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Renormalized and renormalization-group invariant Hartree-Fock approximation
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We study the renormalization problem for the Hartree-Fock approximation of the O(N) invariant ¢*
model in the symmetric phase and show how to systematically improve the corresponding diagrammatic
resummation to achieve the correct renormalization properties of the effective field equations, including
renormalization-group invariance with the one-loop beta function. These new Hartree-Fock dynamics is
still of a mean-field type but includes memory effects which are generically nonlocal also in space.
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I. INTRODUCTION

Cosmology, particle, and condensed matter physics have
given, in recent years, a great impulse to the search of a
deeper qualitative and quantitative understanding of out-
of-equilibrium dynamics of quantum fields. In fact, a treat-
ment based on the first principle of the late time and
strongly coupled evolution of quantum systems would
provide a better insight in an important class of phenomena
such as the reheating of the universe after inflation or
thermalization of the quark gluon plasma in the ultrarela-
tivistic heavy-ion and hadron colliders (RHIC, LHC).

The challenge of treating quantum field theories (QFT)
in nonequilibrium conditions is that, except for a very short
time, standard perturbation theory does not provide satis-
factory results (this is true also at equilibrium with nonzero
temperature). Therefore one has to look for nonperturba-
tive approaches providing infinite partial resummations of
Feynman diagrams [1,2]. The simplest of such schemes are
the mean-field approximations such as the leading-order
large-N expansion [3—6] and the Hartree or Hartree-Fock
(HF) variational method [7-10].

These approximations have been extensively studied
and their features are well known [11-16]: they do provide
a backreaction term on the evolution of quantum fluctua-
tions that stabilize dynamics at late time but, on the other
hand, they fail to properly describe an important aspect of
late-time dynamics such as thermalization. More elaborate
approaches going beyond mean field have been put for-
ward by considering the 2-particle-irreducible (2PI) or the
two-point-particle-irreducible effective action [17,18] at
two (or more) loops or at next-to-leading order in 1/N
expansion [19-22], yielding indeed approximate numeri-
cal thermalization at strong coupling.

Apart from the search for a better description of the late-
time dynamics, there has recently been much progress in
understanding more formal aspects of resummed approx-
imations such as their renormalization properties. This is a
long-standing problem [23,24] and recently a systematic
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method has been developed [25-29] to remove divergen-
ces in the ®-derivable approximations based on applying a
Bogoliubov-Parasiuk-Hepp-Zimmerman subtraction pro-
cedure to diagrams with resummed propagators.

In this article we will consider the simple HF approxi-
mation of the O(N) ¢* model as defined by variational
principles, or equivalently by resummation of daisy (or
bubble) diagrams. It is known [8,23,24] that the usual
renormalization of bare coupling and mass is not consis-
tent, so that the simple Hartree approximation is not really
renormalizable. We will show that this nonrenormalizabil-
ity is due to the absence of leading logarithmically diver-
gent contributions coming from diagrams which are not
present in the standard HF resummation. We shall show
that including also these contributions, plus suitably
chosen finite parts, yields indeed a renormalized and
renormalization-group (RG) invariant version of HF equa-
tions. We point out that these improved equations, although
still of a mean-field type, are nonlocal in time (that is, there
is memory) and generically nonlocal also in space, unlike
the original ones. We also verify that all these nonlocalities
disappear in the N — oo limit, which is well known to
provide a renormalizable, RG-invariant and local approxi-
mation to the out-of-equilibrium dynamics of the model.

Section II is dedicated to generalities. In Sec. IT A the HF
approach is introduced as a variational approximation with
a Gaussian state functional in the Schrodinger picture. The
corresponding well-known equations are rederived [see
Egs. (2.5) and (2.7)]. In Sec, IIB we review the closed
time path (CTP) formulation of out-of-equilibrium prob-
lems and the equivalent definition of the HF approximation
as a resummation of bubble diagrams. In Sec. IIC we
establish some relations between the two approaches and
define a generating functional F’ [see Egs. (2.20) and
(2.21)] whose proper renormalization would render finite
the dynamical problem.

In Sec. III we tackle the central problem of constructing
renormalizable and RG-invariant HF-like equations. In
Sec. IIT A we begin by studying, as a leading example,
the static and homogeneous problem (i.e. the calculation of
the effective potential) for the N = 1 case of a single scalar
field. As already stated above, our analysis leads naturally
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to add contributions from diagrams absent in the HF ap-
proximation, in such a way to include all leading logarith-
mic divergences and construct a modified effective
potential [see Eqs. (3.22)] with the correct renormalization
properties. In Sec. III B the analysis of the HF approxima-
tion and its renormalizable improvement are generalized to
the fully dynamical and inhomogeneous N > 1 case [see
Egs. (3.48)]. Further remarks on the freedom of choosing
various initial conditions without spoiling renormalization
and RG invariance are made in Sec. III C.

There are several possible developments along the lines
of this work. First of all it would be interesting to study
numerically our modified HF field equations, to investigate
how the space-time nonlocalities affect the time evolution
as compared to the standard HF approximation, which is
known to fail even qualitatively at late times. Secondly,
with the proper changes in the renormalization scheme, the
derivation could be extended to the case of broken O(N)
symmetry, where the standard HF approximation faces
other infrared difficulties connected with the Goldstone
theorem [30]. Since our improved HF resummation adds
also cutoff-independent contributions to the conventional
one, it is conceivable that infrared properties of the model
are affected too. Another challenging task is the extension
of our approach to the full two-loop 2PI effective action,
through the inclusion of the nonlocal sunset diagram which
is absent by definition in any mean-field approximation. In
fact one should expect that, even if such an inclusion
allows one to recover renormalizability as compared to
the conventional HF approximation, the two-loop 2PI
self-consistent equations still lack RG invariance with the
two-loop beta function, since the 2PI effective action does
not contain all diagrams which contribute to the next-to-
leading ultraviolet divergences.

II. GENERALITIES

A nonequilibrium approach to quantum field theory is
needed every time we have to deal with an initial value
problem. In fact, the usual in-out formalism of quantum
field theory (QFT) provides the means to calculate scatter-
ing expectation values

(out|O(¢,, t,, . . .)|in),

where |in) and |out) represent particle states prepared at a
distant past and future, respectively, while O is some
observable depending on intermediate times ?y, t,, .... On
the other hand, in order to study the real time dynamics
from a given initial condition we need to know amplitudes
like

(W ()01, 1, .. )W (1)),

where | W) is a generic state prepared at a initial time 7, <
t1, ty, . ... Out-of-equilibrium QFT provides the general
setup for the calculation of such matrix elements, as well
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as more general expectation values in statistical mixtures
of pure states like | V).

In this section we briefly review some generalities about
nonequilibrium QFT and point out some properties that
will be useful to derive the results of the next section.

A. Variational approach and HF approximation

A simple and intuitive approach to the initial value
problem is to treat QFT as ordinary quantum mechanics
of extended systems. We restrict here to the case of interest
for this paper: scalar field theory in 3 + 1 dimensions with
quartic interaction and unbroken O(N) symmetry. The field
variables are ¢;(x) where x = (x|, x,, x3) are space coor-
dinates and i =1,..., N is the O(N) index. Classical
dynamics is defined by an action, functional of trajectories
@,(x), with x = (x, 1), in the form

m2
stel = [atsl3 0,004, ~ 5 .o

A
- 47[§Di(x)¢i(x)]2}; (2.1)
where m? and A are the squared mass and the coupling
constant, respectively. In terms of ¢;(x) and its canonical
conjugated momentum 7;(x) = ¢;(x) the Hamiltonian
reads

Hi. )= [ @] Smie)me) + 5 V0x) - Ve o

+ v<¢,-<x>)}

where

m? A
V(o) = — @.0: + —(0;0;)>.
() 5 P 4!(40,%)

Canonical quantization proceeds by imposing the standard
commutation rules

[, (x), m(y)] = 8,8 (x — ).

In the “position” representation states are functionals of
¢;(x) and the momentum operator reads

)
—.
S¢;(x)

It is then straightforward to write down the Hamiltonian
operator and the corresponding Schrédinger equation.

