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Simple stochastic model for the evolution of protein lengths
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We analyze a simple discrete-time stochastic process for the theoretical modeling of the evolution of protein
lengths. At every step of the process, a new protein is produced as a modification of one of the proteins already
existing, and its length is assumed to be a random variable that depends only on the length of the originating
protein. Thus a random recursive tree is produced over the natural numbers. If (quasi) scale invariance is
assumed, the length distribution in a single history tends to a log-normal form with a specific signature of the
deviations from exact Gaussianity. Comparison with the very large Similarity Matrix of Proteins database

shows good agreement.
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I. INTRODUCTION

Nowadays, it is well established that the great variety of
proteins in biological systems have been produced during the
course of evolution by means of gene mutations that take
effect at the coding level [1-6]. The main mechanisms are
duplication of genome segments that contain sequences cod-
ing for one or more protein domains [7-10]; divergence of
the duplicated sequences by insertion, deletion, and substitu-
tion of one or more base pairs [11-14]; domain rearrange-
ments, such as gene fusions and gene fission [15,16], domain
recombination [17,18], gene shuffling (recombination be-
tween dissimilar genes) [19], and domain insertions and de-
letions [20,21]. By means of these microscopic mechanisms,
iterated a huge number of times throughout the ages of evo-
lution, an initial protein population, most likely very small
and poorly assorted, has been enormously increased to the
present very large number and complex variety.

A valuable framework for the effective modeling of the
evolution of genes and proteins could be provided by sto-
chastic processes. In the most general formulation, one
should take into account the complex organization of bio-
logical systems into independent organisms grouped in turn
into species, genera, and kingdoms, as well as the compli-
cated effects of natural selection. However, since all evolu-
tion mechanisms generate new biological material by means
of modifications of the biological material already existing,
in the case of proteins we may imagine a simpler, more ab-
stract discrete-time stochastic process over the space of all
amino acid sequences, such that at each time step ¢
=1,2,3,... a new protein is generated with some prescribed
random mechanism from the set of proteins already existing.
Clearly, the discrete time of the model has nothing to do with
the time of the true biological evolution process, except that
it is (almost) a monotonically increasing function of the lat-
ter, at least on time scales large enough (great mass extinc-
tions correspond most likely to periods when this monoto-
nicity is lost). Moreover, a single time step in the process
would correspond to some averaging over a multitude of
different effects, both at the microscopic or biochemical
level, and at the macroscopic level of the selection-based
evolution mechanisms.
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This abstract stochastic process can be specified by
Pr(p,.;[{p},), that is, the conditional probability that the ¢
+ 1 protein has the amino acid sequence p,,, given that there
is already a set {p},={p;.p,,...,p,} of distinct proteins at
time 7. In principle, Pr(p,, |{p}, might embody the effects of
many, if not all, of the complicated biochemical and evolu-
tionary mechanisms alluded to above, and should depend
explicitly on time. Moreover, the initial configuration of pro-
teins can be assumed to coincide with the actual set of dis-
tinct amino acid sequences present in nature at some moment
in the distant past, when their total number was much smaller
than the present one. In any case, a huge amount of informa-
tion is required for a complete specification of a model en-
dowed with detailed predictive power. On the other hand, all
that we can hope to reproduce in reasonably simple terms, to
a large extent independent of the details of the model, are
some broad characteristics of the distribution of proteins cur-
rently observed. This is indeed our main working hypothesis,
based on the fact that the very large number of proteins in the
Similarity Matrix of Proteins (SIMAP) database do show
simple universal properties [24,25]. Then we may rely on the
basic universality property, typical of a wide class of stochas-
tic processes, which is the ability to forget the details of the
initial transient regime and to relax toward a statistical equi-
librium or quasiequilibrium state that depends only on very
general features of the conditional probability Pr(p,,,|{p},),
and is characterized by few, weakly time-dependent “macro-
scopic” parameters.

II. A STOCHASTIC PROCESS FOR PROTEIN LENGTHS

In the present work, we concentrate our attention on the
distribution of protein lengths, that is, the observed fre-
quency of proteins with a specific number of amino acids
over the set of all known proteins. Thus we can consider only
the protein length as the random variable of the stochastic
process. By definition, this random length takes values in the
natural numbers, and we denote it with the symbol €. We
also observe that by construction all the proteins produced in
the process can be ordered according to the time of produc-
tion, starting from #=N,,, with N, the number of distinct pro-
teins in the initial configuration, and arriving at =N, with N
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of the order of the number of distinct proteins that exist now
in nature, which is of order 107 or more. The statistical dy-
namics of the process is fully determined by
Pr(€,.1|€,.€,_,...,€;), that is, the conditional probability
that the 7+ 1 protein has length €, , given that the preceding
proteins have the indicated lengths. This conditional prob-
ability might depend explicitly on the formal time 7.

As already discussed above in a more general context,
the detailed biological mechanisms that constrain
Pr(€,.;|€,.€,_,,...,£;) are far too complex to be explicitly
incorporated in the model. Therefore, we shall make simple
and workable assumptions about the conditional probability,
relying, in practice, on some sort of central limit theorem for
the probability that a protein taken at random from the state
of a very long random process has a certain length.

