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Abstract

Bytecode languages are at a very desirable degree of abstraction for performing formal analysis of programs,
but at the same time pose new challenges when compared with traditional languages. This paper proposes a
methodology for bytecode analysis which harmonizes two well-known formal veri�cation techniques, model
checking and symbolic execution. Model checking is a property-guided exploration of the system state space
until the property is proved or disproved, producing in the latter case a counterexample execution trace.
Symbolic execution emulates program execution by replacing concrete variable values with symbolic ones,
so that the symbolic execution along a path represents the potentially in�nite numeric executions that may
occur along that path. We propose an approach where symbolic execution is used for building a possibly
partial model of the program state space, and on-the-
y model checking is exploited for verifying temporal
properties on it. The synergy of the two techniques yields considerable potential advantages: symbolic exe-
cution allows for modeling the state space of in�nite-state software systems, limits the state explosion, and
fosters modular veri�cation; model checking provides fully automated veri�cation of reachability properties
of a program. To assess these potential advantages, we report our preliminary experience with the analysis
of a safety-critical software system.
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1 Introduction

One of the long-standing challenges of the software industry is ensuring that a

software system does not contain fatal errors after it is shipped. To this end,

software industry is considering formal software veri�cation techniques (e.g. [2]).

Formal veri�cation aims to prove that a software artifact is compliant with user-

provided speci�cations of correct behaviour, and can thus complement testing in

increasing con�dence in the software operation.

The success of bytecode languages opens new opportunities for the practical

applicability of formal software veri�cation techniques. Bytecode languages are at

a very desirable degree of abstraction for formal analysis. Bytecode is unaware

of the diverse, semantically rich constructs that high-level programming languages

o�er to developers, allowing their analysis by means of a common simpler language.

Bytecode can be formally analyzed even in the partial or total absence of source

code when third-party libraries and components are used. Yet, it is at a su�ciently

high level of abstraction to avoid issues like memory management and pointers that

complicate analysis at the binary level.

In this paper we propose a formal analysis methodology for Java bytecode

which harmonizes two well-known techniques, model checking and symbolic exe-

cution. Model checking arose as an automatic approach for verifying properties

expressed as temporal logic formula on �nite state systems. Model checking does a

property-guided exploration of the system state space until the property is proved or

disproved, producing in the latter case a counterexample execution trace. Symbolic

execution executes the program replacing concrete variable values with symbolic

ones, and builds a representation of the state space suitable for analysis. We pro-

pose an approach that uses symbolic execution for building a model of the program

state space, and model checking for verifying temporal properties on it. To reduce

the portion of the state space model explored by the checker, we build it on-the-
y

as model checking of the temporal property proceeds.

The synergy of the two techniques brings considerable advantages [14]. Model

checking provides an expressive language for specifying software properties, and ef-

�cient algorithms for verifying them automatically. Symbolic execution brings two

key advantages. First, it produces a compact representation of the program state

space where large set of numeric values are represented by symbols, potentially lim-

iting state explosion during analysis. Second, by initializing software modules with

symbolic values it allows to analyze them in isolation, thus fostering modular veri�-

cation. However, while recently there has been a renewed interest in using symbolic

execution for software veri�cation [14,21,1,8,19], we are not aware of previous re-

search works on this issue in the context of formal veri�cation based on symbolic

execution.

The original contribution reported in this paper are:

� A framework for the analysis of temporal formula with arbitrary predicates on

program variables;

� A technology demonstrator composed by an on-the-
y linear-time temporal logic

model checker and a prototype virtual machine which does symbolic execution of

bytecode without relying on code translation or instrumentation;
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� A preliminary investigation of the computational impact of the proposed analysis

by applying our demonstrator to the analysis of a safety-critical software system.

Our research is grounded on previous research performed by some of the authors

on symbolic execution based software veri�cation [6].

The paper is organized as follows. Section 2 describes the overall framework for

symbolically executing bytecode. Section 3 describes how to adapt model check-

ing to bytecode veri�cation. Section 4 reports the architecture of the technology

demonstrator used for assessing the proposed approach and some preliminary expe-

rience on the veri�cation of the TCAS aircraft collision avoidance system. Section 5

grounds our research e�ort in the current literature. Section 6 concludes the pa-

per with some �nal remarks and an overview of our current and future research

endeavours.