In this framework, the standard variational methods of
quantum mechanics suggest an easy nonperturbative ap-
proximation to dynamics (see e.g. [10,31,32]). The varia-
tional method follows from the observation that the
Schrodinger equation is obtained by minimizing the
Dirac action

SplW] = f W), — H)W ()

mi(x) = —
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with respect to trajectories of vector states |¥ (7)) in the
Hilbert space. Therefore minimizing Sp, over trajectories in
a chosen variational family of states |W¥,,,) gives an ap-
proximate solution of the Schrodinger equation. In QFT,
where scalar products are written as functional integrals,
calculability strongly reduces the allowed family of states.
Choosing states represented by Gaussian wave functionals,
for which calculability is manifest, yields the HF approxi-
mation. Let us in fact consider the wave functional

Wlel(r) = N explilp(d)le — (1) — (¢ — (1)
X G~'0) + iSOlle — )},

where the variational parameters are the background field
@ (x), the background momentum p(x), the real symmetric
positive kernel G;;(x, y; ), and the real symmetric kernel
S.j(x, y; 1) with the shorthand notation

(@OIMOIb(0) = [ dxdya,(x, DM y(x, y: 0by(3, 1.

(2.3)

By evaluating S we obtain the variational action for these
parameters

Tl p.G.S1= [ (o010 — 5 p(0)
= VIG(®. (] + T G(1)S(1)
- 2506050 - $60 1] 24

where traces are taken over all indices and space variables,
and

VIG. #1= 3l = A+ mil$)+ 3 TH(-A +m)G)
+ [ (G i@ w)

2.2)

206,006,096 ,(x.)
+206,6)6,()Gy(x.)

+ %Gii(x, x)G;(x,x) + %Q[j(x, x)G;;(x, x)>_

Notice that the HF Dirac action is a first order action that
involves only the first time derivative of fields and treats
coordinates and momenta as independent variables. The
equations of motion are obtained by the variation of
Eq. (24) as

bi=—{—A+m}+ NoPrdild;
10T jtm Gem (X, X) } b,
Gij =2[GS+ Sg]ij’
S, y) =[G 2~ 28](x,y) — [(~A+m})s;

10Tt (Pr B + G (2, 2)]8° (x — y), (2.5)
where
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Tijtm = ¥(0ij0m + 68 jm + 8im0ji)

and matrix multiplication, over both discrete and continu-
ous indices, is understood. We have tacitly replaced in the
last equations, and in general in the quantum Hamiltonian,
the constant parameters A, m? with bare (cutoff dependent)
parameters A, m%. In fact the theory should be thought as
regularized with an UV cutoff A and then renormalized to
remove the divergent dependence on A. We have not
included here any field renormalization because, as is
well known, this is absent in any mean-field-type approach
such as the HF approximation.

To conclude this section we introduce an equivalent
formulation of the Egs. (2.5) in terms of mode functions
Uy, [k is the wave vector and a the O(N) polarization] that
will be useful later on. For simplicity let us suppose that the
initial (r = 0) kernels are transitionally invariant (while the
background field and momentum may be point dependent).
We can then write

&Pk - ,
Gij(x, y;0) = f(szgij(k)ezk-x’
3 ~
Sij(% y30) = %Sij(k)e”‘"‘.

Next, we introduce the + = 0 mode functions by
uka,i(x’ 0) = [G(k)l/z]aieik.x:
lga,i(x,0) = [—:iGk)~" + 25(k)];juka,j(x, 0),

and let them evolve according to the equations of motion

(2.6)

{(D +md)d;; + %/\OTijmn[(ﬁm(x)d)n(x)
dp
W”pb,m

Then one can show that the last two equations in Egs. (2.5)
are equivalent to

+ (x)ﬁ,,b,,,u)]uka,j(x) —0. @7

3
Gijlx, y;0) = f%uka,i(x: D, (3, 1),

lga,i(X, 1) = fds)’{_ %[gil]ij(x) y:t) (2.8)

+25,x y; t)}uka,j(y, ).

Through the mode functions we can introduce the sym-
metric correlation

&k _
G;i(x,y) = G;(y,x) = Re/w Upeq, i (X) kg, ()
whose equal time value reproduces the kernel G,

Gii(x Y| yy=yo=r = Gij(x, y: 1)

Then we can reformulate the dynamics in terms of ¢ and G
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in a manifestly covariant way as

IO+ mf + L Ao di(x) i (x)18;
12071 jkm G (X, )} (%) = 0,

{( @+ m)di; + L Ao7jkml dr(x) b, (x)
+Gim (X, x)]}Gij(x: y) =0.

2.9)

B. CTP formalism and resummations

The general approach to nonequilibrium problems in
QFT was developed by Keldish and Schwinger. It is known
as CTP formalism and allows one to use standard path
integral functional methods (see [17,18,33,34]). Basically
it is obtained by introducing path integrals on a time path
going from ¢ = 0 to t = +o0 and back. Field integration
variables are then doubled and subdivided into (+)— com-
ponents, for the path integral forward in time, and (—)—
components for the backward piece. Given an initial state
defined by the functional W[ ¢] (in our case it will be a
Gaussian state) one writes down the functional integral

eiW[j+,j7]=ngp+D§D_q’[¢+]
X W[ JeiSle1-isle [+itile=ii-leo) (2.10)

where S is the classical action (2.1) and we have used the
notation (2.3) for the current terms. Integration is on tra-
jectories from ¢ = 0 to t = +o00 (with the condition ¢, =
@_ att = +00) and ¢ in the wave functional is the t = 0
section of ¢-. By construction W[j,, j_]is the generat-
ing functional of connected Green functions

» X Y1» ""yn)

_ (_i)n+m3n+m'w

B 5j+(x1) e 5j+(-xn)6j—(yl) e 6.]—(ym) Jj+=0j_=0
= — W T{e(y) eI T () @) HP)eomms

G+...+,...,(X|, .

where 7 and T define time ordered and inverse ordered
products, respectively, and internal indices have been omit-
ted for ease of notation. The effective action I"jpi[¢ ., ¢ _],
which is the generator of 1PI vertex functions, is the
Legendre transform of W[j, j_] from the currents j.
to the fields ¢ .. The equation of motion for the back-
ground field ¢(x) = (¥|e(x)| V) then reads

‘SFIPI

5600 | p.—p -6 >

2.11)

Notice that, in the case of the Gaussian wave functional
equation (2.2), I';p; depends parametrically only on the t =
0 kernels G(0) and S(0), while the ¢ = 0 background field
¢(0) and p(0) enter, instead, as initial conditions for the
equation (2.11).
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The perturbative diagrammatic expansion in the CTP
formalism proceeds as in vacuum QFT in terms of free
propagators

G% ., (x,y) = Ghx, y) = —i{¥IT 0(x) (¥ comn | a—0-
G- (x,y) = Gox,y) = —i¥IT @(x) M ¥)eoml a0
G%_(x,y) = G% (3 x) = —iW]e(1) @) W)eomlr—o

and vertices (for clarity, we write here explicitly the inter-
nal indices)

K J, _i J
>< =ik Tijkm >< = —iX Tijkm, - (212)
+ + - —

It can be shown that, in generic out-of-equilibrium contexts
or even at equilibrium with nonzero temperature, plain
perturbation theory is of very little help and many resum-
mation methods have been developed to go beyond it. A
very successful instrument in this sense is the 2PI effective
action (see [17,18]). It is defined as the double Legendre
transform of the "W generating functional with respect to
the usual current one-point j. and to the two-points current
K, g(x, y) coupled through the term

% f dx f d*VK 5 (5, Y) @ o) 5(2),

where a, B = *. I';p; is a functional of the classical fields
¢, and of the propagators G,g. It yields two equations of
motions

8T 5p
8a(x)

—o, O |
* 5Gaﬁ(xr y) *

(2.13)

