model K = (P,<,p,F) and a € P such that « realizes the premise of the rule,
then there exists (a possibly different) Kripke model K' = (P', <’ o/, IF') and
[ € P’ such that [ realizes the conclusion. This is the main step to prove the
soundness of the calculus:

Theorem 2 (Soundness) Let A be a wff. If there exists a closed proof table
starting from {F A}, then A is valid.

To prove that a given calculus is complete one can show that if a formula is
valid, then by generating all the possible proofs of the calculus, sooner or later
a proof is found. This naive way to proceed, although complete and finite,



has a huge search space. The calculus has several invertible rules, that is, the
realizability of one of the sets in the conclusion implies the realizability of the
premise. This suggests the standard way to apply the rules that reduces the
search space and preserves the completeness: build a proof giving precedence to
wvertible rules and when no tnvertible rule is applicable, then apply the non-
wnvertible rules in all possible ways. This procedure is present in the papers
proving the completeness by using model theoretic techniques (see e.g. [15,25]).
This basic strategy can be further refined by introducing new optimization
criteria which reduce the search space while still preserving the completeness.
These criteria are described in the following section.

3 From the Basic to the Optimized Algorithm

In the following we sketch the recursive procedure Basic TAB(S), which is
the backbone of PITP. Given a set S of swifs, BASIC TAB(S) returns either a
closed proof table for S or NULL (if there exists a Kripke model realizing 5). To
describe BASIC TAB we use the following notation. Let S be a set of swifs, let
H € S and let S; or S; | Sy be the nodes of the proof tree obtained by applying
to S the rule Rule(H) corresponding to H. If Tab; and Tab, are closed proof
tables for S7 and Sy respectively, then %blRule(H) or mmze(m denote
the closed proof table for S defined in the obvious way. Moreover, R;(H)
(1 € {1,2}) denotes the set containing the swifs of S; which replaces H. For
instance:

Ri(T(AANB))= {TA,TB},

Ri(T(AV B)) = {TA}, Ro(T(AV B)) = {TB},

RA(T((A — B) — C)) = { TA, Fp, T(B — p), T(p — C) },

Ro(T((A— B) — () ={TC}.

The procedure Basic TAB divides the formulas into six groups according to
their behavior with respect to branching and backtracking:

C, ={T(AAB), F(AV B), F.(AV B), T(-A), T(p — A) with p an atom,
T((AANB)— C), T(AV B) — C)};

C2 = {T(AV B), F(A A B);}

Cs = {F(~A), F(A — B)};

C,={T(A— B)—C(C), T(-A— B)};

Cs ={Fc(A — B), Fe(-A)};

Co = {FC(A N B)}

We call C;-swifs (i = 1,...,6) the swffs of the group C; and C;-rules the rules
related to C;-swifs. The intuition behind these groups is related to the fact
that, in order to reduce search space, it is convenient to apply invertible rules
before the non-invertible ones. Moreover, to reduce the number of nodes in the
tableau proofs, the rules with one set of formulas in the conclusion are applied
first. Thus, the rules of group C; are invertible and contain exactly one set of



swifs in the conclusion, the rules of group C, are invertible and contain exactly
two sets of swifs in the conclusion, the rules of group Cs are non-invertible and
contain exactly one set of swifs in the conclusion and the rules of group C, are
non-invertible and contain exactly two sets of swffs in the conclusion. The rules
of groups C5 and Cg are non-invertible but they are not in C3 and C4 because,
as we prove in the Completeness Lemma (Lemma 7, page 22), we do not lose
completeness if C5 and Cg-rules are applied only when no other rule applies.
Under this condition the application of C; and Cg-rules is invertible and no
backtracking is required. On the other hand, to get completeness, backtracking
is in general unavoidable when C3 and C4-rules are applied. Backtracking is
avoidable when Cs or Cy-rules apply to S U {H} taking H main swff and S
does not contain F-swffs. By inspecting the conclusion of C3 and Cy-rules it is
easy to check that in this case S, coincides with S. This strategy can be seen
as a basic optimization bounding both branching and backtracking.

FuNcTION Basic TAB (S)

1. If S is a closed set, then, by definition, S is a closed proof table and
Basic TAB returns S;

2. If S contains a Cy-swif H, then apply Rule(H) to S and let S’ be the result.
If 7 = Basic TAB(S') is a proof, then %Rule(H) is a proof for S, otherwise there
is no proof for S and BASIC TAB returns NULL;

3. If S contains a Co-swif H, then apply Rule(H) to S and let S; and Sy be
the result. If both m = Basic TAB(S;) and m = BASiC TAB(S;) are proofs,
then - *{f — Rule(H) 1s a proof for S, otherwise BAsic TAB returns NULL;

4. If S contains a C3 or Cy-swif, then:

4.1 if S contains exactly one F-swif H and H is a C3-swif, then apply Rule(H)
to S and let S’ be the result. If 7 = BAsIC TAB(S') is a proof, then 2 Rute(#) is
a proof for S, otherwise there is no proof for S and BAsic TAB returns NULL.
4.2 If S does not contain any F-swif, then let H be any C4-swif, apply Rule(H)
to S and let S; and Sy be the result. If both m; = Basic TAB(S;) and
me = BasSIiCc TAB(S;) are proofs, then ﬁstule(H) is a proof for S, other-
wise BASIC TAB returns NULL.

4.3 If S contains a Cs3-swif H such that S is the result of applying Rule(H)
to S and 7 = BAsiC TAB(S’) is a proof, then 2 rute(s) is a proof for S;

4.4 If S contains a C4-swif such that the sets S; and Sy are the result of apply-
ing Rule(H) to S and both m = BASIiC TAB(S;) and m = BAsic TAB(S:)
are proofs, then WSMRule(H) is a proof for S;

If in Points 4.3 and 4.4 no proof for S is found, then BASiC TAB returns
NULL;

5. If S contains a Cs-swif H, then apply Rule(H) to S and let S’ be the re-
sult. If 7 = Basic TAB(S') is a proof, then %Rule(H) is a proof for S, otherwise
Basic TAB returns NULL;

6. If S contains a Cg-swif H, then apply Rule(H) to S and let S; and Sy be
the result. If both m = Basic TAB(S;) and m = BASIC TAB(S;) are proofs,
then —%— Rute(r) is a proof for S, otherwise BASIC TAB returns NULL;

w1 | w2




7. If none of the previous points apply, then BAasic TAB returns NULL.

END FUNCTION BASIC TAB.

Starting from BASic TAB we have developed some optimizations to reduce
both branching and backtracking. In the following, each optimization is de-
scribed and the necessary proofs are provided. At the end of the section we
describe TAB, the algorithm obtained by inserting in BASic TAB all the op-
timizations.

3.1 Adapting Simplification to Intuitionistic Logic

Simplification is an optimization technique, which allows us to bound both
branching and backtracking. Simplification is described in [20], where it is
applied to classical and modal logics. Here we discuss Simplification for intu-
itionistic logic. Following [20] we describe Simplification as a set of new rules
to be added to those of the calculus in Fig. 1. In the calculus we introduce
rules to replace formulas with T and 1 and some suitable replacements to
simplify T and L in the context of intuitionistic logic. Formally, we add the
following rules to those given in Fig. 1:

S, TA S, F.A
Repl T —————Repl Fe

S[A/T], TA S[A/1],F A

where S[A/T] (respectively S[A/L]) is the set of swifs resulting from the
replacement in S of every occurrence of the wif A with T (respectively with
1).

