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Abstract This paper is concerned with gradual land conversion problems, placing the main

focus on the interaction between time and uncertainty. This aspect is extremely relevant

since most decisions made in the field of natural resources and sustainable development

are irreversible decisions. In particular, we discuss and develop a scenario-based multi-stage

stochastic programming model in order to determine the optimal land portfolio in time, given

uncertainty affecting the market. The approach is then integrated in a decision tree framework

in order to account for domain specific (environmental) uncertainty that, diversely from

market uncertainty, may depend on the decision taken. Although, the designed methodology

has many general applications, in the present work we focus on a particular case study,

concerning a semi-degraded natural park located in northern Italy.

Keywords Stochastic programming . Decision analysis . Land management

Introduction

We examine the effects of uncertainty and irreversibility in valuing and timing conversion and

development projects involving land areas or natural resources. This topic has been addressed

first by Arrow and Fisher (1974) and Henry (1974), who treat the complete conversion

problem as an optimal stopping problem, while the gradual conversion problem was first

introduced by Clarke and Reed (1990). Our analysis is focused on a more general problem,

that is finding an optimal land/resources portfolio composition through time, in the presence

of future market uncertainty. In fact, it is often more realistic to assume that an optimal land

management program will involve a gradual sequence of conversion decisions through time,

evolving as each land allocation/resource value becomes known more accurately.
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In this paper we formulate a scenario-based multi-stage stochastic programming model,

which takes into account the uncertainty related to the market value of revenues accruing

from the land in different states. As most of the real options literature assumes, whenever the

riskiness of a project is diversifiable, as it is in the case of market uncertainty, it is possible

to compute the value of the project applying the “risk-neutral” probability distribution and

using the risk-free interest rate. In order to take into account the non-constant incremental

benefits accruing from different land allocations, we consider piece-wise linear land-use value

functions. In fact, in realistic settings, where quantity-dependence is admitted, the incremental

value of developed land is contingent on the size of the conversion, see Spencer (2000).

The second issue investigated is environmental uncertainty. In fact, when we allow for the

option of converting an area into a natural park, or, more generally, we include in the model

preservation investments, we have to deal, not only with market uncertainty, but also with

the more complex and domain specific uncertainty about environmental quality, see Conrad

(2000) and Bosetti and Messina (2002). The latter issue is a consequence of the fact that

policies are usually concerned with long time horizon decisions, their effects on the envi-

ronment may be partly unknown and also that environmental processes are stochastic. For

example, we typically lack information on the amount of ultimately recoverable resources,

characteristics of future technologies and their arrival dates, tastes of people in the future, and

so on. Historical data series on fluctuations of natural land value shows discontinuities and

frequently a greater volatility when compared to other commercial development opportuni-

ties. This often implies that markets are incomplete, thence the riskiness of the environmental

investment cannot be hedged by a replicating portfolio and the “risk-neutral” approach cannot

be applied.

Nevertheless, option pricing can be profitably integrated to decision analysis methods in

order to deal with this domain specific risk. In particular, option pricing techniques can be

used to simplify decision analysis when some risks can be hedged by trading and, conversely,

decision analysis techniques can be used to extend option pricing techniques to problems

with incomplete securities markets, as shown in Smith and Nau (1995). Supposing that the

decision maker can either choose to sharpen knowledge about the initial value accruing

from the preserved land, or take decisions without any further inquiry, we model the gradual

conversion problem using a decision tree framework, Birge and Louveaux (1997).

This approach has been applied to a real case concerned with the remediation of a semi-

degraded area located in northern Italy, the Appiano Gentile and Tradate park.1 This area

embodies a class of problems typical of environmental management in Europe, where wilder-

ness areas are scarce and investments in land remediation are often required.

The paper is organized as follows. Section 1 and 2 present the deterministic and stochas-

tic models, respectively. Section 3 presents the application concerning the remediation of

Appiano Gentile and Tradate park. In Section 4 we address the issue of environmental qual-

ity uncertainty. Section 5 concludes.

