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Abstract. Different generalizations to the case of coverings of the standard approach to entropy
applied to partitions of a finite universe X are explored. In the first approach any covering
is represented by an identity resolution of fuzzy sets on X and a corresponding probability
distribution with associated entropy is defined. A second approach is based on a probability
distribution generated by the covering normalizing the standard counting measure. Finally,
the extension to a generic covering of the Liang–Xu approach to entropy is investigated, both
from the “global” and the “local” point of view. For each of these three possible entropies
the complementary entropy (or co–entropy) is defined showing in particular that the Liang–Xu
entropy is a co–entropy.

1. Introduction: the link between Information and Rough Theories

The notion of partition of a (finite) set, the universe of the discourse, plays a fundamental role
both in Pawlak rough set theory [Paw82] and in Shannon information theory [Sha48]. Recently,
a certain interest in using the entropy notion typical of information systems in the framework of
rough set theory can be found in literature, either in the case of the universe partition generated
by a complete information system (see for instance [Wie99, LS04], and [Sle02] for applications to
the reduction of attributes) or in the case of the universe covering generated by an incomplete
information system (see for instance [LX00, HHZ04]). Let us make a brief introduction about
these subjects and their possible relationship.

The original Pawlak approach to rough sets can be summarized in a pair 〈X, π〉 consisting of a
(finite) set X , the universe of objects, and a partition π = {A1, A2, . . . , AN} of X whose elements
Aj are called elementary sets or also granules of knowledge; in the sequel we denote by π(x) the
granule which contains the point x ∈ X . The partition π generates the binary equivalence relation
R(π) on X defined by the law: (x, y) ∈ R(π) iff ∃Ai ∈ π: x ∈ Ai and y ∈ Ai. This equivalence
relation is interpreted as an indiscernibility relation about the objects of the universe in the sense
that if two objects x and y of X belong to the same subset Ai of the partition, then they cannot
be discerned with respect to π. Elementary sets are then considered as supports of knowledge
and so, if the knowledge about objects is concentrated in π, any other subset H of objects from
the universe can be approximated from the bottom and from the top by the two lower and upper
approximations defined respectively as:

(1) l(H) := ∪{Ai ∈ π : Ai ⊆ H} and u(H) := ∪{Aj ∈ π : H ∩ Aj 6= ∅}

Trivially, the following order chain holds: l(H) ⊆ H ⊆ u(H) and since both l(H) and u(H)
are set theoretic union of elementary sets from π, in rough set theory it is customary to define
as definable set any possible set theoretic union of elementary sets. The collection Eπ(X) of all
definable subsets of X plus the empty set constitute a topology of clopen sets, or from another
point of view a σ–algebra of measurable sets; in this “measure” context subsets from Eπ(X) are
also called events and elements from π elementary events. All the other elements of the power set
P(X) of X are subsets of objects which can be approximated by definable sets according to (1),
where the rough approximation of H is the pair of events rπ(H) := 〈l(H), u(H)〉. Let us recall that
a subset E of X is said to be sharp (or crisp) iff l(E) = u(E), and this happens iff E ∈ Eπ(X),
i.e., it is an event.

From the information point of view, to any elementary set Aj of a partition π it is possible

to associate the corresponding probability of occurrence p(Aj) =
|Aj|
|X| ≥ 0, characterized by the
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property that the p(Aj) constitute a probability distribution since
∑N

j=1 p(Aj) = 1. Let us recall

(and see section 2) that in information theory the non negative real number I(Aj) = − log p(Aj)
“measures” the uncertainty due the knowledge of a probabilistic information (in this paper all
the involved logarithms are to the base 2). In this way, any partition π generates two vectors:

the uncertainty vector ~I(π) := (I(A1), I(A2), . . . , I(AN )) and the probability distribution vector
~p(π) := (p(A1), p(A2), . . . , p(AN )). The family of pairs π := {(I(Ai), p(Ai) : i = 1, 2, . . . , N} is the
probability scheme generated by the partition π, represented by the finite scheme matrix [Khi57]:

(2) π :=

[

I(A1) I(A2) . . . I(AN )
p(A1) p(A2) . . . p(An)

]

Thus, the average uncertainty of this probability scheme generated by the partition π is given by

the entropy H(π) :=
∑N

j=1 I(Aj) p(Aj) = −
∑N

j=1 p(Aj) log p(Aj).

1.1. Application of information theory to rough set theory. A possible application of
rough set and information theory, both based on the mathematical notion of partition, could
be the field of information systems (as introduced by Pawlak in [Paw81]), also called knowledge
representation systems (according to Vakarelov [Vak91]), and formalized by an information table
(see also [KPPS99, Paw91]). The rows of the table are labelled by objects x1, x2, . . . , xN ∈ X
and the columns by attributes a1, a2, . . . , aM ∈ Att. The table entry corresponding to the object
x ∈ X and the attribute a ∈ Att is formalized by F (x, a), which is a particular attribute-value.
In this way one can denote an information system as a triple 〈X, Att, F 〉 where F is a mapping
defined on the set X ×Att of all object–attribute pairs (x, a), which assigns to each of these pairs
a value F (x, a). The map F provides a kind of observation of the properties that can be taken into
consideration for each object in the universe. More precisely, given an attribute a ∈ Att, one can
define the set val(a) := {α : ∃x ∈ X s.t. F (x, a) = α} containing all the specific possible values
of a. On this basis, the observation of the attribute a ∈ Att on an object x ∈ X yields the value
F (x, a) ∈ val(a). Thus, we can introduce a family of (surjective) mappings fa : X → val(a), each
of which is bijectively depending from the observed attribute a and defined by the correspondence
x 7→ fa(x) := F (x, a). Let val = ∪a∈Attval(a) be the global set of possible values of the information
system, then each attribute a can be identified with the mapping fa ∈ valX and so, introducing
the collection of all such mappings Att(X) := {fa ∈ valX : a ∈ Att} in which Att plays the role of
index set, an information system can be formalized also as a structure 〈X, Att(X)〉. Quoting from
[SW01]: “Data analysis concerns features labelling known cases with specific values. A sample
of data can take the form of an information system 〈X, Att〉, where each attribute a ∈ Att is
identified with a function fa : X → val(a) from the universe of objects X into the set val(a) of
all possible values on a.”

Any fixed attribute a ∈ Att, with set of values val(a) = {α1, α2, . . . , αN}, generates a partition
of the universe of objects π(a) = {f−1(α1), f

−1(α2), . . . , f
−1(αN )}, where the generic elementary

event of π(a) is f−1(αi) := {x ∈ X : fa(x) = αi}, i.e., collection of all objects with respect to
which the attribute a assumes the fixed value αi. The pair (a, αi) is interpreted as the elementary
proposition “an observation of a yields the result αi” and Ai := f−1(αi) is the event which tests
the proposition (a, αi), in the sense that it is constituted by all objects with respect to which
the proposition (a, αi) is “true” (x ∈ Ai iff fa(x) = αi). The event Ai is then the equivalence
class (also denoted by [a, αi]), of all objects on which the attribute a assumes the value αi, and

p(Ai) = p([a, αi]) = |Ai|
|X| is the probability of occurrence of this event, or equivalently of the

proposition (a, αi). The average uncertainty of the partition generated by the attribute a is then

quantified by the entropy H(a) = −
∑N

i=1
|Ai|
|X| log |Ai|

|X| = log |X | − 1
|X|

∑N
i=1 |Ai| log |Ai|.

If we consider a set A consisting of two attributes a ∈ Att and b ∈ Att with corresponding
set of values val(a) = {α1, α2, . . . , αN} and val(b) = {β1, β2, . . . , βM} (the generalization to a
generic collection of attributes will be discussed later), then it is possible to define the mapping
fa,b : X 7→ val(a, b) := val(a) × val(b) which assigns to any object x the “value” fa,b(x) :=
(fa(x), fb(x)). In this case we can consider the pair (a, b) ∈ Att2 as a single attribute of the
new information system

〈

X, Att2, {fa,b : a, b ∈ Att}
〉

, always based on the original universe X .
The partition generated by the attribute (a, b) is then the collection of subsets of X , π(a, b) =
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{f−1
a,b (αi, βj) : αi ∈ val(a) and βj ∈ val(b)}, where the generic elementary event of the partition

π(a, b) is the subset of the universe

f−1
a,b (αi, βj) : = {x ∈ X : fa,b(x) = (αi, βj)} = f−1

a (αi) ∩ f−1
b (βj)

Hence, adopting the notation of [(a, αi) & (b, βj)] to denote the elementary event f−1(αi, βj) we
have that [(a, αi) & (b, βj)] = [a, αi]∩ [b, βj]. If (a, αi) & (b, βj) is interpreted as the conjunction “a
test of a yields the result αi and of b yields the result βj” (i.e., & represents the logical connective
“and” between propositions), then this result says that the set of objects in which this proposition
is verified is just the set of objects in which simultaneously “a yields αi” and “b yields βj”.

On the other hand, making use of the notations Ci,j := f−1(αi, βj), Ai = f−1
a (αi) and Bj =

f−1
b (βj) we can reformulate the previous result as Ci,j = Ai ∩ Bj . In other words, elementary

events from the partition π(a, b) are obtained as set theoretic intersection of elementary events
from the partitions π(a) and π(b). This fact is denoted by π(a, b) = π(a) ·π(b). This result can be
easily extended to the case of arbitrary families of attributes. Indeed, let A = {a1, a2, . . . , ak} be
such a family of attributes from an information system. Then, it is possible to define the partition
π(A) = π(a1, a2, . . . , ak) = π(a1) · π(a2) · . . . · π(ak) := {Ai ∩ Bj ∩ . . . ∩ Kp : Ai ∈ π(a1), Bj ∈
π(a2), . . . , Kp ∈ π(ak)}. If now one considers another family of attributes B = {b1, b2, . . . , bh}
then

(3) π(A ∪ B) := π(a1, . . . , ak, b1, . . . , bh) = π(A) · π(B)

Let us note that the equivalence relation RA induced on the universe X from the partition
π(A) is defined as follows:

(4) (x, y) ∈ RA iff ∀a ∈ A : fa(x) = fa(y)

The generic equivalence class generated by an object x ∈ X is then πA(x) = {y ∈ X : ∀a ∈
A, fa(y) = fa(x)}, i.e., collection of all objects y which cannot be distinguished from x relatively
to the information furnished by the attributes collected in A.