2 Symbolic execution for bytecode analysis

Symbolic execution [15,5] is a well known technique to execute programs with sym-

bolic input values. The execution state stores a predicate, called path condition,

that keeps track of the constraints on symbolic values and determines the control


ow path yielding the state. For example, when a conditional jump instruction is

executed, a decision procedure is invoked to determine if the jump condition and

its negation are satis�able under the current path condition. If both are satis�able,

the current state is \split" into two next states, and the path condition of each is

augmented with the clause determining which branch is executed.

Symbolic execution has been traditionally applied to languages with numeric

types. When considering languages that allow references and dynamic memory,

symbolic execution can be extended with lazy initialization [14]. Lazy initialization

calculates the possible initial values of a symbolic reference only when it is �rst used

during execution, then it creates a state for each possible concrete value: null, a

reference to a fresh object (assumed to be initially available in the heap but not

yet used), a reference to each type-compatible object introduced by previous lazy

initialization of other symbolic references. Considering all possible values on �rst

use may generate a high number of states in later phases of the symbolic execution,

thus variants have been proposed to further delay the set of values to be considered

in order to reduce state explosion [9].

Intuitively, symbolically executing a method is a way to analyze the method

invocation from a generic execution state. The initial state of symbolic execution

represents the assumptions on the context of the method invocation. In our ap-

proach, the least assumption is an initial state containing only the root object, i.e.,

the receiver (this) of the method invocation, with all �elds and method invoca-

tion parameters initialized to symbolic values and the path condition set to true.

Preconditions on scalar variables, if any, are included in the path condition as pred-

icates on scalar symbols. Preconditions on references are represented by adding

objects to the heap and replacing symbolic references with concrete ones.

The symbolic initialization of static class members requires particular care. Ac-

cording to the Java Virtual Machine speci�cation, initialization of static class mem-

bers occurs when classes are �rst loaded, and causes the execution of the class' static
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initializer. As a consequence, the initial state of symbolic execution depends on the

assumption on whether or not each class is already loaded. By default we assume

all classes as pre-loaded (i.e., we assume that static members have already been

initialized and potentially modi�ed before the current symbolic execution), which

leads to conservatively initialize static members to fresh symbolic values. Users may

con�gure the set of classes that must not be assumed as pre-loaded: such classes

will be loaded on the �rst use, and their static class initializer will be then executed.

For the sake of consistency, we always assume that the classes of the objects initially

present in the heap are pre-loaded.

Our symbolic execution resolves symbolic references by lazy initialization when

they are loaded on the operand stack. To ensure soundness, our implementation of

lazy initialization resolves a symbolic reference only with type-compatible concrete

references, and enforces the exclusion of non pre-loaded classes.

Our symbolic executor o�ers full support to a generic veri�cation procedure 6 for

exploring the symbolic state space in an arbitrary visiting order, and for evaluating

user-speci�ed predicates on the explored states.

3 Verifying LTL Properties

Temporal logics have been widely used for specifying properties of reactive systems

for model checking [4,12]. Linear-time temporal logic (LTL [17]) is generally recom-

mended for model checking frameworks based on explicit exploration of the state

space. In this paper, we use LTL to specify properties of Java programs.

Informally, an LTL formula is built up from atomic propositions (which evaluate

to either true or false in a given state), logic connectives (:, _, ^,!), and temporal

operators (X for next, U for until, R for release, F for eventually, G for globally).

Temporal operators model relations between states of a linear temporal sequence

(aka a path). A system satis�es a property described as an LTL formula if the

property holds for all possible paths in the system. The full semantics of LTL is

out of the scope of this paper; the interested reader is referred to [17] for details.

Here we only notice that checking an LTL formula by incrementally evaluating its

sub-formulae is possible, but it is more convenient to translate the formula to an

automaton (namely a B�uchi automaton) that is then used as an operational model

to check whether the paths in the state space satisfy the formula [20].