As a first simplifying assumption on the conditional prob-
ability Pr(€,,;|€¢,,€,_y,...,€,), we make that of locality. That
is, we assume that a given protein length can be produced
from a preceding length independently of all the other
lengths already produced. Hence we can write

1

?61) = 2 qSWS(€[+1|€S)7 (1)

s=1

Pr(€,+1|€,,€,_1,

where the nonnegative weights ¢, are properly normalized,
3 _1g,=1, and W((£|€') can be interpreted as Markovian
transition probabilities. In the absence of any other informa-
tion, one would assume equal a priori probabilities among
the different proteins, that is, g,=1/t and Wy(€|€")
=W(£]€"), with no explicit s dependence. This might appear
in conflict, however, with the global changes of ecosystems,
as well as with the complex organization of biological sys-
tems in kingdoms and species (which suggests that all pro-
teins existing nowadays can be roughly divided into subsets
of similar proteins having almost independent evolutionary
histories, as least not too far in the past). We may take this
into account by restricting the predictions of our stochastic
process to suitably chosen subsets of the proteins of the SI-
MAP database, according, for instance, to given kingdoms.
Moreover, we can neglect, on average, the global changes of
ecosystems by placing the start of the process not too deep in
the past. All together, let us assume that

t
1
Pr(€, [€, €y, ... €)= ;2 WL, €,). )
s=1

Our stochastic process now differs from a random walk on
the natural integers only because at each step any one of the
already existing lengths, rather than only the last generated
one, may serve as the starting point for a jump to a new
length. We are therefore dealing with the so-called random
recursive tree (RRT) [2,3] (more precisely, a random recur-
sive forest) embedded by W(£|€') into the natural integers. It
follows that the probability P({,r) that the tth protein has
exactly length € satisfies the non-Markovian evolution equa-
tion
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P,t+1)= > W[EHOW' 1), (3)

=1

where Q(€,1) is the average length distribution (that is, the
mean fraction of proteins of length €) at time ¢, and therefore
evolves as

t+1D)O,t+1)=t0(£,t) + P(€£,t + 1). (4)

Together, Egs. (3) and (4) define a stochastic process with
memory, and should be compared to the Markov chain recur-
sion for a simple random walk (RW) on all possible lengths,
which would read instead

o0

PRY(Ct+1)= >, W[€)PRY(L' 1) (5)
=1

without any memory of the past. We still do have to make
some choice of the explicit form of W(€|€’), in which case
our stochastic process could be quite easily simulated on a
computer. We expect, however, that the large-time
asymptotic regime of the process depends only on very gen-
eral features of the functional form of W(€ | €'), again thanks
to the universality hypothesis, which has its roots in the law
of large numbers. In any case, to investigate the statistics of
the lengths produced, we need beforehand some useful prop-
erties and formal manipulations valid for any W(€|€").

We recall first of all that, by definition, the nonnegative
numbers W({|{’) satisfy the normalization condition

> W) =1.
=1

These transition probabilities are the elements of a matrix W,
the so-called stochastic matrix in the case of Markov pro-
cesses. Without loss of generality, we may take W to be
ergodic, that is, such that any finite length can be produced
after a suitable number of steps starting from any other finite
length.

Next we can exploit the linearity of Eq. (3) to simplify the
choice of initial conditions for P(€,7). As already stated
above, the process is assumed to start with N, distinct pro-
teins, which we may take to have n distinct lengths €;, j
=1,2,...,n, each repeated n; times, so that Ejnj=N0. This
defines the initial length distribution

1 n
O(6,Ny) = — 2 n;8.
’ Nosm 77

when N, was the total number of distinct proteins. As the
process may start from any one of these initial proteins with
equal probability 1/N,, we may regard n;/ N, as the probabil-
ity that the process starts exactly from the length €;. There-
fore the solution of Eq. (3) can be written
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1 n
P(t,1) = FE n;P(€,t = No+1[¢;)
0j=1

©

= E P(est_NO-i— 1|€,)Q(€,7N0)3 (6)
0'=1

where P(€,7]€") is the special solution that is concentrated at
the arbitrary value ¢’ at =1, that is, P(€,1]€")= 8. Simi-
larly, we have

(6,0 = 2 Ot —Ny+ 1[€)0(¢",Ny), (7)

=1

where Q(€,t|€') is the solution of Eq. (4) specialized to
P(€,t|€), that is,

t
Q(€,I€'):%E P(€,s]€"). (8)
s=1
Clearly, €’ is the length of a specific protein which plays the
role of the root for the RRT, while the complete process is a
forest of RRTs each having a root in one of the N, initial
proteins and growing in parallel. That is, the unique protein
labeled by 7 has a fixed probability n;/ N, of belonging to the
tree rooted in a protein of length €.
We may now introduce the matrix notation

W) =[Wlger,

P(C,t

") =[P1)]ee

O€.1[€") =[O0 ¢e,

which allows us to write the evolution equation for P(r) more
compactly as

1 t
P(t+1)=WQ(1) = ;2 WP(s); 9)
s=1

or equivalently as

-1
tP(t+1)= D WP(s)+ WP(1)=(t+ W= 1)P(>#), (10)

s=1

which has the formal solution

t—1 -1
P(t)=H<1+W 1): v (11)
1 s (r=1)!
where 7" stands for the so-called raising factorial product
7Z(z+1)-+(z+n—1) [22]. The raising factorial generates the
(unsigned) Stirling numbers of the first kind as coefficients
of its expansion in simple powers of z:

z’7=é {n}zk,

k=1 k

n>0,

where we adopted the square bracket notation of Ref. [22]
for the Stirling numbers. Hence, from Eq. (11), we can write
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t—1

-1
(t_ll)’Z {t . ]PRW(S), (12)
cs=1

where PRV(r)=W" is the formal solution of the standard ran-
dom walk. Notice that, by Eq. (12), P(¢) is indeed properly
normalized, that is,

P(r)=

> P =1,
=1

since W* is also a stochastic matrix and Stirling numbers
satisfy the normalization

S[1]-n

In fact, Eq. (12) shows that the quantity

1 {t—l]
t=-D! s

has the interpretation, for the abstract RRT, of the probability
that the node added at time ¢ is at a chemical distance s from
the root of the tree, that is, the original node present at t=1.
In terms of proteins, p(t—Ny+1)n;/ N is therefore the prob-
ability that the rth protein is obtained through s changes from
one of the N initial proteins of length €;.