Here, the meaning of the rules is the same as in the case of classical logic. Let
K = (P,<,p,JF) be a Kripke model, & € P and A a formula. If « I A, then
in every subsequent world # > «, 3 IF A. Thus starting from « the forcing
of A coincides with the forcing of T. Similarly for F., where we recall F A
is a synonym of (or can be restated as) T—A. Now, what can we say about
a formula FA? From a semantical point of view, if a > FA, we know that
a A, We cannot say anything about its equivalence with T or L. However,
by analyzing the semantical meaning of the connectives, we discover that A
and V are “classical connectives”, that is, the forcing in a of a conjunction
X AY (resp. of a disjunction X VY') only depends on the forcing in « of the
subformulas X and Y. This means that by knowing that a ¥ A holds, we can
conclude a ¥ AA B holds and «a I AV B holds iff a IF B holds. To summarize,
the forcing of conjunctive or disjunctive formulas in a world o depends on the
forcing in « of their subformulas. If a ¥ A holds, then given a formula X,
we can replace an occurrence of A in X with L, provided that the occurrence



of A we replace is not under the scope of a negation or an implication. As a
result of these considerations we can introduce the following rule

S,FA
S{A/L},FA

Repl F

where in this case, the replacement S{A/ 1} applies to every formula B oc-
curring in S, provided that its sign is T or F, as follows:

e |, if Bis A,

e Bif Bis of the kind -C or C' — D or B is a propositional variable different
from A;

o C{A/L} ND{A/L}, if B is of the kind C' A D;

o C{A/L}Vv D{A/L}, if B is of the kind C'V D;

This means that the replacement in curly brackets is different from the replace-
ment in square brackets: replacement in curly brackets proceeds recursively
and stops when a connective — or — is found. For instance, X — Y[Y/1]
produces the wif X — L whereas X — Y{Y/L} produces the wif X — Y.
We recall that F. is a synonym of T—, thus every subformula of a F.-formula
is under the scope of the outer negation and the replacement F.B{A/L}
leaves F B unchanged. This explains why the rule Repl F does not apply the
replacement S{A/L} to the F.-formulas occurring in S.

The simplification rules for the connectives A and V are the boolean ones given
in Appendix C. For the connectives — and —, whose intuitionistic semantics
differs from classical semantics, the simplification rules are given below as
replacement rules:

S S
————Simp T — Y SimpT
S[T — A/A] S[A— T/T]

S S
——Simp T ——Simp L
S[=T/4] S[=L/T]
S S
Simp —_L —Simp L —
S[A — L /=A] S[L — A/T]

where the conclusion S[a/b] of a rule of the kind % applied to the premise
S is obtained by replacing (in S) every occurrence of the (sub)formula a with
b. By using the semantical meaning of T and L it is easy to prove that the
replacements affect neither the correctness nor the completeness, thus these

replacements rules can be applied in any step of a tableau proof:

Proposition 3 Let S be a set of swffs. For every substitution Sla/b] given
above, the formula (a — b) A (b — a) is intuitionistically valid.

The proposition is proved in Appendix B.
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In the following, we give an example of proof exploiting Simplification. We
prove that the formula

((—I—|A — A) — (—|A V A)) — (—|A V —|—|A)

is not valid. In the following proof tables, when some confusion could arise,
beside the rule name we indicate the main swif.

F(((—\—!A — A) — (—\A \Y% A)) — (—\A \Y —\—|A))

Fo
T((~—~A — A) — (=AV A)), F(=AV == A)

T((—\—\A — A) — (—|A V A)), F(—|A), F(—\—|A)

Fv

Let S be {T((-——A — A) — (mAV A)),F(-A),F(-—A)}. Now, by applying
F- to S taking F(—A) as main swif we get the following open tableau:

T((—A — A) — (mAV A)), TA

ReplT, TA
T(——T —>T)—=(=-TVT)),TA

Bool Simplif
T(—T —>T)—T),TA

TT,TA

Simp — T

where with “Bool Simplif” we mean the well known simplifications performed
on the connectives V and A given in Appendix C. By applying F— to S taking
F(—=—A) as main swif we get the following open tableau:

T((—\—\A — A) — (—\A \Y% A))7 T(—\A)

Repl T, T(—A)
T((=T — A) — (T V A)), T(-4)

Bool Simplif
T((-T — A) = T),T(-4)

Simp — T
TT, T(-A)

TT,FcA

-

Finally, by applying T —— to S taking T((——A — A) — (-AV A)) as main
swif we get the sets

{T(==A),Fp, T(A —p), T(p — (mAV A))}
and

{T(~AV A),F(=A), F(--A)}

respectively the left and the right conclusion of T ——. The right conclusion
of T —— has a closed proof table:

T(ﬁA \% A), F(ﬁA), F(‘!ﬁA)

ReplF, F(-A)
T(L v A), F(~A), F(~A)

Bool Simplif
TA, F(=A), F(~-A)

Repl T, TA
TAF(=T),F(—T),

Simp =T
TA,FL F(-L1)

TAFL,FT

Simp - L

11



On the other hand, the left conclusion of T —— has no closed proof table:

T(-—A),Fp, T(A — p), T(p — (-AV A))

T
Fc(_‘A)7 Fp, T(A - p)u T(p - (_'A N A))

ReplFe, Fc(nA)
Fc(—A),Fp, T(A —p), T(p — (L VA)

Bool Simplif
Fe(-A),Fp, T(A — p), T(p — A)

Fem
TA, T(A—p), T(p— A)

Repl T, TA
TAT(T —-p), T(p—T)

Simp —T
TA,T(T - p), TT

TA, Tp, TT

Simp T —

We emphasize that Simplification applied to the example above reduces both

the number of branching in tableau proofs and avoids backtracking. The proofs
where Simplification is applied do not contain branches and backtracking is
not necessary. Without this optimization branching and backtracking would
be necessary.

Remark 4 To reduce branching we could adopt the KFE-style tableau rules
([9,10]), where, for instance, the TV rule of Fig. 1 would be replaced by the

rules
S, T(AV B),FA S, T(AV B),FB
KE-TV,

S, TB,FA S, TA,FB

As remarked in [20] these rules are a restricted form of Simplification. For
instance, if we apply the KE-TV to the set {T(AV B),FA} we derive the set
{TB,FA}. On the other hand, by applying the Simplification technique to the
set {T(AV B),FA} we obtain the set {T(B{A/L}),FA}. Thus, while KE-
rule derives TB, Simplification derives T(B{A/L}) whose length is shorter
than TB if A occurs in B and this, in the general case, should reduce the
length of the proof. Thus, an alternative presentation of our calculus with the
simplification rules consists in inserting the bivalence rule

5
S, TA|S,FA

KE-TV,

and removing the rules TV and FA. We cannot replace T — and T— since
classical and intuitionistic logic give different meaning to implication and nega-
tion. Finally, we observe that the rule T — Atom is derivable by the Simplifi-
cation rules, thus it could be removed from the tableau rules without losing the
completeness.