Here the notation |, indicates that, by their physical mean-
ing, the (*)-component fields and propagators have to
satisfy, on the solutions of motion, the following relations:

d_(x) = ¢_(x) = ¢x),
Gr(x,y) = G4_(3,x)0(xg — yo) + G4 _(x, ¥)0(yo — Xo),
Gr(x,y) = G4 _(x,)0(xg — yo) + G-y, x)8(yo — xo)-

Hence the system (2.13) reduces to two coupled equations
for ¢ and G, _ only. Moreover, any initial Gaussian state
may be absorbed in the 7 = 0 term for the j, and K,z
currents, so that, by the double Legendre transform the
initial Gaussian state disappears from the effective action,
but fixes the initial conditions on ¢ and G _. The role of
¢(0) and p(0) = $(0) is immediate, while for the kernels
we have
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—iV]e(y)e)|V)
— igp(y, 0)p(x, 0)
G(x, y;0),

— W7 (y)p(x)| V)
— ip(y,0)¢(x, 0)

= 21[GSI(x,y:0) + 5 3x — )

G- (5 Wlgmyym0 =

d
a—yo G+7()C, y)le:yOZO =

Given I'yp; at a certain perturbative loop order, if we solve

the second equation in (2.13) for a generic ¢ and substitute

the result G[ ¢ ] into the first one we obtain the background

equations of motion corresponding to a resummed dia-

grammatic approximation of the 1PI effective action I';p;.
For a scalar theory, the I'yp; has the general form

Donl, G) = 5[] + 5 TillogG] + TGy G
+ I,[ ¢, Gl

Here S is the complete classical action of the double time
path (i.e. S = S, — S_). Traces are taken over all indices
i, @ and x. G, ! is the second derivative of the action in a ¢
background, I'; is the sum of all vacuum 2PI diagrams with
G propagators and vertices defined by the classical action
in a ¢ background. To two loops level the diagrams
contributing to the I', are the “8” and “sunset” diagrams

.

The HF approximation corresponds to consider only the
first contribution to I',.

(2.14)

Iy = id[GE(x, x) — GL(x, x)].

In fact using this form of I" in the field equations (2.13),
setting G(x, y) = {G_, (x,y) + G_,(y, x)] and observing
that the antisymmetric combination decouples, one obtains
exactly the HF equations (2.9).

Notice that “8” is the only 2PI diagram made of a
“product” of loops corresponding to a mean-field contri-
bution to the mass. In the 1PI framework this corresponds
to a resummation of all vacuum 1PI diagrams with daisy
and superdaisy topologies of the form

(2.15)
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C. Physical representation and reparametrization of
HF effective action

In this section we derive useful explicit relations con-
necting the diagrammatic definition of I'yg to the varia-
tional approach of Sec. IIA. To this purpose it is
convenient to introduce a different representation of the
CTP formalism, known as the physical representation (see
[34]). We introduce the field redefinitions (omitting again
the internal indices to simplify notation)

ba=bi—b.  be=g(b )
and write the 1PI effective action as a functional of these
new fields, I';p; = I 4, ¢.]. By calculating vertex func-
tions, one then finds

o"T

b ) obul) | g0 L H1O
and
gremT o
S n) - 06 (6,)0ba0n) 662 0m) | 40
2.17)

if the time component of any one of the x’s is larger than
the time component of any one of the y’s. Let us also
remark that, by the definition of the CTP generating func-
tional, all time coordinates in the vertex functions are
supposed to be positive so we can set, as well, these
functions to be zero for any negative time. Using
Eq. (2.16) together with Eq. (2.11) one can write the

equations of motions in the form
or’
_— =0. (2.18)
0ba | gs=0.6.~¢

Notice that 2n-legs vertex functions with one ¢, leg and
2n — 1 ¢, legs are the only ones contributing to these
equations of motion. Then Eq. (2.17) guarantees that all
the terms nonlocal in time in Eq. (2.18) do satisfy causality.

Perturbative calculations by diagrammatic expansion in
the physical representation are based on the free propaga-
tors

G% (x,y) = GS(x, y)

= —if(yo — XX VI[o(x), p(]PH =0,
GR.(x,y) = GRlx, y)

= —if(xo — yoXVI[o(x), p(MIPH =0,
Gla(x y) = =2 PHP (), P () HP)connl a0,
Gle(x,y) = 0.

The free retarded and advanced Green functions G and
G% do not depend on the initial state and are translational
invariant. The correlation function G =ﬁ g A» instead,
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does depend on |W). The vertices are

i J i J

/< = 1 X Tijkm /\ = 120 Tijkm, (2.19)
//

k m k m

where solid lines represent ¢, legs while dotted lines
represent ¢, legs.

As stated above, the HF approximation consists in the
resummation of diagrams with daisy and superdaisy top-
ologies. Therefore the functional differentiations which
produce the vertex functions act only on propagators;
hence the diagrams contributing to a 2n-legs vertex func-
tion (both in = and physical representations) must have the
form

&

that is, the 2n legs are pairwise connected to n vertices.
This means that the HF effective action can be written in
the form

FHF[¢A’ ¢c:| = _<¢A|D|¢c> - .,F[f’ X 77]:

where F is a functional of the following composite matrix
fields:

fij(x) = ¢C,i(x)¢c,j(x)’ Xij(x) = ¢c,i(x)¢A,j(x):
ﬁij(x) = ¢A,i(x)¢A,j(x)-
We now introduce, for ease of notation, the new object
1 6F
2 6Xij(x) x=1=0

which is a functional of ¢&;;(x) = ¢ ,(x)d. ;(x) =
¢:(x)¢;(x) only. Then the equation of motion in the HF
approximation takes the general form

By comparison with Egs. (2.5) and (2.8) we obtain the
following expression for F':

F /[f]ij(x) =

(2.20)

2
_ M Ao
= 751'1' + Eaij'fkk(x)

AO km dsp
—Tii | 753 Upa,i
4 Y | Q)3 P

fl[ér]ij(x)
(X)L, ;(x). (2.21)

The dependence of the mode functions u,, on § is fixed by
solving Eq. (2.7) for a generic ¢ field. Notice that the
identification of Eq. (2.21) is somewhat arbitrary since
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we can add to F' a generic functional term A[&];j,, X
(x) & (x) with A;j,, = —A 4, Without changing the con-
tribution of F’ to the effective action and to the equations
of motion (2.20).

The role of the functional F’ in the generation of vertex
functions can be easily established. Let us consider the
2n-points vertex function with one ¢, field leg and m(=
2n — 1) ¢, field legs (as we said those we are interested in
for they contribute to the equations of motion), a simple
calculation leads to

Fﬁlzj':)j(x [ Y15 e Vi)
_ 2T
8Ppi(x)8b.;, (1) 8be; (Ym) | pa=0g.=0
2
=D06%x —y;,)8;, + =1 Z 8*(x — py)
PE2,
n—1
X |:l_[ 8*(pyu — Py2k+1):|
k=1
sn—1 g1 L
y F'€]y;,(x) )
6p&j;(32) - 8p€j, j, m) | e=o0

where 3., is the set of all permutations on {1 - - - m} and we
used the notation py; = y,u), Pji = jp)» and p&; ; (v,) =
&pjipin(PYs)-

Let us observe that the general structure of the 2n-points
vertex functions in Eq. (2.22) is a direct consequence of the
mean-field form (2.20) of the equations of motion, regard-
less of the specific form of the functional F'[£]. In this
sense it is more general than the HF approximation, hold-
ing true for any mean-field-type dynamics.

In what follows we are going to study the problem of
renormalizability (and RG invariance) of the effective field
equations in the HF approximation. By the results of this
section we need to consider only the vertex functions
contributing to the equations of motion and hence only
the functional F’.

III. RENORMALIZABILITY AND RG INVARIANCE

We are concerned here about the possibility of construct-
ing a set of HF equations in which all the divergent
dependence from the cutoff has been removed by a suitable
renormalization procedure and, at the same time, no de-
pendence on the renormalization scale has been intro-
duced. In brief we are going to study the problem of
renormalizability and RG invariance of HF equations.
This will lead us to some results that go beyond the strict
mean-field approximation and include resummations com-
ing from 2PI effective action loop expansion.