1. Problem formulation

Consider a relatively undeveloped area which supports a minor economic activity and that

exhibits some environmental degradation as a result (e.g., resource extraction). We refer to

the land portion left to this initial state as Status Quo (SQ). The portion of the area where the

environmental damage is remediated and that is returned to a natural state will be referred to as

Natural Park (NP). Finally, the portion of the initial area that is more intensively transformed

1 The results of the study have been fundamental input for the 2003 territorial plan, see Piano di Settore (2003).

Springer



Ann Oper Res (2006) 142: 243–258 245

Fig. 1 Conversion directions in
the Appiano Gentile and Tradate
Park problem

in order to offer a number of services, loosing some of the original naturalness, is denoted

as Organized Natural Park (NPO). The conversion directions can be as follows: land can be

remediated from the SQ and turned to the NP state (see Figure 1), while land can be converted

to the organized natural park both from SQ and from NP.

For each time period t, t = 1, . . . , T , state and decision variables are:

x(t) ∈ [0, 1], the portion of land in the Status Quo state (Strategy #1);

y(t) ∈ [0, 1], the portion of land in the Natural Park state (Strategy #2);

z(t) ∈ [0, 1], the portion of land in the Organized Natural Park state (Strategy #3);

uα(t) ∈ [0, 1], the area converted to Strategy #2 from the Status Quo;

uβ (t) ∈ [0, 1], the area converted to Strategy #3 from Natural Park;

uγ (t) ∈ [0, 1], the area converted to Strategy #3 from the Status Quo;

We suppose that, at time t = 0, the whole lot of land is in the SQ state, formally:

x(0) = 1 and y(0) = z(0) = uα(0) = uβ (0) = uγ (0) = 0. (1)

For the formulation to be consistent, the land cannot be generated or disappear, this leads

to the conservation constraints, for t ∈ {0, . . . , T }:
x(t) + y(t) + z(t) = 1. (2)

We suppose that, once developed, the land is irreversibly compromised, while when reme-

diated, the land can still be successively converted to commercial development (once again

see Figure 1). The conversion conditions, for t ∈ {1, . . . , T }, are:

x(t) = x(t − 1) − uα(t) − uγ (t),

y(t) = y(t − 1) + uα(t) − uβ (t),
(3)

z(t) = z(t − 1) + uβ (t) + uγ (t),

uβ (t) ≤ y(t − 1).

Now we define the benefits and costs accruing from alternative land allocation:

π (t, x(t)), κ(t, y(t)), ν(t, z(t)) are the discounted values of revenues arising at time t from
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the land in Strategy #1, #2, #3 respectively. In particular, we assume that the value of the

land in each state depends not only on the time period, t, but also on the decision concerning

the size of the land devoted to that particular state. This allows us to capture the non constant

marginal benefit accruing from the converted land, depending on the size. The first units of

land converted in each state may have higher/lower value than successively converted units.

The details concerning how to model the size dependency effect are discussed in Section 2.

α(t), β(t), γ (t) represent the discounted values of variable costs deriving from converting the

area from SQ to NP, from NP to NPO and from SQ to NPO, respectively. Iα(t), Iβ (t), Iγ (t)
are the initial sunk costs necessary to start the conversion of the area from SQ to NP, from

NP to NPO and from the SQ to NPO, respectively.

The decision maker objective is to maximize the Net Present Value (NPV) deriving from

the managed area, considered both revenues and variable and fixed conversion costs:

max
T∑

t=1

[π (t, x(t))x(t) + κ(t, y(t))y(t) + ν(t, z(t))z(t) +

−
T∑

t=1

[α(t)uα(t) + β(t)uβ (t) + γ (t)uγ (t)] +

−
T∑

t=1

[Iα(t)λα(t) + Iβ (t)λβ (t) + Iγ (t)λγ (t)] . (4)

To include fixed initial investment costs in the model, we have introduced three binary

variables each assuming the value one (zero) when the correspondent conversion activity has

(has not) been undertaken. λα(t) ∈ {0, 1}, λα(t) = 1 if conversion from SQ into NP starts at

time t ; λα(t) = 0, otherwise; analogously we introduce λβ (t) ∈ {0, 1}, relating to conversion

from NP into NPO and λγ (t) ∈ {0, 1}, relating to conversion from SQ into NPO.

The maximization problem is constrained to investment constraints, formalizing the pres-

ence of fixed costs when conversion starts, for i = α, β, γ, with t ∈ {1, . . . , T }:

ui (t) ≤
t∑

t ′=1

λi (t
′).

