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Abstract. Several algebraic structures (namely HW, BZMVdM , Stonean MV
and MV∆ algebras) related to many valued logical systems are considered and
their equivalence is proved. Four propositional calculi whose Lindenbaum–
Tarski algebra corresponds to the four equivalent algebraic structures are ax-
iomatized and their semantical completeness is given.

Introduction

Any propositional calculus gives a algebra (of equivalent propositions) which be-
longs to a certain variety. For instance, the Lindenbaum-Tarski algebra of classical
(intuitionistic, resp.) logic belongs to the variety generated by all Boolean (Heyt-
ing, resp.) algebras. As shown by C.C.Chang [9], the Lindenbaum-Tarski algebra
of  Lukasiewicz ℵ0-logic belongs to the variety of all MV-algebras. Conversely, let
us consider a variety K whose members are algebraic structures (of the same type)
conveniently equipped with a finite set of operations. The variety K can be thought
as the algebraic counterpart of a logical calculus whose Lindenbaum-Tarski algebra
belongs to K.

In this paper, after recalling the definition of HW-algebra (introduced in part
I) we will define three classes of algebraic structure (MV∆ algebras, Stonean MV
algebras and BZMVdM ) which we prove to be term-equivalent to HW-algebras.

In the final part we investigate the logical systems associated to these algebraic
structures.

Thus, the results obtained for one of these term-equivalent structures, can be
applied, mutas mutandi, to the others. In particular, Hajek’s completeness for MV∆

algebras [12] can be reported in terms of the logical systems based on HW-algebra,
Stonean MV algebra and BZMVdM -algebra.

As a corollary of our equivalence theorems we obtain that these logical calculi
turn out to have, up to syntactical translation, the same set of tautologies.

1. Heyting Wajsberg algebras and equivalent structures

We introduce and study the new structure of Heyting Wajsberg (HW) algebra [4,
5]. Its originality consists in the presence of two implication connectives as primitive
operators. Further some other structures are defined; in the next section they are
proved to be equivalent to HW algebras.
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1.1. HW algebras.

Definition 1.1. A system A = 〈A,→L,→G, 0〉 is a Heyting Wajsberg (HW) algebra
if A is a non empty set, 0 ∈ A and →L,→G are binary operators, such that, once
defined

1 := ¬0(1a)

¬a := a→L 0(1b)

∼a := a→G 0(1c)

a ∧ b := ¬((¬a →L ¬b) →L ¬b)(1d)

a ∨ b := (a→L b) →L b(1e)

the following are satisfied:

(HW1) a→G a = 1
(HW2) a→G (b ∧ c) = (a→G c) ∧ (a→G b)
(HW3) a ∧ (a→G b) = a ∧ b
(HW4) (a ∨ b) →G c = (a→G c) ∧ (b→G c)
(HW5) 1 →L a = a
(HW6) a→L (b→L c) = ¬(a →L c) →L ¬b
(HW7) ¬∼a→L ∼∼a = 1
(HW8) (a→G b) →L (a→L b) = 1

Proposition 1.1. [5] In any HW algebra we can define a partial order relation in
one of the following mutually equivalent ways:

a ≤ b
def
⇐⇒ a→L b = 1(2a)

⇐⇒ a→G b = 1(2b)

⇐⇒ a ∧ b = a(2c)

Moreover, the substructure AL := 〈A,∧,∨, 0〉 involving the two binary operators
(1d) and (1e) is a distributive lattice where a ∧ b (resp., a ∨ b) turns out to be the
glb (resp., lub) of the generic pair a, b ∈ A with respect to the partial order relation
defined by (2). This lattice is bounded by the least element 0 and the greatest element
1:

∀a ∈ A : 0 ≤ a ≤ 1

Finally, we recall that in any HW algebra A, it is possible to introduce the modal–
like operators of necessity and possibility [5], defined, for all a ∈ A, respectively as
ν(a) := ∼¬a and µ(a) := ¬∼a.

1.2. Stonean MV algebras. We first recall the definition of a MV algebra, in the
independent axiomatization given in [8], which is equivalent to the original Chang’s
definition [9].

Definition 1.2. A structure A = 〈A,⊕,¬, 0〉 where ⊕ in a binary operator on A,
¬ in a unary operator on A, is a MV algebra if the following axioms are satisfied:

(MV1) (a⊕ b) ⊕ c = b⊕ (c⊕ a)
(MV2) a⊕ 0 = a
(MV3) a⊕ ¬0 = ¬0
(MV4) ¬(¬a) = a
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(MV5) ¬(¬a⊕ b) ⊕ b = ¬(a⊕ ¬b) ⊕ a

From the ⊕ operator, it is possible to derive a meet and join lattice operators as
follows:

a ∨ b := ¬(¬a ⊕ b) ⊕ b(3)

a ∧ b := ¬(¬(a ⊕ ¬b) ⊕ ¬b)(4)

Of course, also the partial order relation can be induced by the ⊕ operator as:

(5) a ≤ b iff ¬a⊕ b = 1 iff a ∧ b = a

The minimum element with respect to this order is 0 and the greatest is
1 := ¬0. Finally, the following two binary operators are introduced in MV al-
gebras:

a⊙ b := ¬(¬a ⊕ ¬b)(6a)

a→L b := ¬a⊕ b(6b)

Let A be an MV algebra. The set of all the ⊕–idempotent elements of A is called
the set of Boolean elements of A and it is denoted by Ae,⊕:

Ae,⊕ := {x ∈ A | x⊕ x = x}

Proposition 1.2. [9] Let A be a MV algebra. Then, the collection Ae,⊕ of all its
Boolean elements satisfies the following properties:

(1) The lattice connectives coincide with the MV ones:

∀e, f ∈ Ae,⊕, e ∧ f = e⊙ f and e ∨ f = e⊕ f

(2) The structure Ae = 〈Ae,⊕,∧,∨,¬, 0〉 is a Boolean lattice (algebra), which is
the largest MV subalgebra of A that is at the same time a Boolean algebra
with respect to the same operations ∧(= ⊙), ∨(= ⊕).

Definition 1.3. A MV algebra S = 〈A,⊕, ¬, 0, 1〉 is said to be Stonean (SMV for
short) iff S satisfies the following condition:

∀a ∈ A : ∃ea ∈ Ae,⊕ : {b ∈ A : a ∧ b = 0} = {b ∈ A : b ≤ ea}.

It can be easily observed that for any a ∈ A, the corresponding Boolean element
ea of the above definition is trivially unique.

1.3. Brouwer Zadeh Many Valued algebras. By a pasting of BZ lattices and
MV algebras one obtains so–called BZMV algebras [6, 7].

Definition 1.4. A Brouwer Zadeh Many Valued (BZMV) algebra is a system A =
〈A,⊕,¬,∼, 0〉, where A is a non empty set, 0 is a constant, ¬ and ∼ are unary
operators, ⊕ is a binary operator, obeying the following axioms:

(BZMV1) (a⊕ b) ⊕ c = (b ⊕ c) ⊕ a
(BZMV2) a⊕ 0 = a
(BZMV3) ¬(¬a) = a
(BZMV4) ¬(¬a⊕ b) ⊕ b = ¬(a⊕ ¬b) ⊕ a
(BZMV5) ∼a⊕∼∼a = ¬0
(BZMV6) a⊕∼∼a = ∼∼a
(BZMV7) ∼¬[(¬(¬a ⊕ b) ⊕ b)] = ¬(∼a⊕∼∼b) ⊕∼∼b

A de Morgan BZMV (BZMVdM ) algebra, is a BZMV algebra A = 〈A,⊕,¬,∼, 0〉
where axiom (BZMV7) is replaced by the following:
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(BZMV7’) ∼¬[(¬(a ⊕ ¬b) ⊕ ¬b)] = ¬(∼∼a⊕ ¬∼∼b) ⊕ ¬∼∼b

Remark 1. Analogously, it is possible to define BZW and BZWdM algebras as a
pasting of BZ (resp., BZdM ) lattices and Wajsberg algebras [3]. Clearly BZW and
BZMV are equivalent structures.

In [6], it has been shown the following result.

Proposition 1.3. Let 〈A,⊕,¬,∼, 0〉 be a BZMV algebra, then the substructure
〈A,⊕,¬, 0〉 is a MV algebra according to Definition 1.2. Thus in any BZMV
algebra, it is defined a lattice structure, which is, moreover, a BZ lattice as stated
in the next theorem.

Proposition 1.4. [6]. Let A be a BZMV (resp., BZMVdM ) algebra. The substruc-
ture 〈A,∧,∨,¬,∼, 0, 1〉 is a distributive BZ (resp., BZdM ) lattice with respect to the
partial order relation defined in (5).

Turning our attention to sharp elements (see [5]), we note that property a ⊕
(ν(µ(a)) = (ν(µ(a))) holds but in general it is not valid the stronger idempotence
law a⊕ a = a.

Example 1.1. Let us consider the BZMVdM algebra based on the unit interval:
〈[0, 1],⊕,¬,∼, 0〉, where the operators are defined as usual as [5]

a⊕ b = min{1, a+ b}

¬a = 1 − a

∼a =

{

1 if a = 0

0 otherwise

Then, for all elements a ∈ (0, 1), a⊕ a 6= a.

So, it is possible to consider the collection of MV Boolean elements Ae,⊕, i.e.,
the idempotent elements with respect to the ⊕ operator, as a new set of sharp
elements. The relation among this set of exact elements and the ones introduced
in [5] is the following:

Proposition 1.5. [6]. Let A be a BZMV algebra. Then

Ae,B = Ae,M ⊆ Ae,⊕ = Ae,¬.

Let A be a BZMVdM algebra. Then

Ae,B = Ae,M = Ae,⊕ = Ae,¬.

We now list a set of properties of BZMVdM algebras which will be useful later.

Lemma 1.1. [7]. Let A = 〈A,⊕,¬,∼, 0〉 be a BZMVdM algebra. Then, the follow-
ing hold for all a, b ∈ A:

(i) ∼(a ∧ b) = ∼a ∨ ∼b.
(ii) a ∧ b = 0 iff a ≤ ∼b.