In this section we will deal with the general case of an
inhomogeneous (in space) dynamical problem within the
O(N) symmetric scalar field theory with unbroken sym-
metry. However the main aspects of the problem can be
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more easily pointed out by considering a simpler case. In
the first subsection, therefore, we restrict to the static
problem, that is the calculation of the effective potential,
for the N = 1 theory.

A. A simple instructive example: effective potential
for N =1

We want to study the renormalization problem of the
static and translationally invariant version of Egs. (2.5)
when N = 1. This situation follows, in the variational
approach of Sec. Il A, by considering a field ¢ constant
throughout space-time, with vanishing momentum p, and a
constant translationally invariant G kernel

&’k

2y 0

Gx—y=

with § = 0. By a simple substitution in Eq. (2.5) we obtain

1 A A Bp s
_ — k2 2% 2, %M ,
Gw MRty J 2 6 o
o Ao Ao dSP > '
0=[m+ g8+ [ b s

where a sharp cutoff A has been introduced as
regularization.

Equivalently we can consider the equations of motion as
defined by the 1PI effective action and reduce to the static
case by evaluating I'jp; on a space-time constant ¢. So
letting

V’(f) = fl[f]lfzconst’

we can define the effective potential by V() = V(¢h2),
with V(&) the primitive of V'(£) vanishing at & = 0. From
Eq. (2.20) the equation for the background field ¢ is

Véff(d)) = 2V’(¢2)¢ = 0.

Comparison with the second equation in (3.1) leads imme-
2

diately to
m§ A A &p -
TRl ey a )

Vi =+ ety Jlen 27

3.2)

where the implicit dependence of G on ¢ = ¢? is obtained
by solving the first Eq. (3.1) with a generic ¢. We recall
also that V() is the generator of vertex functions with
all incoming momenta set to zero (for constant homoge-
neous fields the distinction between CTP and vacuum
standard formalism is immaterial).

As usual, one introduces the ansatz

i 1
SN =T

that allows one to cast the first of Egs. (3.1) in the form of a
mass-gap equation
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A A d*p 1
M? =2+l-+i] ,
(é:) my 2 2 P<A (277.)4 p2 + M2(é‘:)
3.3)

where the integration has been written in four Euclidean
dimensions (p*> = p§ + p*). By comparing Eq. (3.3) with
Eq. (3.2) we can rewrite the latter as

5 M*(§) Ao
"¢)=—"3—-—— 34
Vg =" - e G4
so that, by combining Eqgs. (3.3) and (3.4), we have
2 4
7/ L) + ﬁ + @ d'p
Vi 2 12 4 Jppen (2m)?
1
(3.5)

X . :
p*H2VI(€) +340é

This is a self-consistent definition of the effective potential
and is the central equation that we are going to use in this
subsection.

Let us apply the standard renormalization procedure. We
introduce two physical parameters, the renormalized
squared mass m? and the coupling constant A, which are
identified, respectively, as the second and fourth deriva-
tives of the effective potential at zero field, so that

d*Vigr

=2V'(0) = m?,

i | o 0)

A (3.6)
dﬁ* = 12V"(0) = A.

These are the two renormalization conditions that, once
inverted, determine the dependence of the bare parameters
Ao(A, m, A) and m(z)()\, m, A) on the physical ones and the
cutoff. The assumed existence and positivity of 2V’(0)
provides the definition of unbroken symmetry, which is
our choice here.

Using Eq. (3.5), we can calculate the explicit HF form of
Eq. (3.6)

A
m* = mj + glg)(mz, A),

3N, (3.7)
- o o e
1 + %/\OIE (m ,A)
where, to shorten notation, we have introduced
d*p 1
1M (m2, A) = 3.8
O (m2, A) fp e T

and the suffix E refers to the Euclidean form of the integral.
As A — oo one sees that 1,%” is quadratically divergent in
A, while Ig is logarithmically divergent and all other 11(5")
are finite.

We now point out the problems that occur with this
standard procedure.
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First of all we can see that there is a pathological
behavior of the effective quartic coupling A as a function
of the bare parameter A at fixed cutoff A. In fact A has the
correct 1-loop A3 term dictated by perturbation theory, but
certainly fails at higher orders, since it exhibits an unphys-
ical behavior, growing to a maximum value at Ay = Ag'™,
then decreasing to zero and to even more unphysical
negative values. This implies the breakdown of the HF
approximation for values of A, greater than A§** in a
theory at fixed cutoff. Another way of looking at this
problem is to invert Eqgs. (3.7) to obtain m% and A as
functions of A parametrized by m? and A. A full trajectory
in A of m(z) and A, corresponds to a single renormalized
theory describing the dynamics at momentum scales much
smaller than A. Clearly we must restrict our attention to the
monotonically increasing branch through the origin at
Ao = A = 0. But these trajectories, for any positive value
of A, exhibit a “Landau obstruction” at the value of A
which corresponds to AF®*. This obstruction is even more
troublesome than the Landau pole present in the standard
1-loop-renormalization-group (1LRG) improved relation,
which by a suitable choice of finite parts can be written as

A

Ao(A, A/m)|yirg = 1 — %,\[}?(m% A)

3.9

in terms of the whole 122) (m?, A) rather than just its leading

divergence 8—7172 log(A/m). In fact, the obstruction spoils
even the one-to-one correspondence between bare and
renormalized parameters (at fixed cutoff) which must
hold true in general and holds true also in the 1LRG
improved relation (3.9).

Secondly, and even more seriously, one may verify that
the above renormalization procedure does not remove all
the logarithmic UV-cutoff dependence from the potential.
That is, V() does not parametrically depend solely on
m? and A, but also on A and therefore on logA. In a QFT
with a Landau pole or obstruction, where the UV cutoff
cannot be completely removed, we should accept at most
an inverse power dependence of physical quantities on A.

To show this, consider the finite part of Ig), that is
Jy—m?) =1, A) = 1 (m2, A) = 1 (m?, A)(m? — y)

for any real y. By the use of J Eq. (3.5) may be cast in the
form

V(&) =1m? + EAE+ LA+ 200)JV(E) +1N& — mD).
This can be written more compactly
AV'(£) = 1gJQAV'(§) + 1g8)

with the definitions

(3.10)

g=1A+2x)  AVI(§)=V'(&) - V'(0) - V"0)&

(3.11)
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It is quite clear now that the higher order derivatives (or
vertex functions with vanishing incoming momenta) of
Vs, which are all contained in AV’, depend explicitly on
logarithms of the cutoff through the effective coupling g.

This problem was dealt with in [8,24] by a direct renor-
malization of the HF gap equation, by setting

M? = m3 + 1]0o€ + 10010 (M2, A)
= m* +IAE + N (M? — m?)

so that the bare-to-renormalized relations are found to be

A 1

2 _ 2
) mi=m?>— =
1 - %AI(EQ)(mZ, A) 2

Ay =

Aol (m2, A).
(3.12)

This procedure makes M?(&) and all higher derivatives of
V(€) cutoff independent by definition, but fails in two
respects. First of all the 1-loop beta function readout
from Eq. (3.12) is 3 times smaller than the correct one
[see Eq. (3.9)], which implies a mismatch already to first
order in perturbation theory. Moreover the parametriza-
tions (3.12) do not eliminate completely the cutoff loga-
rithms, which remain in the quartic term of V() since
the background field equation reads

Vig(@) = BMP(¢%) — Ao p*]ep = 0. (3.13)
One could adjust the mismatch with the beta function by

redefining the bare quantities appearing in the HF gap
equation. If we make the ad hoc replacements

Ao — A Ao
0 Ao = ,
1+ AIP(m?, A)

(3.14)

1.
m} — m3 = m* — 5/\0121)(1112, A)

then the correct 1LRG relation (3.9) is recovered. As for
the problem with the quartic term in V.¢(¢), a reasonable
argument was put forward in [8] to justify the substitution
Ao — A in Eq. (3.13).

