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Università degli Studi di Milano-Bicocca

Abstract

We show that the definition of the θth sample quantile as the solution

to a minimization problem introduced by Koenker and Basset [1978] can be

easily extended to obtain an analogous definition for the θth sample quantity

quantile instead of the usual one. By means of this definition we introduce

a linear regression model for quantity quantiles and analyze some properties

of the residuals.

In section 4 we show a brief application of the methodology proposed.

Key words: quantile regression, quantity quantiles.

1 Introduction

The θth quantile ζθ of the real valued random variable (r.v.) Y with distribution

function:

FY (y) = P (Y 6 y) (1.1)

can be obtained:

∗A short version of this paper has been presented at XLIII Scientific Meeting of the Società

Italiana di Statistica (Radaelli and Zenga [2006]).
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• by its quantile function:

BY (θ) = inf {y ∈ ℜ | FY (y) > θ} 0 < θ < 1. (1.2)

for a fixed θ ∈ (0, 1);

• as the solution of a minimization problem which is the crucial feature in

quantile regression.

For the latter, consider the problem of approximating the distribution of Y with

a value c ∈ ℜ. Given a loss function ℓ the optimal value c can be obtained by

minimizing the expected loss:

r(c) = E [ℓ(Y − c)] = E [ℓ(U)] (1.3)

which depends both on the distribution of Y and on the particular loss function

adopted (see Peracchi [2001]). In the case the loss function specified is the quadratic

one:

ℓ(u) = u2

the value of c that minimizes (1.3) is the mean value µ = E (Y ), while applying the

absolute loss function:

ℓ(u) = |u|

the value of c that minimizes (1.3) is the median ζ0.5 of Y .

The loss function applied in quantile regression, as introduced by Koenker and

Basset [1978] (see also Koenker [2005]), is the asymmetric absolute loss function:

ℓθ(u) = [θ I {u > 0} + (1 − θ) I {u 6 0}] |u| = [θ − I {u 6 0}]u (1.4)

where 0 < θ < 1 and I(A) denoting the indicator function of the event A. With

the loss function (1.4) the expected loss (1.3) is:

E [ℓθ (Y − c)] = (θ − 1)

c∫

−∞

(y − c) dFY (y) + θ

∞∫

c

(y − c) dFY (y) (1.5)
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which is minimized when c is the θth quantile ζθ of Y .

In this framework the θth quantile of Y can be defined as any solution to the

minimization problem:

min
c∈ℜ

E [ℓθ (Y − c)] . (1.6)

Considering now a random sample Y1, . . . , Yi, . . . , Yn from Y , the natural estimator

for ζθ is the corresponding sample quantile ζ̂θ that can be definied as follows:

n∑

i=1

I
{

yi < ζ̂θ

}
6 nθ 6

n∑

i=1

I
{
yi 6 ζ̂θ

}
. (1.7)

Thus, once the observations obtained from the sample are arranged in nondecreasing

order:

y(1) 6 y(2) 6 . . . 6 y(n),

the θth sample quantile is unique, provided that nθ is not integer, and it is the

value that fills the position ⌈nθ⌉1:

ζ̂θ = y(⌈nθ⌉).

In the case nθ is integer, the θth sample quantile is any value in the closed interval
[
y(nθ); y(nθ+1)

]
.

Koenker and Basset [1978] have shown that, applying the asymmetric absolute loss

function (1.4), the θth sample quantile can be obtained simply by replacing the

distribution function F in (1.5) with the empirical distribution function:

Fn (y) = n−1
n∑

i=1

I {yi 6 y} (1.8)

obtaining the minimization problem:

min
ζθ∈ℜ

1

n

n∑

i=1

ℓθ (yi − ζθ)

≡ min
ζθ ∈ R

1

n




∑

[i:yi>ζθ]

θ (yi − ζθ) +
∑

[i:yi6ζθ]

(θ − 1) (yi − ζθ)



 . (1.9)

1⌈·⌉ denotes the rounding up.
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The point of departure of quantile regression is thus the definition of the θth sample

quantile as the solution of a minimization problem instead of the usual procedure

that implies the ordering of the sample observations. The optimization approach

yields a natural generalization of the quantiles to the regression settings.

As pointed out in Hallock and Koenker [2001] the solution to problem (1.9) is an

estimate of the unconditional θth quantile of Y . Suppose now to have p explanatory

variables X1, . . . , Xp and that the conditional quantile function of Y is linear and

given by:

BY (θ|x) = xT βθ 0 < θ < 1. (1.10)

In the quantile regression (linear) model the unknown parameters βθ in the condi-

tional quantile function are estimated simply by replacing the scalar ζθ in (1.9) by

the function xT βθ. Thus the θth regression quantile is defined as any solution to

the minimization problem:

min
βθ∈ℜ

p

1

n

n∑

i=1

ℓθ

(
yi − xT

i βθ

)

≡ min
βθ∈ℜ

p

1

n




∑

[i:yi>x
T
i βθ]

θ
(
yi − xT

i βθ

)
+

∑

[i:yi6x
T
i βθ]

(θ − 1)
(
yi − xT

i βθ

)


 (1.11)

where y = [y1, . . . , yn] is a vector of responses on the random variable Y and

X = [x1, . . . ,xn]T is the known n × p matrix of the regressors.

The case of the conditional median is obtained setting θ = 0.5 in (1.11) and has been

first introduced by Boscovich (see for example Hald [1998], Mineo [2003] and Stigler

[1984]) and then investigated by De La Place [1966], Edgeworth (see [Bowley, 1972,

pp.99-109]) and Bassett and Koenker [1978].