3.2 FExploiting the Symmetry of the Formulas to Avoid Backtracking

We present a technique which allows us to reduce backtracking. Such a tech-
nique is based on the fact that sometimes in a set two (or more) formulas
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H and H' occur having the same occurrence of the same connective in the
same place. As an example the formulas (A — (BV C)) — (B V C) and
(C — (BV A)) — (BV A) have this property. Roughly speaking, if we can
turn the former formula into the latter by a permutation 7 on propositional
variables, then from the information about the satisfiability of the latter we
also get information about the satisfiability of the former without performing
any further proof step. In our example by using the permutation 7 defined as
7(A) = C, 7(B) = B, 7(C) = A, we can turn the former formula into the
second. Since the aim of our technique is to bound backtracking, before going
into detail we describe the ideas to bound backtracking presented in [31].

To bound the search space, [31] describes a decision procedure in which back-
tracking is bounded by a semantical technique inspired by the completeness
theorem. The completeness theorem proves the satisfiability (realizability in
our context) of a set S under the hypothesis that S does not have any closed
proof table. As an example, let

S={F(A— B), T(A— B)— C),FC,TD}.

i From S we can define the Kripke model K(S) = (P,<,p,lF) such that P = {p}
and p I D (see Fig. 2(a)). Note that K(S) realizes TD but K(S) does not
realize S. To prove the realizability of S, the realizability of

S1={TAFB,T((A— B) — (), TD}
and one between
So ={TA,Fp,T(B—p), T(p — C), TD}
and

S3 = {F(A — B), TC,FC, TD}

have to be proved. Since S5 is not realizable because TC,FC' € S3, the real-
izability of S7 and S, must be proved. From S; we define the Kripke model
K(S) = {a},<,a))F), where a < o, o IF D and « I A such that K(S7) > S;.
If we glue K(S;) above K(S) we get a new Kripke model K = ({p, a},<,p,IF)
where p < p, p<a,a < a, plk DalF D and o I- A (see Fig. 2(b)). Since
K > S, we do not need to apply T —— to S in order to obtain Sy and the
Kripke model of Fig. 2(c). In this case the work on S, is spared.

In the general case, that is when S contains a set of the kind
F(4, — By),...,F(A, — B,),T((C1 — D1) — Ey),...,T((Cy, — Dy,) — En)

with m +n > 1, the information collected from non closed proof tables built
from a set S is used to build a Kripke model K. The procedure described in
[31] prunes the search space, since in S not all the swffs requiring backtracking

13
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Fig. 2. Counter model for S = {F(A — B),T((A— B) — C),FC,TD}.
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Fig. 3. Counter model for S = {F(A — B),F(C — D)}.

are considered, but only the swiffs which, when checked, are not realized from
the Kripke model at hand.

Now consider an example where the technique of [31] does not work. Let
S = {F(A - B),F(C - D)}.

i From S we can define the Kripke model K(S) = (P,<,p,IF) such that P = {p}
and I is the empty set (see Fig. 3 (a)). K(S) does not realize S. By applying
F — to S with F(A — B) as the main formula we get

S, = {TA,FB}.

The underlying model is K(S1) = ({a},<,a ) with o IF A. K(S;) glued
above K (S) gives rise to a model that does not realize F(C' — D) (see Fig. 3
(b)). Thus we must backtrack. We apply F — to S with F(C' — D) as the
main formula. We get

Sy = {TC,FD}.

The underlying model is K(S3) = ({6},<,5,)F) such that § < g and g IF C
realizes Sy. By gluing K (S7) and K (S2) above K(.S) the resulting model K =
{p,a, B},<,p,lF) such that

p<ap<fBp<pa<af<fallAand IFC (1)
realizes S (see Fig. 3 (c)). To avoid backtracking we propose a technique
based on the observation that there exists a symmetry between S; and S5.

As a matter of fact, we can define a permutation 7 : PV — PV such that
7(C) = A and 7(D) = B. By the definition of 7, it is easy to check that
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Fig. 4. Counter model for the axiom schema characterizing the logic of binary trees.

7(S3) = S; holds? . Moreover, the Kripke model K (S;) = ({a}, <, a,IF) such
that o IF p iff a I 7(p), realizes S5. As a matter of fact it is easy to prove the
following

Proposition 5 Let 7 be a permutation on PV and let K, = (P, <, p,IF) and
K, = (P, <,p,It) be Kripke models. If, for every o € P and for everyp € PV,
alk piff a V' 7(p), then, for every a € P and for every wff A, o Ik A iff
al 7(A).

Now continuing with the example we get the resulting Kripke model K by
means of the following two steps:

(1) We rename the worlds of K(S;) in such a way that these new worlds are
disjointed from those of K (S;). We denote with K'(S5) the Kripke model
obtained from K (S5) by renaming its worlds and defining the forcing
relation accordingly. In our example K'(Sy) = ({3}, <, 3,IF") where for
every p € PV, I piff aIlF p.

(2) The Kripke model K = ({p, o, 3},<,p,F) is obtained by gluing K(S))
and K'(S;) above K (S) and is defined as (1) (see Fig. 3 (c)).

As another example, consider

S={ T((A— (BVC)) = (BVC)), T((C — (BV A)) — (BV A)),
T(B— (CVA)— (CVA)FBV(CVA)},

where only a few steps are needed to obtain S starting from {FH}, where H
is the axiom schema

A (mevm%vza) Y
i=0 i i i=0

characterizing the logic of binary trees (a logic in the family of k-ary trees
logics, [7], also known as Gabbay-de Jongh logics). jFrom S we can define

2 Given a swif H, a set of swifs S and a proof T, 7(H), 7(S) and 7(T) mean,
respectively, the swif, the set of swifs and the proof obtained by applying 7 in the
obvious way. For instance, if H = T(¢ — p) and the permutation 7 is such that
7(¢) = a and 7(p) = b, then 7(H) = T(a — b).
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the model K(S) = (P,<,p,JF) such that P = {p} and I is the empty set
(see Fig. 4 (a)). K(S) does not realize S. By applying T —— to S with
H=T((A— (BVC)) = (BV C))) we get

={T(BVC), T((C — (BV A)) — (BVA)),
T(B— (CVA)—(CVA)FBVCVA)}

and

={T((C = (BVA)) = (BVA),T(B— (CVA) = (CVA),
TA ¥p, T(BVC) —p), T(p— (BVC))}.

Since S is not realizable, that is, S; has a closed proof table, to prove the
realizability of S we have to prove the realizability of S5. The set Sy defines
the Kripke model K(S3) = ({a},<,a,lF), where @« < « and « I+ A. Thus
K(Sy) > Sy holds. Now, if we glue K(Ss) above K(S) we get a new model
K'(S) = {{p,a},<,plF), where p < p,p < a,a < a and a IF A (see Fig. 4
(b)). K'(S) does not realize S. Thus we must backtrack twice:

(i) By applying T —— to S with H = T((C — (BV A)) — (BV A)) we

get,
S3={T((A— (BVC))— (BV()),
T((B — (C\/A)) — (C’\/A)),
TC,Fq, T(BVA)—q), T(¢q— (BVA)}
and

Si={T((A — (BVC)) — (BVC)), T(BV A),
T((B — (CV A)) — (CV A),F(BV (CV A)}.