(iii) a ∧ ∼b = a⊙∼b; a ∨ ∼b = a⊕∼b.
(iv) a ∧ b = 0 implies ∼∼a ∧ b = 0.
(v) ∼(a⊕ b) = ∼a⊙∼b.

Lemma 1.2. Let A = 〈A,⊕,¬,∼, 0〉 be a BZMVdM algebra. Then the following
hold:

(i) a ∧∼(a⊙ ¬b) ≤ b.
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(ii) b ∧ ∼∼(a⊙ ¬b) ≤ a.

Proof. (i) We prove ¬[a ∧ ∼(a ⊙ ¬b)] ⊕ b = 1. Then, by an MV property, we can
conclude a ∧ ∼(a⊙ ¬b) ≤ b.

¬[a ∧ ∼(a⊙ ¬b)] ⊕ b = [¬a ∨ ∼∼(a⊙ ¬b)] ⊕ b

= ¬a⊕∼∼(a⊙ ¬b) ⊕ b Lemma 1.1(iii)

= ¬(a⊙ ¬b) ⊕∼∼(a⊙ ¬b)

≥ ∼(a⊙ ¬b) ⊕∼∼(a⊙ ¬b)

= 1

(ii) By an MV property, (a⊙ ¬b) ∧ (¬a⊙ b) = 0. By Lemma 1.1(ii):

(¬a⊙ b) ≤ ∼(a⊙ ¬b) (∗)

We want to show that ¬[b ∧ ∼∼(a⊕ ¬b)] ⊕ a = 1.

¬[b ∧ ∼∼(a⊕ ¬b)] ⊕ a = ¬[¬b ∨∼∼(a⊙ ¬b)] ⊕ a

= ¬b⊕∼(a⊙ ¬b) ⊕ a Lemma 1.1(iii)

= ¬(¬a⊙ b) ⊕∼(a⊙ ¬b)

≥ ¬(¬a⊙ b) ⊕ (¬a⊙ b) (∗)

= 1

�

1.4. MV∆ algebras. We have shown that BZMV algebras can be seen as a strength-
ening of MV algebras. In literature one can also find another structure, namely
MV∆ algebra [12], which is a MV algebra with a further unary operator, ∆.

Definition 1.5. A MV∆ algebra is a structure A = 〈A,⊕,¬, 0, 1,∆〉 such that
〈A,⊕,¬, 0, 1〉 is a MV algebra and once defined ⊙ and →L as in Equations (6), ∆
is a unary operation on A satisfying the following axioms:

(∆1) ∆a ∨ ¬∆a = 1
(∆2) ∆(a ∨ b) ≤ ∆a ∨ ∆b
(∆3) ∆a ≤ a
(∆4) ∆a ≤ ∆∆a
(∆5) ∆a⊙ ∆(a →L b) ≤ ∆b
(∆6) ∆1 = 1

In order to show the equivalence between BZMVdM algebras and MV∆ algebras
we give some properties of MV∆ algebras.

Lemma 1.3. Let A be a MV∆ algebra. Then for all a, b ∈ A:

(i) a ≤ b implies ∆a ≤ ∆b
(ii) ∆(a ∨ b) = ∆a ∨ ∆b

(iii) ¬a ∧ ∆a = 0
(iv) a ∧ b = 0 implies a ≤ ∆(¬b)
(v) ∆a⊕ ∆a = ∆a
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Proof. (i) Suppose that a ∧ b = a. Then:

∆(a) = ∆a⊙ 1 (∆6)

= ∆a⊙ ∆1 ¬a⊕ (a ∨ b) = 1

= ∆a⊙ ∆(¬a ⊕ (a ∨ b)) a ≤ b

= ∆a⊙ ∆(¬a ⊕ b) (∆5)

≤ ∆b

(ii) By (∆2) it holds ∆(a ∨ b) ≤ ∆a ∨ ∆b. Now, a, b ≤ a ∨ b. Then, by (i)
∆a,∆b ≤ ∆(a ∨ b). Thus, ∆a ∨ ∆b ≤ ∆(a ∨ b).
(iii) By axiom (∆3), a ≥ ∆a. Thus, a ∨ ¬(∆a) ≥ ∆a ∨ ¬(∆a) = 1 (Axiom (∆1).
Hence: ∆a ∨ ¬(∆a) = 1. Therefore, ¬a ∧ ∆a = 0.
(iv) Suppose a ∧ b = 0.

a ∧ ∆(¬b) = (a ∧ ∆(¬b)) ∨ 0 (iii)

= (a ∧ ∆(¬b)) ∨ (a ∧ ∆(¬a)) distributivity of ∧ over ∨

= a ∧ [∆(¬b) ∨ ∆(¬a)] (ii)

= a ∧ [∆(¬b ∨ ¬a)]

= a ∧ [∆(¬(a ∧ b))] Hypothesis

= a ∧ ∆1 (∆6)

= a ∧ 1 = a

(v) It follows form the MV property a ∧ ¬a = 0 iff a = a ⊕ a, and from Axiom
(∆1). �

2. Equivalence theorems

In this section, the equivalence among all the algebras introduced in Section 1
is proved. Let us recall that the equivalence between SMV and BZMVdM algebras
has already been proved in [7]. Here, we prove the equivalence between MV∆ and
BZMVdM algebras and BZMVdM and HW algebras.