We will see that this substitution, as well as the redefi-
nition in Eq. (3.14), can be fully justified in the spirit of the
ILRG improvement of the HF approximation by an ex-
plicit diagrammatic analysis.

The problems just outlined have, in fact, a simple inter-
pretation if we analyze the diagrams exactly resummed by
the HF approximation. First, if we consider the renormal-
ized mass, given by the two-legs vertex function with no
momenta V'(0), we see, by the first equation in (3.7), that it
is dressed by daisy and superdaisy tadpole diagrams, as
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0.

From now on we are going to work with this dressed mass and we will draw a simple solid line for the corresponding
dressed propagator. Let us consider the quartic coupling; the second equation in (3.7) tells us it is obtained by “‘chain”
diagrams (with dressed propagators).

This is not the full diagrammatic expansion that corresponds to the 1LRG relation between A and A in Eq. (3.9). The latter
in fact includes all local contributions with leading logs (LL) of the cutoff from all diagrams at every given loop order. So

PHYSICAL REVIEW D 72, 065003 (2005)

(3.15)

(3.16)

Eq. (3.16) misses the LL local parts of graphs like

+>@ + sym +...+ + sym +....

This is the cause of the problems outlined above with the
form Eq. (3.7) of the renormalized coupling A.

Moreover, we can examine in the same spirit the dia-
grams contributing to higher order vertex functions (higher
order derivatives of V in zero field). From Eq. (3.5) we see
that they are convergent loop diagrams (loop with more
than 2 propagators) with dressed propagators

| \
>‘Q m (3.18)
. :

and vertices with the effective quartic coupling g =
(220 + 1)/3

= = X OK - OOK
- 000K -

The reason of the presence of g and not of the renormalized
coupling A in higher order vertices is that the local LL
contributions of diagrams like

@ 5@

are not included in the resummation defined by the stan-
dard HF approximation as described by Eq. (3.10).
Including such LL contributions would make the HF ap-
proximation renormalizable in terms of the reparametriza-
tions of Eq. (3.7), that is with the pathological relation
between A and Ag. This is because the LL contributions of
diagrams like

(3.19)

(3.20)

(3.17)

[

are still missing. Their proper inclusion would allow one to
obtain everywhere the renormalized 1LRG improved cou-
pling constant.

By these observations we are led to a natural way to
modify the HF approximation in order to obtain a renor-
malized effective potential and the form (3.9) for the
coupling constant that will ensure RG invariance in the
general case, as we will see. The prescription is to include
all missing contributions of the type (3.17) to 12V"(0) in
order to obtain the 1LRG relation between A and A, as in
Eq. (3.9), and to include also the contributions of graphs of
the form (3.20) and (3.21) in order to obtain A instead of g
in higher order vertex functions.

In conclusion we define a modified version of HF ap-
proximation by setting

N 1
2V'(0) = m? = m3 + EAOI(EI)(mz, A),

Ao

12V"(0) = A = )
1+ 3 212 (m2, A)

(3.22)

N 1 N 1
V(@) = AJ(ZAV’(f) +3 Af).
This defines the renormalized potential \7(5) and leads to
the following equations:
M? =M+ m? + A (M? — m?),
0= (M> — A,

and these are finite and exactly in the form found in [8].
This gives a simple diagrammatic explanation of the sub-
stitution Aj — A made in [8] and of the statement (3.14).
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B. The general case

We are now in a position to deal with the general
renormalization problem of the time-dependent and inho-
mogeneous HF approximation for O(N)-symmetric theory,
as described by Egs. (2.5) and (2.7).

Our first step is to derive a self-consistent functional
equation for the effective action analogous to the one for
the effective potential in Eq (3.5). Let us introduce the
squared mass parameter m>. We choose m? to be the
equilibrium mass (i.e. the physwal mass of the unbroken
symmetry phase), that is to say the solution of the mass-gap
Eq. (3.3), generalized to N > 1, in zero field.

m? = m3 + (N + 2) AoV (m?, A). (3.23)

()

Let us then define the free mode functions u,, as solutions

of

@+ m)uP(x) =0 (3.24)

with the same initial conditions of the exact mode func-
tions, that is
WO, 0) = u,(x,0),  a(x,0) = iy, (x,0). (3.25)

We need also the free retarded and advanced Green func-
tions

4 5.
GO (4 — d’p ij ~ip(x—y)
Orijlr =¥) = Qm)* p? —m?* + iepoe ’

d* S;; .

Gl(qo,)l](_x — y) = p Y e*lp(x*)’)

Q2m)* p* —m? — iepg

which allow one to cast Eq. (2.7) in the form of an integral
equation (this is a quite standard way to proceed in the
renormalization of out-of-equilibrium problems, see i.e.
[35D)

() = mM‘PW%VMMMmML
(3.26)

where
Vij(x) = 100&;;(x) + 2F'[£];(x) — m*5;

plays evidently the role of mean field for the mode func-
tions. In these equations, and everywhere else from now
on, all fields (¢, mode functions, F’, V, etc.) are to be
thought of as defined only for positive times (initial con-
ditions are at the limit point # = 0%) and all time integra-
tions are restricted to positive values, as appropriate in an
initial value problem.

In compact notation Egs. (3.26) and (3.27) can be written
as

(3.27)

Uy, = u;{o) GE?)Vuka, V =1gé+2F — m?,

(3.28)
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where sums over internal O(N) indices and integrations
over space-time coordinates are understood. In particular,
notice that 'V, &, and F'[£] act as multiplication operators
over space-time.

The solution of Eq. (3.28) formally reads

Up, =[1— GQV]”M}SI)

so that the cutoffed correlation

3
Gij(-x’ y) = Ref (;Z 1;3 pal(x)upaj(y)

can be written

G=G[V]=[1-GYVI GO - VTGV 1,

(3.29)

where

G(O)(x —y)=Re &p u'® (x)u(o) )
e O

is the free correlation function, which is entirely fixed by
the initial conditions. In conclusion, by substituting the
form (3.29) in Eq. (2.21), we obtain the sought self-
consistent equation for F' as

FILEL; = Wm28;; + VIEL) — thoéi,

" (3.30)
Vi = A0TijinEn + 1LV Jin — I’ 84),

where we have renamed the correlation at coincident points
as

I[V]ij(x) = G[V]ij(x: x).

Now, following closely the previous subsection, we may
use these expressions, together with the general formula
Eq. (2.22), to evaluate the renormalization conditions. To
begin with, we consider the HF vacuum as an initial state
for the quantum fluctuations. That is to say that we start
from equilibrium initial conditions for the mode functions
by choosing as t = 0 kernels the solutions of the static
problem of the previous subsection (generalization to the
N > 1 case is straightforward), that is

G =, o)==, 3,00=0

(3.31)

Let us stress that, in spite of this choice, we are still
considering an out-of-equilibrium problem since we allow
for generic initial conditions for the background field. We
will discuss the use of different initial kernels later on.
By the standard prescription we have to compute, using
Egs. (2.22) and (3.30) (the Fourier transform of), the two-
and four-legs vertex functions I'® and I'® at some special
values of the external momenta characterized by some
given scale s. Owing to our assumption of unbroken
O(N) symmetry, we may choose to renormalize I'?
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zero momentum, while for '@ we make the usual choice
of the symmetric configuration. These special values of
I'® and I'® will be identified, respectively, with the physi-
cal squared mass at equilibrium and with the coupling
constant renormalized at the scale s.

Using the relations (2.6) and definitions (3.24) and (3.25)
we obtain the following form for the free mode functions:

S; _
(0) — ia ik-x—iw(k)t
W) () = Dl gx-ivter
’ V2w (k)

The two-legs function is obtained by calculating (3.30) in
zero £ field. It is easy to check that 'V = 0 is a solution of
Eq. (3.30) for ¢ = 0 if the mass renormalization Eq. (3.23)
holds true. Using this fact and the general definition of
vertex functions, Eq. (2.22), we obtain the free two-points
vertex function

TP (x| y) = @+ m?)8,;64(x — ).

We recall that this is a vertex function in the physical
representation of the CTP formalism, with one ¢, and
one ¢, insertion.