To deal with symbolic states we must adapt traditional model checking algo-

rithms. While evaluating atomic propositions in concrete states always results in

either true or false, evaluating atomic propositions in symbolic states may lead

to ambiguity, since symbolic states can stand for sets of concrete states including

states with di�erent evaluations. Le us consider for instance the evaluation of the

atomic proposition x > 5 in the symbolic state characterized by the path condition

x > 0. Without further information x > 0 does not lead to a single truth value

for x > 5, which can be either false or true for di�erent states represented by the

path condition. To deal with this case, we split the symbolic states according to the

atomic propositions incorporated in the formula under veri�cation: with reference

6 not necessarily a model checker
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to the above example, x > 5 evaluates to false for the states 0 < x � 5, while

it evaluates to true for x > 5. Splitting symbolic states assigns a unique truth

value to atomic propositions in each new symbolic state, albeit increasing the size

of symbolic state spaces.

Our on-the-
y model checker translates all LTL properties to corresponding

B�uchi automata, extracts the set of atomic propositions of the properties, con�g-

ures the symbolic execution engine to split states according to these propositions,

and then it starts the symbolic execution. The symbolic execution engine noti�es

changes in the evaluation of the atomic propositions that occur while traversing the

program state space. Based on the noti�cations, the model checker checks on-the-


y compliance with the property automaton, guides the symbolic execution engine

through the states to be explored, and terminates when it either identi�es a coun-

terexample (the property is refuted) or completes the exploration of the state space

without �nding counterexamples (the property is proved).

Model checking based on symbolic execution needs to determine the equivalence

of symbolic states, which is an undecidable problem. We overcome this problem

by avoiding state matching, and producing tree-shaped state spaces. In this way,

we simplify model checking, but we introduce multiple computations of the same

symbolic states (as many times as they are reached), and we may produce in�nite

state spaces in presence of loops. We avoid in�nite state spaces by limiting the depth

of the tree to be explored, thus admitting unsound veri�cation (that is, property

violations cannot be excluded even if the analysis terminates without producing a

counterexample). Repeating model checking of a property with increasing depth

of explored state space until the examined property is refuted or proved, would

eliminate unsoundness but would not guarantee that the model checking process

terminates.

We notice that, in absence of state matching, we can only check a subset of

LTL, which includes safety properties, but does not include liveness properties [20].

Visser et al. propose subsumption checking to compare symbolic states regardless

of the general undecidability of their equivalence [21].

4 Preliminary Evaluation

We evaluated the approach with a prototype tool that analyzes temporal properties

on Java programs. Here we draft the architecture of the prototype and report some

preliminary experience on verifying a component of TCAS, an aircraft collision

avoidance software system.

4.1 Prototype

Figure 1 illustrates the logical structure of the prototype, which consists of three

software modules: a symbolic executor for Java bytecode, a linear temporal logic

translator, and a model checker.

The Java Bytecode Symbolic Executor (JBSE from hence) implements the Java

Virtual Machine Speci�cation v.2. JBSE supports symbolic values without the

need to instrument the source code. It can be customized to explore the symbolic
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LTL
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result

VERIFY

Fig. 1. The logical structure of the prototype

state space with di�erent visiting orders (currently we use depth-�rst visit), and

can backtrack to a previous saved state. Users can provide assumptions to drive

symbolic execution, and can specify the concrete classes that must be used to lazily

initialize symbolic references by means of regular expressions. JBSE relies on exter-

nal decision procedures to decide the satis�ability of the path condition and prune

unfeasible states (currently the prototype supports CVC3 and the Sicstus CLP en-

vironment). Among the features for supporting formal bytecode veri�cation, JBSE

o�ers a special \don't care" value, which is always expanded to both true and false

each time it is evaluated, and can be used to model nondeterminism. JBSE o�ers

methods to set backtrack points at any time of the execution, to register listeners

to variable value changes, and to directly access the execution state and observe all

the variables.

Translation from LTL formulae to B�uchi automata is a well studied problem and

several translators are available. We exploit the SPIN model checker v. 4.2.9 [12] run

with the option -f or -F and the LTL2BA v. 1.1 tool [10]. Both tools produce B�uchi

automata described in Promela, the input language of the SPIN model checker.

The model checking engine guides the on-the-
y state space generation per-

formed by the symbolic executor and at the same time steps the B�uchi automaton.

As soon as a counterexample is found this is returned and model checking is stopped.