2.1. Equivalence among BZMVdM and MV∆ algebras.

Lemma 2.1. Let A be a MV∆ algebra. Then:

∀b ∈ A : {a| a ∧ b = 0} = {a| a ≤ ∆(¬b)}

Proof. Suppose a ∧ b = 0. By Lemma 1.3(iv), a ≤ ∆(¬b).
Suppose a ≤ ∆(¬b). Then

a ∧ b = (a ∧ ∆(¬b)) ∧ b

= a ∧ [∆(¬b) ∧ b] Lemma 1.3(iii)

= a ∧ 0 = 0

�

Proposition 2.1. Let A be a MV∆ algebra. Then A is a Stonean MV algebra.

Proof. By Lemma 1.3(v), ∀a ∈ A : ∆a = ∆a⊕∆a. Thus, by Lemma 2.1, we can
conclude that A is a Stonean MV algebra. �
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In [7] a proof of the equivalence of Stonean MV and BZMVdM algebras is given.
As a consequence, the following theorem holds.

Theorem 2.1. Let A = 〈A,⊕,¬, 0,∆〉 be a MV∆ algebra and define ∼a := ∆(¬a).
Then the structure A(BZMV dM ) = 〈A,⊕,¬,∼, 0〉 is a BZMVdM algebra. Moreover,
also the other direction of the equivalence can be proved:

Theorem 2.2. Let A = 〈A,⊕,¬,∼, 0〉 be a BZMVdM algebra. Once set ∆a :=
∼¬a = ν(a), then the structure AMV∆

= 〈A,⊕,¬, 0,∆〉 is a MV∆ algebra.

Proof. We prove only (∆5) because the proves for the other axioms are trivial.
We have to prove that ∼¬a ⊙ ∼¬(¬a ⊕ b) ≤ ∼¬b. Now, since ∼¬a ≤ a, we have
∼¬a ⊙ ∼¬(¬a ⊕ b) ≤ a ⊙ ∼(a ⊙ ¬b). By Lemma 1.1(iii), we get a ⊙ ∼(a ⊙ ¬b) =
a ∧ ∼(a ⊙ ¬b), and by Lemma 1.2(i), a ∧ ∼(a ⊙ ¬b) ≤ b. By a BZMV property
∼¬[a ∧ ∼(a⊙ ¬b)] = ∼¬a ∧ (∼(a⊙ ¬b)). Thus, ∼¬(∼¬a⊙ ∼¬(¬a ⊕ b)) ≤ ∼¬a ∧
∼(a⊙ ¬b) ≤ ∼¬b and by Lemma 1.1(v) we have the thesis. �

Further, the two structures are term equivalent.

Proposition 2.2. (1) Given any BZMVdM algebra A there holds

A = (AMV∆
)BZMV dM

(2) Conversely, given any MV∆ algebra A, there holds:

A = (ABZMV dM )MV∆

Proof. It trivially follows by Theorems 2.1 and 2.2. �

2.2. Equivalence between BZMVdM and HW algebras.

Theorem 2.3. Let A be a HW algebra. Then, once defined a⊕ b := ¬a →L b the
structure ABZMV dM = 〈A,⊕,¬,∼, 1〉 is a BZMVdM algebra.

Proof. In [5] it has been shown that any HW algebra has as a substructure a Wa-
jsberg algebra. It is well known that Wajsberg algebras are equivalent to Chang’s
MV algebras [18, p. 45], hence axioms (BZMV1)–(BZMV4) are satisfied. Axiom
(BZMV5) can easily be obtained by axiom (HW7). We show, now, that (BZMV6)
holds.

Using the non contradiction law for the Brouwer negation, we have:

0 = a ∧ ∼a Def. ∧

= ¬((¬a →L ¬∼a) →L ¬∼a) (in)

= ¬((¬a →L ∼∼a) →L ∼∼a)

And now, it is sufficient to apply ¬¬a = a, 0 = ¬1 and the definition of ⊕.
Finally, as proved in [6], under conditions (BZMV1)–(BZMV6), axiom (BZMV7’)
is equivalent to the following two:

¬∼a = ∼∼a

∼(a ∧ b) = ∼a ∨ ∼b

which have been proved in [5]. �

Now, we show how HW algebras can be obtained as a substructure of BZMVdM

algebras. First, we give some results concerning BZMVdM algebras which will be
useful in proving the equivalence theorem.
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Theorem 2.4. Let A = 〈A,⊕,¬,∼, 0〉 be a BZMVdM algebra. Then, ∀a, b, x ∈ A
the following condition holds:

x ∧ a ≤ b iff x ≤ ∼(a⊙ ¬b) ⊕ b.