In the literature other asymmetrically weighted loss functions have been introduced:

Newey and Powell [1987] proposed the use of the asymmetric least squares loss

function:

ρθ(u) = |θ − I {u 6 0}| u2 (1.12)
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leading to the minimum problem:

min
νθ∈ℜ

1

n

n∑

i=1

ρθ (yi − νθ)

≡ min
νθ∈ℜ

1

n




∑

[i:yi>νθ]

θ (yi − νθ)
2 +

∑

[i:yi6νθ]

(1 − θ) (yi − νθ)
2



 . (1.13)

The solution to problem (1.13) has been defined by the authors the θth sample ex-

pectile2 and the use of the asymmetric loss function (1.12) is then extended to the

regression context leading to asymmetric least squares estimators (see also Efron

[1991]).

2 Quantity quantiles

When one face with a nonnegative random variable, the income for instance, it is

useful to consider not only the quantiles as defined in the previous section but the

quantity quantiles as well.

From now on Y is supposed to be a nonnegative r.v. with density function fY and

with finite and strictly positive mean value:

E [Y ] =

∞∫

0

y fY (y) dy = µ.

The distribution function of Y is:

FY (y) =

y∫

0

fY (t) dt (2.1)

and the so-called first incomplete moment (or first-moment distribution) is given

by:

QY (y) =

y∫

0

t

µ
fY (t) dt. (2.2)

Thus, if Y represent the income, FY (y) gives the fraction of the population with

income no greater than y while QY (y) gives the share of the total income accruing

2The 0.5 expectile is the sample mean y.
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to the population with income no greater than y.

In this framework it is possibile to define the θth quantile:

ζθ = inf {y ∈ ℜ | FY (y) > θ} 0 < θ < 1 (2.3)

and the θth quantity quantile:

ηθ = inf {y ∈ ℜ | QY (y) > θ} 0 < θ < 1. (2.4)

It should be observed (e.g. Zenga [1984]) that:

FY (y) > QY (y) ∀ y > 0

and thus:

ζθ 6 ηθ ∀ 0 < θ < 1.

This approach has been widely used in the study of income and wealth distribution

and many concentration measures have been derived from the comparison of (2.1)

and (2.2), see Zenga [1990] for a short review, and from the comparison of (2.3)

and (2.4), see Zenga [1984], Zenga [1985], Zenga [1990], Berti and Rigo [1999] and

Kleiber and Kotz [2003, pp.42-43].

It is interesting to observe that η0.5 is the so called dividing value (e.g. Mortara

[1933, pp.70-71]) defined as the value that balances the sum of the values lower

than it and the sum of the values greater than it.

As the quantile can be defined as any solution to the minimization problem that

makes use of the asymmetric absolute loss function (1.4), so the quantity quantile

ηθ can be defined as any solution to a minimization problem that attaches a suitable

weight to the loss function (1.4).

In particular let W be a r.v. with the same support as Y and density function:

qW (y) = fY (y)
y

µ
. (2.5)

The distribution function of W is given by:

FW (y) =

y∫

0

qW (t) dt =

y∫

0

t

µ
fY (t) dt = QY (y) (2.6)
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which is the first incomplete moment (2.2) of Y , therefore the θ-th quantile of the

r.v. W is the θ-th quantity quantile of the r.v. Y .

Thus as Jones [1994] showed that expectiles of a given distribution F are precisely

the ordinary quantiles of a distribution G related by an explicit formula to F ,

then we observe that quantity quantiles of a given distribution F are the ordinary

quantiles of the distribution G obtained from F by applying the Lorenz function:

L (p) =
1

E [Y ]

p∫

0

F−1(t) dt p ∈ [0, 1]

to the distribution function F (see for example Berti and Rigo [1999]):

QY (y) = L (FY (y)) .

It is now straightforward to define the quantiles of the r.v. W in the same way as

we showed in the previous section. Thus, according to (1.6), the θth quantile of W

can be defined as the solution to the minimization problem:

min
c∈ℜ

E [ℓθ (W − c)] . (2.7)

The expected loss in (2.7) can be rewritten as follows:

E [ℓθ (W − c)] =

∞∫

−∞

ℓθ (w − c) fW (w) dw =

∞∫

−∞

ℓθ (y − c)
y

µ
fY (y) dy

=E

[
ℓθ (Y − c)

Y

µ

]

i.e. the θ-th quantity quantile of the r.v. Y can be obtained by minimizing the

expect loss in which the distances |y − c| are weighted not only according to the

asymmetric absolute loss function (1.4) but with the additional nonnegative weight

y/µ.

For θ = 1/2, (2.7) gives the dividing value and for θ ∈ (0, 1) all the others quantity

quantiles of the r.v. Y are obtained. Thus we observe that the relationship between

quantity quantiles and the dividing value is that between the quantiles and the me-

dian and between the expectiles and the mean.

Consider now n sorted observations, obtained from a random sample Y1, . . . , Yi, . . . , Yn

from Y :

0 6 y(1) 6 y(2) 6 . . . y(i) 6 . . . 6 y(n) > 0
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and let T =
∑n

i=1 yi > 0 and y denote, respectively, the total amount and the

arithmetic mean of the observations.

The natural estimator for ηθ is the corresponding sample quantity quantile:

η̂θ = inf
{

y(i) : Q̂(y(i)) > θ
}

where:

Q̂(b) =

∑

j: yj6b

yj

n y
=

∑

j: yj6b

yj

T
.

Thus traditionally, in order to obtain the θ-th sample quantity quantile, one should

sum the sorted values y(i) until at least the share θ of the total T is reached.