T∑
t=1

λi (t) ≤ 1. (5)

2. The stochastic programming problem

When uncertainty concerning benefit flows is included in the model, the decision made at

each period should take into account all future uncertainties and future decisions. As in most

of the land allocation literature, see Clarke and Reed (1990); Scheinkman and Zariphopulou

(2001) and Coggins and Ramezani (1998), we assume that revenues accruing from the three

states can be approximated by geometric Brownian motions with drift as

dπ = μππ (x(t)) dt + σππ (x(t)) dξπ ,

dκ = μκκ(z(t)) dt + σκκ(z(t)) dξκ ,

dν = μνν(y(t)) dt + σνν(y(t)) dξν, (6)
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where dξπ , dξν, dξκ are independent Wiener processes. For the sake of simplicity we denote

by ξ the random vector defined as ξ = (ξπ , ξν, ξκ ).

We can now set out the stochastic linear programming problem as follows:

max Eξ

T∑
t=1

[π (t, x(t); ξ )x(t, ξ ) + κ(t, y(t); ξ )y(t, ξ ) + ν(t, z(t); ξ )z(t, ξ )] +

− Eξ

T∑
t=1

[α(t)uα(t, ξ ) + β(t)uβ (t, ξ ) + γ (t)uγ (t, ξ )] +

− Eξ

T∑
t=1

[Iα(t)λα(t, ξ ) + Iβλβ (t, ξ ) + Iγ (t)λγ (t, ξ )] (7)

where Eξ represents the expectation operator relative to the random vector ξ . Again the

maximization problem is subject to the following constraints:

1. Initial conditions, for t = 0:

x(t, ξ ) = 1 and y(t, ξ ) = z(t, ξ ) = uα(t, ξ ) = uβ (t, ξ ) = uγ (t, ξ ) = 0 . (8)

2. Investment constraint, for i = α, β, γ , and t ∈ {1, . . . , T },

ui (t, ξ ) ≤
t∑

t ′=1

λi (t
′, ξ ), a.s.

T∑
t=1

λi (t, ξ ) ≤ 1. (9)

3. Development constraints, for t ∈ {1, . . . , T },

x(t, ξ ) = x(t − 1, ξ ) − uα(t, ξ ) − uγ (t, ξ ),

y(t, ξ ) = y(t − 1, ξ ) + uα(t, ξ ) − uβ (t, ξ ),

z(t, ξ ) = z(t − 1, ξ ) + uβ (t, ξ ) + uγ (t, ξ ),

uβ (t, ξ ) ≤ y(t − 1, ξ ), a.s. (10)

4. Conservation constraints, for t ∈ {1, . . . , T },

x(t, ξ ) + y(t, ξ ) + z(t, ξ ) = 1 . (11)

5. Information constraints, i.e., for t ∈ {1, . . . , T }, ui is the �t -measurable, where �t is the

σ -field generated by the observations, i.e.,

�t = σ {ξτ |τ ≤ t}, (12)

where ξt , represents the realization of the random vector at time t, for i = α, β, γ .

An important prerequisite, in order to solve the maximization problem, is the discretization

of the stochastic processes representing the evolution of the random data, ξ . The aggregation

of the discrete processes can be represented by a scenario (event) tree, that defines the possible
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Fig. 2 Piecewise linear value of
NP. Where K (m, t, s) is the value
of linear approximation of NP
value at point A(m) and dk (m) is
the decrement of the marginal
value of NP

sequences of realizations over the whole planning horizon. Note that nodes in the event tree

are associated with decision points while arcs represent realizations of random variables. In

particular, the root is associated with the first stage decision variables while leaves are related

to all the possible last stage ones. If we denote with Nt the set of nodes at the t-th level, then

each node n ∈ Nt represents a particular realization sequence {ξτ }t
τ=1 of the data process and

it can be thought as a particular state of the system at a given time. A probability pn can be

associated with each node n at level t such that pn = p{ξt |ξt−1, . . . , ξ1}.
Scenario generation can be based on statistical approximations, see for example Hoyland

and Wallace (2001), (Hoyland, Wallace, and Kaut, 2003) and also Koivu and Pennanen

(2002), and on approximation theory, see, for example, Pflug (2000). Although many efforts

have been made to find the most appropriate methodology, still one of the chief challenges in

the field of stochastic programming is in finding the best way to generate scenarios, evaluate

their importance and to trim unimportant information in order to solve smaller optimization

problems. In Section 3, we discuss how we deal with the issue of generating the scenario tree

for the case study.

