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Then ¥ e%(S, R} and 3 = @(a) = const. for each fixed (a, h)eS. Con-
sequently,

M) =M@ up = 0@, aes,

which is impossible, since we have chosen a nonconstant ¢. The nonexistence
of a left invariant mean in #(S, R)* may be shown in a similar way.
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A multiplier theorem for H-type groups
by

RITA PINI (Verona)

Abstract. We prove an LP-boundedness result for a convolution operator with rough kernel
supported on a hyperplane of a group of Heisenberg type.

In recent years, several results have been proved in which the Cal-
deron—Zygmund theory of singular integrals has been extended to the more
general setting of nilpotent Lie groups (see e.g. [8], [15], [19]). In particular, .
F. Ricdi ([157) showed that the classical theory of Calderén—Zygmund kernels
on R has very natural extensions to kernels on nilpotent Lie groups.

As a further generalization, more singular convolution operators, for
instance convolution with distributions which are extensions of Calderdén-
Zygmund kernels supported on submanifolds, have been considered.

In this context, we would like to mention some results concerning Hilbert
transforms along homogeneous curves in Stein and Wainger ([19]) and Christ
([2]). Subsequently, Geller and Stein ([7]) studied smooth homogensous
kernels supported by a hyperplane of the (2n+1)-dimensional Heisenberg
group; such operators arise in the study of the g-Neumann problem on the
Siegel upper half-space. Miiller ([13], [14]) showed that Theorem 1.1in [7] has
rather general extensions for more general homogeneous Lie groups and for an
even larger class of submanifolds.

Recently, Ricci and Stein unified and extended in a series of papers
([16]-[18]) some results of these previous works; particularly, in ([17]), they
considered singular integral operators on homogeneous Lie groups defined by
smooth kernels supported on lower-dimensional analytic submanifolds and
having the critical degree of homogeneity. To prove the IL*-boundedness, they
make a sirong use of the smoothness assumption.

In this paper we work on groups of Heisenberg type; we study convolution
operators with rough kernels carried by the subspace complementary to the
center. We improve Geller and Stein’s result, by proving the IF-boundedness of
the convolution operator under some minimal assumptions on the regularity of
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the kernel. Our proof combines the interpolation methods from [7] with
a strong use of the twisted convolution.

We are deeply indebted to F. Ricci for calling our attention to the problem
treated here and for many valuable conversations on the subject of this paper.
Thanks also to M. Cowling for his charming hospitality at the New South
Wales University and for some interesting suggestions.

1. Notation. Let G be a group of type H, that is, a connccted simply
connected real Lie group whose Lie algebra is of type H: following A. Kaplan
(F117), we say that the Lie algebra g is of type H if it is the direct sum v @3 of
real Euclidean spaces, with a Lie algebra structure such that 3 is the center of
g and, for all ¥ ev of length one, the map ad(V) is a surjective isometry of the
orthogonal complement n©kerad (V) onto 3 For such an algebra, we define
a linear map j: 3— End(v) by the formula

@V VD =LZ, [V, VD).
It is easy to show that (see ez [11])
| () V] = |Z]|V]
jZ¢ = —z)’1

YVen, VZes,
VYZev;

in particular, if [Z] = 1, then j{Z) defines a complex structure on ». We shall
denote by 2n and r the dimensions of v and 3 respectively, If r = 1 then G is
isomorphic to the Heisenberg group H"; if » > 1, n is always an even integer
(see [12]). Hereafter, for a group of type H with a Lie algebra g = v@3j, we
write, using lower case rather than upper case letters,

(v, 2) = exp(v +‘%z) Veen, Vzes.
Then, by the Campbell-Hausdorff formula, we have
@, D)W, 2) = 0 +v, 242 +2[z, v]),

where [, ] denotes the Lie bracket in g,
We define the Haar measure on G by

[ fdx = [ [ fv, 2)dvdz.
G o3
On a group of type H there is a natural gauge defined by
N(g) = (jo* +]z1%)**

{IOI g = exp(v+z/4), vev, ze3, Given any other element ¢’ = exp(v' +2'/4), we
ave

N(gg) < N(g)+N(g')
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{see [5]). G becomes a homogeneous Lie group of dimension Q = 2n+2r with
respect to the family of dilations {8,},>¢ defined by

§,(v, z) = (tv, t*z).
If fis a function defined on G, we set
S =121 ), ST = ().