(ii) By applying T —— to S with H = T((B — (CV A)) — (CV A)) we

get
Ss={T((A— (BVC(C))— (BV()),
T((C — (B \/A)) — (B \/A)),
TB,Fr, T(CVA) —r),Tr—(CVA))}
and

Se={T((A— (BVC(C))— (BV()),
T((C — (BV A)) — (BVA),
T(CVA),F(BV(CVA)}
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In a few steps we find that S, and S5 are not realizable, hence they have
closed tableau. From S3 we define the Kripke model K(S3) = ({6},<,0,IF)
where 8 < § and §IF C. K(S3) > Ss. jFrom Sg we define the Kripke model
K(Ss) = {7v},<,7,)F) where v < v and v IF B. K(Sg) > Sg. Thus by gluing
K (Ss), K(S3) and K (Sg) above K (S) we get a model K realizing S (see Fig. 4
(c)). Since we can define the permutations 7y and 75 such that 71(S3) = S5
and 79(Ss) = S2 we can avoid backtracking. Thus no proof of realizability of
S3 or Sg is needed and the Kripke models realizing S3 and Sg can be obtained
by applying the permutations on the forcing relation of the Kripke model for
Ss.

The optimization we are discussing is based on the fact that the realizability of
a swif H can be established by knowing that a swif H’ is realizable and there
exists a function 7 on propositional variables that applied to H transforms
H into H’, that is 7(H) is syntactically equal to H’. Such a function 7 also
allows us to transform the Kripke model K’ for H' in a Kripke model K for
H. Thus, the problem is to find a permutation 7 on propositional variables
such that, given a realizable formula H’ and a formula H, 7(H) = H’. This
implies that H is realizable too and given a Kripke model realizing H' we have
a way, via 7, to build the Kripke model realizing H. The problem of finding
such a 7 is linear in the length of H and H’ (as one can easily prove ana-
lyzing the function BUILD PERM described below). The constraint that 7(H)
is syntactically equal to H' could be relaxed by considering the commutative
properties of the disjunctions and conjunctions. But in this case, the search
for such a 7 is exponential in the length of the formulas. To summarize, we
build a permutation 7 giving syntactical identity between H and H' where 7
is defined on the propositional variables occurring in H and H’. Thus, in our
search for a permutation 7 we disregard the commutativity of the disjunctions
and conjunctions.

To avoid backtracking, TAB builds a permutation 7 and uses it as follows. Let
S be a set of swifs, let H and H' be Cs-swifs of S and let us suppose that
U' = (S\{H'}). UR.(H') is realized by a Kripke model K'. Before applying
Rule(H), TAB checks if there exists a permutation 7 from PYV(S) to PV(S)
such that for every V € U, 7(V) € U’, where U = (S \ {H}). UR.(H). We
already know that the set U’ is realizable by the Kripke model K’. Since we
have a permutation 7, then the set U is realized by the Kripke model K having
the same poset as K’ and such that for every world o and every propositional
variable p, a kg p iff o Ik 7(p). Note that, although K't>U’ and there exists
a permutation 7 such that for every V- € U, 7(V) € U’, this does not imply
that K't>U. Thus, we have taken a different route with respect to [31], where
the realizability of U is checked on K’ that realizes U’ and the two methods
work in different situations.

The construction of such a 7 is described below. When BUILD PERM is called
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the actual parameter 7 is the empty function. BUILD PERM returns a permu-
tation or FAIL (if BUILD PERM does not build the permutation):

FuNctioN BuiLbp PErRM (H,H',T)

1. If H and H' are propositional variables then if 7(H) and 7(H’) are not de-
fined, then BUILD PERM sets 7(H) = H', 7(H') = H and returns 7; otherwise
BuiLD PERM returns FAIL;

2. If H and H’ are respectively of the kind ~U and —U’, then BUILD PERM
returns the result of the call BuiLp PErm (U,U’,7);

3. If H and H' are respectively of the kind U, ® Ug and U; ® U, with
® € {—,A,V}, then let 7 = BUILD PERM (U, Ug, 7). If 7 is not FAIL, then
BuiLD PERM returns the result of the call BUILD PERM(Ug, Uy, 7). In the
other cases BUILD PERM returns FAIL.

END FUNCTION BUILD PERM

If BUILD PERM returns a permutation, then if for every V € U, 7(V) € U,
then 7 is used. Otherwise if BUILD PERM does not return a permutation
or the previous check fails, then PITP considers that no permutation exists
and solves U. Analogously for C4-swifs. Since our search for a permutation
is narrow, many of them are disregarded. Thus at present this optimization
gives advantages only in relation to the SYJ209 family formulas of ILTP v1.1.2.
library (see Fig. 8 and Fig. 9, where this optimization is referred to Perm).
BUILD PERM treats every component (connective or variable) of H and H' at
most once, it is easy to see that BUILD PERM executes in linear time in the
length of the input formulas.

Remark 6 We could also define a permutation to prove that a set is not real-
1zable. As a matter of fact, if S is not realizable and there exists a permutation
T such that 7(S) = ', then S is not realizable. Thus, given a set S and a Cy or
Co-swff H € S, if (S\{H})UR(H) is closed and there exists a permutation T
such that T((S\{H})UR.(H)) = (S\{H})UR2(H), then (S\{H})UR:(H)
is not realizable and the tableau proof for (S\{H})UR1(H) can be translated
via T into a tableau proof for (S\{H})URa(H) (see Points 4 and 7 of TAB).
As a trivial application, consider a valid wff H(p), where p = {p1,...,pn} are
all the propositional variables occurring in H. To prove that {F(H (p)\NH(q))}
15 closed, it is sufficient to prove, by an application of FA, that {7FH(p)7} 18
closed and that there exists a permutation for which {FH(p)} = 7({FH(q)}).

3.8  Further Optimizations

The notions given in the following are used to formalize the two optimizations
described in this section. The idea behind both the optimizations is that if
the information in a set of swifs S allows us to define a classical interpretation
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fulfilling the formulas in S, then the set S is also intuitionistically satisfiable.

Now, our aim is to define a classical interpretation based on the swifs of a set
S. Given a set of swifs S, the signed atoms of S are the elements of the set
ds = {H|H € S and H is a signed atom}. Given dg, we denote with o4, the
(classical) interpretation defined as follows: if Tp € dg, then o5,(p) = true,
0s4(p) = false otherwise. Given a classical interpretation o, (1) o > TA iff
o= A; (1) o>FAand o >FAiff 0 &= A. Moreover, given a set of swifs S,
o> Siff for every He S, o> H.

In order to bound branching, TAB treats in a particular way the non atomic
formulas where intuitionistic and classical interpretation coincide (by the Kripke
semantics, these formulas are those containing only conjunctions and disjunc-
tions). We say that a wif or a swif can be classically evaluated (cle-wff and
cle-swif for short) iff conjunctions and disjunctions are the only connectives
occurring in it.