Notice also that the evolution equation (9) allows one
write an alternative expression for Q(z) that is local in time
(but generally nonlocal in “space”) with respect to P(z),

ps(t) =

Q(t)zW‘lP(t+1)=[l‘2 le (13)

s s=1

One can see that p,,,(r+1), which by construction satisfies

t
1
pen(t+1)= ;2 py(k),
k=1

represents the average fraction of nodes at a distance s from
the root [2].
For very large n we can use the approximation

ﬁ~r(n) z l
Z —F(Z)n[l+0(n>], (14)

which follows from Euler’s infinite product representation of
the I" function [23]. From Egs. (11), (13), and (14) we then
find

_ expl(W - 1)log 1]

o) TW+1)

: (15)

where we neglected all inverse powers of ¢ in the exponent,
relying for uniformity on the boundedness of its spectrum of
W. The crucial point of Eq. (15) is the very slow logarithmic
dependence on time, which appears evident upon compari-
son with the formal solution W'=exp(zlog W) of the Mar-
kovian case.
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In order to provide more explicit expressions for P(r) and
Q(1), we need some special assumption on the stochastic
matrix W. We do that in the next section.

III. AVERAGE PROPERTIES OF SCALE-INVARIANT
MODELS

We describe here a class of examples that can be treated
in detail at the analytic level. These are characterized by the
assumption that our stochastic process is (almost) scale in-
variant. Intuitively, one expects that longer proteins can be
changed throughout evolution more easily than shorter ones.
Exact scale invariance would mean that changes are propor-
tional to length.

To implement this picture, we first extend the lengths €
from the positive integers to all real positive numbers. This is
a common extension in studying stochastic dynamical evo-
lutions of biopolymer lengths (e.g., microtubules [4] and «
helices in proteins [5]). It will become apparent in the fol-
lowing that, in fact, it has very little impact on our conclu-
sions.

Next we change variables, from ¢ to its logarithm x
=log € and assume homogeneity in x, namely, that

W(E[€")dt = W(e|e* )d(e") = W(x — x")dx

is translation invariant, i.e., a function only of x-space differ-
ences. The process is very simple: at each time step the ran-
dom walker may pick any one of the previously visited
points as starting point for the next step, whose value x is
extracted with the one-step probability distribution function
(PDF) W(x). In terms of protein lengths, at each step the
length is rescaled by a factor e¢*. Since the true variables are
discrete, we may take WW(x) to be very smooth for all x.
Likewise, since €=1, we may take W(x) to vanish very
quickly (let us say “faster than any power”) for x— —cc. For
x— +%, we assume instead quite reasonably that YV(x) van-
ishes fast enough to have finite moments at least up to order
4. We then introduce the following notation for the first two
cumulants:

m= f dxxW(x), o*= f dx(x — w)*W(x),

that is, the mean value and the squared fluctuations.
We can now define the process probability in x space as

Plx—x't)= exP(e",t|ex,),

and in the same way we can introduce the average distribu-
tion Q(x,r), which by Eq. (8) satisfies

Q(x) = 73 Plas).

s=1

Since the stochastic matrix that corresponds to W(x—x") is
diagonal in Fourier space, we can now write the formal ex-
pression Eq. (11) as
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dk ., 4
”P(x,t):f — ™ P(k,1), (16)
2
where

W) - 1)

N

—1
Pk, =1 (1 +

s=1

and W(k) is the Fourier transform of W(x). Clearly, by Eq.
(13), the Fourier transform of Q(x,?) reads

. Plk,t+1)
Qk,t)=——.
W(k)

The correct normalization of either P(x, ) or Q(x,?) follows
from that of W(x), which implies (0)=1. Other conse-
quences of the probabilistic nature of W(x) are the symmetry
W(k)*=W(—k) and the bound |W(k)| =< 1. In addition, with
the natural requirements made above on the one-step PDF
WI(x), the function WW(k) has the expansion near k=0

W(k) = l—i,u,k—%(,u,2+crz)k2+ S (17)

and vanishes for large |k|.
In this context of a continuous logarithmicspace, the ex-
tension to a generic initial distribution is very simple: it

amounts to multipling both Fourier transforms 75(k,t) and

O(k, 1) by the Fourier transform of the initial distribution.
Using Eq. (15), we have for large ¢

Plx,t) = f ;Z_:-eikxexp[()f\}(k) —1log 1]

" (18)
FOV(k)

and

0= f dk , explOMB) — Diog 1] (19)
’ 2m TOMK) + 1)

up to fully negligible inverse power corrections in ¢. For any

given WI(k), the Fourier integral in Egs. (18) and (19) can be
computed numerically to high accuracy through fast Fourier
transform. Moreover, for large ¢+ we can derive very similar
asymptotic expansions in inverse powers of log ¢ valid for
any W(k) in the class described above. Since our main inter-
est is in the average distribution profile Q(x,f), we concen-
trate our attention on this.