2. Twisted convolution. Suppose that f and g are integrable functions
on v and A is in 3*\ {0}, that is, the space of all linear functionals on 3; as usual,
we shall identify 3* with 3. We define the A-twisted convolution of f and

g by .
2.1) L £ x,00) = [ f—1)g)e I @y’

Then we have the following results,
'ProOPOSITION 2.1. Suppose that f is in Lz(b). Then
2.2) 1 %l = @A f 2
Proof.' Notice that 1 x,f(@)=F(j{A)v), and [detj(2) = [A*"; therefore,
changing variables, we get : :
11 %, iy = @R "1 foithl, = @) A7 [l = 20 ™47 |1 ]2
PrOPOSITION 2.2. If f and g are functions in L*(v), 1 <p <2, then
23) 1 % agl, < @R gl
where P’ denotes the index comjugate to p.
Proof. Set A’ = 4/|4|. Then a simple calculation shows that
fxag =" gMT T des,

Hence we may assume that A has unit length. Changing variables, we are led to
the study of the standard twisted convolution

(2.4) 1 x go) = [ fo—1)g(')e™ " dv,

o I
J=(_In 0)

is the canonical nonsingular skew-symmetric 2z x 2n matrix (see [9], Ch. 9, §2).

If p=1, (23) is trivial. The case p = 2 can be found in [10]. The case
1 < p <2 easily follows from a general interpolation theorem (see [11, Th.
441, p. 96) where we consider the bilinear operator T defined . by

T(f,9)=Sxg.

where
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Now suppose that f is in L*(G); the partial Fourier transform ol f with
respect to the central variable is given by

(2.5) F.f ) =[flv, e “ 2 dz, deg*.

8
By the Plancherel formula, it is easy to see that §, /' belongs to L*(v) for a.e. A;
moreover, if g is in L?(G), an easy computation shows that

(2.6) ' ”f*QH%Z(G) = _f [F:(1)% 2 Falg) 12,2(::) dA.

Consider the Laplacian operator 4 on 3, and denote by 4*§, keN, the
distribution on 3 defined as follows:

(A8, iy = {8, 44
for every W= C®(3). We may extend 4*§ to a distribution 1® 46 on G by
A@4%3, ¢y = (43, ¢,»

where ¢ is in C§(G) and ¢,{z) = ¢(v, 2).

From now on, by abuse of language, all universal constants (i.e. functions of
the dimensions » and r only) will be denoted by the same letter C, whenever no
ambiguity could arise. We have the following '

PROPOSITION 2.3. The convolution operator on G with kernel 1@ A"2§ is
bounded on L(G) if v > 1, if G = H", we take 1 ®(8"/8t")6(t), where ¢ is the only
central variable.

Proof. By (2.6) it suffices to prove that
1B0@4728) % . fl, < Clfl2,
for every f in L*(») and C independent of 4. We have
(1@ A25) = | 4" 8()e™ "4 dz = | db(2) |AI"e™ KM= = |2,
3 [

Thus, using (2.2), we get
1§ @A28) % flla = [ 1A%, f 1l = o)A A" f 1l = @) ™" 1 S |5,
thereby concluding the proof.
3. The mai‘n r_esullf. On the group G with coordinates {r, 2)en @3, let 5{z)
denote the § distribution in the z variable, Also, let k(s) be a distribution on v.

Define the distribution K on G by K(v, 2) = k(v)5(2); thus, if ¢ is a test
function,

K, ¢ =k, ¢o»

where ¢¢(v) = ¢(v, 0). Let * denote the group convolution.. We have the
following
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THEOREM 3.1. Let k be a distribution defined on v and denote by m its Fourier
transform. Assume that

aDZ
— e m <C - lal
laégi.__mn (f)] 5
for every Eev*\ {0}, xeN?", jo| < n+1. Then the operator T, C§(G)— C*(G)
given by T, f = K« f extends to a bounded operator on PG if 1 <p <.