First, it is important to mention that we introduce piecewise linear value functions in

order to approximate the idea of non-constant marginal value of the land converted to the

NP and NPO states. We introduce an index m = 1, . . . , |M | where M is the set of linear

approximation points. An example of piecewise linear function for the value of NP for

M = 4 (four segments) is shown in Figure 2.

Hence, the deterministic equivalent problem can be stated as:

max
∑
s∈S

p(s)
∑
t>0

[π (t, s)x(t, s)] +

+
∑
s∈S

p(s)
∑
t>0

M∑
m=1

[K (m, t, s)dY (m, t, s)] +

+
∑
s∈S

p(s)
M∑

m=1

m[V (m, t, s)d Z (m, t, s)] +

−
∑
s∈S

p(s)
∑
t>0

[α(t)uα(t, s) + β(t)uβ (t, s) + γ (t)uγ (t, s)] +

−
∑
s∈S

p(s)
∑
t>0

[Iα(t)λα(t, s) + Iβ (t)λβ (t, s) + Iγ (t)λγ (t, s)] (13)
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The objective function is constrained to:

1. Initial conditions, for each s ∈ S and for t = 0,

x(t, x) = 1 and y(t, s) = z(t, s) = uα(t, s) = uβ (t, s) = uγ (t, s) = 0. (14)

2. Investment constraints, for each s ∈ S, for i = α, β, γ , and t ∈ {1, . . . , T },
ui (t, s) ≤

∑
t ′≤ t

λi (t
′, s),

∑
t

λi (t, s) ≤ 1. (15)

3. Development constraints, for each s ∈ S and t ∈ {1, . . . , T },
x(t, s) = x(t − 1, s) − uα(t, s) − uγ (t, s),

y(t, s) = y(t − 1, s) + uα(t, s) − uβ (t, s),

z(t, s) = z(t − 1, s) + uβ (t, s) − uγ (t, s), (16)

uβ (t, s) ≤ y(t − 1, s).

4. Conservation constraint, for any s ∈ S and for t ∈ {1, . . . , T },
z(t, s) + y(t, s) + z(t, s) = 1. (17)

5. Non-anticipativity constraints, defined in such a way that the dependencies implied by

the scenario tree are satisfied (see Figure 3 as an example). Defining Bn the bundle of

scenarios passing through node n, then

x(t, si ) = x(t, s j ), i �= j, ∀si , s j ∈ Bn, with n ∈ Nt , t = 1, . . . , T − 1,

y(t, si ) = y(t, s j ), i �= j, ∀si , s j ∈ Bn, with n ∈ Nt , t = 1, . . . , T − 1,

z(t, si ) = z(t, s j ), i �= j, ∀si , s j ∈ Bn, with n ∈ Nt , t = 1, . . . , T − 1. (18)

6. Piece-wise linear value of land constraints, defined for each s ∈ S, with t ∈ {0, . . . , T }.

3. The case of Appiano Gentile and Tradate park

Appiano Gentile and Tradate Park, located in Lombardia (region of northern Italy), is one of

the few parks in an area that is extremely populated and urbanized, see Figure 4. The extreme

fragmentation of the park and of its ownership (partly private, partly publicly owned) has

led to a degradation of the naturalness of the site and to the loss of several ecosystems.

Hence, citizens, paying through an annual tax for the maintenance of the park, are nowadays

complaining about the low amenity value offered by the park to the public. For this reason,

managers of the park have decided that more resources should be allocated in a rational

management and in the sustainable development of the area.

We have modelled the problem as a three-stage stochastic programming problem, assum-

ing that the managers can gradually transform the area. The conversion possibilities are once

again staying in the status quo, developing a more organized natural park or, finally, investing
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Fig. 3 An example of
non-anticipativity constraints in
the event tree

Fig. 4 Appiano Gentile and Tradate Park

more and developing a more organized and less natural version of the natural park, see Figure

1, p. 6. In order to solve the problem we use a scenario approach, thus assuming that the

distribution of the three land values is concentrated on a finite number of scenarios generated

using the Hoyland and Wallace approach. Hoyland and Wallace (2001). Thus an additional

set of constraints is added to the model in order to account for non-anticipativity, that is each

decision taken at a given stage cannot include information that will be revealed at subsequent

stages.

Springer



Ann Oper Res (2006) 142: 243–258 251

Fig. 5 Values are expressed in
Euro

Data required from the local manager belong mainly to two categories. The first set of data

concerns the value of annual benefit flows deriving from each of the three possible allocations.