Nevertheless by replacing the empirical distribution function (1.8) of Y with:

Gn (y) = n−1
n∑

i=1

I {yi 6 y}
yi

y
= Q̂(y)

the θ-th sample quantity quantile can be obtained as any solution to the minimiza-

tion problem:

min
b∈ℜ

n∑

i=1

ℓθ (yi − b)
yi

ny

≡ min
b∈ℜ




∑

[i:yi>b]

θ (yi − b)
yi

ny
+

∑

[i:yi6b]

(θ − 1) (yi − b)
yi

ny



 . (2.8)

Denoting with D(b) the expression within square brackets in (2.8), it can be easily

shown that its minimum is reached for b = η̂θ. In fact D(b) can be rewritten as:

D(b) = θ
∑

[i:yi>b]

y2
i

ny
+ (θ − 1)

∑

[i:yi6b]

y2
i

ny
+ b

[
Q̂(b) − θ

]

In order to evaluate D(b) when b varies we consider:

D(y(i)) = θ

n∑

j=i+1

y2
(j)

ny
+ (θ − 1)

i∑

j=1

y2
(j)

ny
+ y(i)

[
Q̂(y(i)) − θ

]

D(y(i+1)) = θ

n∑

j=i+2

y2
(j)

ny
+ (θ − 1)

i+1∑

j=1

y2
(j)

ny
+ y(i+1)

[
Q̂(y(i+1)) − θ

]

and their difference:

D(y(i+1)) − D(y(i)) =
[
y(i+1) − y(i)

] [
Q̂(y(i)) − θ

]
.
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The difference
[
y(i+1) − y(i)

]
is nonnegative, therefore:

D(y(i+1)) − D(y(i))






< 0 if Q̂(y(i)) < θ;

> 0 if Q̂(y(i)) > θ.

Thus increasing b, the value of D(b) decreases as long as Q̂(b) < θ; the minimum is

reached for b that satisfies Q̂(b) = θ, i.e. b = η̂θ.

3 Linear regression for quantity quantiles

In section 1 we showed that the optimization problem (1.11) allows to obtain the

regression coefficients βθ of the hyperplane for the θ-th conditional quantile of the

dependent variable Y . Suppose now we are interested in a linear model for the θth

conditional quantile of the r.v. W with density function (2.5) and distribution func-

tion (2.6). In particular, following the same setting, suppose to have p explanatory

variables X1, . . . , Xp and that the conditional quantile function of W is given by:

BW (θ|x) = xT γθ 0 < θ < 1. (3.1)

the unknown parameters γθ in the conditional quantile function (3.1) can be ob-

tained simply by replacing b in (2.8) by the function xT γθ. Thus the θth regression

quantity quantiles for the variable Y , i.e. the θth regression quantile for the variable

W , is defined as any solution to the minimization problem:

min
γθ∈ℜ

p

1

n

n∑

i=1

ℓθ

(
yi − xT

i γθ

) yi

y

≡ min
γθ∈ℜ

p

1

n




∑

[i:yi>x
T
i γθ]

θ
(
yi − xT

i γθ

) yi

y
+

∑

[i:yi6x
T
i γθ]

(θ − 1)
(
yi − xT

i γθ

) yi

y



 (3.2)

where y = [y1, . . . , yn] is a vector of responses on the random variable Y and xT
i is

ith row of the known n × p matrix of the regressors X.

Problem (3.2) can be viewed in the context of weighted linear quantile regression

introduced by Koenker and Zhao [1994] for linear heteroscedastic model. In the case

here considered we don’t consider that the conditional densities of the response Y
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are heterogeneous; we just use the additional nonnegative weights yi/y in the mini-

mization problem in order to obtain the quantity quantiles instead of the quantiles.

Problem (3.2) can be reformulated, as in quantile regression (see for example

Koenker and Basset [1978]), as the linear program:

min
(γθ,u+,u−) ∈ℜp×ℜ2n

θ ιTu+ y

y
+ (1 − θ) ιTu−y

y
(3.3)

subject to the constraints:

y = X γθ + u+ − u− (3.4)
(
u+,u−

)
∈ ℜ2n

+

where the vector of the residuals u = y − X γθ is split into its positive u+ and

negative u− parts such that u = u+ − u−.

In theorem 3.4 of Koenker and Basset [1978] the authors prove that, given a solution

β̂θ to problem (1.11), if the matrix X contains an intercept (i.e. X contains a

column of ones) then there will be roughly a proportion θ of negative residuals

and a proportion 1− θ of positive residuals; more precisely the following inequality

holds:

n−

n
6 θ 6 1 −

n+

n
=

n− + n0

n
(3.5)

where n−, n+ and n0 denote the number of negative, positive and zero elements of

the residual vector u = y − X β̂θ.

An analogous theorem holds for quantity quantile regression: in particular, given a

solution γ̂θ to problem (3.2) and the correspondent vector of residuals u = y−X γ̂θ,

consider the following partition of the set {1, . . . , n}:

• Z = {i : ui = 0} indexes of points with zero residual;

• N = {i : ui < 0} indexes of points with negative residual;

• P = {i : ui > 0} indexes of points with positive residual

then:
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Theorem 3.1 Let T = ny > 0 denotes the total amount of the observations on Y .

If X contains an intercept then:

∑

i∈N

yi

T
6 θ 6 1 −

∑

i∈P

yi

T
=

∑

i∈N

yi

T
+

∑

i∈Z

yi

T
. (3.6)

Proof. Rewrite (3.6) as:

(θ − 1)
∑

i∈Z

yi

T
6 (1 − θ)

∑

i∈N

yi

T
− θ

∑

i∈P

yi

T
6 θ

∑

i∈Z

yi

T
. (3.7)

and let:

δ = min
i∈(P∪N)

|ui|

and:

0 < ε < δ. (3.8)

The difference:

(1 − θ)
∑

i∈N

yi

T
− θ

∑

i∈P

yi

T

can be positive, negative or null; then we consider separately two cases. Consider

first the case:

(1 − θ)
∑

i∈N

yi

T
6 θ

∑

i∈P

yi

T
.

The term θ
∑

i∈Z
yi

T
in (3.7), is nonnegative, so it must only be proved that:

(θ − 1)
∑

i∈Z

yi

T
6 (1 − θ)

∑

i∈N

yi

T
− θ

∑

i∈P

yi

T
.