The leading term for large ¢ is determined only by the first
two terms of the W(k) expansion (17) near k=0, with the
quadratic term providing the Gaussian dominance in Egs.
(18) and (19) according to the central limit theorem. From
the first and second derivatives in k=0 of the Fourier trans-
form Q(k,t), we first compute the mean value and standard
deviation of the process for large ¢ as
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= <x>,=,u(10gt+ y-1),

7 =((x = p)= (@ +0?)(log 1+ y—1) - (%— 1),(1,2,

(20)

where y=0.577 2156... is the Euler-Mascheroni constant.
Then, in terms of the standard centered scaled variable

£= =20
t
we have to leading order
-&n2
Q(x,1) = \/;6?' (21)

Going back to the length variable € through the definition
x=log(€/€"), we find the log-normal distribution

—[log ¢ - log(f’eﬁl)]zl(Zﬁtz)

f\/ZWa}Z

o,1t") = , (22)

peaked around the rescaled initial length € ’e‘_‘t‘&rz.
Subleadi_ng contributions to the above results, of relative
order 1/vlog r and smaller, at fixed values of & can be com-
puted by the standard perturbation technique around Gauss-
ian integrals: one includes also terms of order higher than k2,

say of order n=4, in the power expansion of W(k) around
k=0, and then expands to order k" also the exponentials of
such terms; for completeness, also the expansion of the in-
verse I" function must be properly extended; finally, one in-
tegrates explicitly each term of the complete expansion in
terms of multiple derivatives of the leading Gaussian. One
obtains in this way an n-degree polynomial in ¢ times the
Gaussian ¢~¢2. The n+1 coefficients of the polynomial are
fixed by the first n+1 moments of the distribution, which in
turn can be computed directly from the Taylor series in k
=0 of the Fourier transform Q(k,t) or 75(k,t) (by construc-
tion, we must impose (&£),=0 and (£*),=1 for the first two
moments). Taking into account the specific form of these
Fourier transforms, it is more convenient to calculate the
cumulants of Q(x,7) or P(x,?), since their n-order cumulant
is given by log ¢ times the n-order moment of the one-step
PDF W(x), plus the n-order derivative with respec to k of

log[F(W(k)+1)] or log[F(W(k))] evaluated at k=0. More-
over, the latter contributions are systematically subleading as
compared to the moments of W(x), so that we have, for the
third-order and the fourth-order cumulants of Q(x,) (that is,
the average skewness 5, and kurtosis k, of the process, up to
normalization conventions)

_ M3 1 1
et ool L]
t t Mg/z Jlog 1 log 1
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__ K 1 b
K'=<§4>t_3_M%logt[1+0<logt”’ (23)

where w3 and u, are the third- and fourth-order moments of
W(x), while u,=u’+0” is the analogous notation for the
second moment. In this expression, one may regard the ex-
pectation values as evaluated with P(x,¢) rather than with
Q(x,1), since the differences are due solely to the change

TOMK) —TOMKk)+1) from Eq. (18) to Eq. (19), and are
subleading. We can now recognize a distinctive mark of the
RRT over the real line: for sufficiently large time, the kurto-
sis of the average distribution profile is certainly positive,
since the fourth moment of any W(x) is positive definite.
Another important characteristic, which will be further dis-
cussed later on, is the positivity of the ratio between the
skewness (&), and the third moment u; of W(x).

The extension of the main results Eqs. (21)—(23) to the
case of a generic initial distribution is straightforward. In
particular, to the cumulants of Q(x,7) one would have to add
the cumulants of the initial distribution, which are constant
in time and therefore subleading. Thus Egs. (20) would get
additive constants and Egs. (23) would stay unchanged. This
is the standard way to see how the process forgets abouts the
initial conditions (in a logarithmically slow way).

IV. PROFILE FLUCTUATIONS

Let us assume that, for a given stochastic matrix W and
initial distribution Q(€,N), we can explicitly compute P({,¢)
and Q(¢,1), at least for large ¢, as in the preceding section. To
compare the result to the length distribution in a single evo-
lution history, or very few of them, which is indeed our case,
we need to gather information also on the fluctuations of the
profile of the length distribution from one history to another.

Typically, one would like to rely on the law of large num-
bers. For ergodic Markov chains (with finitely many possible
events), this law states that the probability that the frequency
of a certain event in a given history differs from its equilib-
rium probability by any nonzero amount vanishes when the
history becomes infinitely long. In our case, the elementary
events are the observed protein lengths, and the frequency in
a given history is just the profile of the length, distribution in
a given evolution history. The quantity Q(€,r) discussed
above is just the expectation value of the profile, that is, its
average over all possible histories. In a Markovian setup
with finitely many possible events, there would be no differ-
ence between the profile of a specific history and its expec-
tation value in the r— cc limit, which means vanishing profile
fluctuations in the limit and negligible ones for sufficiently
large t. The stochastic process at hand, however, is not Mar-
kovian, having the (very specific, simple, and itself random)
RRT form of memory, and it has a number of possible events
that is in principle arbitrarily large. In this case, we expect,
thanks to stronger forms of the law of large numbers like the
central limit theorem (and have indeed verified in the ex-
ample class of the preceding section), that the average length
distribution Q(€,7) assumes, for ¢ large enough, a universal
nonconstant form, which depends only on very general prop-
erties of W.
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What we need then is also that the fluctuations of the
frequency for large # do not completely spoil the profile of its
expectation value Q(€,1). Notice, for instance, that this is not
true for random walks, not even when they are recurrent (as
is generally true in one dimension, which is our case). In
other words, in the standard RW the frequency of times the
walker visits any given small region keeps fluctuating
strongly from one very long history to the other, never re-
sembling the mean frequency profile. This is due to the char-
acteristic dispersion of order vt of the RW, which implies
that each elementary event occurs an insufficient number of
times of order 1/Vt to guarantee a good convergence of the
frequency along a single history (it would be even worse in
d>1 dimensions).

On the contrary, the random memory of the RRT dramati-
cally helps the application of the law of large numbers, since
the logarithmic time dependence leads to a much slower drift
and diffusion, strongly reducing the impact of fluctuations on
the length distribution. One could say that the length distri-
bution is an almost “self-averaging” array of random vari-
ables, which for sufficiently long time does not differ too
much from its expected value. Indeed, at least in the case of
the abstract RRT, there exist mathematically rigorous theo-
rems about the convergence of the chemical distance profile
of any RRT toward a normal form [1]. In this section, we
provide some quantitative numerical evidence of the same
property for length distribution profiles using a specific
model for W(€|€").