Let S be a set of swifs such that every possible Simplification rule has been
applied to it. In this case the only propositional variables occurring in a cle-
swif are those that do not occur as swffs in .S. Thus we can conclude that the
F-cle-swifs occurring in S are realized by o5,. On the other hand, o5, does
not realize the T-cle-swifs and when a related rule is applied to a T-cle-swif
H, the non atomic swffs in R;(H) (i € {1,2}) are not realized by the new
underlying model.

The above considerations about cle-swifs imply that completeness is not lost
if we disregard the cle-swffs that are realized by the model underlying S (see
Point 4 of the function TAB and the Completeness Lemma for the details). As
an example, consider the set of swifs

S={T(B—A) — (AAN(BAC))),
T((B— C)— ((C— B) = (AN (BAC)))),
T(C—-A) - (A—-C)— (AN(BA(C)))),
F(AN(BAC)) }.
The swif F(A A (B A () is realized by o5, thus TAB disregards such a swif
and chooses one of other swifs in S. Note that BAsic TAB would consider
F(A A (B A C)), thus giving rise to a bigger proof table. This technique is

our adaptation of reqularity [17], a technique well known to people engaged in
classical tableaux theorem proving.

Now we come to the last optimization. When neither a C; nor a Cs-rule apply
to a set of formulas S, TAB checks if the Kripke model coinciding with the
classical interpretation s, realizes S (formally, TAB checks if o5, > S holds).
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In this case, since S is realizable, TAB does not need to go on with a useless
search for a closed proof table (in Section 5 this optimization is referred to as
nolnv).

The following algorithm TAB is obtained from BASIC TAB by inserting all the
optimizations given above. Given a set S of swifs, TAB(S) returns either a
closed proof table for S or NULL (if there exists a Kripke model realizing S).
Some instructions “return NULL” are labelled with r1,...,r6. In the Complete-
ness Lemma we refer to such instructions by means of these labels.

FuNcTION TAB (S)
1. If S is a closed set, then TAB returns the proof S;

2. Let S =SIMPLIFICATION(S). If S # S, then let 7 = TAB(S'). If 7 is a
proof, then TAB returns %SIMP, otherwise TAB returns NULL;

3. If a Cy-rule applies to S, then let H be a Cy-swit. If TAB((S\{H})UR.(H))
returns a proof 7, then TAB returns the proof %Rule(H), otherwise TAB returns
NULL (r1);

4. If a Co-swif H different from a F-cle-swff belongs to S, then let m =
TAB(S \ {H}UR,(H)). If m is NULL, then TAB returns NULL. Otherwise, let
mo = TAB(S \ {H} URy(H)). If my is a proof, then TAB returns the proof
S Rule(H), otherwise (o is NULL) TAB returns NULL;

™| T2
5. If a C5 or C4-rule applies to S, then TAB proceeds as follows:

5.0 If o5, > S, then TAB returns NULL (r2).

5.1 If S contains exactly one F-swff H and H is a Cs-swif, then if TAB((S \
{H}) UR1(H)) returns a proof m, then TAB returns the proof 2 rute(#), oth-
erwise TAB returns NULL;

5.2 If S does not contain any F-swif, then let H be any Cy-swif and let
m = TAB(S \ {H} URy(H)). If m is NULL, then TAB returns NULL. Other-
wise, let my = TAB(S \ {H} URy(H)). If my is a proof, then TAB returns the
proof - f — Rule(H), otherwise (79 is NULL) TAB returns NULL;

5.3 Let {H,..., H,} be all the Cs-swffs in S. For ¢ = 1,...,n, the following
instructions are iterated: if for every swit H; (j € {1,...,7 — 1}) there is no
permutation 7 such that (S\{H,}).UR:(H;) = 7((S\{H:}).UR1(H;)), then
let m = TAB((S\{H;}).UR:(H;)). If m is a proof, then TAB returns the proof
%Rule(Hi);

5.4 Let {H,..., H,} be all the Cy-swffs in S. For ¢« = 1,...,n, the following
Points (5.4.1) and (5.4.2) are iterated.

(5.4.1) If for every switf H; (j € {1,...,i — 1}) there is no permutation 7
such that (S \ {H;}) URa(H;) = 7((S\ {H;}) UR2(H;)), then let my,; =
TAB((S \ {H:}) URs(H;)). If mo; is NULL, then TAB returns NULL (r3). If for
every swit H;, with j € {1,...,i — 1}, there is no permutation 7 such that
(S\ {H;})e URL(H,) = 7((S\ THi})e U Ry (H)), then if TAB((S \ {H,}), U
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R1(H;)) returns a proof 7y, TAB returns the proof - |S7r2 - Rule(H;).

(5.4.2) If Point (5.4.1) does not hold, then there exists a permutation 7
and a swif H; (j € {1,...,i — 1}) such that (S \ {H;}) URa(H;) = 7((S\
{H:}) U Ry(H,)). If for every swif H,, with u € {1,...,7 — 1}, there is no
permutation 7 such that (S \ {H.})c URi(Hy) = 7((S\ {Hi})e URL(H,)),
then if TAB((S \ {H,}). UR1(H;)) returns a proof w1, TAB returns the proof
WRUJS(HZ').

If in Points (5.3) and (5.4) TAB does not find any closed proof table, then
TAB returns NULL (r4).

6. If a Cs-rule applies to S, then let H be a Cs-swif. If TAB((S\{H}).UR:(H))
returns a proof 7, then TAB returns the proof %Rule(H), otherwise TAB returns
NULL;

7. If a Cg-rule applies to S, then let H be a Cg-swif. Let m = TAB((S \
{HY),URy(H)). If m; is NULL, then TAB returns NULL. Otherwise, let my =
TAB((S \ {H}). U R2(H)). If 7y is a proof, then TAB returns %RUZB(H),

m
otherwise (my is NULL) TAB returns NULL (r5);

8. If none of the previous points apply, then TAB returns NULL (r6).

END FUNCTION TAB.

PITP implements FUNCTION TAB. Regarding the strategy devised above one
can wonder if performance improves when the order of Points 5.4.1 and 5.4.2
is swapped (this corresponds to visiting the non-invertible branch first). Since
the invertible rules are applied before the non-invertible ones, there are clues
that the choice made by FUNCTION TAB is wise. Besides PITP, we have de-
veloped PITPINV a variant of PITP that visits the non-invertible branch of
the Cy-rules first. Despite the fact that PITPINV outperforms the provers on
the formulas of the ILTP v1.1.2 library (see Fig. 5), on randomly generated
formulas its performance is poor. Thus we focus mainly on PITP.

4 Completeness

In order to prove the completeness of TAB, we prove that given a set of swifs
S, if the call TAB(S) returns NULL, then we have enough information to build
a model K = (P,<,p,IF) such that p>S. To prove the proposition we need to
introduce the functions f_, and deg defined as follows:

e if p is an atom, then f_.(p) = 0;

o i (AoB)=1t_(A)+{_.(B) with o € {A,V};
o 1.(-A4) =1.(A);

° 1(A—B)=1_(A)+1-(B)+T;
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deg(L) =1 and deg(T) = 1;
if p is a propositional variable, then deg(p) = 2;
eg(A N B) = deg(A) + deg(B) + 2;
g(A V B) = deg(A) + deg(B) + 9;
deg(A — B) = deg(A) + deg(B) + §_(A) + 1;
deg(—A) = deg(A) + 1;
deg(S) = X peg deg(H).