Let ηθ = [ε 0 . . . 0]T + γ̂θ and denote with ui(γ̂θ) and ui(ηθ) the residuals of the

n points from the hyperplanes with coefficients, respectively, γ̂θ and ηθ. The two

hyperplanes differ only in the intercept thus we have:

ui(ηθ) = yi − xT
i ηθ = yi − xT

i γ̂θ − ε = ui(γ̂θ) − ε

and, given (3.8), we have:

ui(ηθ) =






ui(γ̂θ) − ε > 0 for i ∈ P ;

ui(γ̂θ) − ε < 0 for i ∈ N ;

−ε < 0 for i ∈ Z.
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Thus the loss associated to the hyperlane with regression coefficients ηθ is given by:

n∑

i=1

ℓθ

(
yi − xT

i ηθ

) yi

T
=

n∑

i=1

ℓθ (ui(ηθ))
yi

T

=
∑

i∈P

[
θ (ui(γ̂θ) − ε)

yi

T

]
+

∑

i∈N

[
(θ − 1) (ui(γ̂θ) − ε)

yi

T

]
+ (1 − θ)ε

∑

i∈Z

yi

T

=
n∑

i=1

ℓθ (ui(γ̂θ))
yi

T
− θε

∑

i∈P

yi

T
+ (1 − θ)ε

∑

i∈N

yi

T
+ (1 − θ)ε

∑

i∈Z

yi

T

=

n∑

i=1

ℓθ (ui(γ̂θ))
yi

T
+ ε

[

(1 − θ)
∑

i∈N

yi

T
− θ

∑

i∈P

yi

T
+ (1 − θ)

∑

i∈Z

yi

T

]

.

Note that if:

(1 − θ)
∑

i∈N

yi

T
− θ

∑

i∈P

yi

T
+ (1 − θ)

∑

i∈Z

yi

T
< 0

that is:

θ
∑

i∈P

yi

T
− (1 − θ)

∑

i∈N

yi

T
> (1 − θ)

∑

i∈Z

yi

T

we will have:

n∑

i=1

ℓθ (ui(γ̂θ))
yi

T
>

n∑

i=1

ℓθ (ui(ηθ))
yi

T

and γ̂θ is not a solution to the minimum problem (3.2).

Hence the following inequality:

(θ − 1)
∑

i∈Z

yi

T
6 (1 − θ)

∑

i∈N

yi

T
− θ

∑

i∈P

yi

T

has to hold.

A similar argument can be used in the case:

(1 − θ)
∑

i∈N

yi

T
> θ

∑

i∈P

yi

T
.

Relation (3.7) can be viewed as an extension of the property of quantity quantiles

in the regression context: when the share
∑

i∈Z
yi

T
of the total amount T accruing

to points lying on the regression hyperplane is negligible, then the points below the
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hyperplane (with negative residuals) absorb roughly a share θ of the total T and

the points above the hyperplane (with positive residuals) absorb roughly a share

1 − θ of the total T .

Theorem 3.1 holds also when, instead of the weights yi; i = 1, . . . , n, in the minimum

problem (3.2) one use the weights ωi i = 1, . . . , n such that:

ωi > 0 i = 1, . . . , n and T =

n∑

i=1

ωi > 0.

In particular the relation (3.5) can be proved by setting ωi = 1; i = 1, . . . , n.

4 Application to Banca d’Italia survey data

4.1 A brief data description

The data used in this application are supplied by the 2004 central Bank of Italy

sample survey of household budgets (Banca d’Italia [2006]). The sampling design

follows a two stages procedure: survey units are the municipalities in the first stage

and households3 in the second one. In the first stage municipalities are stratified

by region and demographic size. Within each stratum, the municipalities in which

interviews would be conducted were selected by including all municipalities with

more than 40000 inhabitants while the remaining were randomly selected following

a procedure that assigns a drawing probability proportional to size. In the second

stage the individual households to be interviewed were then selected randomly. To

each household is assigned an initial weight defined as the inverse of its probability

of inclusion in the sample.

The 2004 survey covers 8012 households, drawn from registry office records in 344

municipalities, composed of 20581 individuals including 13341 income earners. Part

of the sample is composed by households that were interviewed in previous surveys

(panel households); the proportion of panel households is 44.98 per cent.

Information collected in the survey include demographic characteristics, housing,

3Household means a group of persons living together, whether or not they are related by

kinship, who seek to satisfy their needs by pooling all or part of the income earned by group

members.
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health, education, employment and incomes, payment instruments and forms of

saving, non durable and durable consumption, forms of insurance. From the items

in the questionnaire, main economic aggregates such as net disposable income and

net wealth are calculated.

In this application we consider three variables:

C: non-durable consumption expenditure;

Y : net disposable income;

S: household size.

Non-durable consumption expenditure and net disposable income are both ex-

pressed in euros and refer to the whole year 2004; they are obtained aggregating

some items of the questionnaire (see appendix A and Banca d’Italia [2006]).

It should be observed that the household net disposable income Y could be neg-

ative considering that some items are subtracted in order to form it. This is the

case of alimony and gifts paid, interests allowed on financial assets etc. In the 2004

survey this happens for four households and they are excluded from the present

application; the households considered are thus 8012 − 4 = 8008.

In all the computations that follow we considered the weights wi (i = 1, . . . , 8012)

supplied by Banca d’Italia for each household; these weights, as stated before, are

defined as the inverse of household’s probability of inclusion in the sample. The

sum of the weights is
∑8012

i=1 wi = 8012. The total weight of the four households

excluded, because of their negative net disposable income, is 2.489765 thus the total

weight of the remaining households is 8012 − 2.489765 = 8009.510235. In order to

get a sum of weights equal to the number of households (8008) we adjusted the

weights, with a negligible rectification, by defining the new ones:

pi = wi

8008
∑8012

i=1 wi − 2.489765
= wi

8008

8009.510235
i = 1, . . . , 8008. (4.1)

Table 4.1 reports the distribution of the weights of the 8008 households by classes

of non-durable consumption expenditure and size. The value in each cell is the

sum of the weights pi of the households with non-durable consumption expenditure

in the correspondent row class and size given by the correspondent column label.