Given that there are not dataset on revenues accruing from actual and potential allocations

of the land, data were collected through a contingent valuation survey2. The contingent

valuation study was conducted from July to October 2001; 250 users were surveyed in order

to capture their willingness to pay for the area in each of the three possible states, using both

a Multi-Attribute Choice3 (MAC) and an Open-Ended4 (OE) format.

Successively, through econometric analysis of the collected data, the likely willingness

to pay per person to enter the park in its different hypothetical forms has been computed.

Once the distribution of willingness to pay per person per day (in Euros) related to each of

the land allocations was inferred, it was aggregated over the actual number of annual visitors

(data are summarized in Figure 5). Moreover, unit conversion costs and initial conversion

investment costs are approximated values estimated on the basis of similar projects.

The second data set comprises the historical data concerning annual visits to the parks,

required to proceed with scenario generation. We assumed that the net benefits accruing from

the three strategies would be proportional to the number of visitors and used time-series data

to estimate the mean drift, μ, and standard deviation, σ , of the visits rate. With estimates of

μ and σ for each option, it is possible to generate the scenario tree.

Accurate time series data for the Appiano Gentile and Tradate Park are not available,

as, of course, they are not available for the hypothetical allocations NP and NPO. We have

therefore used data concerning similar parks (parks that may be reasonable substitutes of

the three states considered in the model5). Figure 6 shows time-series data for Parco delle

Groane (the comparable to Appiano Gentile and Tradate Park in the SQ state), for Parco della

Maremma (the comparable to Appiano Gentile and Tradate Park in the NP state) and Parco

Nazionale dello Stelvio (the comparable to Appiano Gentile and Tradate Park in the NPO

state).

2 The Contingent Valuation method is a direct method applied in order to elicit the consumers’ willingness to
pay for a good that has no market and therefore has no price. The methodology implies the use of questionnaires
that create a hypothetical market with which the respondents are confronted. Questions may have different
formats and questionnaires should be conducted in person.
3 Multiple attribute method is also known as the Stated Preference Approach or Choice Experiments. Rather
than asking people to choose between a base situation and a specific alternative, the multi attribute choice
presents respondents with a range of policy options and their costs and benefits, and constructs total values
for an option based on marginal choices between options Adamowicz (1998).
4 The open-ended question format (e.g., what is your maximum willingness to pay for. . . ?) was first applied
by Davis in 1963 in one of the first CV studies Davis (1963). It is a continuous method, which generates
continuous data.
5 As far as organisation is concerned, Parco delle Groane is extremely similar to the actual situation of Parco
Appiano Gentile (Activities are free, except for a course in environmental education).
Parco della Maremma is more organised than the actual Parco di Appiano Gentile (guided tours, canoe
experiences, night visits, horse riding).
Parco Nazionale dello Stelvio is extremely innovative and organised (several museums, theme paths, picnic
areas, etc).
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Fig. 6 Values are expressed in annual number of visitors

Fig. 7 The geometric Brownian
motion estimated parameters

For each option, we sought the values μ and σ which would maximize the log likelihood

function:

ln(L) = − T

2
ln(2π ) −

(
T

2

)
ln (σ ) −

[
1

2σ 2

] T −1∑
t=0

[
ln

(
xt+1

xt

)
−

(
μ − σ 2

2

)]2

, (19)

where T is the number of years we have data for, xt , is the visiting rate to the park in year t

and the time step is assumed to be �t = 1. The estimated parameters are given in Figure 7.

Generation of the Scenario Tree

In order to generate the scenario tree we have followed a methodology developed in Hoyland

and Wallace (2001). The method is based on non linear programming, used to generate a

limited number of scenarios that satisfy specified statistical properties. Following Hoyland

and Wallace (2001), we know that in order to obtain a perfect match there must be a relation-

ship between the characteristics of the statistical specifications and the number of outcomes;

in particular, degrees of freedom provide a guess about the size of the tree. In our case, the

problem dimension and the deriving number of specifications (three variables, two moments

and requirements on the correlations) lead us to construct a tree with three outcomes deriving

from each node at time period t = 2, 3. Moreover, for the sake of simplicity, we assume the

tree is symmetric, see Figure 8.