1.2. Extension to incomplete information systems. In this paper we discuss the extension of
the just described approach based on partitions from (complete) information systems, to the case
of information systems which are not complete. An incomplete information system is formalized as
a triple 〈X, Att, F 〉 in which as usual X is the finite set of objects, Att the finite set of attributes,
and F a mapping partially defined on a subset D(F ) of X × Att, but under the non–redundancy
condition about objects: fore every object x ∈ X at least an attribute a ∈ Att exists such that
(x, a) ∈ D(X). Of course, in an incomplete information system the mapping representation of an
attribute a is partially defined on a subset Xa of X . Precisely, any attribute a can be represented
as a partially defined mapping fa : Xa 7→ val(a), with definition domain Xa := {x ∈ X :
(x, a) ∈ D(F )}, which in general is a subset of X . The non–redundancy condition assures that
⋃

a∈Att Xa = X , i.e., the covering condition of X .
Also in the case of incomplete information systems, the pair (a, αi) ∈ Att × val(a) represents

the elementary proposition “the test of a yields the value αi” and the subset of the universe
Ai = f−1

a (αi) = {x ∈ Xa : f(x) = αi} the elementary event of all objects for which the proposition
(a, αi) is “true”. Trivially,

⋃

αi∈val(a) f−1
a (αi) = Xa, and so

⋃

a∈Att
αi∈val(a)

f−1
a (αi) = X , i.e., the

collection of all elementary events {f−1
a (αi) : a ∈ Att and αi ∈ val(a)} generated by all possible

attributes from an incomplete information system is a covering of the universe X which is not a
partition.

1.2.1. The covering induced on an incomplete information system by a similarity relation. On the
other hand, for any attribute a let us denote by fa(x) = ∗ the fact that the value corresponding
to an object x ∈ X \ Xa is unknown. Let us denote by val∗(a) the set of all possible values of the
attribute a plus the symbol ∗, then on the collection of all objects X we define for a fixed set of
attributes A ⊆ Att the similarity (reflexive and symmetric, but in general non–transitive) binary
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relation:

(5) Let x, y ∈ X, then (x, y) ∈ SA iff ∀ai ∈ A,

either fai
(x) = fai

(y) or fai
(x) = ∗ or fai

(y) = ∗

This similarity relation is a generalization of the equivalence relation (4) introduced for complete
information systems. Quoting [YLLL94] “The requirement of an equivalence relation seems to be
a stringent condition that may limit the application domain of the standard rough set model.” In
literature one can find some generalization of a “discernibility” relation (i.e., equivalence relation)
such as the “compatibility” relation introduced by Zakowski [Zak83], the “weak discernibility
relation” of Vakarelov [Vak91], which is a compatibility relation (for a use of compatibility relations
in logics see for instance [Orl85]).
The (nonempty) similarity class generated by an object x is defined as the collection of all the
elements which are indistinguishable from x with respect to the similarity relation SA:

sA(x) := {y ∈ X : (x, y) ∈ SA}

The collection of all similarity classes is a covering of the universe, since ∪xsA(x) = X , but it is
not assured that these classes are mutually disjoint.

2. Information function and entropy of discrete probability distributions

In this section we briefly discuss the abstract approach to information theory. Abstract in the
sense that it does not make any reference to a concrete universe X , but only to suitable finite
sequences of numbers from the real unit interval [0, 1], each of which can be interpreted as a
probability of occurrence of something. First of all, let us introduce as information function the
mapping I : (0, 1] 7→ R assigning to any probability value p ∈ (0, 1] the real number I(p) := − log(p)
(also called the Hartley measure of uncertainty [Har28]). This is the unique, up to an arbitrary
positive constant multiplier, function satisfying the conditions: (1) it is non-negative; (2) it satisfies
the so–called Cauchy functional condition I(p1 · p2) = I(p1) + I(p2); (3) it is continuous; (4) it is
non–trivial (∃p0 ∈ (0, 1] s.t. I(p0) 6= 0). The information function is considered as a measure of
the uncertainty due to the knowledge of a probability since if the probability is 1, then there is
no uncertainty and so its corresponding measure is 0. Moreover, any probability different from 1
(and 0) is linked to some uncertainty whose measure is greater than 0. Coherently, the lower is
the probability, the greater is the corresponding uncertainty measure.

A length N probability distribution is a vector ~p = (p1, p2, . . . , pN ) in which: (i) every p1 ≥ 0
and (ii)

∑n
i=1 pi = 1. A length N random variable is a vector ~a = (a1, a2, . . . , aN ) ∈ RN . For

a fixed length N random variable ~a and a length N probability distribution ~p the pair (~a, ~p) :=
{(ai, pi) : i = 1, 2, . . . , N} constitutes a probability scheme, abstraction of the probability scheme
represented in equation (2) relative to a partition of a concrete universe X . In this abstract
context of probability schemes, the numbers ai are interpreted as possible values of a discrete
random variable denoted by α and the quantities pi as the probability of occurrence of the event
{α = ai} (thus, pi can be considered as a simplified notation of p(ai)) (see [Ash90, p.5]). Hence,
the average (or mean) value of the random variable ~a with respect to a probability distribution ~p

is given by Av(~a, ~p) =
∑N

i=1 ai · pi.
In particular, to any probability distribution ~p = (p1, p2, . . . , pN ) it is possible to associate the

information random variable ~I[~p] = (I(p1), I(p2), . . . , I(pN )) whose mean value with respect to
the probability distribution ~p, called the entropy of the probability distribution and denoted by
H(~p), is explicitly expressed by the formula (with the convention 0 log 0 = 0):

(6) H(~p) = −
N
∑

i=1

pi log pi

Since the information I(p) of a probability value p has been interpreted as a measure of the
uncertainty due to the knowledge of this probability, the entropy of a probability distribution ~p
can be considered as a quantity which in a reasonable way measures the amount of uncertainty
associated with this distribution, expressed as the mean value of the corresponding information
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variable ~I[~p]. Indeed, given a probability distribution ~p = (p1, p2, . . . , pN), its entropy H(~p) = 0
iff one of the numbers p1, p2, . . . , pN is one and all the others are zero, and this is just the case
where the result of the experiment can be predicted beforehand with complete certainty, so that
there is no uncertainty as to its outcome. These probability distributions will be denoted by the
conventional symbol ~pk = (δi

k)i=1,2,...,N , where δi
k is the Kronecker delta centered in k. In all

other cases the entropy is a (strongly) positive number upper bounded by log N . On the other
hand, given a probability distribution ~p = (p1, . . . , pN ) the entropy H(~p) = log N iff pi = 1

N

for all i = 1, . . . , N (uniform probability distribution ~pu = (1/N, 1/N, . . . , 1/N), maximum of
uncertainty). In conclusion, the following order chain holds for any probability distribution ~p :

0 = H(~pk) ≤ H(~p) ≤ H(~pu) = log N

where the value 0 corresponds to the minimum and log N to the maximum of uncertainty for any
length N possible probability distribution ~p.

2.1. Measure distributions and probability distributions. In this paper we are particularly
interested to the so–called measure distributions, that is (non–trivial) vectors of the kind ~m =
(m1, m2, . . . , mN ) in which each component is non–negative (∀i, mi ≥ 0), with at least an element

mi0 6= 0, and such that their sum is not necessarily equal to 1: in general
∑N

i=1 mi = M(~m)
with M(~m) 6= 0 the total measure of the distribution, which depends from the particular measure
distribution ~m. For any measure distribution ~m it is possible to construct the corresponding
probability distribution ~p =

(

m1

M(~m) ,
m2

M(~m) , . . . ,
mN

M(~m)

)

, which is the result of the normalization of

the measure distribution ~m with respect to the quantity M(~m), i.e., ~p = 1
M(~m) ~m; for this reason

a measure distribution is also called a non–normalized probability distribution. The entropy of
~p, denoted by H(~m) instead of H(~p) in order to stress its dependence from the original measure
distribution ~m, is the sum of two terms

(7) H(~m) = log M(~m) −
1

M(~m)

N
∑

i=1

mi log mi

If one defines as co-entropy the quantity (also this depending from the measure distribution ~m)

(8) E(~m) =
1

M(~m)

N
∑

i=1

mi log mi

we have the following identity which holds for any arbitrary measure distribution:

(9) H(~m) + E(~m) = log M(~m)

The name co–entropy assigned to the quantity E(~m) rises from the fact that it “complements”
the entropy H(~m) with respect to the value log M(~m), which depends from the distribution ~m.
Of course, in the equivalence class of all measure distributions of identical total measure (~m1 and
~m2 are equivalent iff M(~m1) = M(~m2)) this value is constant whatever be their length N .

3. Entropy and Co–Entropy of Partitions

We now want apply the above abstract results about entropy of generic probability distributions
to the particular case of a finite universe X equipped with a partition π = {A1, A2, . . . , AN}, i.e.,
a collection of nonempty subsets Ai of X which are pairwise disjoints and whose set theoretic
union is X . The subsets Ai from the partition π are the elementary events of the measure
distribution ~m(π) = (|A1|, |A2|, . . . , |AN |), where the measure of the event Ai is the so–called
counting measure mc(Ai) := |Ai|. This measure distribution satisfies the conditions: (i) every

|Ai| > 0; (ii)
∑N

i=1 |Ai| = |X |. The induced probability distribution is characterized by the
following corresponding probabilities

(10) p(Ai) =
|Ai|

|X |
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In this way we have generated the probability vector ~p(π) := (p(A1), p(A2), . . . , p(AN )), depending
from the partition π. The entropy of this probability distribution, simply written as H(π) instead
of H(~p(π)), is then

(11) H(π) = −
∑

p(Ai) log p(Ai) = −
N
∑

i=1

|Ai|

|X |
log

|Ai|

|X |

In particular, we can consider the trivial partition πt = {X} (consisting of the unique set
X) and the discrete partition πd = {{x1}, {x2}, . . . , {x|X|}} (the collection of all singletons from
the universe X = {x1, x2, . . . , x|X|} of cardinality |X |). In these two particular partitions the
associated entropies are H(πt) = 0 and H(πd) = log |X | and for any other partition π of the same
universe X one has the following chain of inequalities:

0 = H(πt) ≤ H(π) ≤ H(πd) = log |X |

with H(π) = 0 iff π = πt and H(π) = log |X | iff π = πd.