(For p =2 the result of the theorem is contained in [12], Th. 6.1)

In order to prove this result, we need some preliminary lemmata. Suppose
that G is a homogeneous Lie group, that is, a connected simply connected
nilpotent Lie group whose Lie algebra g is endowed with a family of dilations
{8,}i>0. Following a common abuse of notation, we shall also denote by
{8,}>0 the induced family of dilations on G. We shall write tx instead of 4,x.
Assume that G is equipped with a homogeneous norm and denote by Q its
homogeneous dimension. Now, suppose that {¢,}z is & family of functions on
G satisfying

(3.1) for every j in Z, Jg;(x)dx = 0;

(3.2) there exists a positive ¢ such that for every j in Z
§ 1, G +1x)dx < C
G

(3.3) there exists a positive & such that for every j in Z
§ 1,00~ ()l dx < Clyl*,  jeZ.
&

We then have the following

PROPOSITION 3.2, Let {¢;};cz be as above. Set
K= Z (¢ j)z—j»
jeZ
Then K defines a distribution on G and the convolution operator with kernel K is
bounded on L?(G). Furthermore, K agrees on G\{0} with a function, denoted
again by K, satisfying

. |

|5 = 2151
for every yeG\{0}.

Proof. A slight modification of the proof of Lemma 2.1 in [7] gives the
result.

IK(xy™)-K(x)dx < C

Throughout this paper, ¥ will denote a radial function in C®(v*) such that
supp P < {éev*: 1/2<}f <4} and ¥ =11if 1< |€] < 2. We shall assume
that ez P2 = 1 on v*\{0}. ¥ will denote the inverse Fourier transform of ¥.
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LemMa 3.3, Let ky be the distribution on o defined by
ky = Z Cj('p)z-h

fe,

where {¢;}sz is a bounded sequence of real numbers. Then the convolution
operator on G with kernel K (v, z) = k, (v)d(2) is bounded on L7 (G), 1 < p < @
and its norm depends on suplc).

»

Proof. Notige that ¥ is a radial function and the family { ¥, s} oz satisfies

the assumptions of Proposition 3.2; let k, be the even function on R defined by

ke, (@) = ky(v), where |x| = g, v % 0. Changmg variables and integrating in polar
coordmates we get

(KyxfHo, 2) = | k,(v—1)6{z— 2’ —% v, u])fu 2V dv' dz’

L

= [ [ ky((z—2 +4 [0, V] flo—, 2)dv' dz’

03

= I k() flo—v, z+4[v, v]) dv

3 dﬂfl@lz" *ky(e) flv—go. z+4elv, o])do,

Szn—l

where go = v/, |o| = 1, geR and 5?1 is the umt sphere in . Denote by (¥)~
the even functlon defined on R\{0} by (¥) (¢) = ¥(v), where |v| =g, and
consider the Calderén-Zygmund kernel on R

ki(@)lel*t = Zc [(P) Tollel* ™ 412-.

For every oe$* 1, define the represcntation n° of R in L?{(G) by

(@) f v, 2) = f v+ 00, z—%0[v, o]).
Then 7 is a unitary representation on LF(G) for all p. | < p < o0; moreover,

(K # ), 2)=% | daIF @lelP" Y (n*(~@) (v, 2)dg.

sn-

By transference and the rotation method of Calderén ([3], [20], Ch. VI, §2), we
get

Kinfly <t 1 o] @lef (v (~0) fdell,

<C I M lpdo=C HfU

This’ proves the lemma.
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Suppose now that k is a distribution on » and denote by m its Fourier
transform. Set ¥; = ¥ ~’. We may decompose k and m according to the chosen
partition of unity. Set

(3.5) | p; = (m¥ )
and let k; be the inverse Fourier transform of u;. Then
(3.6) \ m= 3 (P
Jjex
3.7 k=Y (k)
JeZ