It is easy to show that if S’ is obtained from a set of swifs S by a recursive

call of TAB (S), then deg(S’) < deg(S).

Lemma 7 (Completeness) Let S be a set of swffs and suppose that TAB(S)
returns the NULL value. Then, there is a Kripke model K = (P,<,p,|F) such
that p> S.

Proof: The proof is by induction on the complexity, deg(.S), of S.

Basis: if deg(S) = 0, then S contains atomic swifs only. TAB(S) carries out
the instruction labeled (r6). Moreover, S does not contain sets of the kind
{Tp,Fp}, {Tp,Fep}, {TL}, {FT} and {F.T}. Let K = (P,<,p,JF) be the
Kripke model such that P = {p} and p |- p iff Tp € S. Tt is easy to show that
p>S.

Step: Let us assume by induction hypothesis that the proposition holds for all
sets S” such that deg(S’) < deg(S). We prove that the proposition holds for
S by inspecting all the possible cases where the procedure returns the NULL
value. We prove some cases.

Case 1: the instruction labeled r1 has been performed. By induction hypothesis
there exists a Kripke model K = (P,<,p,IF) such that p> (S\{H}) UR(H),
with H € C;. We prove p > H by proceeding according to the cases of H. If
H is of the kind T(A A B), then by induction hypothesis p> {TA, TB}, thus
plF A and p Ik B, and therefore p I A A B. This implies p > T(A A B). The
other cases for H € C; are similar.

Case 2: the instruction labeled r2 has been performed. Thus os, > S holds. We
use 05, to define a Kripke model K with a single world p such that p I p iff
o(p) = true. Since p behaves as a classical interpretation, p > S holds.

Case 3: the instruction labeled r3 has been performed. By induction hypothesis
there exists a model K such that p> (S'\ {H;}) URy(H;), where H; € Cy. Let
us suppose that H is of the kind T((A — B) — C), thus p > TC and this
implies p > H;. The proof goes similarly if H; is of the kind T(—=A — B).
Case 4: the instruction labeled r4 has been performed. This implies that for
every H € SNC; (i € {3,4}), we have two cases: (a) TAB((S \ {H}). U
Ri(H)) = NULL, thus by induction hypothesis there exists a Kripke model
Ky = (P, <y, pm,Fu) such that pg > (S\ {H}). UR(H); (b) there ex-
ists a permutation 7 from PV(S) to PV(S) and a swif H' € S N C; such
that TAB((S \ {H'}). U R (H')) = NULL and (S \ {H'}). UR:(H") = 7((S'\
{H}).UR(H)). Thus by Point (a) applied to H', there exists a Kripke model
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KH’ = <PH/, SH’; PH', ”_H’> such that PH' > (S \ {Hl})c U Rl(Hl) By llSiIlg T
we can translate Ky into a model Ky = (Py, <y, pu,Fu), where Py = Py,
<g=<g, pg = pu' and for every world a € Py, if p € PV(5), then a Iy 7(p)
iff Ik p. By definition of Ky, it follows Ky > (S\ {H}). UR:(H));

Let K = (P, <, p,IF) be a Kripke model defined as follows:

P= U PuU{ph
HGSQ(C;),UC4)

<= U <uU{p,a)lac P}
HESQ(C3UC4)

F= U  IFaU{(p,p)|Tp € S}
HesSn(Cs | JCa)

By construction of K, p> S.

Case 5: the instruction labeled 5 has been performed. We point out that S N
Ci = SNCy = SNC3 = SNCy = SNCs = (. By induction hypothesis there exists
a model Ky = (Py, <p, pu,IFu) such that py > (S\ {H}). UR2(H), where
H =F.(ANB). Let K =(P,<,p,IF) be a Kripke model defined as follows:
P = Py U{p}, < =<y H(p,a)la e P} IF=IFg U{(p,p)|Tp € S}. By the
construction of K, pr> S, in particular, by induction hypothesis py I =B and
therefore py IF =(A A B). This implies p > F.(A A B).

Case 6: the instruction r6 has been carried out. In this case S contains atomic
swifs, swifs of the kind T(p — A) with Tp ¢ S and F-cle-swffs. Let K =
(P,<,p,)F) be the Kripke model such that P = {p} and p IF p iff Tp € S.
It is easy to show that p > S. As a matter of fact, if T(p — A) € 5, since
Tp ¢ S, p ¥ pthen p IF p — A. Note that all the propositional variables
occurring in the F-cle-swifs do not occur in S as swifs. This implies that every
propositional variable occurring in a F-cle-swff is not forced in p. Since cle-
swifs contain conjunctions and disjunctions only, it immediately follows that
p realizes all the F-cle-swifs occurring in S. O

By Lemma 7 we immediately get the completeness of TAB.

Theorem 8 (Completeness) If A € Int, then TAB({FA}) returns a closed
proof table starting from FA.

5 Implementation and Results

We have implemented TAB as an iterative procedure in C++. In the follow-
ing we emphasize some issues of the implementation of PITP. The procedure
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Simplification is implemented as an iterative procedure. Differently from the
description given in Section 3, the procedure Simplification is called after the
application of a rule. The actual parameters of Simplification are two sets
of swifs: the former, we call it S, is (one of) the conclusion(s) of the rule.
The latter, we call it New, contains the new swifs introduced in S by the
application of the rule. For every swff H in New, Simplification applies the
related replacement rule to S. If H can be replaced in S, then after the re-
placement the simplifications are performed. If new swffs are obtained, then
they are added to the set New. Simplification stops when all swifs in the set
New have been considered for replacement. We do not go into details of the
data structures we have introduced in order to minimize the time required to
perform replacements and simplifications. We only emphasize that our formu-
las are implemented as graphs, in which if a formula A occurs as subformula
of B two or more times, then B has two or more pointers towards A (thus
we represent more occurrences of the same (sub)formula only once). Moreover
every (sub)formula A has pointers towards all the formulas B having A as
subformula. This helps when a formula A has to be replaced in a set a swifs.
As a matter of fact, the replacement of a T and F.-swif is immediate. This
organization of the data structures implies that the simplification rules are
implemented in a bottom-up fashion, visiting the graph in an upward motion.

Our main source regarding the results is the site of ILTP library. Fig. 5 is
built taking the detailed results related to each prover available from http://-
Www.cs.uni-potsdam.de/ti/iltp/results.html. The results show that PITP
and PITPINV outperform the known theorem provers on ILTP v1.1.2 library.
Within 10 minutes PITP decides 238 out of 274 formulas and PITPINV de-
cides 262 out of 274 formulas of ILTP v1.1.23.