Given the statistical properties of the random variables, the objective is to construct a

tree such that the statistical properties of the approximating distribution match the specified

statistical properties. Let 
 be the set of all statistical properties and ϑi be the specified

value of statistical property i ∈ 
. Moreover, let fi (x, p) be the mathematical expression for

statistical property i ∈ 
 expressed as a function of the outcome value, x, and of the outcome

probability, p. We use the square norm as a measure of the distance between the statistical

properties and the constructed distribution and we want to construct x and p such that:

min
x,p

∑
i∈


wi ( fi (x, p) − ϑi )
2 (20)
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Fig. 8 The Scenario Tree for the
Appiano Gentile and Tradate Park

Fig. 9 The scenario tree generated for the Appiano Gentile and Tradate Park. Note that in period t = 3
scenarios include the stream of all remaining future cash flows calculated assuming that revenues have reached
a steady state

where wi is the weight associated to statistical property i ∈ 
 and the minimization problem

is subject to constraints defining the probabilities to be nonnegative and to sum up to one.

Given the statistical properties of our processes, defined in Figure 7, the deriving scenario

tree is reported in Figure 9.

By solving the scenario based stochastic programming problem we obtain an optimal value

for the objective function equal to 1,717,780 Euros, while the optimal first stage solution

vector is {x(1) = 0.63, y(1) = 0.17, z(1) = 0.2}.
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Fig. 10 The solution vectors represented in the form of a tree, where grey represents the Status Quo, black
the NP and white the NPO portions, respectively

The suggested policy for the first period is to convert 17% of the area to the NP state, 20%

to the NPO state, while the remaining land is left to the Status Quo state, see Figure 10. This

decision provides the flexibility to convert greater amount of land to the NP and NPO states

in successive periods, depending on the actual scenario.

Solution analysis

We analyze different solutions to the conversion problem by fixing their first stage decision

and simulating their behavior for 10,000 trials of random generated scenarios. In particular,

we analyze the solution obtained solving the stochastic programming model and compare it

with other possible solutions, as the solutions obtained solving the deterministic problem for

each of the nine significative scenarios as well as the solution to the mean value problem. In

addition, we analyze solutions that are considered significative from the park managers (as,

for example, immediate complete conversion to NP or NPO states).

When compared with the solutions to the deterministic problems solved for each of the

nine significative scenarios, the stochastic programming first stage solution has a distribution

that is more right-skewed and, in several cases, a mean value shifted to the right.

We also report the frequency chart of the objective value obtained by simulating future

random scenarios given the first stage solution to the stochastic programming problem (the

column graph in Figure 11) and by overlaying frequency charts obtained for the two imme-

diate conversion solutions (x(0) = 0, y(0) = 1, z(0) = 0 and x(0) = 0, y(0) = 0, z(0) = 1)

and the solution to the mean value problem (x(0) = 0, y(0) = 0.5, z(0) = 0.5) (the three

outline graphs in Figure 11).

It is noticeable how, all the solutions considered are dominated by the solution obtained

through the stochastic programming model, whose mean value is shifted to the right.

4. Integrating the stochastic programming procedure and the decision tree
framework

Further, we investigated the possibility of including in the model the uncertainty about

environmental quality, which typically affects the initial value of projects implying costly
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Fig. 11 Frequency chart representing the simulated behavior of the solution to the stochastic problem (column
graph). The outline graphs represent the immediate NP and NPO conversion solutions and the solution to the
mean value problem (respectively pointed by the indicators)

conversion decisions aiming at nature preservation. We assume that it is not possible to know

a priori the environmental quality of a site, the efficiency of the remediation process and

the resulting initial value of revenues deriving from consumers’ response to the amenity

value associated to the area. Moreover, we assume that the initial value of revenues deriving

from Strategy #2 and #3 would be proportional to the environmental quality of the site, which

depends on a series of uncertain attributes of the area, such as biodiversity, rareness, size of the

area, naturalness, level of representation of the inhabitant species (i.e., their uniqueness,etc.).

These attributes may be combined in an overall evaluation index of the site. In this work we

follow a criteria-based evaluation method based on [Gaston et al. (1998)] and we consider an

environmental quality index assuming three possible values6, each characterized by a prior

probability measure.

1. When either size or naturalness of the site are insufficient due to previous damage, the

initial value of the NP and NPO allocations, say, κL and νL , are low (with probability

qL , 0 ≤ qL ≤ 1).