We first revert to the realistic situation of lengths as posi-
tive integers not smaller than some lower cutoff ¢ ;,=1;
next, we consider the following RRT process (written as
computer pseudocode)

€ = integer part of ¢*€¢(n,);

if €= ¢, then €(r+1)=4¢, (24)

where 7, is an integer chosen at random from 1 to 7 and x is
extracted with the one-step PDF W(x) over the continuous
logarithmicspace; finally, we pick for W(x) the maximum
entropy form compatible with our general setup, namely, a
Gaussian with mean u and standard deviation o. This mini-
mum bias choice could even be regarded as natural in view
of the many different “microscopic” and ‘“macroscopic”
mechanisms on which the stochastic process should depend,
as discussed in the Introduction. However, we make it here
mainly for numerical definiteness. In any case the analysis of
the preceding section and the discussion below, at the end of
this section, should make it clear that other choices of WW(x)
in the same class would lead to relative changes that vanish
as 1/log t, while preserving important characteristic proper-
ties like the positivity of the kurtosis.

It is quite easy on modern personal computers to accu-
rately simulate the process (24) by running many very long
random histories. In our simulations, we produced 103 length
distributions with the discrete time ¢ running from Ny =< 50 to
N=5X10°. For the sake of definiteness, we started from 25
initial lengths chosen at random from 30 to 50 and set u
=0.16 and 0=0.19. This setup was determined in such a way
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as to fit the overall scales of the length distribution in the
SIMAP database, as will be discussed in the next section. In
particular, it turns out that the effects on the profiles of the
lower cutoff €, are fully negligible, so that the scale-
invariant framework adopted in the preceding section should
apply. Indeed, one can also check that the discreteness of the
lengths €(¢) does not play any significant role at all with
respect to the continuous case.

For each distribution we computed the mean and standard
deviation in the variable x=log ¢:

1

1
M= ;E x(j),

j=1

A= ShG)-wl,  ©3)
j=1

at prescribed intermediate values of r. Likewise, we com-
puted the skewness and kurtosis

W= S EG). k=-3+-3EG). (6
L j=1 L j=1

where as usual &(j)=[x(j)-w,]/ o,

These four parameters are still random variables which
fluctuate from one RRT to the other. Moreover, except for the
mean u,, their average values over all possible RRT realiza-
tions of ¢ steps do not coincide with the corresponding pa-
rameters of the average distribution Q(x,7), since such aver-
age values receive contributions also from the profile
fluctuations. Only the average (u,) is given by the quantity
[, in the first equation (20). The differences between (o),
(s;), (k) and @, 5,, K, in the second equation (20) and Egs.
(23), respectively, cannot even be estimated with the help of
Q(x,r) alone. This is true a fortiori for the fluctuations.
Therefore it is important to provide some (numerical) evi-
dence of their behavior for large times. In particular, s, and
K;, provide a measure of the deviation from Gaussianity of a
given profile (we refer to the above-mentioned mathematical
literature for some rigorous bounds in the case of abstract
RRTS).

We also kept track of all the logarithmicspace profiles,
after a suitable coarse graining: we fixed beforehand a uni-
form binning grid of K intervals of width 2<<1 over a por-
tion of the real line large enough to contain almost all &
points produced [e.g., the interval (-5,5) to comprise all
points within 5¢]; then we computed the fraction g, of ¢
points in a given RRT that fall in the kth interval of the grid.
At this stage, using continuous or discrete lengths does make
a difference, since a binning grid too fine over the logarithms
of integer lengths will induce spurious fluctuations. Hence,
in the discrete case, for each integer j repeated n; times in a
given length distribution, we filled the real interval (j
—1/2,j+1/2) with n; double precision lengths chosen at ran-
dom; only after this Smoothing did we compute the distribu-
tion over the regularly space grid in logarithmicspace.

By construction, the average of the discretized density
q(t)/ h over all possible histories will reproduce the integral
of the average profile Q(x,) as a function of & over the kth
interval of the grid. Then an estimate of the profile fluctua-
tions is the standard deviation of ¢,(r)/h for each k.
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FIG. 1. (Color online) Evolution of the logarithmic space length distribution in a specific history (left panel) and on average (right panel),

starting from the same initial conditions.

With ¢,(r) we computed another important (and more ro-
bust) measure of deviation from Gaussianity, that is, the en-

tropy
N

S,=logh— 2 qi(Dlog q,(1).
k=1

In fact, in the t— o0 limit of an infinite RRT and then 7—0
of vanishing grid width, a Gaussian profile for £ would have
maximal entropy equal to (log27+1)/2=1.418 938 53....

In Fig. 1, we show the evolution of the logarithmic length
distribution along a single history, and, for comparison, the
evolution of the average profile Q(x,7) obtained by numeri-
cally integrating through fast Fourier transform Eq. (19) and
superposing the results as in Eq. (7).

In Fig. 2, we show the distributions of the statistical esti-
mators defined above for few values of r equally spaced in
logarithmicspace. We see that the parameters that measure
deviation from Gaussianity, that is, s;, «,, and S,, have mean
values that slowly tend to the Gaussian values with smaller
and smaller fluctuations as r— . The convergence behavior
is roughly the ubiquitous one, 1/log ¢, with variances that
vanish faster than the peak movement. Also, the variance of
the standard deviation seems to slowly converge. On the
other hand, the fluctuations of the mean do not appear to
converge at all; this is reflected in the reduction more slowly
than 1/log ¢ of the standard deviation of the & profile fluc-
tuations. In Table I we provide further numerical evidence
through the standard deviations over the 10° sample histories
of u, o;, s;, k;, and S,.
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FIG. 2. (Color online) Distributions, as fraction of the total, over 103 sample histories of the indicated statistical estimators of the
(natural) logarithmic space length profile for the same times as in Fig. 1.
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TABLE I. Standard deviations over 10° samples of the statistical
estimators of mean, standard deviation, skewness, kurtosis, and en-
tropy of the logarithmic space length distribution.