The library divides the formulas into several families. Every family contains
formulas sharing the same pattern of increasing complexity. In Fig. 6 and
Fig. 7 for every family we report the index of the largest formula which every
prover is able to decide within 600s CPU time and in parenthesis the CPU time
necessary to solve such a formula (some families of ILTP v1.1.2 are missing
because they are decided within 1s by all provers). PITPINV solves all the
formulas in all families except the formulas in SYJ202+1 family (the pigeon
formulas). PITP solves all the formulas in five families, ft-C solves all the
formulas of SYJ212+1 and it is the best prover in this family, LJT solves
all the formulas of SYJ205+41 and it is the best prover in this family (ex
aequo with PITP); finally, STRIP solves all the formulas in two families but
in no class is it the best prover. PITP and PITPINV are the best provers
of ILTP v1.1.2 library. Although PITPINV outperforms PITP on the ILTP
v1.1.2 formulas, some experiments on randomly generated formulas show that

3 The line errors refers to run-time errors. PITP and PITPINV give one error
parsing a 4.98 GB formula.
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ft Prolog|ft C|LJT|STRIP |[PITP|PITPINV

solved 188 199|175| 205 | 238 262
(%) 68.6 [72.6(63.9| 74.8 | 86.9 95.6
proved 104 106 | 108 | 120 128 128
refuted 84 93 | 67 85 110 134
solved after:

0-1s 173 185|166 | 182 215 227

1-10s 5 6 4 13 15 20
10-100s 6 7 2 8 6 12
100-600s 4 1 3 2 2 3
(>600s) 86 75 | 47 64 35 11
errors 0 0 | 52 5 1 1

Fig. 5. ft Prolog, ft C, LJT, STRIP and PITP on ILTP v1.1.2 formulas

PITP has the best performance. This suggests that the strategy given by the
completeness theorem, where the invertible branch is explored first (PITP
strategy), is, in the general case, better than the one where the non-invertible
branch is explored first (PITPINV strategy). For this reason, we will consider
PITP as our main prover and hereafter we refer to its performance.

202 205 206

provable provable provable
ft Prolog 07 (516.55) | 08 (60.26) 10 (144.5)
ft C 07 (76.3) 09 (85.84) 11 (481.98)
LJT 02 (0.09) 20 (0.01) 05 (0.01)
STRIP 07 (268.59) | 14 (162.67) | 20 (33.24)
PITP 9 (50.25) 20 (0.01) 20 (3.92)
PITPINV | 9 (42.68) 20 (33.45) 20 (3.89)

Fig. 6. Provable ILTP v1.1.2 SYJ-formulas solved by classes

207 208 209 211 212

refutable refutable refutable refutable refutable
ft Prolog 07 (358.05) | 08 (65.41) | 10 (543.09) | 04 (66.62) 20 (0.01)
ft C 07 (51.13) | 17 (81.41) | 10 (96.99) | 04 (17.25) | 20 (0.01)
LJT 03 (2.64) 08 (0.18) 10 (461.27) | 08 (546.46) | 07 (204.98)
STRIP 04 (5.91) 08 (40.62) | 10 (82.33) 09 (50.19) 20 (38.94)
PITP 06 (68.50) 20 (1.76) 10 (206.65) | 20 (191.57) | 20 (5.51)
PITPINV | 20 (305.21) | 20 (1.80) | 20 (60.54) | 20 (139.67) | 20 (5.51)

Fig. 7. Refutable ILTP v1.1.2 SYJ-formulas solved by classes

In Fig. 10 and Fig. 11 we compare the number and, in parenthesis, the percent-
age of randomly generated formulas decided by PITP and STRIP within ten
minutes CPU time (since the performance of ft-C was much worse than STRIP
and PITP, the results of ft-C have been omitted; the results of LJT have been
omitted since run-time errors ranged, depending on the type of simulation,
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from 7% to 33%). All the results refer to randomly generated formulas con-
taining one thousand connectives and decided on a Intel(R) Xeon(TM) CPU
3.00GHz, 2048 KB cache size and 2 GB RAM. Fig. 10 is related to formulas
containing respectively one, ten and one hundred variables. Fig. 11 is related
to formulas of the implicative fragment. We point out that the performances
of PITP on the formulas of the implicative fragment containing one (respec-
tively one hundred) variable(s) are comparable with the performances on the
propositional formulas containing one (respectively one hundred) variable(s).

In Fig. 8 and Fig. 9 we compare different optimizations and give the results of
their effectiveness on some classes of ILTP v1.1.2 formulas (in Fig. 8 in brackets
we give the CPU time, whereas in Fig. 9 in square brackets we give the number
of sets of swffs built by our provers in order to solve the formula). We run PITP
on a Xeon 3.2GHz machine with 2MB cache and 2GB Ram (note that our
computer is different from the one used to obtain the results in http://-
www.cs.uni-potsdam.de/ti/iltp/results.html, thus the results in Fig. 6
and Fig. 7 should not be compared with the ones of Fig. 8 and Fig. 9).

Among the optimizations the most effective is Simp. When Simp is not
active (see the column on the far right) the performances dramatically decrease
in many families. With regard to the other optimizations, there are some
advantages in some classes and disadvantages in others. The optimization
Perm gives advantages only on the SYJ209 family formulas of ILTP. We
remark that Perm gives advantages also on formulas characterizing finite
k-ary trees quoted in the previous Subsection 3.2. The optimization nolnv
does not provide benefits when applied to ILTP formulas. Experiments on
random formulas show that Simp reduces the cases where nolnv is applied
but does not substitute it. As a matter of fact, if we consider the set S =
{T(A — B)}, where A is an implicative formula which is not realized by
the classical interpretation giving false value to every propositional variable
and B is a classical contradiction, then if nolnv is used we can immediately
conclude that S is realizable. Without noInv we have to apply the rule T ——
and develop both the sets in its conclusion. A simulation on five thousand
formulas containing two thousand connectives and one hundred variables gave
the following results: PITP with noInv not active did not decide 88 formulas
within ten minutes CPU time, whereas PITP with noInv active did not decide
68 formulas. On the 4912 formulas decided in both cases, PITP with nolnv
not active took 11324 seconds, whereas PITP with nolnv active took 9238
seconds. Finally a simulation on five thousand formulas of the implicative
fragment containing two thousand connectives and one hundred variables gave
the following results: PITP with noInv not active did not decide 120 formulas
within ten minutes CPU time, whereas PITP with nolnv active did not decide
112. On the 4480 formulas decided in both cases, PITP with noInv not active
took 5665 seconds, whereas PITP with noInv active took 3115 seconds.
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WFF | PITP ALL | PITP -nolnv | PITP -Regl | PITP -Perm | PITP -Simp
201 20 (0) 20 (0) 20 (0) 20 (0) 20 (0)

202 09 (50.11) 09 (49.84) 09 (48.12) 09 (50.88) 06 (19.90)
203 20 (0) 20 (0) 20 (0) 20 (0) 20 (0)

204 20 (0) 20 (0) 20 (0) 20 (0) 20 (0)

205 20 (0) 20 (0) 20 (0) 20 (0) 20 (0)

207 06 (75.95) 06 (75.14) 06 (76.65) 06 (74.22) 04 (11.31)
208 20 (0.19) 20 (0.19) 20 (0.19) 20 (0.19) 08 (428.73)
209 10 (222.45) | 10 (219.31) 10 (224.23) | 10 (406.36) 10 (357.65)
210 20 (0) 20 (0) 20 (0) 20 (0) 20 (0)