Proof. ⇒. Suppose x ∧ a ≤ b. Then ¬b ≤ ¬x ∨ ¬a. Thus, using MV properties,
x ⊙ ¬b ≤ x ⊙ (¬x ∨ ¬a) = (x ⊙ ¬x) ∨ (x ⊙ ¬a) = x ⊙ ¬a. By an MV property,
(x ⊙ ¬a) ∧ (¬x ⊙ a) = 0. Thus, by Lemma 1.1(ii) (x ⊙ ¬a) ≤ ∼(¬x ⊙ a). Hence:
x ⊙ ¬b ≤ ∼(¬x ⊙ a). If we prove that ∼(¬x ⊙ a) ≤ ∼(a ⊙ ¬b), then, we can
conclude that (x⊙¬b) ≤ ∼(a⊙¬b) and therefore ¬x⊕ b⊕∼(a⊙¬b) = 1, so that
x ≤ b ⊕ ∼(a ⊙ ¬b). We prove now ∼(¬x ⊙ a) ≤ ∼(a ⊙ ¬b). By Lemma 1.2(i),
a ∧ ∼(a⊙ ¬x) ≤ x. Thus, by hypothesis, a ∧ ∼(a⊙ ¬x) ≤ a ∧ x ≤ b. Therefore,

0 = [a ∧ ∼(a⊙ ¬x)] ⊙ b Lemma 1.1(iii)

= [a⊙∼(a⊙ ¬x)] ⊙ b

= (a⊙ ¬b) ⊙∼(a⊙ ¬x) Lemma 1.1(iii)

= (a⊙ ¬b) ∧ ∼(a⊙ ¬x)

By Lemma 1.1(ii), ∼(a⊙ ¬x) ≤ ∼(a⊙ ¬b).
⇐. Suppose x ≤ ∼(a ⊙ ¬b) ⊕ b. Then, by Lemma 1.1(iii), x ∧ a ≤ a ∧ [∼(a ⊙
¬b) ⊕ b] = a ∧ [∼(a ⊙ ¬b) ∨ b] and by distributivity properties a ∧ [∼(a ⊙ ¬b) ∨
b] = [a ∧ ∼(a ⊙ ¬b)] ∨ (a ∧ b). By Lemma 1.2(i), a ∧ ∼(a ⊙ ¬b) ≤ b. Hence:
[a ∧ ∼(a⊙ ¬b)] ∨ (a ∧ b) ≤ b ∨ (a ∧ b) = b. Thus, x ∧ a ≤ b. �

Corollary 2.1. Let A = 〈A,⊕,¬,∼, 0〉 be a BZMVdM algebra. Then:

∼(a⊙ ¬b) ⊕ b = ∨{x ∈ A|a ∧ x ≤ b}

Proof. By Theorem 2.4, ∼(a⊙¬b)⊕b is an upper bound of {x ∈ A|a∧x ≤ b}. If we
prove that ∼(a⊙¬b)⊕b ∈ {x ∈ A|a∧x ≤ b}, then we can conclude that ∼(a⊕¬b)⊕b
is the least upper bound of {x ∈ A|a ∧ x ≤ b}. We show a ∧ [∼(a ⊙ ¬b) ⊕ b] ≤ b.
As a first step, we apply Lemma 1.1(iii) to a ∧ [∼(a⊙ ¬b) ⊕ b]:

a ∧ [∼(a⊙ ¬b) ⊕ b] =a ∧ [∼(a⊙ ¬b) ∨ b] Distributivity of ∧ over ∨

=[a ∧ ∼(a⊙ ¬b)] ∨ (a ∧ b) Lemma 1.2(i)

=b ∨ (a ∧ b)

=b

�

Theorem 2.5. Let A = 〈A,⊕,¬,∼, 0〉 be a BZMVdM algebra. Let

a→L b := ¬a⊕ b

a→G b := ∼(a⊙ ¬b) ⊕ b = ∼¬(¬a ⊕ b) ⊕ b

Then, the structure AHW = 〈A,→G,→L, 0〉 is a HW algebra.

Proof. Clearly, 1 = 0 →L 0 = ¬0, a→L 0 = ¬a and

a→G 0 = ∼(a⊙ 1) ⊕ 0 = ∼a.

a ∧ b := ¬((¬a →L ¬b) →L ¬b) = (a⊕ ¬b) ⊙ b.

a ∨ b := (a→L b) →L b = (a⊙ ¬b) ⊕ b.
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By Corollary 2.1 and MV properties, the structure 〈A,→G,∧,∨, 0〉 is a pseudo-
Boolean algebra [16] and therefore a Heyting algebra [14, 15]. Thus, Axioms
(HW1)–(HW4) are satisfied.
(HW5). 1 →L a = ¬(0 →L 0) ⊕ a = a.
(HW6). It follows from the associative property of ⊕.
(HW7). It is Axiom (BZMV5).
(HW8). We prove (a→G b) ⊙ ¬(a→L b) = 0.