Remark 1. Recently, in the rough set community there is a certain attitude (see for instance
[LS04]) to attribute to the Wierman paper [Wie99, sect. 4] the introduction of the entropy of
a partition defined as (11). In [Wie99] this entropy has been called the granularity measure,
and is considered as the quantity which “measures the uncertainty (in bits) associated with the
prediction of outcomes where elements of each partition sets Ai are indistinguishable,” In [LS04]
it is remarked that this “granularity measure” coincides with the Shannon entropy ([Sha48]), and
it is interpreted as the “information measure of knowledge” furnished by the partition π.
To tell the truth, this entropy of partitions has been considered in the context of information
theory several years before the Wiermann paper, see for instance the textbook [Rez94, p. 76]
published in its first version in 1961. In this book one can found at p. 81 some other uniqueness
characterizations of the entropy function of partitions (or measure of granularity in the Wiermann
terminology) besides the one whose derivation can be found in [KW98], for instance the ones of
D. A. Fadiev (1956) or of A. I. Khinchin (1953).

Note that the entropy (11) associated with a probability distribution π assumes also the fol-
lowing form:

(12) H(π) = log |X | −
1

|X |

N
∑

i=1

|Ai| log |Ai|

Hence, if one introduces the co–entropy of the partition π defined as

(13) E(π) :=
1

|X |

N
∑

i=1

|Ai| log |Ai|

then the (12) leads to the identity:

(14) ∀π ∈ Π(X), H(π) + E(π) = log |X |

i.e., the quantity E(π) is the “co–entropy” which complements the original entropy H(π) with
respect to the constant value log |X |. This value, differently from the abstract case (9), is invariant
with respect to the choice of the particular partition π of X .

Remark 2. In the context of partitions of a concrete universe, as the support structure of the
Pawlak approach to rough set theory, the above co–entropy (13) has been considered in [LS04].
In the rough set context these authors called E(π) with the name of rough entropy of knowledge
π, whereas the standard Shannon notion of entropy H(π) of (11) (or in the equivalent form (12))
has been called granularity or information measure of knowledge.
Let us note that this kind of rough entropy of knowledge has been introduced in [LX00] in the
more general context of coverings some years before [LS04].
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3.1. Another measure distribution induced by partitions with associated pseudo co–

entropy. In order to better understand the application to coverings of the Liang–Xu (LX) ap-
proach to quantify information in the case of incomplete systems [LX00], let us now introduce (and
compare with (13)) a new form of pseudo co–entropy related to a partition π = {A1, . . . , AN} by
the following definition in which the sum involves the “local” information given by all the equiva-
lence classes π(x) for the point x ranging on the universe X :

(15) ELX(π) :=
1

|X |

∑

x∈X

|π(x)| · log |π(x)|

Trivially, ∀π ∈ Π(X), 0 = ELX(πd) ≤ ELX(π) ≤ ELX(πt) = |X | · log |X |. Moreover,

ELX(π) =
1

|X |

[

∑

x∈A1

|π(x)| · log |π(x)| + . . . +
∑

x∈AN

|π(x)| · log |π(x)|

]

(16a)

=
1

|X |

N
∑

i=1

|Ai|
2 · log |Ai|(16b)

and so from the fact that 1 ≤ |Ai| ≤ |Ai|2 it follows that ∀π, 0 ≤ E(π) ≤ ELX(π). The comparison
between (13) and (16b) put in evidence the very profound difference of these definitions. With
the aim to capture some relationship with respect to a pseudo–entropy, for any partition π let us
consider the vector

(17) ~µπ :=

(

µπ(x) :=
|π(x)|

|X |
: x ∈ X

)

which is a pseudo–probability distribution since ∀x, 0 ≤ µπ(x) ≤ 1, but µ(π) :=
∑

x∈X µπ(x) =
∑N

i=1
|Ai|

2

|X| ≥ 1; this latter quantity is equal to 1 when
∑N

i=1 |Ai|2 = |X |, and in this case the

vector ~µπ defines a probability distribution. Moreover, for any partition it is µ(π) ≤ |X |, with
µ(πt) = |X |. Applying in a pure formal way the formula (11) to this distribution one obtains

HLX(π) = −
∑

x∈X

µπ(x) · log µπ(x) = −
N
∑

i=1

|Ai|2

|X |
· log

|Ai|

|X |

from which it follows that:

HLX(π) + ELX(π) = log |X | · µ(π)

Hence, ELX(π) is complementary to the “pseudo–entropy” HLX(π) with respect to the quantity
log |X | · µ(π), which depends from the partition π by its “pseudo–measure” µ(π). For instance in
the case of the trivial partition it is HLX(πt) = 0 and ELX(πt) = |X | · log |X |, with HLX(πt) +
ELX(πt) = |X | · log |X |. On the other hand, in the case of the discrete partition it is HLX(πd) =
log |X | and ELX(πd) = 0, with HLX(πd) + ELX(πd) = log |X |.

Of course, the measure distribution (17) can be normalized by the quantity µ(π) obtaining a
real probability distribution

~µ(n)(π) =

(

µ(n)
π (x) =

|π(x)|
∑N

i=1 |Ai|2
: x ∈ X

)

But in this case the real entropy H
(n)
LX(π) = −

∑

x∈X µ
(n)
π (x) · log µ

(n)
π (x) is linked to the above

pseudo co–entropy (15) by the relationship H
(n)
LX(π) + 1

µ(π) ELX(π) = log[µ(π) · |X | ], in which the

dependence from the partition π by the “measure” µ(π) is very hard to handle in applications.

3.2. Anti–monotonicity of entropy and monotonicity of co–entropy with respect to

the partition ordering. On the family Π(X) of all partitions of X let us introduce the following
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three binary relations:

π1 � π2 iff ∀Ai ∈ π1, ∃Bj ∈ π2 : Ai ⊆ Bj(18a)

π1 ≪ π2 iff ∀Bj ∈ π2, ∃{Ai1 , Ai2 , . . . , Aip
} ⊆ π1 : Bj = Ai1 ∪ Ai2 ∪ . . . ∪ Aip

(18b)

π1 E π2 iff ∀x ∈ X, π1(x) ⊆ π2(x)(18c)

Note that these binary relations define the same binary relation on Π(X) since trivially

π1 ≪ π2 iff π1 � π2 iff π1 E π2

Remark 3. The introduction on Π(X) of these indistinguishable binary relations �, ≪, and E

might seem a little bit redundant, but the reason of listing them in this partition context is
essentially due to the fact that in the case of coverings of X they give rise to different relations as we
will see in section (5). The structure 〈Π(X),�, πd, πt〉 is a poset bounded by the least partition πd

and the greatest partition πt: formally ∀π ∈ Π(X), πd ≤ π ≤ πt . This (finite) poset is a (complete)
lattice with respect to the lattice meet π1 ∧ π2 = π1 · π2 := {Ai ∩ Bj : Ai ∈ π1 and Bj ∈ π2} and
joint π1 ∨ π2 = ∧{π ∈ Π(X) : π1 � π and π2 � π}.

Example 3.1. In the universe X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} let us consider the two partitions
π1 = {{1, 2, 3}, {4, 5, 6}, {7}, {8}, {9, 10}} and π2 = {{1, 2}, {3, 4}, {5, 6, 7}, {8, 9, 10}}. Then
their lattice meet is the new partition π1 ∧ π2 = {{1, 2}, {3}, {4}, {5, 6}, {7}, {8}, {9, 10}} and
the lattice join is the partition π1 ∨ π2 = {{1, 2, 3, 4, 5, 6, 7}, {8, 9, 10}}.

If π1 � π2 then (see also this example, in which π1 ∧ π2 � π1, π2 � π1 ∨ π2) the partition π1

(resp., π2) is said to be finer (resp., coarser) than the partition π2 (resp., π1). If π1 � π2 and
π1 6= π2 then π1 (resp., π2) is strictly finer (resp., strictly coarser) than π2 (resp., π1), written
π1 ≺ π2.

Remark 4. Given an information system 〈X, Att, F 〉, the collection of all partitions generated by
any possible family A of attributes {π(A) ∈ Π(X) : A ∈ P(Att)}, owing to (3) is a sublattice of
the lattice 〈Π(X),∧,∨, πd, πt〉 of all partitions of X .
This sublattice in general does not contain the least element πd unless one attribute a0 ∈ Att of
the information system has the associated random variable fa0

: X 7→ val(a0) which is a bijection
(equivalently, |val(a0)| = |X |), and does not contain the greatest element πt unless there exists an
attribute a1 whose set of values is a singleton: val(a1) = {α1}.

Let us stress that a standard result of information theory assures the (strict) anti–monotonicity
of entropy:

(19) π1 ≺ π2 implies H(π2) < H(π1)

Thus, the (19) and (14) lead to the following strict monotonicity of co–entropy with respect to
the partition ordering (a direct proof of this result can be found in [LS04]):

(20) π1 ≺ π2 implies E(π1) < E(π2)

Remark 5. This result has been proved in the so–called roughness monotonicity theorem 10 of
[Wie99], whose proof is based on lemma 8 of the same paper. In the partition context this result
can be found for instance in [Rez94, eq. (3-36) at p. 84].

Let us now consider an information system 〈X, Att, F 〉, where (as explained in section 1) any
attribute a ∈ Att is identified with a surjective function (random variable) fa : X 7→ val(a)
defined on X . Any family A of attributes from Att defines a partition π(A) of the universe X
according to the equivalence relation (4) and one can associate with this partition the entropy
H(π(A)) and the co–entropy E(π(A)), according to (12) and (13) respectively. Each equivalence
class of π(A) furnishes then a granule of knowledge with respect to which any subset of X can be
approximated. The partition π constitutes the collection of all information granulation which can
be used on subsets of the universe.
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Of course, if one increases the collection of attributes A ⊂ B, then with respect to the partial
order of partitions one has that π(B) � π(A) (with the possibility that π(B) = π(A)), and from
(19) and (20) it follows that

A ⊂ B implies H(π(A)) ≤ H(π(B))(21a)

A ⊂ B implies E(π(B)) ≤ E(π(A))(21b)

Hence, it is the entropy H (resp., E) which preserves the monotonicity (resp., anti–monotonicity)
with respect to the set theoretic inclusion ⊆ on the subsets of attributes.

Remark 6. If for two collections of attributes A and B the condition A ⊂ B implies π(A) = π(B),
then the family of attributes B \ A is redundant with respect to the original knowledge furnished
by A. In this case the family Att can be, at least in line of principle, reduct eliminating all
the attributes from B which are not in A. Hence, we can say that an information system is
non–redundant iff for any pairs of attribute collections A and B, the condition A ⊂ B implies
π(A) ≺ π(B).