PHYSICAL REVIEW E 76, 011924 (2007)

TABLE II. Number of species and proteins for each kingdom in
SIMAP in September 2006.

Number Number

t Ap, Ao, As, Ak, AS, Kingdom of species of proteins
5% 103 0.0781 0.0401 0.1425 0.3840 0.0131 Bacteria 111.30 2217301
5% 10* 0.0784 0.0343 0.0927 0.2282 0.0072 Viruses 14631 319885
5% 10° 0.0787 0.0304 0.0647 0.1440 0.0045 Plants 31232 1156929
5% 10° 0.0785 0.0277 0.0482 0.0980 0.0031 Animalia

Invertebrates 25951 383760

Vertebrates 19341 772605

’ljhege results remain ql.lalitatively unchanged under gen- Environmental samples 1453 32591

eralization from the Gaussian one-step PDF chosen above to Synthetic 822 14660

a generic WW(x) of the class discussed in the previous section.
For fixed u and o, only t-independent numerical variations
appear due to the change in the higher moments of W(x). In
particular, the skewness can be made to assume prevalently
positive or negative values by choosing a YW(x) with positive
or negative third moment (while keeping the first moment
u>0), while the kurtosis distribution remain always peaked
around positive values, with a variance that appears to vanish
faster than the mean. This is in agreement with the properties
of the average length distribution as given by Eq. (23).

In summary, very large RRTs over the space of possible
protein lengths are indeed almost auto averaging objects, and
it is sensible to compare the average properties of the random
process to a few, or even a single, realizations of it.

V. COMPARISON WITH THE OBSERVED LENGTH
DISTRIBUTIONS

To test our simple model we compare here the predicted
length distributions with the real length distributions of pro-
teins observed in nature. In this last decade the number of
known protein sequences has been rapidly growing and is
still growing now at a steady pace. A huge number of protein
sequences coming from very many different species are now
stored in various databases.

In particular, the SIMAP [24] database collects almost all
amino acid sequences from public databases and completely
sequenced genomes. On September 2006 it was storing more
than 5.5 million nonredundant proteins coming from more
than 100 000 different species.

We report in Table II a coarse subdivision of all SIMAP
proteins and their corresponding species in five (nonstand-
ard) main kingdoms: bacteria, viruses, plants, invertebrates
(animalia), and vertebrates (animalia). In Fig. 3, we provide
plots of the corresponding length distributions.

One can see that all SIMAP distribution profiles have a
globally similar shape, with a well-defined overall position
and scale. There are, however, also large fluctuations on
smaller scales. In particular, the curves of viruses, inverte-
brates, and vertebrates show very high and narrow peaks in
correspondence to certain specific values of length. Of
course, on general grounds, our model is too simple and
generic to make predictions on other than global properties
of the profiles, so we should restrict ourselves to the lowest
moments or cumulants of the distribution, and perform ro-

bust coarse graining on the data for more refined analysis.
We believe, in any case, that these peaks are to a large extent
spurious, being due to an over-representation in the SIMAP
database of those particular protein lengths. SIMAP, in fact,
contains a lot of proteins that do not necessarily come from
completely sequenced genomes: this fact makes the collec-
tion of proteins nonhomogeneous over the species present in
the database, and so it is possible that certain peculiar lengths
are more represented, since they correspond to proteins of
many more different species than other lengths. If the collec-
tion were homogeneous over the species, we would expect
length distributions without high narrow peaks, and also less
fluctuating in general. At any rate, we verified that the global
analysis reported below is almost insensitive to the removal
by hand of the high and narrow peaks.

The SIMAP database provides a very large sample of real
proteins, which can be assumed to be statistically significant.
We believe, therefore, that it is sensible as a testbed for our
model, and we make the basic assumption that the SIMAP
length distributions for different kingdoms as (almost) inde-
pendent realizations of our stochastic process. The motiva-
tion is that different kingdoms have been going through al-
most independent evolutionary histories for a long time, and,
even if one cannot forget that far enough in the past there
was no distinction at all, the main characteristic of the sto-
chastic process of forgetting the initial conditions suggests
that at most a negligible trace remains of the common remote
past in each kingdom distribution.

In Table III we list the measured values of the mean,
standard deviation (SD), skewness, kurtosis, and entropy of
the logarithmic length distributions for the five kingdoms
separately, and for the cumulative all-kingdom distribution.
Except for the entropy, these parameters can be computed
directly from the statistical estimators as in Egs. (25) and
(26) without any coarse graining. To compute the entropy,
we performed a coarse graining in the logarithmic space with
the same procedure as in the preceding section. One can see
that the kurtosis is always positive, in accordance with the
average property of the model [Eq. (23)] and with the results
of the previous section on the fluctuations. We also notice
that the cumulative kurtosis is definitely higher than the in-
dividual ones, due to the fluctuations in the lower cumulants.
Again, this is consistent with the interpretation of the king-
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FIG. 3. (Color online) Length distributions of SIMAP proteins. Each box shows an enlargement of the (unnormalized) length distribu-
tions of proteins coming from all kingdoms ({{)=335, [,,,.=38 031), bacteria ({([)=316.9, 1,,,,=36 805), viruses ({([)=273.9, 1,,,,=7312),
plants ((1)=314.5, 1,,,,=20925), invertebrates ({{)=416.1, 1,,,,=23 015), and vertebrates ((/)=397.1, 1,,,,=38 031).

dom distributions as independent realizations of the process.
Except for the viruses, the entropy is always close to the
upper Gaussian limit, with the plant distribution the closest
to a normal form.