14



Quantity Quantiles Linear Regression

Average and median annual household non-durable consumption expenditure are,

respectively, e20424.21 and e18000.00. The histogram of non-durable consumption

expenditure (figure 1), suggests that its distribution could be modeled by a log-

normal distribution.

Table 4.1: Distribution of the weights of the 8008 households by classes of non-

durable consumption expenditure C and size S.

Non-durable Household size

consumption 1 2 3 4 5 6 7 8 9 Total

0 ⊣ 8400 431.387 114.912 55.170 22.478 13.379 1.173 1.506 3.848 0.364 644.218

8400 ⊣ 10800 326.212 166.605 64.246 55.124 20.431 3.700 0.000 1.752 0.000 638.070

10800 ⊣ 13200 301.377 304.304 115.752 96.261 18.669 2.596 1.158 0.000 0.000 840.116

13200 ⊣ 15600 254.127 332.313 210.959 167.822 56.692 11.104 0.471 0.399 0.000 1033.886

15600 ⊣ 17400 138.449 214.170 122.207 129.888 45.922 8.262 2.697 1.692 0.000 663.287

17400 ⊣ 19300 150.933 250.982 151.269 164.140 46.322 1.804 0.920 0.000 2.169 768.540

19300 ⊣ 21600 122.180 251.632 200.777 146.162 49.963 7.247 0.253 0.000 0.000 778.214

21600 ⊣ 24000 72.515 144.733 158.665 147.284 30.029 3.722 2.104 0.000 0.000 559.051

24000 ⊣ 26400 46.358 98.563 119.903 111.104 16.503 6.782 0.000 4.807 0.000 404.020

26400 ⊣ 28800 34.239 86.649 100.964 107.017 18.343 3.917 0.000 0.000 0.000 351.129

28800 ⊣ 31000 21.757 46.317 91.266 72.863 20.574 5.159 1.123 0.000 0.000 259.059

31000 ⊣ 33000 28.356 39.591 56.532 66.477 19.105 2.130 0.000 0.000 0.000 212.191

33000 ⊣ 36600 11.640 63.657 91.651 92.394 17.865 14.641 0.000 0.000 0.000 291.848

36600 ⊣ 40800 10.257 39.803 44.491 52.948 13.047 5.526 1.009 0.000 0.000 167.082

40800 ⊣ 45600 4.393 29.543 39.488 53.832 17.629 4.293 0.394 0.000 0.000 149.571

45600 ⊣ 48600 5.579 13.620 23.989 19.366 4.521 0.000 0.000 0.636 0.000 67.712

48600 ⊣ 54100 5.119 11.840 21.987 18.255 4.111 1.822 0.000 0.000 0.000 63.134

more than 54100 7.244 29.890 29.329 42.479 5.391 1.942 0.000 0.000 0.596 116.870

Total 1972.122 2239.125 1698.645 1565.894 418.496 85.819 11.636 13.133 3.129 8008.000

The average household consists of 2.58 members whereas the median household size

is 2 (52.59% of the household sizes are no greater than 2).

Table 4.2 (see also figure 2) reports, for different values of θ, the quantiles ζ̂θ and

the quantity quantiles η̂θ of the household non-durable consumption expenditure

and, in the last column, their ratios. For instance, for θ = 0.75 we have:

ζ̂0.75 = e25200 < e30000 = η̂0.75

and this means that, after sorting the households by increasing values of their

non-durable consumption expenditure, in order to reach a share equal to 75% of

the households we must consider the ones with an expenditure no greater than
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Figure 1: Histogram of non-durable consumption expenditure.

e25200 and that in order to reach a share equal to 75% of the total non-durable

consumption expenditure we must consider the households with expenditure no

greater than e30000.

Ratios between quantiles and quantity quantiles (last column in table 4.2) are almost

constant; this strengthens the idea that the underlying distribution of non-durable

consumption expenditure should be log-normal (see Zenga [1984]).

Table 4.3 reports the distribution of the weights of the 8008 households by classes

of net disposable income and size. Average and median annual household net dis-

posable income are, respectively, e29494.76 and e23846.72.

Table 4.4 reports the distribution of the weights of the 8008 households by classes

of net disposable income and non-durable consumption expenditure.
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Table 4.2: Quantiles ζ̂θ and quantity quantiles η̂θ of household non-durable con-

sumption expenditure (values in e).

θ ζ̂θ η̂θ ζ̂θ/η̂θ

0% 1320 1320 1

5% 7440 10200 0.72941

10% 9600 12600 0.76190

15% 10800 14100 0.76596

20% 12000 15600 0.76923

25% 13200 16800 0.78571

30% 14400 18000 0.80000

35% 15000 19200 0.78125

40% 15920 20400 0.78039

45% 16800 21600 0.77778

50% 18000 22800 0.78947

55% 19200 24000 0.80000

60% 20400 26400 0.77273

65% 21600 27899.28 0.77421

70% 22800 30000 0.76000

75% 25200 32400 0.77778

80% 27600 35000 0.78857

85% 30000 38682.74 0.77554

90% 33600 44700 0.75168

95% 40800 56200 0.72598

100% 177000 177000 1
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Figure 2: Quantiles and quantity quantiles of household non-durable consumption

expenditure (values in e).
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Table 4.3: Distribution of the weights of the 8008 households by net disposable

income Y and size S.