Proof of Theorem 3.1. We shall prove the theorem by adapting to the
present situation a rather standard complex interpolation argument (see [7]).
In view of Lemma 3.3, we may assume that

(3.8) | pywydv =0

for every jeZ. Choose a positive function # in C§(3) such that 5{z) =1 if
0 < iz < 1/2 and suppy = {ze3: |z < 1}. Define the analytic family of kernels
{Ka}—ns.keaq on G by

I |Hr+u)
3.9 K,z k(v (=
where 2, denotes the measure of the umit sphere in 3. Notice that
2 Jz| 7t L 4%
= = (=1L
(.10 Q, I'(0/2) |g= - 2k (=1 2% (r+2k—2)

(see, for instance, [6], Ch. 7, §3.9). In particular, for k=0 we get

2 |Z|*-r+m

Q. T(a/2)

By (3.10) we have K,(v, z) = K(v, z).
We shall denote by {T,} -n<rea<t the’ farmly of operators defined by
T, = K,x¢ for every ¢eCg(G). We shall prove that

(i if 0 < Rea < 1, then T, is bounded on IF(G), 1 <p < 0;
(i) for every yeR, T_,4s is bounded on L2(G).
The desired conclusion will follow from an application of Stein’s complex

interpolation theorem.
Denote by h; the function on G given by

(3.11)

= 3(z).

=0

2|z|-r+u

(v, 2) = kj(u)n(z)m.
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We claim that the family {h,} .z satisfies on G the assumptions of Proposition
3.2, with & = ¢ = Rea. Using Holder’s inequality and the fact that |{k [v{*|, < C
for every weN?", |¢| < n-1 (which is a direct consequence of the hypothesis
made on k) it is not hard to show that the family {k;} s satisfies (3.1)--(3.3) on
v for every &, ¢ € [0, 1). Since /A(0) = 0 we have [¢h; = 0. We need to show that
[ { o, (1410, 2NV dvdz < C Vjel
g

for some positive ¢ In the sequel, we shall denote by C{x) a constant which
depends only on n,  and a. Since |z| < 1, there exists a positive constant C such
that [(v, 2)" < C(Js|*+ 1). Using the fact that {k} ., satisfies (3.2) on v, we casily
get the required estimate with C(a) = C'/|I"(0/2)], where €' is independent of o,
Finally, we need to estimate the integral

(3.12) I, 2) = | h(o—v, z—2' ~} [v, v}~ h(v, )l dv dz

where (v, £) is a fixed element of G. We may assume that {(v/, z')| < 1. We have

17, 2) < €@ § ko)

X p(z—2 =4[5, v |z—2 =4 [v, V]|~ T —n(2)|z| " 4| dv dz
+] J ey (o—2) = ky@)n(2) |zl 7R dv dz)

v 3
=1,+1,.

Notice that if Rea < 1 then n(z)|z|~"*®** is in I}*°%(3); moreover, by (1.1} and
the fact that {(v/, )] < 1, we have

|2/ +5 v, v1** < (o, O, 20" < (v, O, 2)RF* < (L+[e*e|, 2)Ree.
Therefore, changing variables, we get

I < C@f lkjlo—v) Iz +3[v, v dv
< ) { @I+, )Fdo < COIE, 2P

for every aeC, 0 <Rewx <1 and Cla) = C'/|I'(%/2)|. Also,
I, < Clo) flky(o— )~ k;(0)| dv [ n(z) 2] " +Rendz

§

< CPT* < C@IW, 27

for every ee[0, 1). In particular, we may choose ¢ = Reo. Thus, for every
2, 0 <Rea <1, T, is a bounded operator on L*(G), 1 < p < 20, whose norm
does not exceed C'/|I'(z/2).
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We now turn to the proof of (ii). Assume first that ¢ = —n and r > 1; the
case * = 1 can be proved in the same way. If r> 1, by (3.10) we have
|z|—r—n
= C,,4"*8(z).
T(—mjg) ~ Crad"00

Therefore the kernel K., is given by
K_.(v, 2) = F(n) 4%25(z),

where
(3.13) F(v)=C,, Y (kj)z’(v).
Jek&
By (2.6) we need to show that the twisted convolution operator

fr=§ (K o) %, f, Aez*\ {0}, is bounded on L* (v} with norm independent of A.
By (2.2), we may equivalently prove that

HAPE =, [, < Clif 2.