In Fig. 4 we show the Gaussian fits of the length distri-
butions. As expected from the data in Table III, these fits
appear rather good, apart from fluctuations, which are more
important when the entropy is lower, that is, for viruses and
vertebrates. Explaining these fluctuations is beyond the
scope of our model. Moreover, one must remember that the
SIMAP database is incomplete, and, as discussed above,
probably biased toward particular species; these features
contribute to local irregularities.

With fine-tuned choices of the two main parameters of
WI(x), u and o, a specific large value of ¢, and values of the

initial lengths in the range 30-50, one can produce simula-
tions with Eq. (24), like those reported in Fig. 2, whose
distribution profiles fit well the peak positions and sizes of
the SIMAP length distributions.

Our choice for the initial distribution is based on the quite
natural assumption that today’s proteins are evolved from
shorter peptide ancestors [6,27]. In any case, according to the
model, -independent changes in the initial distribution might
affect the final distribution only by terms of relative order
1/log t.

We remark also that, in our purely probabilistic frame-
work, no fine quantitative check can be performed, for some
good reasons.

First, even assuming that for each kingdom the proteins in
the database constitute a statistically significant fraction of

TABLE III. Global statistical indicators of the SIMAP length distributions in logarithmic space.

Kingdom Mean SD Skewness Kurtosis Entropy
Bacteria 5.53 0.68 -0.20 0.32 1.408
Viruses 5.26 0.79 0.30 0.53 1.297
Plants 5.44 0.78 -0.01 0.04 1.414
Invertebrates 5.65 0.87 -0.03 0.31 1.409
Vertebrates 5.60 0.89 —-0.18 0.25 1.394
All kingdoms 5.49 0.81 -0.26 0.63 1.406
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FIG. 4. (Color online) Length distributions of SIMAP proteins in the (natural) logarithmic length space. These (unnormalized) distribu-
tions have been obtained through a uniform gridding with 200 intervals over x=In €. Before the change of variable from ¢ to x, we scattered
the protein length values from integer to real to avoid the introduction of spurious fluctuations in the logarithmic space.

the total existing in nature, we do not know what the total
number might actually be. So we cannot fix the precise value
of the total discrete time of the stochastic process. This does
not lead to large uncertainties, though, since the evolution is
only logarithmic in this discrete time.

Second, the one-step PDF W(x) governing the model can
hardly have any precise quantitative relation with the multi-
tude of microscopic and macroscopic effects that drive the
evolution. So one could not ascribe any particular value to a
specific functional form of W(x), whose most relevant free
parameters were determined from data fitting. Rather, we
must restrict ourselves to very general properties valid for a
wide class of one-step PDF’s. This argument applies also to
the lowest moments of W(x), which might very well differ in
distinct independent processes.

Let us examine therefore in more detail to what extent the
model agrees with the observed distributions.

First of all, according to the model, the length distribution
of a large set of proteins belonging to a single long evolu-
tionary history must be almost a Gaussian in logarithmic
space, that is, log normal over the lengths. As we have just
seen, this agrees quite well with the SIMAP distributions.
The approximate log normality of protein sizes was observed
several years ago on much smaller data sets [26].

Next, there are the two scales of the fluctuations of the
two parameters of a Gaussian, namely, the mean and the
standard deviation, which were denoted as w, and o, in the

previous section. Once a process simulation is fine tuned to
produce the correct average values of u, and o, their fluc-
tuations have a scale which depends mildly on the higher
moments of W(x), does not depend on  in the case of u,,
and depends at most as 1/log ¢ in the case of o,. These scales
agree fairly well with those observed over the SIMAP king-
dom distributions (see Tables I and III), at least when W(x)
has skewness and kurtosis not too large. Notice that also the
lower cutoff €,,;, on the possible lengths acts as a constraint
on the higher cumulants of YW(x). For instance, an exces-
sively negative skewness in WW(x) would typically lead to
large left tails also in the length distributions which are then
abruptly cut off at €;,; such abrupt cuts are absent in the
observed data, as evident from Fig. 4.

Then there are the systematic deviations from Gaussian-
ity. The model predicts a positive kurtosis for any WW(x), and
the SIMAP data agree very well with this. Also, the entropy
is very close to the expected values, except for the viruses,
whose protein distribution is the least abundant, and has the
smallest mean length and the largest relative fluctuations.
However, the data in Table III also always show negative
skewness, again except for the viruses. This characteristic
cannot be accounted for too easily in the model.

Indeed, as we have already noted, it is natural to assume
that the average protein length has been growing in time.
This requires that the first moment w of the one-step PDF
WI(x) is positive, that is, that positive shifts in x space prevail
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over negative ones. Now, from the average relation (23) and
the numerical analysis reported in the preceding section, a
prevalently negative skewness requires that the third moment
s of W(x) is negative. The simplest Gaussian one-step PDF
used to produce the results in Fig. 2 has by definition u and
M3 with the same sign, but other PDF’s with positive p and
negative s are certainly possible. However, this would
mean even more negative skewness in WW(x), causing prob-
lems with the lower cutoff €,;,, unless very large unrealistic
values of the initial lengths are assumed, which in turn would
typically spoil the overall scale fitting. Thus, after all, there is
tension on the model in spite of its many free parameters.

Our simple model for the protein length distributions is
based on RRT embedded in the natural numbers, with the
assumption of almost scale invariance for the transition prob-
ability W(€|€"). By this, we mean that the stochastic process
is uniform in continuous logarithmic space, with translation
invariance broken only by length discreteness and the lower
cutoff €, in both cases with negligible effects. This is an
idealization suggested by simplicity (it translates the intuitive
idea that longer proteins can change more than shorter ones
throughout evolution) and ease of analytic investigation of
average properties. It has some difficulties in accounting for
negative skewness (viruses apart), but it is in overall good
agreement with observations, especially for the positiveness
of the kurtosis. This suggests keeping to a minimum the
modifications in more realistic models for W(€|€’). We de-
scribe one minimal change in the next section.