Net disposable Household size

income 1 2 3 4 5 6 7 8 9 Total

0 ⊣ 9000 315.258 84.514 60.422 40.093 16.994 1.173 3.362 1.752 0.364 523.932

9000 ⊣ 12900 390.130 155.057 69.489 54.595 20.919 2.718 1.158 3.848 0.000 697.914

12900 ⊣ 15800 325.539 224.612 99.905 86.845 27.773 5.720 0.000 0.000 0.000 770.393

15800 ⊣ 19200 276.038 279.327 129.299 148.986 54.938 10.547 0.282 0.000 2.169 901.587

19200 ⊣ 22600 224.898 304.206 155.575 134.147 37.291 11.638 0.000 0.399 0.000 868.154

22600 ⊣ 26700 148.946 304.581 153.712 136.994 48.894 8.534 0.253 0.000 0.000 801.913

26700 ⊣ 31100 92.348 218.438 200.664 128.954 40.607 7.611 3.594 2.140 0.000 694.357

31100 ⊣ 35400 48.068 176.894 162.464 154.473 30.287 5.009 0.000 0.000 0.000 577.195

35400 ⊣ 39300 35.650 131.125 121.022 104.542 21.442 3.688 0.000 0.000 0.000 417.469

39300 ⊣ 43100 28.596 83.176 157.800 109.928 21.114 1.619 0.515 0.000 0.000 402.748

43100 ⊣ 46800 13.428 47.386 82.097 89.118 12.948 5.115 0.461 1.705 0.000 252.258

46800 ⊣ 50400 15.757 54.352 42.852 63.208 12.103 2.460 0.000 1.692 0.000 192.423

50400 ⊣ 57700 22.276 54.348 100.202 99.706 33.956 7.479 0.494 0.000 0.000 318.462

57700 ⊣ 64600 11.347 34.265 57.786 75.557 12.188 3.718 0.000 0.000 0.000 194.861

64600 ⊣ 74800 10.367 30.017 36.073 47.154 12.153 4.616 0.394 0.000 0.000 140.775

74800 ⊣ 82600 2.455 16.978 22.714 32.118 4.446 0.823 0.000 0.000 0.000 79.534

82600 ⊣ 95500 0.732 8.313 18.897 17.936 2.559 1.551 0.000 0.000 0.000 49.988

more than 95500 10.289 31.537 27.672 41.536 7.884 1.801 1.123 1.598 0.596 124.037

Total 1972.122 2239.125 1698.645 1565.894 418.496 85.819 11.636 13.133 3.129 8008.000

19



Q
u
a
n
tity

Q
u
a
n
tiles

L
in

ea
r

R
egressio

n

Table 4.4: Distribution of the weights of the 8008 households by net disposable income Y and non-durable consumption

expenditure C.

Net disposable Non-durable consumption expenditure

income 0 ⊣ 8400 8400 ⊣ 10800 10800 ⊣ 13200 13200 ⊣ 15600 15600 ⊣ 17400 17400 ⊣ 19300 19300 ⊣ 21600 21600 ⊣ 24000 24000 ⊣ 26400 26400 ⊣ 28800 28800 ⊣ 31000 31000 ⊣ 33000 33000 ⊣ 36600 36600 ⊣ 40800 40800 ⊣ 45600 45600 ⊣ 48600 48600 ⊣ 54100 > 54100 Total

0 ⊣ 9000 349.821 86.393 40.074 16.862 6.332 8.867 4.989 5.211 0.731 0.639 0.266 0.293 0.580 2.093 0.000 0.000 0.000 0.780 523.932

9000 ⊣ 12900 168.985 256.213 156.236 70.620 13.578 7.440 6.635 2.560 9.798 0.000 0.723 1.087 3.508 0.532 0.000 0.000 0.000 0.000 697.914

12900 ⊣ 15800 69.825 132.166 240.984 195.133 61.541 38.335 14.573 10.065 5.780 0.497 0.000 0.000 0.761 0.734 0.000 0.000 0.000 0.000 770.393

15800 ⊣ 19200 30.501 71.676 181.638 278.825 150.584 93.024 41.914 23.786 8.595 3.016 5.764 2.400 6.128 2.708 0.532 0.000 0.000 0.497 901.587

19200 ⊣ 22600 5.819 43.415 96.518 185.105 145.812 194.157 128.830 36.014 18.794 10.629 2.038 0.000 1.023 0.000 0.000 0.000 0.000 0.000 868.154

22600 ⊣ 26700 12.637 19.904 31.782 100.390 131.042 139.895 171.831 95.599 59.043 20.003 8.381 6.250 1.141 0.897 0.000 0.000 0.000 3.118 801.913

26700 ⊣ 31100 1.489 11.775 23.838 103.748 59.230 93.454 131.440 101.651 65.990 46.513 23.881 17.707 5.840 4.242 0.999 0.000 0.000 2.561 694.357

31100 ⊣ 35400 4.601 6.615 17.151 30.060 42.566 77.131 107.279 88.524 46.485 61.372 28.945 20.065 31.715 11.068 2.826 0.000 0.000 0.791 577.195

35400 ⊣ 39300 0.539 1.040 21.574 10.679 13.901 24.838 60.070 61.206 56.818 62.164 39.427 24.171 26.932 6.629 5.827 0.654 0.678 0.322 417.469

39300 ⊣ 43100 0.000 1.143 10.638 15.486 13.519 31.454 49.741 62.385 36.381 38.689 52.721 24.286 34.379 18.592 9.446 2.593 0.000 1.295 402.748

43100 ⊣ 46800 0.000 1.494 2.581 7.357 7.730 17.676 13.635 23.380 27.000 27.399 25.986 30.246 34.700 12.647 14.791 2.625 1.938 1.074 252.258

46800 ⊣ 50400 0.000 0.632 6.511 6.606 5.436 11.112 12.630 16.824 7.738 16.871 18.961 14.966 28.594 19.376 19.714 5.828 0.623 0.000 192.423

50400 ⊣ 57700 0.000 1.706 1.828 8.420 2.072 9.572 15.619 12.405 27.690 30.587 27.253 35.422 57.568 33.167 28.270 14.276 7.655 4.950 318.462