Assume that || = 1; the case |4} # 1 will follow easily from this by a dilation
argument. By (3.13) we have
F = Cr.n z (/"‘; 27
jelk

It can be readily seen that F is a Calderén—Zygmund kernel on v (it is here that
assumption (3.8) comes into effect). Thus, the L*-boundedness of the operator
frs By x, f, where By = C., Y ;<o(#)), follows from Cowling's result ([4]).
Furthermore, it is easy to see that F, =F—F, is in L?(v). Hence, by
Proposition 2.2, we get

1, % 2SN, < CIf g

thereby concluding the proof of (ii} in the case a = —n.
Assume now that a = —n+iy, yeR\{0}. We split the kernel K _,.;, into
two parts as follows:

K evnltr = I (-5 o)
sty 2) = L QOG- ) 5
- ez 1O er((—”'*"?)/z) 2-4

2|z|=~r—n+iy )

+3 k()
je%( 4 )er((*"-l-l?)/z) 2-s
= KE.H.H-},(U, Z)'{"K%.,,.‘.w(v, 2).

Dealing with K2,.;, as we did for K_,, we get

1K s % 2 S COM fllar  fELP(),
where C(y) = [sin((—r—n+ip}n/2) I (—n+ )T {(—n+i)/2). Set

2 00~ 1)l

0D = T )
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We shall show that K1, ,, is a Calderén-Zygmund kernel by proving that the
family of functions {h}} .z satisfies the assumptlom of Proposition 3.2. Taking
into account the fact that (5(z)—1)lz| 7" ~"*# is in L*(3) for every p > 1, for every
se[O 1) we get

@) [ § ;N (1 —n2)} |“""(1 +(v, 2 dvdz

L

< C' W) [ ik (1—n@)iz "1+ |ol° + |27 dv dz

< C'0) I i @(L el § (L—n(2)lz| ™" dz
a
+C'(y j ke ()| dv § (1 —n(2)lz =" "2 dz
3
<.
with C(y) = C'/I{—n-+iy/2). .
Finally, since (1—n(z))lz| """ e L"!(3), we can easily prove that
C'O) [ [ M+, 242 +4[v, V] —hjlv, 2)ldvdz < COIW, 2)°
v3
for every ge[0, 11
To apply Stein’s complex interpolation theorem, we need to estimate the
growth of the operator norm [{|T,J|l, in the cases: 1 < p < 00,0 < Rea < 1 and
p=2, Rea= —n. A careful reading of the proof shows that

T, < CAe/2)]

if0<Rea<1, 1<p< oo, and

) (—r—n+iy)
S *""—"*5—”——" T
T ((—n+i)2)]

for every yéR. Easy computations, taking into account Stirling’s formula, give
the desired result.

C i)l

NT-nsillly <

Given an H-type group G, consider, for every lez* and for every p,
1 € p < o0, the representation n* of G in LP(v) defined by

TMG) S (1) = f (v + x)e ™00 g~ iRm0

where g = (x, ). =% is an isometric representation of G for every p, 1 € p € o
Using the transference result (see [3]), we shall prove the following

COROLLARY 3.4. Suppose that k is a distribution defined on v, satisfying the
assumptions of Theorem 3.1. Then the operator T*: C¥(v)— C*(v) defined by

TN =kx,f
is bounded on LF(v) for every p, 1 < p < 0.
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Proof. Set, as uswval, K(g) = k(p)8(t). Then, for every f in Cg'(v) we have
koo f = IK () (g™ ) f (v dy.

By Theorem 3.1 and using the transfcrcnce result we easily get the assertion.
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