If no counterexample is found, the model checker reports whether the explored por-

tion of the state space was su�cient or not to refute the property|i.e., whether

the analysis was or was not sound. In the latter case it is possible that a greater

exploration depth bound would make possible deciding the property. The model

checker therefore outputs the path conditions of the branches abandoned for having

reached the maximum exploration depth. This allows the user to repeat the analysis

along these branches alone, with less e�ort than having to analyze the whole state

space again.

The current implementation of JBSE requires users to manually inject atomic

predicates as variables in the source code of the program under analysis. These
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( UPSEPADQ ^ : DOWNSEPADQ) ^ F( ATASTEN ^ F ATASTDOWNRA) (PN1.1)

_

(: UPSEPADQ ^ DOWNSEPADQ) ^ F( ATASTEN ^ F ATASTUPRA) (PN1.2)

Fig. 2. PN1 and its subformulas

variables can be observed by the state observation mechanisms provided by JBSE.

4.2 Case study: TCAS

TCAS is an on-board aircraft con
ict detection and resolution system used by US

commercial aircraft [18], which has been widely studied in academia as a bench-

mark for safety critical applications [3,16,6]. The experimental work described in

this section focuses on the component of TCAS that is responsible for �nding the

best Resolution Advisory (RA) suggesting to the pilot to either climb or descend,

according to the relative position and speed of a nearby aircraft. The component,

originally written in C, has been the subject of previous software engineering exper-

iments [13,6]. We considered the Java equivalent of this component and replicated

the analysis of the properties referred in [6].

Our analysis of TCAS considered the safety properties described in [6], and which

we fully report in Appendix A. All the properties state some desirable features of

the veri�ed TCAS component in terms of the possible occurrence of a maneuver

action under some conditions on the input data. As an example, we consider the

�rst property described in [6] stating that, whenever one maneuver does not provide

adequate separation and the other does, the former is never selected. The model

checker has been fed on the negation of this property, which we will indicate as PN1

(for the sake of simplicity also available in Figure A.2). This formula is composed by

two subformulas, stating the occurrence of an erroneous descend (PN1.1) or climb

(PN1.2) maneuver. Both subformulas, in turn, share a common structure where

a precondition (left subexpression) is conjoined with a temporal formula stating

the eventual execution of the program statement performing a climb or descend

maneuver 7 . The temporal part has been kept intentionally similar to the original

formulation in [6]. All the safety properties are identically structured and di�er

only for the precondition parts.

In the PN1 formula the elementary predicates UPSEPADQ and DOWNSEPADQ state

that the separation resulting from, respectively, climbing or descending are ade-

quate. The remaining predicates state that the symbolic execution is at the begin-

ning of the escape maneuver computation ( ATASTEN), at the point where a climb

maneuver is selected ( ATASTUPRA), or at the point where a descend maneuver is

selected ( ATASTDOWNRA). Since none of the variables in TCAS express any of these

predicates, they have been implemented in TCAS as observable boolean variables,

one for each predicate, and are evaluated in all the program points where they

may change their truth value. The most critical predicates are UPSEPADQ and

DOWNSEPADQ, whose evaluation requires state splitting.

7 A LTL formula Fp states that a state is reachable where the p predicate is true.
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Number of states

Property Outcome Classic sym-

bolic execution

(#SESt)

Symbolic execu-

tion driven by

Model checking

(#MCSt)

#MCSt

#SESt

PN1 True 5701 2156 37:8%

PN2 True 8617 2239 26:0%

PN3 False 10729 308 2:9%

PN4 False 4021 284 7:1%

PN5 True 4453 2981 66:9%

Table 1
Number of traversed states for TCAS veri�cation

4.3 Results

We analyzed TCAS to estimate the potential saving of the combination of symbolic

execution with model checking in terms of number of traversed states. We veri�ed

the �ve safety properties for TCAS proposed in [6]. The TCAS code that we ana-

lyzed does not contain loops, thus symbolic execution builds a �nite representation

of the state space. We analyzed each property both with classic symbolic execu-

tion and with symbolic execution combined with model checking. When analyzing

the property with classic symbolic execution we inserted assertions in the code, to

check if the property is veri�ed, when analyzing the property with the combination

of symbolic execution and model checking, we veri�ed the LTL property as discussed

in this paper.