57700 ⊣ 64600 0.000 3.624 8.415 2.578 0.000 9.966 6.209 9.289 12.374 11.500 12.221 19.024 24.314 24.921 17.665 15.474 11.267 6.021 194.861

64600 ⊣ 74800 0.000 0.274 0.347 0.328 3.614 6.997 4.333 3.210 12.084 6.305 4.917 10.315 17.730 14.210 24.397 7.671 9.562 14.481 140.775

74800 ⊣ 82600 0.000 0.000 0.000 0.000 4.951 0.438 3.071 1.137 4.760 8.146 0.682 0.168 5.789 8.628 11.868 5.349 11.798 12.750 79.534

82600 ⊣ 95500 0.000 0.000 0.000 0.000 0.963 0.650 2.812 0.000 1.383 2.649 0.000 1.560 4.061 2.268 5.562 5.902 6.968 15.209 49.988

more than 95500 0.000 0.000 0.000 1.689 0.416 3.533 2.603 5.807 2.577 4.152 6.893 4.231 7.085 4.370 7.674 7.340 12.644 53.022 124.037

Total 644.218 638.070 840.116 1033.886 663.287 768.540 778.214 559.051 404.020 351.129 259.059 212.191 291.848 167.082 149.571 67.712 63.134 116.870 8008.000
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4.2 Regression

In this application we consider the household non-durable consumption expenditure

C as the dependent variable and household size S and net disposable income Y as

the explanatory variables. This section does not aim to be an in-depth analysis, we

want only to show how linear regression for quantity quantiles work.

Figure 3 depicts the household non-durable consumption expenditure at various

quantiles of the consumption distribution by household size, figure 3(a), and by net

disposable income, figure 3(b) (abscissas are the mean net disposable incomes of

each class).

Figure 3(a) shows that C generally increases as the household size rises from 1 to

6 members and then decreases (there is a scrape for household with 9 members

but they are negligible because their overall weight with respect to the total is just

3.129/8008 < 0.04%). Moreover conditional quantiles of the non-durable consump-

tion expenditure are nearly parallel throughout the household sizes between 1 and

and 6 denoting, given that the relative weight of households with size greater than

6 is just 27.898/8008 < 0.35%, that there is no significant differential in house-

hold size effect across these quantiles. In figure 3(b) we observe that quantiles of

C increase as the net disposable income rises. Nevertheless, there are some major

differences in the increases at various quantiles in particular there is a steeper in-

crease in consumption expenditure at higher quantiles of the distribution thus the

spread between quantiles increases as the income rises. In this situation quantile

regression allows to investigate changes in the consumption at different points of

the distribution.

Figures 4 (a) and (b) follow the same approach as figure 3 but depict the quantity

quantiles instead of quantiles. In both the figures the curve of the 0.50 quantity

quantile, i.e. the dividing value (see section 2), is always over the curve representing

the means.
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Figure 3: Non-durable consumption expenditure by quantiles (values in e).
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Figure 4: Non-durable consumption expenditure by quantity quantiles (values in

e).
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The linear model we consider for non-durable consumption expenditure is:

ci = β0 + β1 log(si) + β2yi + εi i = 1, . . . , 8008. (4.2)

We take the logarithm of the household size S because from figure 3 (a) it seems to

be more appropriate to describe the conditional mean of the non-durable consump-

tion expenditure and the model might improve the appearance of the plot.

We start the analysis by improving least squares regression on model (4.2) assum-

ing that the expected value of the error term conditional on the regressors is zero

(E(εi|si, yi) = 0). The estimated model has R2 = 0.4468 and all the regression co-

efficients are significant: household net disposable income matters much more than

(log) household size when looking at the t-ratios (see table 4.5).

Table 4.5: Least squares regression analysis for model (4.2).

Predictor Coefficient Standard Error t-value p-value

Intercept 9317.4183 185.5 50.23 < 2 · 10−16

log (S) 3324.4177 180.2 18.44 < 2 · 10−16

Y 0.2855 0.003835 74.44 < 2 · 10−16

For quantile regression we rewrite model (4.2) by taking into account the dependence

of the regression coefficients on θ ∈ (0; 1) (the order of the quantile we are interested

in):

ci(θ) = β0(θ) + β1(θ) log(si) + β2(θ)yi + εi i = 1, . . . , 8008 (4.3)

and assume that the θth quantile of the error term conditional on the regressors is

zero (Quantθ(εi|si, yi) = 0).

The minimum problem is thus, according to (1.11):

min
β0(θ),β1(θ),β2(θ)

1

8008

8008∑

i=1

ℓθ [ci − β0(θ) − β1(θ) log(si) − β2(θ)yi] pi (4.4)

Results for estimation of quantile regression at the conditional quantiles of order

0.10, 0.25, 0.50, 0.75 and 0.90 are presented in table 4.6. The analysis has been car-

ried out by the quantreg package (Koenker [2006]) under the software R; standard

error are computed by the default method. Regression coefficients are all significant
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Table 4.6: Quantile regression results for model (4.3).

θ 0.10 0.25 0.50 0.75 0.90

Predictor Coef. Std.Err. Coef. Std.Err. Coef. Std.Err. Coef. Std. Error Coef. Std.Err.

Intercept 5143.810 242.298 5460.279 136.530 5438.988 116.213 5819.889 169.055 6472.912 334.632

log(S) 2145.492 238.365 2018.661 53.023 1798.585 139.468 1630.773 122.622 1658.239 297.934

Y 0.199 0.016 0.316 0.009 0.452 0.009 0.570 0.010 0.678 0.019

(p-values of t-statistics are less than 10−6).

Regression coefficients for log(S) decrease as the order of the conditional quantile

increases meaning that for lower quantiles the rise of household size implies a larger

growth of expenditure for non-durable consumptions than for higher ones.