(a→G b) ⊙ ¬(a →L b) = [∼(a⊙ ¬b) ⊕ b] ⊙ ¬(¬a ⊕ b)

= [∼(a⊙ ¬b) ∨ b] ⊙ (a⊙ ¬b) Lemma 1.1(iii)

= [(a⊙ ¬b) ⊙∼(a⊙ ¬b)] ∨ [(a⊙ ¬b) ⊙ b] distributivity of ⊙ over ∨

= 0 ∨ 0 = 0

�

Theorem 2.6. (1) For any BZMVdM algebra A, there holds

A = (AHW )BZMV dM

(2) Conversely, for any HW algebra A, there holds:

A = (ABZMV dM )HW

Proof. (1)
Let A =< A,⊕,¬,∼, 0 > be a BZMVdM . In Theorem 2.5 we have obtained that
the structure AHW =< A,→L,→G, 0 > is a HW algebra. Moreover, if we define
∀a, b ∈ A:

a′ := a→L 0

a∗ := a→G 0

a⊕⋆ b := a′ →L b

we have introduced a new structure which by Theorem 2.3 is a BZMVdM . Trivially,
we have that ∀a, b ∈ A, a′ = ¬a and a ⊕⋆ b = a ⊕ b. We have only to show that
a∗ = ∼a:

a∗ = a→G 0 = ∼(a⊙ ¬0) ⊕ 0 = ∼a.

(2)
Let A =< A,→L,→G, 0 > be a HW algebra. We recall that a ≤ b iff a →L b = 1.
By Theorem 2.3 the structure ABZMV dM = 〈A,⊕,¬,∼, 0〉 defined ∀a, b ∈ A by:

¬a := a→L 0

∼a := a→G 0

a⊕ b := ¬a→L b

is a BZMVdM with its own order relation �:

∀a, b ∈ A, a � b iff a ∨ b = b iff a ∧ b = a.

Starting from this structure, by Theorem 2.5, we rebuild a HW algebra
A∗ =< A,→∗

L,→
∗
G, 0 > where ∀a, b ∈ A∗

a→∗

L b := ¬a⊕ b = (a→L 0) ⊕ b = ((a→L 0) →L 0) →L b = a→L b.

Then, its partial order ≤∗ is defined such that:

∀a, b ∈ A∗ a ≤∗ b iff a→∗

L b = 1 iff a→L b = 1
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and hence a ≤∗ b iff a ∧∗ b = a iff a ∨∗ b = b iff a ∧ b = a iff a ∨ b = b.
By a well known property of Heyting algebra [2, p.45] in A∗ ∀a, b ∈ A∗ there always
exists the sup of all elements x ∈ A∗ s.t. a ∧∗ x precedes or is equal to b and it
defines a residuum →∗

G s.t. a →∗
G b = 1. We have shown that both ≤ and ≤∗ are

defined in the same way in term of →L. Thus we have proved that →L=→∗
L and

≤=≤∗.
On the other hand by property of Heyting algebra and definition of residuum we

have:

a→G b =
∨

{x | a ∧ x ≤ b}

a→∗

G b =
∗

∨

{x | a ∧∗ x ≤∗ b}

Since ≤=≤∗ we can conclude that →G=→∗
G. �

Clearly, we have as a corollary of Proposition 2.2 and Theorem 2.6 that HW
algebras and MV∆ algebras are term–equivalent.

Another important result of the above proved theorems is that it is impossible
to have a HW algebra which does not satisfy the Dummett condition.

Corollary 2.2. Let A be a HW algebra then it holds the Dummett condition of the
intuitionistic implication, i.e.:

(D) (a→G b) ∨ (b→G a) = 1.

Proof. By Theorems 2.5 and 2.6 it is sufficient to show:

[∼(a⊙ ¬b) ⊕ b] ∨ [∼(b⊙ ¬a) ⊕ a] = 1.

Applying Lemma 1.1(iii) to [∼(a⊙ ¬b) ⊕ b] ∨ [∼(b ⊙ ¬a) ⊕ a], we get

[∼(a⊙ ¬b) ⊕ b] ∨ [∼(b ⊙ ¬a) ⊕ a] = [∼(a⊙ b) ∨ b] ∨ [∼(¬a⊙ b) ∨ a]

= ∼(a⊙ b) ∨ ∼(b ⊙ ¬a) ∨ a ∨ b Lemma 1.1(i)

= ∼[(a⊙ b) ∧ (b⊙ ¬a)] ∨ a ∨ b MV property

= ∼0 ∨ a ∨ b

= 1

�

2.3. Representation and completeness theorems. A subdirect representation
theorem as well as both a weak form and a strong one of a completeness theorem
can be proved for MV∆ algebras [12] and for SMV algebras [13]. We report below
these two completeness results.

Theorem 2.7. [12, th. 2.3.22]. Let φ and ψ be well defined terms, in the traditional
way, on the language of MV∆ algebra. An identity φ = ψ holds in all linearly
ordered MV∆ algebras iff it holds in all MV∆ algebras.