Table 1 reports the results of our experiments for each property. The �rst

column indicates the property, described in the appendix. The second column

shows the veri�cation result on the implementation of TCAS considered in our

experiments 8 . The third and fourth columns give the number of states traversed

when analyzing the property with symbolic execution only and with a combination

of symbolic execution and model checking, respectively. The �fth column quanti�es

the advantages of the combination of symbolic execution and model checking over

classic symbolic execution as the ratio between the number of states explored in

the two cases, that represents the portion of the symbolic space state that must be

explored by the model checker to prove or disprove the property.

As we can see, on-the-
y model checking explores a subset of the state space.

The saving is higher when properties are not veri�ed (properties PN2 and PN3)

than when they are (properties PN1, PN4 and PN5), since in the former case the

model checker stops early with a counterexample. When properties are not veri�ed

the model checker explored less than 10% of the state space. When properties are

veri�ed the model checker explores between 26% and 66:9%, still with a relevant

8 In [6] the property PN3 was incorrectly reported as veri�ed for TCAS.
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saving.

We �nally give some comments about performance. The analysis time is domi-

nated by the time spent in the external satis�ability decision procedure (about the

96{98% of the total). This is in line with the fact that the analyzed TCAS code is

essentially a sequence of conditional branches. With the Sicstus decision procedure

the analysis speed ranges from 114 to 133 states/sec, yielding overall analysis times

not exceeding 2 min. With the CVC3 decision procedure the analysis is consider-

ably slower, exceeding a 60 min time budget with any of the properties. Currently

we have no de�nitive explanation for this phenomenon. We conjecture that a mean-

ingful performance improvement can be achieved by enhancing the JBSE-to-CVC3

interface module, which currently does not produce optimized CVC3 input. All

the experiments were performed on a 1:6 GHz Centrino laptop with 512 MBytes of

RAM.

5 Related Work

Automatic veri�cation of programs is currently the subject of several research ef-

forts. This section reports on related work distinguishing, for presentation purposes,

between approaches that rely on symbolic execution to model the execution of a

program, and approaches that extract �nite models from source code and then rely

on techniques for �nite state veri�cation.

Symbolic execution-based veri�cation

Several research prototypes for testing and veri�cation of Java programs use sym-

bolic execution to explore program state spaces, for di�erent purposes: JPF-SE

checks program states against logic assertions and can generate test cases for the

traversed paths [14,21,1]. Bogor/Kiasan checks class methods against JML speci�-

cations [8]. Tomb, Brat and Visser's prototype checks for occurrence of unhandled

runtime exceptions [19].

None of the above prototypes symbolically executes bytecode directly. They

either translate bytecode to some checkable language (for instance, Bogor/Kiasan

translates bytecode to BIR, which is then symbolically executed), or rely on the

user to handle symbolic values and heap analysis at the source code level (as in

JPF-SE). Our prototype executes the bytecode through a suitable JVM that pro-

vides native support for symbolic values and heap analysis at the bytecode level.

Thus, our approach does not face any semantic mismatch that may derive from

translation between non semantically equivalent languages, and avoids the burden

on programmers of instrumenting the code and handling lazy initializations.

Extraction of �nite state models from source code

The Bandera toolkit supports LTL model checking of Java programs [7]. Bandera

provides a set of analysis and transformation components that extract �nite state

models from the program source code, leverages �nite-state model checkers (such

as SPIN and SMV) to perform LTL veri�cation on the models, and maps the re-

sults back to the original source code. The main disadvantage of Bandera comes

9
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from the semantic gap between the modeling languages of the model checkers and

the Java programming language, which in several cases hinders the possibility of

automatically extracting the �nite state models.

Henzinger et al. and Ball and Rajamani describe approaches to verifying tempo-

ral properties of programs by exploiting predicate abstractions of programs [11,2].

Predicate abstraction works very well for abstracting program control 
ows and

can deal with in�nite paths better than symbolic execution. However, there is not

a really convenient abstraction that accounts for all possible dependencies between

program references and heap structures. Symbolic execution in combination with

lazy initialization allows for a thorough analysis of the dependencies between the

heap and the program state space, which are extremely important when analyzing

bytecode.

6 Conclusions

Model checking can provide formal analysis of critical properties of programs, and

successfully complement program testing for systems with high quality software re-

quirements. Model checking of programs is challenging because programs are usually

de�ned over in�nite input domains, which cannot be directly dealt by traditional

model checking procedures for �nite state systems. Symbolic execution has the

potential to contrast this problem by providing �nite representations of potentially

in�nite sets of the numeric executions of a program.