VI. INTRINSIC SMOOTH CUTOFF ON LARGE LENGTHS

In the stochastic framework we have considered up to
now, the vanishing of the length distribution for large € is
determined by the slowly drifting and diffusing character of
the process, with the assumption of relatively small initial
lengths.

On the other hand, there are reasons to expect that very
long proteins are intrinsically less probable than shorter ones,
in the sense that the “microscopic” mechanisms that deter-
mine, upon countless repetitions, the production of longer
and longer proteins are eventually limited by simple stability
and biosynthesis criteria: very long proteins, to be stable
against thermal fluctuations in the natural environment, must
fold in the biologically active form more “tightly” than
shorter ones, as could be measured by their growing spectral
dimension [28]; but this requires more and more complex
stereoscopic orderings while the building blocks (amino ac-
ids at the lowest level and larger structures at the second and
third levels) are limited in number and typology, thus de-
creasing the unfolding stability and/or increasing the mis-
folding probability [29]; moreover, there exists a higher bio-
synthetic cost for longer proteins that might determine an
evolutionary constraint on the expression of long proteins
[30]. We could therefore expect some form of smooth cutoff
on long lengths, parametrized by a stability scale €.

The minimal change on the model, as anticipated above,
could therefore be the following:

W€y = € g(€1€ )W(log(€/€")) (27)

where W(x) is the usual one-step PDF in logarith space and
g(u) a smooth function which is almost constant for u=<1
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and monotonically decreases to zero for large u.
The random recursion corresponding to Eq. (28) is a
simple modification of Eq. (24):

¢ =interger part of ¢*¢(n,);

if € =€, and r < g(€/€,) then €£(t+1)=¢, (28)

where, as before, n, is a random integer from 1 to ¢, and x is
extracted from W(x), while the new random number r is
extracted uniformly in the interval (0,gna0), With g
=g(€in/ €,) the assumed largest value of the function g.

Another possibility could be to introduce an explicit €
dependence in W(x), in such a way that length reductions
(x<0) become more probabale than length growths (x>0)
for large enough lengths. In this case, the random recursion
would be the same as Eq. (24); the only change is that x is
extracted in a weakly non-scale-invariant way from a one-
step PDF W(x;¢).

Once some specific form for W(x) and g(u), or for
W(x;€), is chosen, simulations with weakly broken scale
invariance can be performed as easily as before. Since there
are now more tunable parameters, it is almost obvious that
data fitting can be improved. From a purely quantitative
point of view, these better fits have little significance. In-
stead, we want to stress the main new qualitative aspects: the
smooth cutoff typically induces shorter right tails in the
simulated distribution, thus slightly reducing both skewness
and kurtosis. If the one-step PDF has the right characteris-
tics, it is possible to obtain almost always length distribu-
tions with still positive kurtosis but negative skewness after a
few million steps. The cutoff prevents the formation of pro-
teins that are too long, thus allowing us to reproduce the
observed mean length and length variance. Typically, €,
which by construction provides the scale of the rightmost
tail, needs to be chosen between 5000 and 10 000, depending
on other details of the model.

It is also interesting to observe that the positive skewness
of the length distribution of viruses does not constitute a
problem for the above scenario, since the overall size of this
distribution is smaller than the others, and might very well be
too small to feel the effects of the smooth cutoff on higher
lengths.

It should also be noticed that the upper cutoff significantly
reduces the variance of the length distribution, allowing an
easier fit of the observed distributions with ¢ of the order of
107. This value indeed fixes 1/log t of the order of the abso-
lute values of the non-Gaussianity indicators, and of the fluc-
tuations of u, and o, observed in the SIMAP data. On the
contrary, a straightforward application of Eq. (20), which
ignores both fluctuations and the cutoff, would typically lead
to much larger (and most likely unrealistic) values of ¢.

VII. CONCLUSIONS AND OUTLOOK

In this work, we have described a simple stochastic
framework for the theoretical modeling of the evolution of
protein lengths. It is based on the idea of recursive random
trees over the set of natural numbers. RRTs represent the
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simplest formal implementation of the main feature of the
evolutionary process: new biological material is produced
through modifications of the biological material already ex-
isting. In the case of proteins, the full space over which the
RRT grows is that of all amino acid sequences, but it can be
reduced to more tractable spaces when only specific observ-
ables are considered, as is the case of the protein lengths.
Of course, the details of the stochastic process, as en-
coded in the conditional probabilities, are out of reach in
practice, due to the multitudes of natural causes ranging from
biochemical interactions to selection mechanisms in varying
environments. The relevance of the stochastic framework is
based therefore on the concept of universality; namely, that,
under the law of large numbers, statistical coarse-grained
observations tend to take universal forms that depend only
on a few fundamental features of the stochastic process. In
the case at hand, the main features are the autoaveraging
property of RRTs and the approximate scale invariance of the
one-step transition probability; they imply the universal
properties that protein length distributions are almost log

PHYSICAL REVIEW E 76, 011924 (2007)

normal, with positive kurtosis, and a specific scale for the
overall deviations from exact Gaussianity.

There are several routes for improvements. First of all, the
choice of RRTs (which have a uniform probability over all
nodes of the tree for the attachment of the new node) is in
itself an ideal simplification. In a more realistic setup, one
should consider differently weighted nodes in order to mimic
certain aspects of the evolutionary process, such as selection
and differentiation. Then there are many more observables
other than the distribution length in protein databases such as
SIMAP. The global statistical analysis of the SIMAP protein
homology network carried out in Ref. [25] shows several
interesting features, which deserve to be studied within some
generalization of the stochastic process described here.
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