Theorem 2.8. [12, th. 3.2.13]. Let φ and ψ be well defined terms, in the traditional
way, on the language of MV∆ algebra. An identity φ = ψ holds in [0, 1]–model iff
it holds in all MV∆ algebras. Due to their equivalence, these two last results
applies also to HW, SMV and BZMVdM algebras. On the other hand, they cannot
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be extended to BZMV algebras. In fact, on a linearly ordered structure the Gödel
negation is defined as:

∼a :=

{

1 if a = 0

0 otherwise

and consequently the ∧ de Morgan property ∼(a∧ b) = ∼a∨∼b is always satisfied.
So, there exists a property which holds in all linearly ordered BZMV algebras and
not in all BZMV algebras, hence a result similar to Theorem 2.7 cannot be proved
for BZMV algebras.

Finally, we show that SBL¬ algebras are a substructure of HW algebras.

Proposition 2.3. Let 〈A,→L,→G, 0〉 be a HW algebra. Once defined ¬a := a→L

0, a ∗ b := a ∧ b = ¬((¬a →L ¬b) →L ¬b), a ∨ b := (a →L b) →L b, the structure
〈A,∧,∨, ∗,→G,¬, 0, 1〉 is a SBL¬ algebra.

Proof. Clearly, HW algebras are Gödel algebras, hence as showed in [11] are also
SBL algebras. Trivially, properties (SBL¬ 1), (SBL¬ 2), (SBL¬ 4), (SBL¬ 5) hold.

We prove that axiom (SBL¬ 3) holds.
By [12, Lemma 2.4.8] we know that in all linearly ordered MV∆ algebras the oper-
ator ∆ behaves as follows:

∆(a) =

{

1 if a = 1

0 otherwise

By equivalence of MV∆ and HW algebras, this property holds also in HW algebras.
Now, let us suppose that a →G b = 1. Then a ≤ b and by contraposition ¬b ≤
¬a, that is ¬b →G ¬a = 1. Vice versa, if a →G b 6= 1 then ∆(a →G b) = 0.
Further, since we are considering a totally ordered algebra, then a > b. Again,
by contraposition ¬b > ¬a and ¬b →G ¬a 6= 1. So, ∆(¬b →G ¬a) = 0. Thus,
we proved that in all linearly ordered HW algebras it holds axiom (SBL¬ 3) and
by Theorem 2.7 and the equivalence of HW and MV∆ algebras it holds in all HW
algebras.

We show that also (SBL¬ 6) hold. By lattice properties: a ∧ b ≤ b. Then, one
has ∼¬(a ∧ b) ≤ ∼¬b and by axiom (HW3), ∼¬(a ∧ (a →G b)) ≤ ∼¬b. Finally,
using de Morgan properties ∼¬a ∧ ∼¬(a→G b) ≤ ∼¬b. �

Thus, SBL¬ algebras are a substructure also of MV∆ and BZMVdM algebras.

3. Axiomatizations

We introduce in this section the three logical propositional calculi whose Lin-
denbaum algebra are the three algebraic structures we have proved above to be
equivalent to MV∆ algebra. A propositional calculus whose Lindenbaum algebra
is a MV∆ algebra has been studied by P. Hájek and can be found in [12, p. 57 and
p. 63].

We start from the logical system corresponding to Stonean MV algebra.

Definition 3.1. The Propositional Calculus SMVL has a denumerable set of propo-
sitional variables p1, p2, . . . , pn, . . . and connectives →, ¬ and ∼. Each propositional
variable is a formula and if α and β are formulas then α→ β, ¬α, ∼α are formulas.
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Further connectives are defined as follows:

α ∧ β := ¬(α→ ¬(α → β))

α ∨ β := (β → α) → α

α↔ β := (α→ β) ∧ (β → α)

Definition 3.2. Once set ⊤ := ¬(α → ¬(α → β)), the following formulas are
axioms of SMVL:
(S1) ¬(α → ¬(α→ β))
(S2) (¬α → ¬⊤) ↔ α
(S3) (¬α → ⊤) ↔ ⊤
(S4) α ∧ β ↔ β ∧ α
(S5) ¬¬α ↔ α
(S6) (α→ β) → (∼β → ∼α)
(S7) ¬(α ∧ ∼α)
(S8) (∼α ∨ ∼β) ↔ ∼(α ∧ β)
(S9) (∼α ∧ ∼β) ↔ ∼(α ∨ β)
(S10) ((¬α→ α) ↔ α) ↔ (¬α↔ ∼α)
(S11) (¬∼α→ ∼α) ↔ ∼α

The only deduction rule of SMVL is Modus Ponens: α,α→β
β

The Lindenbaum algebra of SMVL is trivially a Stonean MV-algebra because
(S1)-(S11) correspond to the properties introduced by L.P. Belluce to define this
kind of MV-algebra in [1].

Now, we introduce the propositional calculus BZMVL whose Lindenbaum alge-
bra is a BZMVdM algebra. Syntax and language of BZMVL coincide with syntax
and language of definition 6.1 for SMVL. We present below the axiomatization of
BZMVL.