In this paper, we have presented our approach to LTL model checking of Java

programs based on symbolically executing the programs at the bytecode level. We

see clear advantages in addressing the analysis at the bytecode level: bytecode pro-

vides a nicer level of abstraction than both source and binary code, is available

even in partial absence of source code, and brings in the well known advantages of

platform- and language-independency. We have described a prototype that imple-

ments our approach, and we have reported the results of a preliminary experience

with the analysis of a safety-critical application. The initial results support our

belief that the interplay of model checking and symbolic execution can provide suit-

able tradeo�s for the portion of program state space that needs to be explored to

analyze LTL properties.

Our approach di�ers from the other existing approaches that address veri�cation

by means of the combination of model checking and symbolic execution. First, the

other approaches that we are aware of, do not target veri�cation of LTL properties:

they either target generic properties (such as absence of runtime exceptions), or

verify pre- and post-conditions at the boundaries of program modules. LTL allows

for specifying and checking interprocedural relations between modules that involve

relations on the program variables, and thus can capture the critical properties that

are speci�c to a software system. Furthermore, most existing approaches do not

symbolically execute bytecode directly: they either rely on translations to checking-

oriented languages (which can be the source of semantic mismatches) or require the

manual instrumentation of symbolic values and lazy initialization in the source code

(which can be burdensome and error prone).

Our future research agenda includes several still open issues. Coping with in�n-

10



Braione, Denaro, K�rena, Pezz�e

ity that arise from loop unfolding and from recursive data structures is a classical

problem for symbolic execution, and strategies must be de�ned so that in most prac-

tical cases the analysis is able to produce an answer. Issues of analysis costs deserve

further investigation: compared to other abstractions, symbolic execution builds a

very precise model of the state space, but leads to techniques with higher compu-

tational cost than methods that analyze abstractions of the state space. Finally,

the presence of symbolic values mandates the use of automatic decision procedures

whose impact needs to be further assessed. Our long-term goal is gaining a better

understanding on the assumptions and tradeo�s on the above issues, such as to

devise a practical methodology based on the approach proposed in this paper.
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A TCAS proprerties

A.1 The TCAS code

The experimental work focuses on the component of TCAS that is responsible for

�nding the best RA. The component, which consists of 120 lines of code, comes from

a set of programs used by Hutchins et al. in a previous experiment [13]. Figure A.1

shows the code of procedure alt sep test(), which is referred to in all the LTL

properties taken into account.

public int alt_sep_test() {
boolean enabled, tcas_equipped, intent_not_known;
boolean need_upward_RA, need_downward_RA;
int alt_sep;

ASTBeg: enabled = High_Confidence
&& (Own_Tracked_Alt_Rate <= OLEV)
&& (Cur_Vertical_Sep > MAXALTDIFF);

tcas_equipped = (Other_Capability == TCAS_TA);
intent_not_known = Two_of_Three_Reports_Valid

&& (Other_RAC == NO_INTENT);
alt_sep = UNRESOLVED;
if ( enabled

&& ((tcas_equipped && intent_not_known) || !tcas_equipped)) {
ASTEn: need_upward_RA = Non_Crossing_Biased_Climb()

&& Own_Below_Threat();
need_downward_RA = Non_Crossing_Biased_Descend()

&& Own_Above_Threat();
if (need_upward_RA)

ASTUpRA: alt_sep = UPWARD_RA;
else if (need_downward_RA)

ASTDownRA: alt_sep = DOWNWARD_RA;
else

ASTUnresRA: alt_sep = UNRESOLVED;
}

return alt_sep;
}

Fig. A.1. The code of alt sep test()

The vertical separation between the two airplanes is represented by the global

variable Cur Vertical Sep, while Up Separation and Down Separation represent

the estimated vertical separation after a climbing maneuver and a descending ma-

neuver, respectively. Own Tracked Alt and Other Tracked Alt represent the alti-

tudes of the airplanes. These variables can be regarded as input data for the ana-

lyzed sub-system. The vertical separation at the closest point of approach is consid-

ered to be adequate if it is greater than a threshold value (Positive RA Alt Thresh),

which can be viewed as a system constant. The code contains the following �ve la-

bels:

� ASTBeg, which identi�es the beginning of the code;

� ASTEn, which identi�es the �rst statement used for compute the best escape ma-

neuver;

� ASTUpRA, which identi�es the statement where a climbing RA is selected;

� ASTDownRA, which identi�es the statement where descending RA is selected;

� ASTUnresRA, which identi�es the statement where no RA is selected.
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A.2 Atomic predicates

This subsection de�nes the atomic predicates necessary for de�ning the LTL veri�-

cation formulas.