3.3. The knowledge granulation in partitions. As we have seen in section 1, given a partition
π of the universe X any subset Y of X can be approximated with respect to π by its lower and
upper approximations (1), which in the present context we prefer to denote by lπ(Y ) and uπ(Y )
respectively. The rough approximation of Y , formalized by the pair rπ(Y ) = 〈lπ(Y ), uπ(Y )〉,
describes the best approximation of Y from the bottom and the top making use of the granulation
knowledge furnished by the equivalence classes from π as elementary sets or knowledge granules
(events in the probability context).

In order to give a measure of the approximation rπ(Y ) of a generic subset Y of X , Pawlak
introduced the two notions of accuracy and roughness (see for instance [Paw91]), formally defined
respectively as follows:

(22) απ(Y ) =
|lπ(Y )|

|uπ(Y )|
and ρπ(Y ) = 1 − απ(Y ) =

|uπ(Y )| − |lπ(Y )|

|uπ(Y )|

With respect to this definition of roughness, the following monotonicity behavior holds:

(23) π1 ≺ π2 implies ∀Y ⊆ X : ρπ1
(Y ) ≤ ρπ2

(Y )

The two measures (22), each of which furnishes a numerical characterization of the rough
approximation of Y with respect to π, have the withdraw of being unable to distinguish the
roughness of the same set with respect to two different partitions. In other world, it could happen
that a given subset Y has the same roughness measure ρπ1

(Y ) = ρπ2
(Y ) also in the particular

case of two partitions π1, π2 of which one is strictly finer than the other: π1 ≺ π2

Example 3.2. In the universe X = {1, 2, 3, 4, 5, 6}, let us consider the two partitions π1 =
{{1}, {2},
{3}, {4, 5, 6}} and π2 = {{1, 2}, {3}, {4, 5, 6}}, with respect to which π1 ≺ π2. The subset
Y = {1, 2, 4, 6} is such that lπ1

(Y ) = lπ2
(Y ) = {1, 2} and uπ1

(Y ) = uπ2
(Y ) = {1, 2, 4, 5, 6}.

This result implies that απ1
(Y ) = απ2

(Y ) (or ρπ1
(Y ) = ρπ2

(Y )).

A possible measure of roughness which is able to distinguish these unpleasant situations can be
defined, according to [BPA98] (an extension of this definition to the covering case can be found in
[LX00]), by the so–called rough entropy of Y relative to the partition π, which is the product of the
Pawlak (local) roughness measure (22) of Y times the (global) co–entropy (13) of the partition π
of X :

(24) Eπ(Y ) = ρπ(Y ) · E(π)

The rough entropy mapping Eπ : P(X) 7→ [0, log |X | ] can be considered a local version of co–
entropy since it is “locally” defined on any subset Y of X , differently from the co–entropy (13)
which is a global quantity assigned to the whole universe X . This local rough entropy (better,
co–entropy) satisfies the following strict monotonicity condition, granted by the monotonicity of
(23) and the strict monotonicity expressed in (20):

π1 ≺ π2 implies ∀Y ⊆ X : Eπ1
(Y ) < Eπ2

(Y )
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In particular, for any subset Y one has that with respect to the discrete partition it is Eπd
(Y ) = 0

and with respect to the trivial partition it is Eπt
(Y ) = log |X |, both independent from Y . And so,

for any arbitrary partition π the following order chain holds: 0 = Eπd
(Y ) ≤ Eπ(Y ) ≤ Eπt

(Y ) =
log |X |.

Now we want to discuss another approach to the local notion of rough entropy. Precisely, after
the definition of the exterior of the subset Y as eπ(Y ) := X \ uπ(Y ), one can introduce two new
notions of accuracy and roughness as follows:

α̂π(Y ) =
|lπ(Y )| + |eπ(Y )|

|X |
and ρ̂π(Y )=1 − α̂π(Y ) =

|bπ(Y )|

|X |

With respect to these definitions, the following monotonicity behavior holds:

(25) π1 ≺ π2 implies ∀Y ⊆ X : ρ̂π1
(Y ) ≤ ρ̂π2

(Y )

The strict monotonicity in general does not hold, since notwithstanding π1 ≺ π2 it could happen
that for a certain Y the two boundaries are identical: bπ1

(Y ) = bπ2
(Y ). This being stated, we can

introduce the new rough entropy of Y relatively to the partition π by the following modification
of (24):

(26) Êπ(Y ) = ρ̂π(Y ) · E(π)

From the monotonicity (25) and the strict monotonicity (20), the following preservation of strict
monotonicity holds:

(27) π1 ≺ π2 implies ∀Y ⊆ X : Êπ1
(Y ) < Êπ2

(Y )

In particular, for any subset Y one has that with respect to the discrete partition it is Êπd
(Y ) = 0

and with respect to the trivial partition it is Êπt
(Y ) = log |X |, both independent from Y . And

so, for any arbitrary partition 0 = Êπd
(Y ) ≤ Êπ(Y ) ≤ Êπt

(Y ) = log |X |. Also in this case, (26)
defines a local notion of co–entropy with respect to a given partition of the universe.

Let us remark that with respect to a given subset Y of the universe the granules of the partition
π can be classified into three disjoint classes: πi(Y ) := {I ∈ π : I ⊆ Y } (interior events),
πe(Y ) := {E ∈ π : E ⊆ Y c} (exterior events), and πb(Y ) := π \ (πi(Y ) ∪ πe(Y )) = {B ∈ π :
B ∩ Y 6= ∅, B ∩ Y c 6= ∅} (boundary events), moreover we introduce πu(Y ) := πi(Y ) ∪ πb(Y ) and
πi,e(Y ) := πi(Y ) ∪ πe(Y ) . With respect to this classification of π, the partition co–entropy (13)
can be formalized as

E(π) =
1

|X |

∑

U∈πi,e(Y )

|U | log |U | +
1

|X |

∑

B∈πb(Y )

|B| log |B|

and so, setting Eb
π(Y ) = 1/|X |

∑

B∈πb(Y ) |B| log |B| we can define the new rough entropy of Y

relatively to the partition π:

Êπ(Y ) = ρ̂π(Y ) · Eb
π(Y ) ≤ Eπ(Y )

This new rough entropy locally defined for any subset Y gives a more precise measure of the
roughness of Y with respect to the previous ones, since the following ordering chain holds:

(28) 0 ≤ Êb
π(Y ) ≤ Êπ(Y ) ≤ Eπ(Y ) ≤ log |X |

Moreover it satisfies the following monotonic correlation with respect to the partial order of par-
titions.

Proposition 3.1. We have that: π1 ≺ π2 implies ∀Y ⊆ X : Êπ1
(Y ) ≤ Êπ2

(Y ).

Proof. From π1 ≺ π2 it follows that for any A ∈ (π1)b(Y ) there exists at least one B ∈ π2:
A ⊆ B. This B is a fortiori an element of A ∈ (π2)b(Y ). Moreover, any of such B, in general,
contains more than one element from (π1)b(Y ); let us denote by A1, A2, . . . , An these elements,
then A1 ∪ A2 ∪ . . . ∪ An ⊆ B, and so

∑

i |Ai| ≤ |B|. Then, we have that for every i = 1, 2, . . . , n,
0 ≤ log |Ai| ≤ max{log |Ai|}i, from which we get that |Ai| log |Ai| ≤ |Ai|(max{log |Ai|}i), and
so
∑

i |Ai| log |Ai| ≤
∑

i |Ai|(max{log |Ai|}i) ≤ |B| log B. The thesis follows from this result and
(25). �
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This entropy of Y relatively to partitions in general is not strictly monotonic, since if under
condition π1 ≺ π2 it turns out that (π1)b(Y ) = (π2)b(Y ) then both ρ̂π1

(Y ) = ρ̂π2
(Y ) and Eb

π1
(Y ) =

Eb
π2

(Y ), leading to the equality of the corresponding rough entropies Êπ1
(Y ) = Êπ2

(Y ).

Remark 7. Let us note that in any of the above local rough entropies the range of variation is
between the value 0 and the value log |X |. In particular, whatever be the involved entropy, the
minimum is reached by the discrete partition πd and the maximum by the trivial partition πt.
Furthermore, the discrete partition is characterized by the fact that the rough approximation of
any subset H is the pair rd(H) = 〈H, H〉, i.e., all the subsets of the universe are crisp, and the
trivial partition by the property that rt(H) = 〈∅, X〉, i.e., it is invariant with respect to H and
the unique crisp sets are the empty set and the whole universe.
Hence, one can adopt the closed interval [0, log |X | ] as the reference scale of crispness, where the
value 0 (resp., log |X |) corresponds to the maximum (resp., minimum) of crispness, or minimum
(resp., maximum) of roughness. From this point of view, and taking into account the (28), we

can consider that the local entropy Êb
π(Y ) furnishes the best valuation of the “degree’ of crispness

relatively to all the others.

4. Entropies and Co–Entropies of Coverings

In this section we generalize the notion of partition of a finite universe X introducing the
following notion of covering.

Definition 4.1. Let X be a finite set (universe), then a covering of X is any finite collection
γ = {B1, B2, . . . , BN} of distinct subsets of X , also in this context called elementary events, such

that (1) Bi 6= ∅ for all Bi ∈ γ and (2)
⋃N

i=1 Bi = X .
A partition is then a covering satisfying the further condition that its elements are pairwise

disjoint. The collection of all coverings of the universe X will be denoted by Γ(X). Of course, any
partition is also a covering and so Π(X) ⊆ Γ(X).

4.1. Bridging the gap between partition and covering. In order to “bridge the gap” between
partition and covering, let us note that, given a partition π = {A1, A2, . . . , AN} ∈ Π(X), if one
introduces the characteristic functional χAi

: X 7→ {0, 1} of the set Ai defined for any point
x ∈ X as χAi

(x) = 1 if x ∈ Ai and = 0 otherwise, then the collection of characteristic functionals
C(π) := {χA1

, χA2
, . . . , χAN

} associated to the partition π is a crisp (sharp) identity resolution,
i.e., a family of crisp sets such that the following property holds:

(29) ∀x ∈ X,

N
∑

i=1

χAi
(x) = 1

The measure of the elementary event Ai is defined as

m(Ai) =
∑

x∈X

χAi
(x) = |Ai|

with
∑N

i=1 m(Ai) = |X | and so the probabilities (10) can also be expressed as

p(Ai) =
1

|X |
m(Ai) =

1

|X |

∑

x∈X

χAi
(x)(30a)

=
1

∑N
i=1 m(Ai)

m(Ai)(30b)

and the entropy (11) and co–entropy (13) associated with π respectively as

H(π) = log |X | −
1

|X |

N
∑

i=1

m(Ai) log m(Ai)(31a)

E(π) =
1

|X |

N
∑

i=1

m(Ai) log m(Ai)(31b)



12 D. BIANUCCI, G. CATTANEO, AND D. CIUCCI

with the standard result ∀π ∈ Π(X), H(π) + E(π) = log |X |.