211 20 (223.15) | 20 (209.77) 20 (225.38) | 20 (208.32) 20 (597.29)
212 20 (0) 20 (0) 20 (0) 20 (0) 20 (0.28)

Fig. 8. Time comparison between PITP optimizations on ILTP v1.1.2 SY J-formulas

WFF | PITP ALL PITP -nolnv PITP -Regl PITP -Perm PITP -Simp
201 20 [1105] 20 [1105] 20 [1608] 20 [1105] 20 [10369]

202 09 [544733] 09 [544733] 09 [544733] 09 [544733] 06 [1119875]
203 20 [80] 20 [80] 20 [80] 20 [80] 20 [750]

204 20 [22] 20 [22] 20 [22] 20 [22] 20 [62]

205 20 [93] 20 [93] 20 [93] 20 [93] 20 [343]

207 06 [10439389] | 06 [10439389] | 06 [10439432] | 06 [10439389] | 04 [6664039]
208 20 [4235] 20 [4235] 20 [4236] 20 [4235] 08 [11348148]
209 10 [12288168] | 10 [12288168] | 10 [12288168] | 10 [24343423] | 10 [223561169]
210 20 [24] 20 [24] 20 [24] 20 [24] 20 [64]

211 20 [36699632] | 20 [36699632] | 20 [36699632] | 20 [36699632] | 20 [116897467)
212 20 [80] 20 [80] 20 [80] 20 [80] 20 [136]

Fig. 9. Generated set of swifs comparison between PITP optimizations on ILTP
v1.1.2 SY J-formulas

The memory usage can be summarized as follows: formula SYJ208+1.020 re-
quires 700 MB and the increasing factor between two subsequent formulas of
the family is 1.3; formula SYJ212+1.020 requires 133 MB and the increas-
ing factor between two subsequent formulas of the family is 1.98; formula
SYJ206+1.020 requires 110MB and the increasing factor between two subse-
quent formulas of the family is two. In all other cases memory consumption
is under 25MB with an increasing factor less than 1.55. Moreover, we remark
that PITP never went out of memory during the experiments on random for-
mulas.

6 Conclusions

PITP and PITPINV are the fastest among the theorem provers for proposi-
tional intuitionistic logic in the ILTP Library. The optimizations implemented
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Formulas containing 1 variable
0-1s 1-10s 10-100s 100-600s > 600
STRIP 3232(91.870) 105(2.985)| 73(2.075) | 42(1.194) | 66(1.876)
PITP 3517(99.98) | 1(0.02) 0 (0.0) 0 (0.0) 0
Formulas containing 10 variables
0-1s 1-10s 10-100s 100-600s > 600
STRIP 915(70.385) | 92(7.077) | 81(6.231) | 35(2.692) | 177(13.615)
PITP 1284(98.78) | 15(1.15) 1(0.07) 0 (0.0) 0
Formulas containing 100 variables
0-1s 1-10s 10-100s | 100-600s > 600
STRIP 607(60.7) 50(5.0) | 50(5.0) | 30(3.0) 263(26.3)
PITP 985(98.5) 5(0.5) 4(0.4) 0(0.4) 2(0.2)

Fig. 10. PITP and STRIP on random formulas

Formulas containing 1 variable
0-1s 1-10s 10-100s | 100-600s > 600
STRIP 3004(84.811)| 88(2.484) 61(1.722) 39(1.101) | 350(9.881)
PITP 3539(99.91) | 3(0.09) | 0(0.0) 0(0.0) 0(0.0)
Formulas containing 100 variables
0-1s 1-10s 10-100s | 100-600s > 600
STRIP 52(33.3) 10(6.4) | 5(3.2) 1(0.6) 88(56.4)
PITP 906(98.07) 2(0.21) | 7(0.75) | 2(0.21) 7(0.75)

Fig. 11. PITP and STRIP on implicative random formulas

in PITP are of paramount importance in order to achieve the performances
described in this paper. As a matter of fact, in an earlier version PITP only
decided 202 formulas of the ILTP Library; later the version described in [4]
decided 215 formulas. Besides PITP, here we describe a variant called PIT-
PINV. Both PITP and PITPINV implement the same optimizations and differ
on the strategy employed in the application of the rules. PITP decides 238
formulas and implements the search strategy that visits the invertible branch
of T -— and T — — first. PITPINV decides 262 formulas and implements a
search strategy which visits the non-invertible branch of T —— and T — =
first. Despite the result on the formulas on the ILTP Library, the performances
of PITPINV are worse than the performances of PITP on randomly generated
formulas.

As regards the optimizations the most effective is Simplification. This opti-
mization is an adaptation of the one described in [20] for classical and modal
logics. As it is in the tradition of our group (see e.g. [24,26]), we stressed the
classical content of intuitionistic logic in order to simplify as much as possible
its proof theoretic treatment. Our adaptation to intuitionistic logic is related
to the semantical meaning of the F signed formulas since, unlike classical logic,
in the intuitionistic case F signed formulas are not equivalent to L.
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Also, we remark that the analysis of the optimizations are developed by means
of model theoretic techniques based on the Kripke semantics of propositional
intuitionistic logic.

In the future we plan to apply all the optimizations of PITP to IPTP, a paral-
lel version of PITP where we use the technique of threads to manage parallel
computation on a 128 CPU machine; extensions to other intermediate propo-
sitional logics should not present particular difficulties (see e.g. [3]). Finally,
first order extension will require, in our opinion, much work including suitable
adaptations of well established first order classical techniques.
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Appendices

A Proof of Proposition 1

If S is closed because the first condition holds, then for some formula A,
{TA,FA} C S or {TA,F.A} C S holds. By the meaning of the signs and
the definition of the forcing relation in Kripke models, the claim immediately
follows. If S is closed because the second condition holds, then by definition
of forcing of T and L the claim immediately follows. O

B Proof of Proposition 3

We prove only some meaningful cases. Let o be a world of a Kripke model.
Case T — A/A. We prove ((T — A) - A) AN (A — (T — A)) is valid. Let
a lF T — A. Since in every world § of every Kripke model 3 I T holds,
immediately « I A follows. The case a lF A — (T — A) is immediate.

Case S[-L/T]. We prove (L — T)A(T — —L1) is valid. The only interesting
case is T — —L. Since there is no world forcing 1, we immediately deduce
that in every world of every Kripke model —_L is forced (please note that the
result can be also obtained by noting that —_L is equivalent to L. — 1 which
is an intuitionistic formula)

Case S[L — A/T]. We prove ((L — A) —» T)A(T — (L — A)) is valid. The
only interesting case is T — (L — A). Since L is not forced in any Kripke
world, we immediately deduce that | — A is forced in every world of every
Kripke model and then T — (L — A) is valid. O

C Boolean simplification rules

Below we give the Boolean simplification rules that in the previous examples
are denoted by Bool Simplif.

S S S S
S[AV L/A]  S[LvA/A]  SAVT/T]  S[TVA/T]

S S S S
SIANL/1]  S[LAA/L]  S[AAT/A]  S[TAAJA]
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