2. When the site attributes jointly give a high value index, the initial value of the NP and

NPO allocations, say, κM and νM , are high (with probability qH , 0 ≤ qH ≤ 1 − qL ).

3. When the site attributes jointly give a middle range index, the initial value of the NP and

NPO allocations, say, κM and νM , are medium, such that κL < κM < κH and νL < νM <

νH (with probability 1 − qH − qL ).

Prior probabilities associated with the three environmental quality states are provided by

experts or may be deduced from similar case studies. Hence we model uncertainty about

environmental quality as uncertainty on the initial value of the price process, while we

assume uncertainty affecting successive evolution of the value can be modelled as a diffusion

process. Information on the actual realization of the initial value may become available

depending on the decision maker’s deliberation (e.g., he may choose to allocate money to

investigate environmental quality characteristics of the site). The possibility of enclosing

updated information concerning the initial value is framed as a decision step, preceding the

conversion problem and concerning whether to invest in research or proceed in the decision

process exclusively with the information known at time t = 0. Decision analysis dramatically

emphasizes the need to acquire information about outcomes, thus proving to be the optimal

6 This is clearly an attempt to simplify the complexity of possible environmental quality scenarios, however
the assumptions are useful for explanation purposes and may be easily modified to provide a more realistic
representation of environmental quality.
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Fig. 12 The integrated decision
environment

tool to deal with this type of problems (that is, when the set of possible actions is limited).

However, once the decision whether to investigate the environmental quality of the site has

been made, we have to deal with the gradual conversion decision problem, which implies a

set of actions that cannot be enumerated easily. For this reason we install on each leaf of the

decision tree a separate stochastic program, each with the same formulation but solving a

different event tree. The value of each different event tree depends on the decision taken at

t = 0 that is represented through a decision tree.

In particular, the decision framework models the possibility of investing in research,

for example, acquiring more information about the overall environmental quality of the

site: such data will influence our knowledge of the distribution and initial value of con-

sumers’ demand and reservation price, thus affecting the magnitude of revenues accru-

ing from the preservation decision. If research is undertaken it will be possible to con-

sider the actual initial discounted value of revenues arising from the Natural Park state,

instead of its expected value. Moreover, acquiring new information may change the charac-

teristics of the stochastic process describing the value of revenues in time. Alternatively,

the decision maker could decide to immediately convert the area, without any further

inquiry.

Stochastic programming problems are inserted on such a decision tree framework (see

Figure 12). thus providing the decision maker with an optimal strategy accounting for both

environmental and market uncertainty.

We return now to the case study. Let us start the analysis considering that each possible

state (high, medium, low) of the environmental quality of the site is considered equally likely,

provided we do not have any more specific information, i.e. {qH = qL = qM = 0.3̄}. The

three deriving stochastic programming problems are inserted on the leaves of the “perform

a test” portion of the decision tree, see Figure 13. By computing the discounted expected

value, it is possible to evaluate the strategy of conducting a preliminary test. Indeed, testing

the environmental quality of the site yields an expected return of 1,927,801 Euros, if we

assume that conversion will be thereafter performed gradually, given information on the

state of nature. The testing decision, when compared to the immediate gradual conversion

decision, is worth an extra 210,020 Euros, which represents the maximum amount the decision

maker should be willing to pay in order to gather new information. Clearly, it is useful for

management purposes to gain an insight into the nature of the computed values and to consider

how these values are affected by changes in the probability measures associated with the high,

medium and low initial value of the NP and NPO states. As the probability of a high state

value of the NP and NPO strategies grows, so does the value of information. For example,

for a probability vector equal to {qH = 0.5, qL = qM = 0.25} then we would obtain a value

of information equal to 370,537 Euros.
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Fig. 13 The problem decision
tree. Each final leaf represents the
value of the optimal objective
function, solution of the relative
stochastic programming proble

5. Conclusions

Typically, in a dynamic setting more conservative strategies are preferred to irreversible ones;

in other words, if we apply dynamic optimization tools, the returns required from irreversible

decisions must be higher in order to undertake them. This makes the stochastic programming

approach a tool of critical importance in the rationale management of renewable and non-

renewable resources. Moreover, our approach, which combines both stochastic programming

and decision tree techniques, is a way to successfully deal with the issue of enclosing envi-

ronmental uncertainty in the decision process. We have shown how our approach has been

applied in order to produce guidelines on the first stage optimal conversion vector and in

order to give insights on how much would be economically rationale to invest in further

research on the actual environmental quality of the site.