4.2. Entropy of a covering: a first approach. To any covering γ = {B1, B2, . . . , BN} it is
possible to associate the mapping n : X 7→ N which counts the number of occurrences of the
element x in γ according to the definition

(32) ∀x ∈ X, n(x) :=

N
∑

i=1

χBi
(x)

Moreover, to any subset Bi of the covering γ one can introduce the corresponding fuzzy set
ωB1

: X 7→ [0, 1] defined as

(33) ∀x ∈ X, ωBi
(x) :=

1

n(x)
χBi

(x)

Remark 8. Let us note that in the particular case of a partition π of X , described by the crisp
identity resolution C(π) = {χA1

, χA2
, . . . , χAN

} the number of occurrence of any point x expressed
by (32), taking into account (29), is the identically 1 constant function ∀x ∈ X, n(x) = 1, and so
the fuzzy set (33) is nothing else than the characteristic function itself: ωAi

= χAi
.

This as a proof that the fuzzy sets of (33) are a generalization in the context of coverings
of the representation of a partition by the identity resolution consisting of the corresponding
characteristic functions. This is further one strengthened by the following result which assures
that this fuzzy set representation of any covering is always an identity resolution.

Proposition 4.1. The collection of fuzzy mappings F(γ) := {ωBi
∈ [0, 1]X : i = 1, 2, . . . , N}

generated by a covering γ = {Bi : i = 1, 2, . . . , N} of the universe X according to (33), is an
identity resolution, in the sense that

∀x ∈ X,

N
∑

i=1

ωBi
(x) = 1

If one denotes by 1 the identically 1 mapping (∀x ∈ X, 1(x) = 1), then the previous identity

resolution condition can be expressed as the functional identity
∑N

i=1 ωBi
= 1.

Proof. Indeed, for every x ∈ X one has
∑N

i=1 ωBi
(x) = 1

n(x)

∑N
i=1 χBi

(x), and the thesis follows

from (32). �

The measure of the generic “event” Bi of the covering γ is then defined as follows

(34) m(Bi) :=
∑

x∈X

ωBi
(x) =

∑

x∈X

1

n(x)
χBi

(x)

In this way we have defined a covering measure on the collection of all elementary events from the
covering γ by the mapping m : {B1, B2, . . . , BN} 7→ R+.

Proposition 4.2. Let γ = {B1, B2, . . . , BN} be a covering of the universe X, then the now
introduced measure mapping satisfies the normalization condition:

(35)

N
∑

i=1

m(Bi) = |X |

Moreover, for any elementary event Bi of the covering one has that:

(36) 0 ≤ m(Bi) ≤ |Bi| ≤ |X |
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Proof.

N
∑

i=1

m(Bi) =

N
∑

i=1

(

∑

x∈X

ωBi
(x)
)

=

N
∑

i=1

(

∑

x∈X

1

n(x)
χBi

(x)
)

=
∑

x∈X

1

n(x)

(

N
∑

i=1

χBi
(x)
)

=
∑

x∈X

n(x)

n(x)
= |X |

Moreover, from the relationship 1/n(x) ≤ 1 true whatever be x ∈ X it follows that

m(Bi) =
∑

x∈X

1

n(x)
χBi

(x) ≤
∑

x∈X

χBi
(x) = |Bi|

�

If one introduces the quantities p(Bi) := 1
|X|m(Bi), from (35) and (36) it follows that the vector

~p(γ) = (p(B1), p(B2), . . . , p(BN )) defines a probability distribution induced by the covering γ. In
particular, it results that

(37) p(Bi) =
1

|X |
m(Bi) =

1

|X |

∑

x∈X

ωBi
(x) =

1

|X |

∑

x∈X

1

n(x)
χBi

(x)

The entropy of this probability distribution induced from the covering γ is then the real non–
negative quantity

(38) 0 ≤ H(γ) = −
N
∑

i=1

p(Bi) log p(Bi) ≤ log N

Trivially, by (37), one gets that

(39) H(γ) = log |X | −
1

|X |

N
∑

i=1

m(Bi) log m(Bi)

and so also in this case we can introduce the co–entropy of the covering γ as the quantity

(40) E(γ) =
1

|X |

N
∑

i=1

m(Bi) log m(Bi)

obtaining from (39) the following identity

(41) ∀γ ∈ Γ(X), H(γ) + E(γ) = log |X |

which is an extension to coverings of the identity (14) previously proved for any possible parti-
tion. Also in this case the “entropy” E(γ) complements the original entropy H(γ) with respect
to the constant quantity log |X |, invariant with respect to the choice of the covering γ. This
co–entropy refers to the measure distribution (or non normalized probability distribution) ~m(γ) =
(

m(B1), m(B2), . . . ,

m(BN )
)

for which the following hold: (1) every m(Bi) ≥ 0; (2)
∑N

i=1 m(Bi) = log |X |. More-

over, the corresponding (normalized) probability distribution ~m(γ)/|X | =
(

m(B1)/|X |, m(B2)/|X |,

. . . , m(BN )/|X |
)

, by the (37), coincides with the original probability distribution ~p(γ) = (p(B1),
p(B2), . . . , p(BN )).

Let us note that differently from the partition case, the now introduced co–entropy of a covering
might have negative terms of the sum, precisely when m(Bi) < 1. And thus, the withdraw of this
co–entropy is that it could assumes negative values.

Example 4.1. In the universe X = {1, 2, 3}, let us consider the covering γ = {{1}, {1, 2}, {2, 3}, {2}}.
Then, E(γ) ∼= −0.2314 and H ∼= 1, 8163, and so E(γ) + H(γ) ∼= 1.5850 ∼= log 3.
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Finally, the difference between partitions and coverings lies in the different definition of the
measure m according to

∀Ai ∈ π : m(Ai) =
∑

x∈X

χAi
(x) = |Ai| and ∀Bi ∈ γ : m(Bi) =

∑

x∈X

1

n(x)
χBi

(x)

Remark 9. Note that in the measure of elementary events Bi from a covering γ a decisive role is
played by the number n(x) for x running in X .
Of course, since any partition π is also a covering one can apply the (39) to π but the result coincide
with the (11), i.e., the just introduced covering entropy is a generalization of the standard notion
of partition entropy.

4.3. A second entropy of coverings inspired by the Liang and Xu approach. An inter-
esting approach to entropy of the covering induced by an incomplete information system has been
recently introduced by Liang and Xu (LX) in [LX00]. Before entering into discussion of the LX
approach, but inspired by it, we introduce in this subsection a second definition of covering en-
tropy (the original LX approach to entropy applied to the similarity covering from any incomplete
information system will be treated in the sequel). Precisely, an approach to entropy of coverings
different from the one discussed in section 4.2 (also in this case based on another possible gen-
eralization to coverings of what happens in the case of partitions) can be obtained taking into
account the counting measure mc(Y ) = |Y | for any subset Y of X . Let us now consider a covering
γ = {B1, B2, . . . , BN} of the universe X . The total outer measure of X induced from γ is then
defined as the non–negative quantity

(42) m∗(γ) :=
N
∑

i=1

|Bi| ≥ |X | = mc(X)

and a new probability of occurrence of the elementary event Bi from the covering γ is introduced
according to

(43) p∗(Bi) :=
|Bi|

m∗(γ)

The vector ~p∗(γ) :=
(

p∗(B1), p
∗(B2), . . . , p

∗(BN )
)

is a probability distribution since trivially:

(1) every p∗(Bi) ≥ 0; (2)
∑N

i=1 p∗(Bi) = 1. Then the entropy (6) in the case of this probability
distribution is

(44) H∗(γ) = log m∗(γ) −
1

m∗(γ)

N
∑

i=1

|Bi| log |Bi|

and so, introducing the co–entropy

(45) E∗(γ) :=
1

m∗(γ)

N
∑

i=1

|Bi| log |Bi|

the above equation (44) leads to the identity

(46) ∀γ ∈ Γ(X), H∗(γ) + E∗(γ) = log m∗(γ)

i.e., whatever be the covering γ of X the “entropy” E∗(γ) is complementary to the original entropy
H∗(γ) with respect to the quantity log m∗(γ), which in this approach depends from the choice of
the covering γ. The main difference of the co–entropy (45) with respect to the previous co–entropy
(40) is that now E∗(γ) ≥ 0 for every covering γ.

From the fact that |X | ≤ m∗(γ) and the monotonicity of the log function, by the comparison
of (46) with (41) we obtain that

(47) ∀γ ∈ Γ(X), H(γ) + E(γ) ≤ H∗(γ) + E∗(γ)

with the possibility of E(γ) < 0, whereas we stress that ∀γ, H(γ) ≥ 0.
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Remark 10. Also in this case one can apply all the obtained results to the case of partitions (which
are particular coverings). The total outer measure (42) of a partition π is just the cardinality of
the universe: ∀π ∈ Π(X), m∗(π) = |X |.
Thus, in the case of a partition the entropy (44) coincides with the standard partition entropy
of equation (11): ∀π ∈ Π(X), H(π) = H∗(π), obtaining also in this case that the new covering
entropy is a generalization of the partition entropy.