Now we have to calculate the four-legs function (one ¢ 5
and three ¢,). From the variation of the second Eq. (3.30)
with respect to & at ¢ = 0 we find the integral equation

19ijkm(x) = /\oTijkm W (x)

1
- E/\OTijrs fd4x/1(2)(x - xl)ﬁrskm(xl) (332)

for the function

5V[§]ij(x)

Giislx — ') =2 ,
! ( ) 5§rs(-xl) £=0

where
2
19(x) = - N GE?),»j(x)GE?) (x)
is the (suitably normalized) loop with one retarded and one

correlation Green function. Equation (3.32) becomes alge-
braic in Fourier space

0} iikm(P) = AT ijm — Aol (2)(19)711;'”1§ rskm(P)  (3.33)
and is easily solved by
19ijkm(P§ Ao) = 1g1(P: X816 + 8, 0it]
+182(P3 X0) 8,0 km (3.34)
with g; and g, defined as
Ao
5 A) = ————,
i) (3.35)
82(ps Ag) = 8117 20

1+ LN +2)A 0P (p)

We recall that, as appropriate to a causal initial value
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problem, all Fourier transforms are analytic in the upper
complex py-half plane. Notice also that [ (p) =
I?(p, m2, A) depends on the UV-cutoff A through the
initial time correlation function Gf-?) (x),

2 d*k ~)

A a GRU-(P - k)GE?)(k)

19 (p.m?, A) = N kl<a (2m)*

(3.36)

so that, as long as A is finite, it is a function of both the time
component p, and of the Euclidean 3D length |p|, rather
than just of the Lorentz invariant p> = pj — p*.

We now apply the relation between V and F in (3.26)
and the general definition (2.22) and obtain the following
form of the four-legs vertex function:

4
FE-U)km(xl | x2, X3, X4)

3 4 — () —
d DPn s IZPH (x1—x,,)
B ] [ (27r)ﬂr5|;km(l’z’ pa pae :
n=1

ng?km = —2X0Tijim + Dijn(ps + Pa) + Dim(pa + pa)
+ 5imkj(P2 + p3). 3.37)

Notice the structure of I as a sum of the three terms, for
the s, ¢, and u channels, with the same functional form
given by 9(p) — 2Ay7/3. This structure is characteristic of
the HF approximation, as can be inferred from the general
formula (2.22).

In the present out-of-equilibrium context, we can define
the symmetric point at the scale s as

p3tpPa=p3stpo=prtpi=q,=0,4q), lql=s

with an arbitrary direction §. Evaluating '™ at this point
yields the renormalization condition

—T®
/\Tijkm Fi|jkm|sym.pl.,u.

= —2Ag + 2g1(q5: Ao) + g2(gq5: Ag).

This result should be compared to the corresponding one in
the static N = 1 case, that is Egs. (3.7) and (3.11). We see
that, in the current context with generic N and generic
renormalization scale, the effective coupling 3g is split into
2g, and g,, both scale dependent.

Before going any further in discussing renormalizability
and RG invariance (independence on the scale s), it is
convenient to calculate a “‘quasirenormalized” form of
the self-consistent equation (3.30) for F’ analogous to
the Eq. (3.10) found for the effective potential.

First of all let us define J[ V] as the part of the integral
term I[ V]in Eq. (3.30) that does not contain any divergent
integral

J(x) = 1(x) = [GO + GQ VGO + GOVTGY(x, x)

— A
(3.38)

that is, in Fourier space
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J i (D) = Ten(p) = 189 (p) 81 + I2(p) Vi (p),
(3.39)

where 8 (p) stands for —i(p, + i€)~'8%)(p), as appro-
priate in this out-of-equilibrium context.
The second of Egs. (3.30) can now be rewritten as

th(p) % tjkm(p; AO){gkm(p) + J[V]km(p)} (340)

Now, we can define
Aj:;j(p) = j:i'j(p) - %mzﬁij5(4)(19) - [%5ijkm(l9)
- ?ly/\OSikajm]gkm(p)

and, by substituting in (3.40), we obtain the HF self-
consistency equation in the quasirenormalized form that
we were looking for, that is

A\ﬂj(ﬁ) = %éijkm(l’)j[v]km(l?),

(3.41)

(3.42)

i/ij(p) = 2Aj:§j(l9) + %éijkm(p)gkm(p)

which is to be compared with Eq. (3.10).

\< w< +sym+\’ \’/Y + sym +---

where we recall that dotted (solid) lines represent ¢, (¢p,.)
propagators and external legs coupled with the vertices
(2.19) of the physical representation. This resummation
misses all leading logarithmically divergent contributions
coming from nonbubble diagrams. In the usual in-out
formalism their inclusion provides the standard 1LRG
relation

11 logA

X_X+'80/\ ogA + -+ -,
where By = (N + 8)/4877 is the first coefficient of the
beta function and the dots stand for the scheme-dependent
finite parts. Now the HF approximation provides a precise
scheme where leading logarithms and finite parts are all
contained in the 1-loop bubble I (2)(%, m?, A). Hence we fix
the finite parts in the standard 1LRG relation above, by
choosing the complete parametrization

A
1- NT-FS /\i(z)(qs: m2’ A)

Ao(A, s/m, AJm)|jrg = (3.44)

which generalizes to the present nonstatic case with ge-
neric N the static N = 1 result in Eq. (3.17) and replaces
the pure HF parametrization of Eq. (3.38). Notice that in
the out-of-equilibrium formalism there could be a priori a
complication with nonlocal finite parts, since the four-legs
function T'™, even if evaluated at the symmetric point,
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We can now repeat the analysis of the previous subsec-
tion in this more general case. As we will see, conclusions
will be rather similar.

First of all, exactly as it happened in the static case, the
renormalization of the mass parameter receives contribu-
tions from daisy and superdaisy tadpoles with the top-
ologies shown in (3.15). These contributions are actually
not affected by momenta entering in the two-legs function
and simply define the bare mass in terms of the renormal-
ized one according to Eq. (3.23). From now on we deal
with dressed propagators, i.e. propagators with the renor-
malized mass.

We look then at the coupling renormalization in
Eq. (3.38). It exhibits the same pathological behavior of
the static N = 1 case, Eq. (3.7), now with a N-dependent
Landau obstruction. Most importantly, from the explicit
form of the HF four-legs function in Eq. (3.37) we see that
imposing a finite value to A at a certain chosen scale s fails
to render finite the four-legs function with generic incom-
ing momenta and, in particular, the coupling A’ at any other
scale s’ # s. We can correct both shortcomings with the
same strategy of the static N = 1 case. In fact, the dia-
grammatic analysis of the HF four-legs function shows that
it is given by the resummation of ““bubble” graphs

(3.43)

{
need not be in principle completely symmetric in its four
O(N) indices (recall that it has one ¢, leg and three ¢,
legs). However the symmetry in the three ¢, legs is enough
to fix the 7 tensor as the unique O(N)-invariant fourth-rank
tensor, so that a unique coupling constant renormalization
can occur, including finite parts, just like in the standard in-
out formalism.

Let us now consider the four-legs function I'® at generic
values of the external momenta. We need to modify its HF
form (3.37) in such a way to meet the following require-
ments:

(i) It must be the sum of the three separated channels s,
t, and u with the same functional form in each
channel, as dictated by the mean-field form of the
equations of motion.

@i1) It must reduce to the relation A=
A(Ag, s/m, A/m), the inverse of Eq. (3.44), at the
normalization point.

(iii) It must be free of cutoff logarithms for any value of
the external momenta.

(iv) It must match the perturbative one-loop result and
respect O(N) symmetry.

A specific form meeting all requirements is given by

zljkm(pr P3 Pa) = Ap3 + pa)lixjm + A(p2 + pa)
X Lijim + Ae(p3 + p2)imje (3.45)
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where the tensor € reads

1
Cjtn = 3075 g LN+ D058t + 23udn + 81 30]

and A,(p) is the running coupling constant, connected to
coupling A = A,(q,) at the scale s by the relation
1 1 N+8
+

oy =3 e 0P - 1)

(3.46)

that involves by construction only a subtracted integral, so
that one may now take the limit A — oo. Of course, this
defines a meaningful A,(p) only for p timelike or p space-
like but such that — p? is smaller than the Landau pole.