References

Adamowicz, W., P. Boxall, M. Williams, and J. Louviere, (1998). “Stated Preference Approaches for Measuring
Passive Use Values: Choice Experiments and Contingent Valuation.” American Journal of Agricultural
Economics 80(1), 64–75.

Arrow, K.J. and I. Fisher, (1974). “Environmental Preservation, Uncertainty, and Irreversibility.” Quarterly
Journal of Economics 88, 312–319.

Birge, J.R. and F. Louveaux, (1997). Introduction to Stochastic Programming. Springer-Verlag, New York.
Bosetti, V. and V. Messina, (2002). “Modelling Flexibility in Land Allocation Problems.” to appear in Annals

of Operations Research.
Bosetti, V. and V. Messina, (2002). “A Contingent Valuation Survey of Development Options for Ginostra and

the Resulting Data.” www.life.disco.unimib.it.
Clarke, H.R. and W.J. Reed, (1990). “Land Development and Wilderness Conservation Policies Under Un-

certainty: A Synthesis.” Natural Resource Modelling, 4, 11–37.
Conrad J. (2000). “Wilderness: Options to Preserve, Extract, or Develop.” Resources and Energy Economics

22, 205–219.
Coggins, J.S. and C. Ramezani, (1998). “An Arbitrage-Free Approach to Quasi-Option Value.” Journal of

Environmental Economics Management 35, 103–125.
Cox, J.C., S.A. Ross, and M. Rubinstein, (1979). “Option Pricing: A Simplified Approach.” Journal of Finan-

cial Economics 7, 229–263.
Davis R.K. (1963). “The Value of Outdoor Recreation: An Economic Study of the Maine Woods.” Harvard

University. Ph.D. dissertation.
Ellison E.F.D., M. Hajian, R. Levkovitz, I. Maros, G. Mitra, and D. e Sayers, (1999). “FortMP Manual”,

OptiRisk Systems and Brunel University.
Gassmann, H.I. (1987). “Optimal Harvest of a Forest in the Presence of Uncertainty.” Working Paper 59 School

of Business Administration Dalhousie University, Halifax, Canada.
Gaston, K.J. et al. (1998). “Conservation Science and Action.” W.J. Sutherland and C.J. Bibby (ed.), Selecting

area for conservation, ch. 9.

Springer



258 Ann Oper Res (2006) 142: 243–258

Henry, C. (1974). “Investment Decisions Under Uncertainty: The Irreversibility Effect.” American Economic
Review 64, 1006–1012.

Hoyland, K. and S. Wallace, (2001). “Generating Decision Trees for multi-stage Decision Problems.” Man-
agement Science 47(2), 295–307.

Hoyland, K., S. Wallace and M. Kaut, (2003). “A Heuristic for Moment-Matching Scenario Generation.”
Computational Optimization and Applications 24, 169–185.

Klaassen, P. (1998). “Financial Asset-Pricing theory and Stochastic Programming Models for Asset/Liability
Management: A synthesis.” Management Science 44, 31–48.

Koivu, M. and T. Pennanen, (2002). “Integration Quadratures in Discretizations of Stochastic Programs.”
SPEPS E-PRINT SERIES, 11.

Nelson, D.B. and K. Ramaswamy, (1990). “Simple Binomial Processes as Diffusion Approximations in
Financial Models.” The Review of Financial Studies 2, 393–430.

Pflug, G.C. (2000). “Scenario Tree Generation for Multiperiod Financial Optimization By Optimal Discretiza-
tion.” Mathematical Programming 89, 251–271.

Piano di Settore, (2003). “Fruizione Sociale, Ricreativa e Culturale Del Parco Regionale Pineta di Appiano
Gentile e Tradate.”

Scheinkman, J.A. and T. Zariphopoulou, (2001). “Optimal Environmental Management in the Presence of
Irreversibilities.” Journal of Economic Theory 96, 180–207.

Smith, J.E. and R.F. Nau, (1995). “Valuing Risky projects: Option Pricing Theory and Decision Analysis.”
Management Science 41, 795–816.

Spencer P. (2000). “Windfalls For Wilderness: Land Protection And Land Value In The Green Mountains,”
In Cole, David N.; McCool, Stephen F. Proceedings: Wilderness Science in a Time of Change. Proc.
RMRS-P-00. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research
Station.

Springer