4.4. A third approach to entropy of coverings: the “global” LX–like. If instead of taking
into account the probability (43), but always inspired by [LX00], one considers the new probability
of the elementary event Bi defined as

pLX(Bi) :=
|Bi|

|X |

then the probability vector ~pLX(γ) := (pLX(B1), pLX(B2), . . . , pLX(BN )) does not define a prob-

ability distribution also if for any event Bi, 0 ≤ pLX(Bi) ≤ 1, since in general
∑N

i=1 pLX(Bi) ≥ 1.
Notwithstanding this withdraw one can try to define, in analogy with (11), the pseudo–entropy in
the usual way

H
(g)
LX(γ) := −

N
∑

i=1

pLX(Bi) log pLX(Bi) = m∗(γ)
log |X |

|X |
−

1

|X |

N
∑

i=1

|Bi| log |Bi|

Thus, introduced the quantity

(48) E
(g)
LX(γ) :=

1

|X |

N
∑

i=1

|Bi| log |Bi|

we obtain the following identity

(49) ∀γ ∈ Γ(X), H
(g)
LX(γ) + E

(g)
LX(γ) = m∗(γ)

log |X |

|X |

and so the quantity E
(g)
LX(γ) is complementary to the pseudo–entropy H

(g)
LX(γ) (in other words it is

a pseudo co–entropy) with respect to the quantity m∗(γ) log |X|
|X| , which depends from the covering

γ by the factor m∗(γ). Since log |X | ≤ m∗(γ) log |X |/|X |, then we get

(50) ∀γ ∈ Γ(X), H(γ) + E(γ) ≤ H
(g)
LX(γ) + E

(g)
LX(γ)

Summarizing, from (47) and (50) we have that

∀γ ∈ Γ(X), H(γ) + E(γ) ≤ min{H
(g)
LX(γ) + E

(g)
LX(γ), H∗(γ) + E∗(γ)}

The order relationship between H
(g)
LX(γ) + E

(g)
LX(γ) and H∗(γ) + E∗(γ) depends obviously from

the order relationship between log |X |/|X | and log m∗(γ)/m∗(γ), where the former is constant and
the latter depends from the involved covering. Since the function f(x) = log x/x is monotonically
decreasing for x ≥ 2, if the cardinality of the universe is not trivial in the sense that |X | ≥ 2,
from the condition |X | ≤ m∗(γ) it follows that log m∗(γ)/m∗(γ) ≤ log |X |/|X |, i.e., log m∗(γ) ≤
m∗(γ) log |X |/|X |. Then, from (46) and (49) we obtain

(51) If |X | ≥ 2, then ∀γ ∈ Γ(X), H∗(γ) + E∗(γ) ≤ H
(g)
LX(γ) + E

(g)
LX(γ)

and so (50) and (51) lead to: If |X | ≥ 2, then ∀γ ∈ Γ(X), max{H(γ)+E(γ), H∗(γ)+E∗(γ)} ≤

H
(g)
LX(γ) + E

(g)
LX(γ). We can conclude that under the condition of a sufficiently rich universe the

following order chain holds:

If |X | ≥ 2, then ∀γ ∈ Γ(X),

H(γ) + E(γ) ≤ H∗(γ) + E∗(γ) ≤ H
(g)
LX(γ) + E

(g)
LX(γ)

As to the behavior of the co–entropies (45) and (48), trivially E∗(γ) = |X|
m∗(γ)E

(g)
LX(γ), and so

from the fact that 0 ≤ |X |/m∗(γ) ≤ 1 we get that ∀γ ∈ Γ(X), E∗(γ) ≤ E
(g)
LX(γ).

On the other hand, comparing (40) with (45), from the fact that the function h(p) = p log p
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is negative for 0 ≤ p < 1 and positive and monotonically increasing for p > 1, we get that
if m(Bi) ≤ 1 then m(Bi) log m(Bi) ≤ 0 ≤ |Bi| log |Bi| (recalling that |Bi| ≥ 1). Moreover, if
m(Bi) > 1 then from (36) it follows that also in this case m(Bi) log m(Bi) ≤ |Bi| log |Bi|. Thus,

we can state that 1
m∗(γ)

∑N
i=1 m(Bi) log m(Bi) ≤ 1

m∗(γ)

∑N
i=1 |Bi| log |Bi|. From this result we

get ∀γ ∈ Γ(X), |X|
m∗(γ)E(γ) ≤ E∗(γ). Summarizing, we have obtained the following order chain

involving the previously introduced co–entropies

∀γ ∈ Γ(X),
|X |

m∗(γ)
E(γ) ≤ E∗(γ) ≤ E

(g)
LX(γ)

Taking into account that for any elementary event it is |Bi| ≤ |X |, and so m∗(γ) =
∑N(γ)

i=1 |Bi| ≤
N(γ) · |X | ≤ |P(X)| · |X | (with |P(X)| the cardinality of the power set P(X) of the universe X),
the above chain of inequalities can be further on specialized by

∀γ ∈ Γ(X),
1

|P(X)|
E(γ) ≤ E∗(γ) ≤ E

(g)
LX(γ)

Similarly, from (44) we get that (m∗(γ)/|X |)H∗(γ) = m∗(γ)
|X| log m∗(γ) − 1

|X|

∑

|Bi| log |Bi| ≥
m∗(γ)
|X| log |X | − 1

|X|

∑

|Bi| log |Bi| and so

∀γ ∈ Γ(X), H
(g)
LX(γ) ≤

m∗(γ)

|X |
H∗(γ) ≤ |P(X)| · H∗(γ)

5. Partial quasi–order relations on coverings

Generalizing the standard binary relation on the set of all partitions in the form (18a), we
introduce the following definition about coverings.

Definition 5.1. On the set of all coverings Γ(X) of the universe X the following binary relation:

(52) γ � δ iff ∀Ci ∈ γ, ∃Dj ∈ δ : Ci ⊆ Dj

is a quasi–order relation, i.e., a reflexive and transitive, but in general non anti–symmetric relation
[Bir67, p. 20]. In this case, we will say that γ is finer than δ or that δ is coarser than γ. The
corresponding strict quasi–order relation is γ ≺ δ iff γ � δ and γ 6= δ.

Trivially, the discrete partition πd and the trivial partition πt are such that for every other
covering γ of X one has that πd � γ � πt. In general, the two conditions γ � δ and δ � γ do not
imply that γ = δ. When this happen we denote this fact by γ ≃ δ; this is of course an equivalence
relation and we will say that the two coverings are equivalent.

Remark 11. A covering is said to be genuine iff it does not contain redundant elements, formally
iff condition Ci ⊆ Cj implies Ci = Cj .
In the class of all genuine coverings Γg(X) the binary relation � is an ordering. Indeed, let γ, δ
be two genuine coverings of X such that γ � δ and δ � γ. Then for ∀C ∈ γ, and using γ � δ, we
have that ∃D ∈ δ: C ⊆ D; but from δ � γ it follows that there is also a C′ ∈ γ such that D ∈ C′,
and so C ⊆ D ⊆ C′ and by the genuine condition of γ necessarily C = D. Vice versa, for every
D ∈ δ there exists C ∈ γ such that D = C.

The extension to the case of coverings of the ordering on partitions (18b), leads to a quasi-order
relation on Γ(X) which is different from the above (52). This quasi ordering is formalized by the
following.

Definition 5.2. On the set of all coverings Γ(X) of the universe X the following binary relation
defines a quasi–ordering:

γ ≪ δ iff ∀D ∈ δ, ∃{C1, C2, . . . , Cp} ⊆ γ : D = C1 ∪ C2 ∪ . . . ∪ Cp

Also in this case πd ≪ γ ≪ πt whatever be the covering γ.
In general it is not possible to state any relationship between the now introduced two quasi–

orderings.
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Example 5.1. In the universe X = {1, 2, 3, 4, 5, 6, 7, 8}, let us consider the two coverings γ =
{{1, 2, 5}, {3, 4}, {5, 6}, {6, 7, 8}} and δ = {{1, 2, 3, 4, 5}, {3, 4, 6, 7, 8}}. Trivially, γ ≪ δ, but with
respect to {5, 6} ∈ γ there is no D ∈ δ such that {5, 6} ⊆ D, i.e., γ � δ.

On the other hand, in the universe X ′ = {1, 2, 3, 4} let us consider the two coverings γ′ =
{{1}, {2, 3}, {3, 4}} and δ′ = {{1, 2}, {2, 3, 4}}. Then, γ′ � δ′, but with respect to {1, 2} ∈ δ′ there
is no family {Ci1 , . . . , Cip

} ⊆ γ′ such that {1, 2} = Ci1 ∪ . . . ∪ Cip
, i.e., γ′ 6≪ δ′.

5.1. Application to the similarity relation induced by a covering. For any covering γ =
(C1, C2, . . . , CN ) of the universe X ,

(M1) let us introduce the binary relation of γ–similarity Sγ defined as

(x, y) ∈ Sγ iff ∃C ∈ γ : x, y ∈ C

This relation is reflexive and symmetric, but in general is not transitive;
(M2) for any element x ∈ X let us define the corresponding similarity class generated by x as

follows:

γu(x) = {y ∈ X : (y, x) ∈ Sγ} = ∪{C ∈ γ : x ∈ C}

(M3) the collection γu = {γu(x) : x ∈ X} of all such similarity classes is a covering of X , called
the upper covering generated by γ, for which both γ � γu and γ ≪ γu hold.

Extending to the case of coverings the binary relation (18c) introduced on the set of partitions,
we can introduce a third quasi–order relation on Γ(X) as follows:

(53) γ Eu δ iff ∀x ∈ X, γu(x) ⊆ δu(x)

Also this binary relation is not antisymmetric.

Example 5.2. In the universe X = {1, 2, 3, 4, 5, 6} let us consider the two (genuine) coverings
γ = {{1, 2, 3, 5, 6}, {2, 4, 5, 6}} and δ = {{1, 2, 3, 5, 6}, {4, 5, 6}, {2, 4, 6}}. Trivially, δ � γ, but
γ 6� δ.

Then γu(1) = γu(3) = {1, 2, 3, 5, 6}, γu(2) = γu(5) = γu(6) = X , γu(4) = {2, 4, 5, 6} and
δu(1) = δu(3) = {1, 2, 3, 5, 6}, δu(2) = δu(5) = δu(6) = X , δu(4) = {2, 4, 5, 6}. Thus, γ Eu δ and
δ Eu γ, but γ 6= δ.

In a dual way, given a covering γ of the universe X , for every point x ∈ X it is possible to
introduce the subset γl(x) := ∩{C ∈ γ : x ∈ C}. And so the collection γl := {γl(x) : x ∈ X} is
another covering of X , called the lower covering generated by γ, such that γl � γ and γl ≪ γ.
Summarizing, and owing to the transitivity of the involved quasi–orderings, we can state that
whatever be the covering γ of X one has that

(54) γl � γ � γu and γl ≪ γ ≪ γu

Moreover, it is possible to assign to any point x ∈ X the granular rough approximation of x
induced by γ as the pair rγ(x) := 〈γl(x), γu(x)〉. The set γl(x) (resp., γu(x)) is the lower or inner
(resp., upper or outer) x–granule generated by γ. Note that

∀x ∈ X, γl(x) ⊆ γu(x)

Similarly to (53) we define the following quasi–order relation on Γ(X) as:

(55) γ El δ iff ∀x ∈ X, γl(x) ⊆ δl(x)

Thus, we introduce a stronger quasi–order relation on Γ(X) which satisfies both (53) and (55),
as follows:

(56) γ E δ iff γ El δ and γ Eu δ

Example 5.3. Let us consider the example 5.2, where we have shown that δ � γ and δ Eu γ.
Moreover, γl(1) = γl(3) = {1, 2, 3, 5, 6}, γl(2) = γl(5) = γl(6) = {2, 5, 6}, γl(4) = {2, 4, 5, 6} and
δl(1) = δl(3) = {1, 2, 3, 5, 6}, δl(2) = {2, 6}, δl(4) = {4, 6}, δl(5) = {5, 6}, δl(6) = {6}. It follows
that also δ El γ, and thus δ E γ.