� ATASTEN: the next statement is ASTBeg;

� ASTUPRA: the next statement is ASTUpRA;

� ASTDOWNRA: the next statement is ASTDownRA;

� UPSEPADQ
def

= (Up Separation >= Positive RA Alt Thresh):

Up Separation is adequate;

� DOWNSEPADQ
def

= (Down Separation >= Positive RA Alt Thresh):

Down Separation is adequate;

� UPSEPBEST
def

= (Up Separation > Down Separation):

the estimated separation for a climbing maneuver is better than that for a descend

maneuver;

� DOWNSEPBEST
def

= (Up Separation < Down Separation):

the estimated separation for a descend maneuver is better than that for a climb

maneuver;

� OWNOVER
def

= (Own Tracked Alt > Other Tracked Alt):

the maneuvering aircraft is above the approaching aircraft;

� OTHEROVER
def

= (Own Tracked Alt < Other Tracked Alt):

the maneuvering aircraft is below the approaching aircraft.

A.3 Veri�ed properties

This section reports the �ve TCAS safety properties and the associated LTL for-

mulas used for checking them.

Property 1: Safe Advisory Selection

Meaning of the property: If one maneuver produces adequate separation and the

other does not, then the RA corresponding to the maneuver that does not produce

adequate separation is not issued. Checked by LTL formula PN1.

( UPSEPADQ ^ : DOWNSEPADQ) ^ F( ATASTEN ^ F ATASTDOWNRA) (PN1.1)

_

(: UPSEPADQ ^ DOWNSEPADQ) ^ F( ATASTEN ^ F ATASTUPRA) (PN1.2)

Fig. A.2. PN1 and its subformulas

Property 2: Best Advisory Selection

Meaning of the property: Let neither climb nor descent maneuvers produce ade-

quate separation. Then, the RA corresponding to the maneuver that produces less

separation is never issued. Checked by LTL formula PN2.
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(: UPSEPADQ ^ : DOWNSEPADQ ^ UPSEPBEST) ^

F( ATASTEN ^ F ATASTDOWNRA) (PN2.1)

_

(: UPSEPADQ ^ DOWNSEPADQ ^ DOWNSEPBEST) ^

F( ATASTEN ^ F ATASTUPRA) (PN2.2)

Fig. A.3. PN2 and its subformulas

Property 3: Avoid Unnecessary Crossing

Meaning of the property: If both climbing and descending produce adequate sepa-

ration, then a crossing RA is never issued. Checked by LTL formula PN3.

( UPSEPADQ ^ DOWNSEPADQ ^ OWNOVER) ^ F( ATASTEN ^ F ATASTDOWNRA) (PN3.1)

_

( UPSEPADQ ^ DOWNSEPADQ ^ OTHEROVER) ^ F( ATASTEN ^ F ATASTUPRA) (PN3.2)

Fig. A.4. PN3 and its subformulas

Property 4: No Crossing Advisory Selection

Meaning of the property: A crossing RA is never issued. Checked by LTL formula

PN4.

( OWNOVER) ^ F( ATASTEN ^ F ATASTDOWNRA) (PN4.1)

_

( OTHEROVER) ^ F( ATASTEN ^ F ATASTUPRA) (PN4.2)

Fig. A.5. PN4 and its subformulas

Property 5: Optimal Advisory Selection

Meaning of the property: The RA that produces less separation is never issued.

Checked by LTL formula PN5.

( UPSEPBEST) ^ F( ATASTEN ^ F ATASTDOWNRA) (PN5.1)

_

( DOWNSEPBEST) ^ F( ATASTEN ^ F ATASTUPRA) (PN5.2)

Fig. A.6. PN5 and its subformulas
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