Definition 3.3. Once set ⊤ := ¬(α → ¬(α → β)), the following formulas are
axioms of BZMVL:
(Z1) ¬(α→ ¬(α→ β))
(Z2) (¬α→ ¬⊤) ↔ α
(Z3) α ∧ β ↔ β ∧ α
(Z4) ¬¬α↔ α
(Z5) ¬∼α→ ∼∼α
(Z6) (¬α→ ∼∼α) ↔ ∼∼α
(Z7) ∼¬((¬α→ ¬β) → ¬β) ↔ ((¬∼∼α→ ¬∼∼β) → ¬∼∼β)

The only deduction rule of BZMVL is Modus Ponens: α,α→β
β

The Lindenbaum algebra of the following propositional calculus is trivially an
HW algebra.

Definition 3.4. The Propositional Calculus HWL has a denumerable set of propo-
sitional variables
p1, p2, . . . , pn, . . . and connectives →L, →G. Each propositional variable is a formula
and if α and β are formulas then α→L β and α→G β are formulas.
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Further connectives are defined as follows:

∼α := α→G ¬(α→G α)

α ∧ β := ¬((¬α→L ¬β) →L ¬β)

α ∨ β := (β →L α) →L α

α↔ β := (α→L β) ∧ (β →L α)

Definition 3.5. The following formulas are axioms of HWL:
(H1) α→G α
(H2) α→G (β ∧ γ) ↔ (α→G γ) ∧ (β →G γ)
(H3) α ∧ (α→G β) ↔ α ∧ β
(H4)(α ∨ β) →G γ ↔ (α→G γ) ∧ (β →G γ)
(H5) α→G α) →L α↔ α
(H6) α→L (β →L γ) ↔ ¬(α→L γ) →L ¬β
(H7) ¬∼α→L ∼∼α
(H8) (α→G β) →L (α→L β)

Deduction rules of HWL are α,α→Lβ
β and α,α→Gβ

β

Definition 3.6. Let FORM(SMV L/BZMVL) be the set of wff of SMVL and
BZMVL. An evaluation on SMVL/BZMVL is a mapping es : FORM(SMV L/BZMVL) 7→
[0, 1] s.t.:

es(¬α) = 1 − es(α)

es(∼α) =

{

0 if es(α) 6= 0

1 otherwise

es(α→ β) = min{1, 1 − es(α) + es(β)}

Definition 3.7. Let FORM(HW ) be the set of wff of HWL. An evaluation on
HWL is a mapping eh : FORM(HW ) 7→ [0, 1] s.t.:

eh(α→L β) = min{1, 1 − eh(α) + eh(β)}

eh(α→G β) =

{

1 if eh(α) ≤ eh(β)

eh(β) otherwise

Definition 3.8. A formula τ ∈ FORM(SMVL/BZMVL) is a 1-tautology of SMVL/BZMVL
iff es(τ) = 1 for any evaluation es.

Definition 3.9. A formula υ ∈ FORM(HWL) is a 1-tautology of HWL iff eh(υ) = 1
for any evaluation eh.

Theorem 3.1. Let α be a formula of SMVL/BZMVL/HWL. Then, SMVL/BZMVL/HWL
⊢ α iff α is a 1-tautology on SMVL/BZMVL/HWL.

Proof. (⇒:) It can be easily verified that axioms (S1)-(S11), (Z1)-(Z7) and (H1)-
(H9) are 1-tautologies and that deduction rules cannot decrease the evaluation of
an inferred formula.
(⇐:) If α is a 1-tautology then es/h(α) = 1 is satisfied in [0, 1]–models (SMV/BZMVdM /HW)
for each es/h. Each evaluation maps to a set of terms tα, meant in the traditional
way [10, p. 21], related to formulas. Then we have tα = 1 in [0, 1]–models. By the
strong algebraic completeness expressed in theorem 8 if tα = 1 is satisfied in [0, 1]
it is satisfied in any model and thus [α]≡ is the top element of the Lindenbaum
algebra of SMVL/BZMVL/HWL. Hence SMVL/BZMVL/HWL ⊢ α. �
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Corollary 3.1. HWL, SMVL, BZMVL and  Lukasiewicz logic with ∆ axiomatized
by Hájek in [12] produce, up to syntactical translation, the same set of 1-tautologies.

Proof. By Theorem 3.1 and equivalence Theorems of chapter 5 among HW-algebras,
Stonean MV-algebras, BZMVdM -algebras and MV∆-algebras. �

4. Conclusions

The original structure of HW algebra has been proved equivalent to other well
known structures. Some weakening of HW algebras have been considered and
their lattice structure has been studied. Taking into account the diagram of the
conclusions in [5], in the following diagram the relationship existing among all the
discussed algebraic structures is summarized.

HW ≡ BZMV dM ≡MV∆ ≡ SMV

ssggggggggggggggggggggg

**U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U

BZdM

��

SBL¬
oo

��

BrouwerdM

��

SBLoo

��

pre−BrouwerdM BLoo

An open problem that needs more investigation is the relationship between SBL¬

and HW algebras (or equivalent structures). Indeed, we know that SBL¬ algebras
are a substructure of HW algebras, but from the lattice point of view they both
have as substructure a BZdM lattice. The question is if there exist a lattice property
satisfied by HW and not by SBL¬ algebras. This question is also related to which
conditions are sufficient and necessary for a SBL¬ algebra to be an HW algebra.
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