On the other side non-durable consumption expenditure of households in the lower

quantiles seems to be less reacting to a net disposable income growth. Moreover

we observe that regressions coefficients obtained for median regression (θ = 0.50)

are considerably different from the ones obtained for least squares regression; this

is due to the less sensitiveness (i.e. higher robustness) of median regression to the

presence of extreme values of the dependent variable C with respect to least squares

regression. A more detailed analysis should be interesting but this lies outside the

aim of the present work.

Regression coefficients reported in table 4.6 have been obtained by ordinary quan-

tile regression just considering the weights (4.1). Now we are interested in running

quantile regression for the conditional quantity quantiles of the non-durable con-

sumption expenditure (see figure 4). To this aim, according to (3.2), it is necessary

to consider different weights of the residuals; the minimum problem is thus:

min
β0(θ),β1(θ),β2(θ)

1

8008

8008∑

i=1

ℓθ [ci − β0(θ) − β1(θ) log(si) − β2(θ)yi] pi

ci

c
(4.5)

where c = e20424.21 denotes the average household non-durable consumption ex-

penditure. In (4.5), with respect to (4.4), we consider the additional weights ci

c
;

this allows us to obtain regression coefficients for the conditional quantity quantiles

of the dependent variable instead of the usual ones.

Results for estimation of quantile regression at the conditional quantity quantiles

of order 0.10, 0.25, 0.50, 0.75 and 0.90 are presented in table 4.7.
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Table 4.7: Quantity quantile regression results for model (4.3).

θ 0.10 0.25 0.50 0.75 0.90

Predictor Coef. Std.Err. Coef. Std.Err. Coef. Std.Err. Coef. Std. Error Coef. Std.Err.

Intercept 6431.436 455.571 6794.084 197.246 6376.898 329.441 6062.241 408.014 6506.396 607.906

log(S) 2476.242 267.191 2337.755 178.197 1854.700 183.141 1228.834 285.739 1210.259 509.912

Y 0.208 0.023 0.316 0.018 0.471 0.016 0.630 0.020 0.765 0.019

Figures 5, 6 and 7 compare the intercepts and the regression coefficients obtained

for the quantile regression hyperplane (table 4.6) with the ones obtained for the

quantity quantile regression one (table 4.7).

As to intercept (figure 5) we observe that for the quantity quantiles hyperplane it

is always higher than the one obtained for quantile regression and that they get

near when θ increases. This aspect reflect the results we have obtained in table

4.2 and figure 2 computing unconditional quantiles and quantity quantiles of the

non-durable consumption expenditure.

With respect to the regression coefficients of the (log) household size (figure 6), we

find that for both the hyperplanes the coefficients decrease as θ increases but the

reduction is more remarkable for the quantity regression quantile hyperplane. In

particular for lower quantile orders (θ < 0.5) conditional quantity quantiles of C

are more reacting to an increase of household size than quantiles and vice versa for

higher quantile orders (θ > 0.5).

As to the regression coefficients for net disposable income (figure 7) we notice a

similar trend for both the hyperplanes; for θ > 0.5 the regression coefficients for

the quantity quantile hyperplane are slightly higher than the ones obtained for

quantiles. This reflects in part what we can find by comparing figures 3(b) and

4(b).

5 Conclusions and further developments

In this paper we showed that the definition of the θth sample quantile as the solution

to a minimization problem introduced by Koenker and Basset [1978] can be easily

extended to the θth sample quantity quantile. Consequently the results obtained
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Figure 5: Comparison of the intercepts of the hyperplanes for conditional quantiles

and quantity quantiles for different values of θ.

by Koenker and Basset [1978] can be extended in order to perform linear regression

for quantity quantiles. Obviously quantity quantile regression shares with quantile

regression many features and properties (see for example theorem 3.1) that should

be investigated.

In section 4 we showed a possible application of the methodology here proposed

by considering a linear regression model for household non-durable consumption

expenditure with a brief comparison of the results obtained for both the regressions:

quantiles and quantity quantiles. This subject needs a deeper analysis: in particular

it is interesting to investigate which application fields can take advantage from the

additional information that quantity quantile regression can offer.
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Figure 6: Comparison of the regression coefficients for log(S) of the hyperplanes for

conditional quantiles and quantity quantiles for different values of θ.

A Appendix

Non-durable consumption is obtained by Banca d’Italia with the following expres-

sion:

C = (a + b) · 12 + c + d + e/12

where:

a) monthly average spending of the household in 2004 on all consumer goods (both

food and non-food consumption) excluding only:

• purchases of: precious objects, cars and household appliances and furni-

ture;

• maintenance payments or other contributions to relatives or friends;
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Figure 7: Comparison of the regression coefficients for Y of the hyperplanes for

conditional quantiles and quantity quantiles for different values of θ.

• extraordinary maintenance of own dwelling;

• rent for the dwelling;

• mortgage payments;

• life insurance premiums;

• contributions to private pension funds.

b) monthly rent paid in 2004 for the dwelling, excluding condominium charges,

heating and other sundry expenses;

c) monetary value of the fringe benefits such as lunch vouchers, trips, company

cars etc. (excluding housing) get as employee in 2004;

d) monthly rent (excluding condominium charges, heating or other sundry ex-
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penses) of the household residence4 that the household should gain assuming

it wanted to rent it.

e) year’s rent the household should gain assuming it wanted to rent other properties

(dwelling other than the principal one) owned at the end of 2004.

Net disposable income Y is obtained adding up the following items:

I) Compensation of employees

• Net wages and salaries

• Fringe benefits

II) Pensions and net transfers

• Pensions and arrears

• Other transfers (economic assistance, scholarships, etc.)

III) Net income from self-employment

IV) Property income

• Income from buildings

• Income from financial assets.

Acknowledgements. This research was partially supported by Fondo d’Ateneo per

la Ricerca anno 2005 - Università degli Studi di Milano-Bicocca.

4This item is applied only if the household residence is owned by the household or occupied

under: redemption agreement, in usufruct or free of charge
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