Let us observe that γ � δ implies γ Eu δ, but in general it does not imply that also γ El δ.
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Example 5.4. In the universe X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, let us consider the following two
(genuine) coverings γ1 = {B1 = {1, 2, 3, 4, 5, 6}, B2 = {4, 5, 6, 7, 8, 9, 10}} and γ2 = {A1 =
{1, 2, 3, 4, 5, 6, 7, 8, 9}, A2 = {4, 5, 6, 7, 8, 9, 10}}. Also in this case, we have that γ1 � γ2, and
that γ1 and γ2 are not comparable with respect to the quasi–ordering ≪ on coverings of X :
γ1 6≪ γ2 and γ2 6≪ γ1. Moreover, uγ1

(1) = uγ1
(2) = uγ1

(3) = B1, uγ1
(4) = uγ1

(5) = uγ1
(6) = X ,

uγ1
(j) = B2 for all j = 7, 8, 9, 10 and uγ2

(1) = uγ2
(2) = uγ2

(3) = A1, uγ2
(10) = A2, uγ2

(i) = X
for all others i 6= 1, 2, 3, 10, and thus γ1 Eu γ2

Let us now consider the lower granules: we have lγ1
(1) = lγ1

(2) = lγ1
(3) = B1, lγ1

(4) = lγ1
(5) =

lγ1
(6) = {4, 5, 6}, lγ1

(j) = B2 for all j = 7, 8, 9, 10 and lγ2
(1) = lγ2

(2) = lγ2
(3) = A1, lγ2

(10) = A2,
lγ2

(i) = {4, 5, 6, 7, 8, 9} for all others i 6= 1, 2, 3, 10. In this case we have that γ1 5l γ2 since,
for instance, lγ1

(7) = lγ1
(8) = lγ1

(9) = B2 * lγ2
(7) = lγ2

(8) = lγ2
(9) = {4, 5, 6, 7, 8, 9} and also

γ2 5l γ1 since, for instance, lγ2
(1) = A1 * B1 = lγ1

(1).

If γ Eu δ (with γ � δ), then in general it is not true that also γ El δ.

Example 5.5. In example 5.2 we have directly verified that γ Eu δ (with γ � δ). But in this case
γ 5l δ, since for instance γl(6) = {2, 5, 6} * {6} = δl(6).

As a completion of the above covering rough approximations (54), it is now trivial to show that
for every covering γ also

γl E γ E γu

Thus, once constructed the two families of coverings Γl(X) := {γl : γ ∈ Γ(X)} and Γu(X) :=
{γu : γ ∈ Γ(X)}, the pair r(γ) := 〈γl, γu〉 is the rough approximation of the covering γ with
respect to all quasi–orderings �, ≪, and E in the rough approximation space (see [Cat98, CC06])
〈Γ(X), Γl(X), Γu(X)〉 consisting of the collection Γ(X) of all approximable coverings, and the
collections Γl(X) and Γu(X) of inner and outer definable coverings. Of course, any partition
π ∈ Π(X) is a sharp covering since its rough approximation r(π) = 〈πl, πu〉 satisfies the sharpness
condition πl = πu = π.

Remark 12. On Γ(X) it is possible to introduce a further quasi–order relation (and compare with
equation (56)) according to

(57) γ ⋐ δ iff δ El γ and γ Eu δ

The following holds:

(58) γ ⋐ δ implies ∀x ∈ X, δl(x) ⊆ γl(x) ⊆ (???) ⊆ γu(x) ⊆ δu(x)

where the question marks mean some undefinable, an so hidden, covering granule γ(x) intermediate
between the corresponding lower and upper granules. In this way we have the “local” behavior:

∀x ∈ X, rγ(x) := 〈γl(x), γu(x)〉 ⊑ 〈δl(x), δu(x)〉 =: rδ(x)

Where ⊑ means that for any point x the local approximation rγ(x) given by the covering γ is
better than the local approximation rδ(x) given by the covering δ, according to (58). This behavior
can be formalized by the compact global notation r(γ) ⊑ r(δ) and so we can summarize

γ ⋐ δ implies r(γ) ⊑ r(δ)

5.2. Some useful counter–examples of entropies and co–entropies behavior with re-

spect to the quasi–orderings. Unfortunately, the entropies (resp., co–entropies) expressed by
(39) and (44) (resp., (40) and (45)) do not behave regularly, i.e., monotonically, with respect to
the partial quasi–order relations among coverings expressed by (52) (the behavior with respect to
the quasi–ordering (53) needs some more deep investigations, which are outside the scope of the
present paper). The following two examples highlight this irregular behavior.

Example 5.6. In the universe X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} let us consider the (genuine) cover-
ings treated in example 5.4 for which we recall that γ1 � γ2, but γ1 and γ2 are not comparable
with respect to both the quasi–orderings ≪ and El. Then with respect to � we have the desired

behavior of monotonicity for the co–entropies E, E∗ and E
(g)
LX , and of anti–monotonicity for the

entropies H , H∗ and H
(g)
LX , as illustrated in table 1.



ENTROPIES OF COVERINGS 19

E H E∗ H∗ E
(g)
LX H

(g)
LX

γ1 2.32915 0.99277 2.70471 0.99573 3.51613 0.80238

γ2 2.35097 0.97095 3.01130 0.98870 4.81808 0.49700

Table 1. Entropies and co–entropies for γ1 and γ2, with γ1 � γ2 and γ1 Eu γ2,
but γ1 5l γ2 and γ2 5l γ1; in particular E(γ1) < E(γ2), E∗(γ1) < E∗(γ2), and

E
(g)
LX(γ1) < E

(g)
LX(γ2).

Let us now consider in the same universe the two (genuine) coverings δ1 = {B1 = {1, 2}, B2 =
{2, 3, 4, 5, 6, 7, 8, 9, 10}} and δ2 = {A1 = {1, 2, 3}, A2 = B2 = {2, 3, 4, 5, 6, 7, 8, 9, 10}}.
Also in this case δ1 � δ2, with δ1 and δ2 non–comparable with respect to the quasi–ordering
≪. Moreover, uδ1

(1) = B1, uδ1
(2) = X , uδ1

(j) = B2 for all others j 6= 1, 2, and uδ2
(1) = A1,

uδ2
(2) = uδ2

(3) = X , uδ2
(i) = A2 for all others i 6= 1, 2, 3; and thus δ1 Eu δ2.

The corresponding lower granules in this case are: lδ1
(1) = B1, lδ1

(2) = 2, lδ1
(j) = B2 for all

others j 6= 1, 2, and lδ2
(1) = A1, lδ2

(2) = lδ2
(3) = {2, 3}, lδ2

(i) = A2 for all others i 6= 1, 2, 3; and
thus δ1 5l δ2. In fact we have that lδ1

(3) = B2 * lδ2
(3) = {2, 3}. Note that we also have δ2 5l δ1

since, for instance, lδ2
(1) = A1 * lδ1

(1) = B1.
As illustrated in table 2, in this case we have the undesired behavior of monotonicity for the

entropies H and H∗, and of anti–monotonicity for the co–entropies E and E∗ with respect to both

� and Eu. Whereas, as it happened in the previous case, also now the co–entropy E
(g)
LX behaves

as expected.

E H E∗ H∗ E
(g)
LX H

(g)
LX

δ1 2.71209 0.60984 2.77539 0.68404 3.05293 0.60119

δ2 2.60000 0.72193 2.77368 0.81128 3.32842 0.65789

Table 2. Entropies and co–entropies for δ1 and δ2, with δ1 � δ2, δ1 Eu δ2, but
δ1 5l δ2 and δ2 5l δ1; in particular E(δ1) > E(δ2) and E∗(δ1) > E∗(δ2), but as

expected E
(g)
LX(δ1) < E

(g)
LX(δ2).

In conclusion of these examples, there is no expected monotonicity regularity of the involved
entropies (or co–entropies) H and H∗ (resp., E and E∗) with respect to the quasi–orderings �
and Eu on coverings. This withdraw occurs also for the global LX co–entropy of (48),

Example 5.7. Making reference to the examples 5.2 and 5.3 we have the following table 3
involving the introduced global entropies and co–entropies:

E H E∗ H∗ E
(g)
LX H

(g)
LX

δ 1.14944 1.43552 1.91995 1.53948 3.51990 1.21920

γ 1.60509 0.97987 2.17885 0.99108 3.26827 0.60917

Table 3. Entropies and co–entropies for γ and δ, with δ � γ and δ E γ, but

E
(g)
LX(γ) < E

(g)
LX(δ).

6. LX entropies and co–entropies generated by a covering

We have seen that from any covering γ of the universe X it is possible to induce its lower γl and
upper γu coverings consisting of the lower granules γl(x) and upper granules γu(x) for x ranging
on the space X . In this way, besides the (globally defined) LX co–entropy (48) (and generalizing
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the procedure of subsection 3.1) it is possible to introduce two (locally defined) LX entropies
(resp., co–entropies), named the lower and upper LX entropies (resp., co–entropies) respectively
according to the following:

HLX(γj) : = −
∑

x∈X

|γj(x)|

|X |
log

|γj(x)|

|X |
for j = l, u(59a)

ELX(γj) : =
1

|X |

∑

x∈X

|γj(x)| log |γj(x)| for j = l, u(59b)

with the relationships

HLX(γj) + ELX(γj) = (
∑

x∈X

|γj(x)|) ·
log |X |

|X |

The following holds.

Proposition 6.1. Let γ1 and γ2 be two coverings of X such that γ1 ⊳j γ2 for j = l, u, then
ELX(γ1j) < ELX(γ2j). In particular, with respect to the quasi–ordering (57) we have that γ1 ⋐ γ2

implies

(60) ELX(γ2l) ≤ ELX(γ1l) ≤ (???) ≤ ELX(γ1u) ≤ ELX(γ2u)

Proof. Trivial consequence of the fact that for every x ∈ X , γ1j(x) ⊆ γ2j(x), with 1 ≤ |γ1j(x)| ≤
|γ2j(x)|. So we are in the range x ∈ [1,∞) in which the mapping x log x is monotonically increasing,
and from this we have that ELX(γ1j) ≤ ELX(γ2j).