It should be noted that Eq. (3.45) is not the unique
possibility, given the requirements listed above, since it
could be modified at low momenta by allowing a weak
dependence on the normalization scale s. Here we choose
to fulfill exactly the one-loop RG invariance, which fixes
completely Eq. (3.45). In this way we are modifying the HF
approximation in such a way to include the correct leading
logarithm contributions due to the missing CTP diagrams
with the topology in Eq. (3.17). At the same time we are
approximating the whole momentum behavior of these
diagrams according to the one-loop RG.

We still have to consider the higher order vertex func-
tions. These are encoded by construction in the functional
Aj’-'f ; defined in (3.41). From the HF self-consistency
equation (3.42) for A F ! ; we can see that an explicit
dependence on the logarithm of the cutoff is still present
even after the coupling constant renormalization. The rea-
son is in the presence of the effective vertex ;,,(p) in
Eq. (3.40), which corresponds to CTP diagrams of the same
type of those drawn in (3.19). Exactly in the same way of
the N = 1 static case [see Egs. (3.18) and (3.19)] we have
to include other contributions containing the correct lead-
ing logarithms that come from the ¢, — ¢, diagrams
corresponding to those in Egs. (3.20) and (3.21). In order
to obtain renormalizability and maintain the single channel
structure of the effective vertex (which is a direct conse-
quence of the mean-field approximation), these contribu-
tions have to be taken momentum dependent in such a way
as to determine a leading log structure for the effective
vertex in place of ©;;,,(p). Then finiteness, agreement
with the lowest perturbative order, and one-loop RG in-
variance at all momentum scales require the resulting
structure to be simply A,(p)7; k-

In conclusion, we modify Eq. (3.42) in the following
way:

i ;j(p) = Aj:;j(p) + %mzaij5(4)(l9) + %Ar(P)€ijkn1gk,n(P),
ATZJ(P) = %Xr(p)Tijka[’V]km(p)r
Vi(p) = 28F4(p) + 0, (D) (P,

The renormalized equations of motion are then

(3.47)
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[(O+mH)s; + Vi(x) —15,;(0]é,x) =0,
(O + m?)6;; + V() Jug, j(x) = 0,
Vi(p) = A D)7l Ein(p) + ()
— 1989(P)8y, + IO(P) Vi)l (3.48)

where E,;(x) is the inverse Fourier transform of Z;;(p) =

AP Tijim = Lijkm)€rm(p) and we recall that £(x) =
¢i(x)¢;(x) and I;,,(p) is the Fourier transform of
d3
VI =Re [ 6By 0,09
which is a functional of the mean-field V through the
evolution equation for the mode functions.

The absence of any divergent cutoff dependence in the
modified HF approximation defined by Egs. (3.47) or by
the equations of motion (3.48) is manifest, since they
involve only the finite running coupling constant and the
fully subtracted (Fourier transform of the) equal point

correlation [;;(x). Comparing the expression for Vi.,-(p)
with the original one in Eq. (3.30), that reads in Fourier
space,

V i(P) = RomijialEen(p) + Tea(p) — 196D (p) 34,1

we see that our improved renormalization simply amounts
to performing the logarithmic subtraction on I[ V];; while
promoting the bare coupling A, to the running one A,(p).
As a consequence, the p dependence of A,(p) and I?(p)
imply a space-time nonlocality of the modified HF self-
consistency equation for the mean-field "V (x), which now
depends on the whole history of the background ¢ and of
the mode functions 1y, from time zero to time ¢. A similar
space-time nonlocality appears in the equation of motion
for the background field ¢. Causality in this nonlocal
evolution is guaranteed by analyticity in the upper
po-half plane of I?(p). Let us observe, however, that the
third equation in Eqgs. (3.48) does not provide an explicit
expression of the mean-field 'V in terms of the background
and of the mode functions. To obtain such an expression,
we must solve for 'V, paying the price of losing manifest
finiteness. In practice, this reduces to the simple matrix
inversion already performed on Eq. (3.32) and yields

Vii(p) = =1 151m(Ps = A (D) Eim(P) + Tin(p)
— 189(p)8y,]

where the ¥, 4,,(p; u) is the function defined in Eq. (3.34).
In coordinate space this becomes

Vi =3 [l = L8008, + 1)

- 51']‘1;(51)] + 8;72(x — X[ (x)

+ [y () = NIPT, (3.49)
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where y,(x) and 7y, (x) are the inverse Fourier transforms of
the functions —g;(p; —A,(p)) and —g,(p; —A.(p)), re-
spectively, which can be read from Eq. (3.35) and are
indeed analytic in the upper py-half plane. For instance,
we have explicitly

d* p
@m)*

y1(x) =

Ae*ipuc

“THIAN + DIP() — (N + 99(q,)]

with an even more involved expression for vy, (x). Clearly
71, depend logarithmically on the cutoff A through an
incompletely subtracted /?(p), but, by construction, this
logarithms cancels out with those coming from the incom-
plete subtraction 7;;(x) — §; ,1,(5” on the equal point corre-
lation of the mode functions. The memory functions vy, (x)
and vy, (x), as well as the inverse Fourier transform of A,(p)
which enters in the evolution equation of the background
field [see Eq. (3.48)], all share the same behavior for large
timelike values of x, namely, a (x2)~!/2 decay modulated
by oscillating factors.

When N = 1 things simplify considerably and we find
for the mean field

3
V() = f dixly(x — x’){¢2<x'> + [ %[luku)v
1
- 2w(k)}}’
where
2 1
y(x) = g?’l(x) + g)’z(x)

1 [ d*p Ae”
2 ) @@t 1+ AP (p) —319(q,)]

while mode functions and background evolve according to
[O+m?+ V(@) Jue (x) =0,
1
D+ Vo= [atey e 626 [ =0
where

d*p Ae~iPx
Qm* 1+ 3A1%(p) — 1%(q,)]

v (x) =

is the ultraviolet finite inverse Fourier transform of the
running coupling constant A,(p).

On the opposite end, when N — o0, one can verify that
the standard local evolution equations [3] are recovered
from Eqgs. (3.48). To this end, it is convenient to restrict first
to the special case of a background field which maintains a
fixed direction, that is ¢;(x) = ¢(x)v;, with v some fixed
N-dimensional unit vector. In fact in this case we can
reduce Eqgs. (3.48) to an index-free form by introducing
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longitudinal and transversal projectors

Ppij=vuvy Pr;; = 3ij — Ppij

Then we can set

Upg,i(X) = g (X)Pp i + tgr(X)PT i,

Viix) = V()P + Vi(x)Pr,

which are compatible with the initial condition in
Eq. (3.31) if we assume that the longitudinal and transverse
parts of the mode functions and their derivatives are equal
at the initial time. By substituting into the equations of
motion and projecting one obtains

[0+ m? + Vi) lugr(x) = 0,

[0+ m? + V() g () = 0,

[0+ m? + V. (x) = 1@0)]b(x) =0,

Vi(p) = 10(p) + A, (PN — DIr(p) + 37.(p)]
Vi(p) = 10(p) + A (PN + DIr(p) + T (p)],

where ®(x) is the inverse Fourier transform of ®(p) =
M(p)é(p) [recall that &(x) = ¢2(x)] and the meaning
of J; and Jy is obvious [see Eq. (3.39)]. Again, the
formulation in momentum space for the mean-field V,
while convenient to avoid lengthy convolution integrals
and to allow for an easy check of finiteness, does not
make causality manifest. The opposite situation, with fi-
niteness hidden and causality manifest would follow by
solving explicitly for 'V and then reverting to coordinate
space as done above for the general case [see Eq. (3.49)] or
for the N =1 case.

Now let us rescale the coupling and the background field
as prescribed by the standard large N procedure

$(x) = VN (x).