Moreover, γ1 ⊳ γ2 means that there exists a x0 ∈ X : γ1j(x0) ⊂ γ2j(x0), i.e., such that
|γ1j(x0)| < |γ2j(x0)|. From this fact it follows that ELX(γ1j) < ELX(γ2j). �

Remark 13. This result cannot be extended to the entropy (59a), since only in the range x ∈ [0, 1/e]
the quantity x log x is monotonically increasing, whereas in the other range x ∈ [1/e, 1] it is
monotonically decreasing.

Since for every point x ∈ X the following set theoretic inclusions hold: γl(x) ⊆ γu(x), with
1 ≤ |γl(x)| ≤ |γu(x)| ≤ |X |, it is possible to introduce the rough co–entropy approximation of the
covering γ as the ordered pair of non–negative numbers:

rE(γ) := 〈ELX(γl), ELX(γu)〉 , with 0 ≤ ELX(γl) ≤ ELX(γu) ≤ |X | · log |X |

and so from (60) we have that

γ1 ⋐ γ2 implies rE(γ1) ⊑ rE(γ2)

where as usual for any 4–uple of non negative real numbers rl, ru, pl, pu ∈ R+, with rl ≤ ru and
pl ≤ pu, we denote by 〈rl, ru〉 ⊑ 〈pl, pu〉 the fact that pl ≤ rl ≤ ru ≤ pu.

Example 6.1. In the case of the coverings of example 5.4 (and compared with the behavior of
table 1) we have the results of the LX entropy (59a) co–entropy (59b) for γ1 and γ2 illustrated in
table 4.

ELX HLX

(γ1)l 13.93999 4.33061

(γ2)l 19.82981 3.42369

(γ1)u 22.47931 2.76734

(γ2)u 30.45551 0.77061

Table 4. Entropies and co–entropies for γ1 and γ2 (with γ1 � γ2 and γ1 Eu γ2,
but γ1 5l γ2 and γ2 5l γ1); in particular ELX(γ1u) ≤ ELX(γ2u).
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Let us now consider the coverings of example 5.6. The LX entropy (59a) and co–entropy (59b)
for δ1 and δ2 are illustrated in table 5 .

ELX HLX

(δ1)l 23.02346 1.89100

(δ2)l 20.84602 2.40784

(δ1)u 25.45760 1.78221

(δ2)u 27.08987 1.47871

Table 5. Entropies and co–entropies for δ1 and δ2 (with δ1 � δ2 and δ1 Eu δ2,
but δ1 5l δ2 and δ2 5l δ1 ); in particular ELX(δ1u) ≤ ELX(δ2u).

Example 6.2. Making reference to the examples 5.2 and 5.3 we have the following table 6:

ELX HLX

δl 4.86988 2.45418

γl 7.58066 2.32837

δu 12.95810 0.82837

γu 12.95810 0.82837

Table 6. Entropies and co–entropies for γ and δ, with γ � δ and δ E γ; according
to (60) we have that ELX(δl) < ELX(γl) < ELX(γu) = ELX(δu).

6.1. Application to incomplete information system. As anticipated in section 1, given an
incomplete information system IS := 〈X, Att, F 〉, for any family A of attributes it is possible
to define on the objects of X the similarity relation SA given in equation (5). This relation
generates a covering of the universe X through the granules of information (also similarity classes)
sA(x) = {y ∈ X : (x, y) ∈ SA}, since X = ∪{sA(x) : x ∈ X} and x ∈ sA(x) 6= ∅. In
the sequel this covering will be denoted by γ(A) := {sA(x) : x ∈ X} and their collection by
Γ(IS) := {γ(A) ∈ Γ(X) : A ⊆ Att}. With respect to this covering γ(A), and in analogy with
(59), we can introduce the two LX entropy and co–entropy as follows:

(61) HLX(γ(A)) =
∑

x∈X

|sA(x)|

|X |
log

|sA(x)|

|X |
and ELX(γ(A)) =

1

|X |

∑

x∈X

|sA(x)| · log |sA(x)|

Let us note that in general we do not obtain a genuine covering, i.e., a covering such that
condition H ⊆ K implies H = K for arbitrary pair of its elements H, K.

Example 6.3. Let us consider the incomplete information system of table 7.

Flat Price Rooms Down-Town Furniture
f1 high 2 yes *
f2 high * yes no
f3 * 2 yes no
f4 low * no no
f5 low 1 * no
f6 * 1 yes *

Table 7. Flats incomplete information system.
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If one considers the set of all attributes (i.e., A = Att(X)) and the induced similarity relation
according to (5) we have the following similarity classes (in which for the sake of simplicity we
omit the denote the subscript A):

s(f1) = s(f3) = {f1, f2, f3}
s(f2) = {f1, f2, f3, f6} s(f4) = {f4, f5}
s(f5) = {f4, f5, f6} s(f6) = {f2, f5, f6}

This covering is not genuine since, for instance, s(f1) = s(f3) ⊂ s(f2).
Clearly, the collection γ = {s(fj) : j = 1, . . . , 6} is a covering of X . Applying to this covering the

considerations introduced in section 5.1, one has the following lower and upper granules generated
by any point of the universe:

γl(f1) = γl(f3) = {f1, f2, f3} γu(f1) = γu(f3){f1, f2, f3, f6}
γl(f2) = {f2} γu(f2) = {f1, f2, f3, f5, f6}

γl(f4) = {f4, f5} γu(f4) = {f4, f5, f6}
γl(f5) = {f5} γu(f5) = {f2, f4, f5, f6}
γl(f6) = {f6} γu(f6) = X

with the general behavior

(62) ∀fi ∈ X, γl(fi) ⊆ s(fi) ⊆ γu(fi)

Let us observe that lower granules constitute a covering, and the same happens with the upper
granules. We can thus compute the corresponding entropies HLX and co–entropies ELX . We
denote these two particular coverings respectively by γl and γu of X . From (62) we have that
γl � γ � γu. In table 8 we can find the entropies and co–entropies (59) and (61) relative to γ, γl

and γu of the present example.

ELX HLX

γl 1.91830 2.82080

γ 4.83659 2.91830

γu 9.31238 1.88912

Table 8. Entropies and co–entropies for γ, γl and γu induced by A = Att(X),
with the non–monotonic behavior of the entropy HLX .

Let us now consider the family of attributes B = {Price, Rooms}. As in the previous case of
A = Att(X), let us consider the induced similarity relation according to (5). Thus we obtain the
covering δ = {sB(fj) : j = 1, . . . , 6} of X , constituted by the similarity classes:

sB(f1) = {f1, f2, f3} sB(f2) = {f1, f2, f3, f6}
sB(f3) = {f1, f2, f3, f4} sB(f4) = {f3, f4, f5, f6}

sB(f5) = {f4, f5, f6} sB(f6) = {f2, f4, f5, f6}

The lower and upper granules generated by any point of the universe are:

lδ(f1) = {f1, f2, f3} uδ(f1) = {f1, f2, f3, f4, f6}
lδ(f2) = {f2} uδ(f2) = X
lδ(f3) = {f3} uδ(f3) = X
lδ(f4) = {f4} uδ(f4) = X

lδ(f5) = {f4, f5, f6} uδ(f5) = {f2, f3, f4, f5, f6}
lδ(f6) = {f6} uδ(f6) = X

Let us observe that in this example we have that γ � δ, γ Eu δ, whereas we do not have γ El δ.
The entropies and co–entropies (59) and (61) for δl, δ and δu are illustrated in table 9.
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ELX HLX

δl 1.58496 2.72331

δ 6.91830 2.55990

δu 14.20973 0.43839

Table 9. Entropies and co–entropies for δ, δl and δu induced by B = {Price, Rooms}.

Now, we want to make some consideration and give some results about the LX-approach to en-
tropy in this context. Using the above definition of similarity classes, it is possible to define another
order relation among coverings generated by all possible subfamilies of attributes as follows:

(63) γ(A) ≤s γ(B) iff ∀x ∈ X, sA(x) ⊆ sB(x)

Clearly, if γ(A) ≤s γ(B) then γ(A) (resp., γ(B)) is finer (resp., coarser) than γ(B) (resp., γ(A))
inside Γ(IS). In a similar way a strict order relation can also be defined as

γ(A) <s γ(B) iff ∀x ∈ X, sγ(A)(x) ⊆ sγ(B)(x) and ∃x ∈ X : sγ(A)(x) 6= sγ(B)(x)

The following proposition states that there is a monotonic behavior between this order of coverings
and the pseudo co–entropy of equation (48).

Proposition 6.2. [LX00] Let IS := 〈X, Att, F 〉 be an incomplete information system and γ(A)
and γ(B) two coverings generated by the subsets of attributes A ⊆ Att and B ⊆ Att. If γ(A) ≤s

γ(B) (resp., γ(A) <s γ(B) ), then ELX(γ(A)) ≤s ELX(γ(B)) (resp., ELX(γ(A)) <s ELX(γ(B))).

Corollary 6.1. [LX00] Let 〈X, Att, F 〉 be an incomplete information system, and A, B two subsets
of attributes such that A ⊆ B. If γ(A) (resp., γ(B)) is the covering relative to attributes A (resp.,
B) then ELX(γ(A)) ≤s ELX(γ(B)).

7. Conclusions

In this work we presented several ways to generalize to the case of coverings the notions of
entropy and co-entropy usually defined for partitions. The aim is to be able to compare these
notions to the case of different coverings induced by the same incomplete information system.
Thus, some notions of quasi–order are introduced and it is proved that only the monotonicity of the
LX “local” co–entropies (59b) with respect to the orderings Ej and ⋐ behave as expected. On the
contrary, with a lot of counter–examples it is shown that all the involved covering entropies do not
preserve the anti–monotonicity with respect to any of the introduced quasi–orderings on coverings.
This asymmetric behavior leads to the conclusion that, differently from the case of partitions, it is
the notion of co–entropy which plays an important role with respect to a quantification of a local
notion of roughness in the case of coverings.

On this issue, some open problems still remain. For instance, we do not know whether there
is a monotonical (resp., anti–monotonical) behavior of co–entropy (resp., entropy) with respect to
the ordering ≪ in all the definitions introduced in the present work.

Finally, here we focused our attention to incomplete information systems and thus to the
similarity relation given in equation (5). As a future development, we plan to analyze partial
partitions of the universe induced by the “random variables” generated by incomplete information
systems.
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