By substituting in (3.50) and taking the limit on N we
obtain (notice that the longitudinal mode functions de-
couple)

[0+ m? + V() Jugr(x) =0,
[0+ m? + Vi(x)]ex) =0,

Vo) = é/\{¢2(x) i f%[luk(x)b _ %(k)}

(3.50)

A— A/N

+ 1<2>(sm(x)}

which are the usual, local, and renormalized large N evo-
lution equations. We remark that A is the renormalized
coupling at the scale s while the nonlocal terms [with the
running coupling A(p)] have all disappeared by explicit
cancellation. This is indeed what was to be expected, on
the basis of the same diagrammatic analysis that leads to
our improvement of the HF approximation, since the non-
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renormalizable terms in the standard HF approach, as well
as the contribution we have added to cure the problem, all
come from diagrams that are at least 1/N suppressed.

We conclude this lengthy subsection with an explicit
check of the renormalization-group invariance of our im-
proved HF approximation, by verifying that indeed all
vertex functions obtained by Egs. (3.47) are solutions of
the Callan-Symanzik (CS) equation. These equations state
the RG invariance of any observable @ which is a function
of coordinates x; (or momenta p;), of the scale s, the
coupling A, and the parameter o = m?/s?, that is

9 J J
555+ B0 B o) |0l | 5.0,0) =0
(3.51)

with B and B, functions to be determined. Notice the
absence of the term with the anomalous dimension due to
the lack of field renormalization in HF approximation. By
applying Eq. (3.51) to the two-legs function one obtains
By = —20. Then by applying to the four-legs function
one obtains

1 d
B\, o) = ——(N + 8)A2 lim s — ID(s, m?, Ao pp2-
6 A—oo 0§

Then for s> > m? we have B = (N + 8)/4872 )% as ex-
pected. Now, is easy to check that all free propagators with
dressed mass satisfy the CS equation since they are func-
tions of m? alone. Then, since the generic n-legs function is
a functional of the propagators and of the RG-invariant
running coupling A,(p) through the four-legs function, one
immediately concludes that it satisfies Eq. (3.51).

C. Other initial states and nonzero temperatures

As stated in the previous subsection, with generic initial
conditions on the background field Eqgs. (3.48) already
describe an out-of-equilibrium problem, in spite of the
choice in Eq. (3.31) of equilibrium initial conditions on
the quantum fluctuations. It is nonetheless sensible to ask
whether and how we can choose different initial conditions
for the mode functions without spoiling the properties of
renormalizability and RG invariance.

What might happen can be shown by the following
example. Let us consider, in the simple N = 1 case, an
initial state of the same form of the HF vacuum but with a
different mass M, which could be for instance the solution
of the gap Eq. (3.3) in the case of a uniform background.
This is a frequent choice in dealing with nonequilibrium
problems and has a precise physical meaning, since it
corresponds to the minimization of the quantum fluctuation
part of the HF energy at a fixed uniform background. At
any rate, as soon as we assume as initial conditions
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Gt =20 Q) =i+

T 20k)
Eij(k) =0

with M # m, then the free mode functions have more than
one frequency component
ik-x Ok )
uiO)(X) - “:l —( ):|e“"(k)’
2./20(k) w(k)

+ [1 - %}em(")t}

and the free correlation function is no longer translation-
ally invariant in time. Then the integral term in Egs. (3.48)
(recall that here N = 1)

T(p) = 1 6@ (p) + 12(p) V(p)

in spite of the subtractions still contains the superficially
divergent contribution

Bk m? — M

w W COSZw(k)t

(3.52)

that indeed diverges with the cutoff when ¢ = 0. These
initial time singularities have first been discussed in [36]
and removed by a Bogoliubov transformation on the initial
state, which in practice amounts to a redefinition of the
initial kernel in such a way that the leading terms of a high-
momentum expansion are the same as at equilibrium

1 m?

e
WK AK2)?

In fact, one may verify that the initial singularity (and any
other divergence as well) is absent for any choice of kernel
having the above large k expansion. A simple interpreta-
tion is that the renormalization procedure ensures finite-
ness for any initial Gaussian state belonging to the same
Fock space of the HF vacuum. From this simple example
we can extrapolate the generic condition on the short-
distance behavior of the initial state kernel

G(k) ~

G Ly | | +

G(x, y) i) e g L

that ensures the cancellation of all divergent terms is
guaranteed by mass and coupling constant renormaliza-
tion. This conclusion can be immediately extended to the
generic N > 1 case.

Before concluding let us say some words about the case
when the initial state has a nonzero temperature 7. The
formalism for pure state dynamics introduced in Sec. II B
can be easily generalized to statistical mixtures defined by
Gaussian density matrices,
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pler, o] = N explilple; — ¢2)
— (A IG7" +iSTlAg))
—(Ap|iG7! = iSTlAgy)

+{A@1GT2LGT A (3.53)
where Ap, = ¢; — ¢. The parameters are the background
field ¢ and its momentum p, the symmetric kernels G, S, v
and the antisymmetric o (with { =y + 4iG'/2aG'/?).
The normalizability of the state (Tr{p] = 1) requires
G~ '2(1 — y)G~'/2 to be positive. In CTP formalism the
generalization  proceeds simply by  substituting
Yo, [¥[e_] with p[e,, ¢_] in the path integral of
Eq. (2.10). Then HF equations are still as before while
more general initial conditions for the mode functions are
allowed. Let us consider an initial state with translationally
invariant kernels and, for simplicity, letusput N =1, S =
o = 0, then we have

we(x,0) = [GU)]2[1 — F(k)] /2,
g (x, 0) = [—iG (k) ~'[1 = 72(k)]"/*Jug (x, 0).

For vanishing initial background field and momentum,
standard equilibrium solutions are given by

1 w7k
Glk) = 20, () tanh TYS ), wr(k) = \/kz+_m%,

[ wT(k):|—1 (3.54)
Vi = | cosh——=
T
with m?% defined by the gap equation
1 [ &k
m2 —m? = =1V + (m2 — m*)1?(0) + 5 f PR
1 wr(k)
X th .
2wrk) 2T

By expanding wy(k) around w,(k) = w(k) one can easily
check the cancellation of divergent terms. We can then
consider the out-of-equilibrium problem with the same
initial conditions on the mode functions but arbitrary initial
values for the background field and its velocity. The free
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mode functions read

Oy 1|1 w7 OT\ i
= |— cotht| (1 + 2L
e () =34 /55- < 2T[( ¢
+ (1 _ﬂ eiwti|eixk'
w

Calculating the free correlation function we easily can
check that the mean-field expression in the last of
Egs. (3.48) is free of divergences, except for the one at t =
0, which is given by Eq. (3.52) with M = my. As above,
this can be cured by a Bogoliubov transformation, which in
practice amounts to changing the equilibrium solution in
Eq. (3.54) by allowing a suitable ultraviolet £ dependence
in the temperature.

One last comment regarding RG invariance. We can see
that the proof of Sec. III B still holds as long as the free
correlation function depends on the renormalized squared
mass alone.

IV. CONCLUSIONS

In this paper we proposed an improvement of the HF
approximation to the O(N) scalar theory in the symmetric
phase, motivated by its shortcomings as far as renormaliz-
ability and RG invariance are concerned. We first traced
these shortcomings to the absence of the leading log con-
tributions of a well-defined class of diagrams. We then set
up a scheme in which these contributions are correctly
included, while preserving the mean-field structure of the
effective field equations and the one-loop approximation of
the RG beta function. This implies a specific choice of
momentum-dependent finite parts, which provide a sort of
mean-field approximation of nonbubble diagrams such as
the sunset diagram.

We were not concerned here with the accuracy of this
approximation, for lack of space on one hand, and for
general reasons on the other hand. In fact, as any mean-
field approach, our proposal lacks direct particle scattering
and therefore cannot describe properly many important
phenomena of out-of-equilibrium QFT. Nonetheless,
mean-field approximations provide good qualitative de-
scriptions of many other phenomena and it is important,
in our opinion, that they satisfy general field-theoretical
requirements such as renormalizability and RG invariance.
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