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Abstract. A bottom–up investigation of algebraic structures corresponding
to many valued logical systems is made. Particular attention is given to the
unit interval as a prototypical model of these kind of structures. At the top
level of our construction, Heyting Wajsberg algebras are defined and studied.
The peculiarity of this algebra is the presence of two implications as primi-
tive operators. This characteristic is helpful in the study of abstract rough
approximations.

Introduction

There is a direct relationship between any logical calculus S and the class of ad-
equate models for it, i.e., the class of algebraic structures which verify exactly the
provable formulae of S. For example Boolean algebras are the algebraic counterpart
of classical propositional logic and Heyting algebras correspond to intuitionistic
propositional logic (see [15, pp. 380–3]). This fruitful interaction allows algebraic
investigation to have a direct insight into a given calculus and conversely pure proof-
theoretical techniques may contribute to pursue algebraic results. Indeed, every
algebraic structure provided by join, meet and complement is an algebraic counter-
part of some logical system. Precisely the Lindenbaum-Tarski algebra [CDM99] of
each of these logical systems is a model of every algebraic structure we are going
to introduce.

Furthermore, in our analysis each model based on the unit interval of real num-
bers [0, 1] is prototypical, because it represents the set image of the evaluation
map of each related logical calculus. The numbers of [0, 1] are interpreted, after
 Lukasiewicz [3], as the possible truth-values which the logical sentences can be as-
signed to. As usually done in literature, the values 1 and 0 denote respectively
truth and falsehood, whereas all the other values indicate intermediate degrees of
indefiniteness.

In [0, 1] models with a meet operator ∧ and its induced partial order a ≤ b iff
a∧ b = a, it is possible to define an implicative operator (i.e., residuum): a⇒ b :=
sup{c | a ∧ c ≤ b}. Moreover, every residual definition of implication gives rise to
an induced definition of negation: ∼a := a⇒ 0.

Dealing with generalized meet-operator (i.e., t–norm), we have different arising
definitions of implications and their related negations. Given a nilpotent t–norm
as meet-operator, for instance  Lukasiewicz t–norm, we have an involution (i.e.,
Kleene-complementation) as induced negation. On the other hand, a t–norm with
non-trivial zero divisors defines a Stonean negation [17] (we denote it as Brouwer
complementation).
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Taking inspiration by these considerations about [0, 1], we are going to study
algebraic structures provided by either more than one negation or more than one
implication and we will focus our attention on new added operators definable by
composition of the previous ones. All these structures are algebraic counterparts
of corresponding logical systems.

In particular, starting from pre–Brouwer lattices we are going to investigate
bottom-up algebraic structures generalizing logical systems and their rough appli-
cations. Focusing on the relationships existing among these structures we study
relations among corresponding logical calculi. A significant role in our bottom-up
construction is played by BL-algebra [19] because it is an algebra able to contain the
algebraic counterparts of  Lukasiewicz logic, Gödel infinite-valued logic and Product
logic.

At the top level of our construction we introduce Heyting Wajsberg (HW) al-
gebras. This new structure is characterized by the presence of both and only the
Gödel and  Lukasiewicz implications as primitive operators. It was introduce with
the aim of giving a rich and complete algebraic approach to rough sets [5, 7] and
it revealed a great connection with other existing algebras related to many valued
logics. Here, we will focus our attention to some of such connections, with partic-
ular reference to the substructures that can be derived in HW algebras. Further,
particular attention is given to the lattice structure of any introduced algebra.

1. Unit Interval

Let us investigate in this section the real unit interval as a standard environment
of algebraic model for many valued logic. For our purposes it will be interesting
to deal with the totally ordered unit interval as set of truth values, treated as a
numerical set equipped with an algebraic structure 〈[0, 1],→L,→G, 0〉 with respect
to two primitive implication connectives (for a general treatment of implicative
algebras see [26]) defined by the following equations:

a→L b := min{1, 1− a+ b}(1a)

a→G b :=

{

1 if a ≤ b

b if a > b
(1b)

The operator →L is the implication connective introduced by  Lukasiewicz in his
infinite valued logic L∞, while→G corresponds to the implication connective intro-
duced by Gödel in his infinite valued logic G∞ [28]. Let us stress that the standard
total order of [0, 1] can also be expressed in the forms:

x ≤ y iff x→L y = 1

iff x→G y = 1

On the basis of these two implication connectives it is possible to introduce two
connectives of negation as:

¬a := a→L 0 = 1− a

∼a := a→G 0 =

{

1 if a = 0

0 otherwise
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We give now an interesting list of operators which can be defined by the two prim-
itive implication connectives:

a ∨ b := (a→L b)→L b = max{a, b}

a ∧ b := ¬((¬a →L ¬b)→L ¬b) = min{a, b}

a⊕ b := ¬a→L b = min{1, a+ b}

a⊙ b := ¬(a→L ¬b) = max{0, a+ b− 1}

ν(a) := (a→L 0)→G 0 =

{

1 if a = 1

0 otherwise

µ(a) := (a→G 0)→L 0 =

{

0 if a = 0

1 otherwise

Connectives ∨ and ∧ are the algebraic realizations of the logical disjunction connec-
tive OR and conjunction connective AND respectively. In some semantical interpre-
tations, ⊕ and ⊙ are considered as algebraic realizations of the logical connectives
VEL and ET respectively, and they are also called the MV–disjunction and MV–
conjunction connectives. Finally, as will be discussed in section 2.3.1, ν and µ can
be considered as realizations of the modal–like connectives of necessity and possibil-
ity. Indeed, as modal operators, they satisfy the properties of a S5 system [18, 12]
but, contrary to the classical case, they are based on a Kleene lattice and not on a
Boolean algebra. Furthermore, they satisfy the distributive properties:

ν(a ∨ b) = ν(a) ∨ ν(b)(DDν)

µ(a ∧ b) = µ(a) ∧ µ(b).(DDµ)

Let us note that ∼a = ¬µ(a), i.e., it can be interpreted as the impossibility, whereas
necessity turns out to be the “not–possible–not” connective ν(a) = ¬µ(¬a) = ∼¬a.
It is also possible to introduce a third negation ♭ as:

♭a := ¬∼¬a =

{

0 if a = 1

1 otherwise

This ♭ operator, with respect to modal properties behaves as contingency, since
♭(a) = ¬ν(a), i.e., it has a semantic of a “not–necessary” operator.

Let us stress that the two binary operations ⊙ and ∧ are paradigmatic examples
of continuous t–norms [21], i.e., continuous mappings t : [0, 1] × [0, 1] 7→ [0, 1]
fulfilling the following properties for all a, b, c ∈ [0, 1]:

(T1) atb = bta (commutativity)
(T2) (atb)tc = xt(btc) (associativity)
(T3) a ≤ b implies atc ≤ btc (monotonicity)
(T4) at1 = 1ta = a

The t–norm ∧ is called the Gödel t–norm, and the t–norm ⊙ is the  Lukasiewicz
t–norm.

Let t be a continuous t–norm. The implication (residuum, quasi-inverse) op-
eration induced by t is the map →t: [0, 1] × [0, 1] 7→ [0, 1] defined for arbitrary
a, b ∈ [0, 1] as follows:

a→t b = sup{c ∈ [0, 1] : atc ≤ b}
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The Gödel and  Lukasiewicz t–norms induce the above considered implication con-
nectives: a→∧ b = a→G b and a→⊙ b = a→L b respectively.

Let t be a t–norm with associated implication operation →t. The negation
induced from t is the unary operation ¬t : [0, 1] 7→ [0, 1] defined as:

¬ta := a→t 0 = sup{c ∈ [0, 1] : atc = 0}

It is worth noting that the negation induced by the Gödel t–norm is a→G 0 = ∼a,
while the negation induced by the  Lukasiewicz t–norm is a→L 0 = ¬a.

Finally, a t–conorm is a mapping s : [0, 1] × [0, 1] 7→ [0, 1] fulfilling properties
(T1), (T2), (T3) and the boundary condition:

(S4) as0 = a for all a ∈ [0, 1].

Given a t-norm t , the dual t-conorm is defined through the formula

st(a, b) := 1− t((1− a), (1− b))

The dual t-conorms of  Lukasiewicz and Gödel t-norms, are respectively, the map-
pings ⊕ and ∨. In the following, we will see some possible algebraic approaches of
the above introduced operators. We will start from the weaker structures and we
will arrive to define the notion of HW algebra (and equivalent structures) which
axiomatizes both  Lukasiewicz and Gödel implications.

2. Lattice Structures

In this section, we study some notion of lattice structures enriched with a nega-
tion operator. These lattices will be the basic structure of all the algebras we will
define in the following.

2.1. pre–Brouwer lattices. Let us start with a lattice structure which turns out
to be the “weaker” one with respect to the interest of this paper.

Definition 2.1. A pre–Brouwer distributive lattice is a structureA = 〈A,∧,∨,∼, 0, 1〉
where

(1) 〈A,∧,∨, 0, 1〉 is a distributive lattice with respect to the join and the meet
operations ∨,∧ whose induced partial ordering relation is: a ≤ b iff a = a∧b
(equivalently, iff b = a∨ b). Moreover, A is bounded by the least element 0
and the greatest element 1;

(2) ∼ is a unary operation on A, called pre–Brouwer complement, that satisfies
the following conditions:

(B1) a = a ∧∼(∼(a)) (i.e., a ≤ ∼(∼(a)))
(B2) ∼(a ∨ b) = ∼a ∧ ∼b

A pre–Brouwer de Morgan distributive lattice is a pre–Brouwer distributive lattice
where condition (B2) is substituted by the stronger dual de Morgan law

(B2a) ∼(a ∧ b) = ∼a ∨ ∼b

In a pre–Brouwer lattice, under condition (B1), de Morgan law (B2) is equivalent
to the weak contraposition law:

(B2b) a ≤ b implies ∼b ≤ ∼a

Further, as it has been observed by Dunn [14], conditions (B1) and (B2) are equiv-
alent to the “intuitionistic contraposition” law:

a ≤ ∼b iff b ≤ ∼a
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In general, the strong contraposition law “∼a ≤ ∼b implies b ≤ a”, the non
contradiction law “a ∧ ∼a = 0” and the excluded middle law “a ∨ ∼a = 1” are not
verified. Let us note that 1 = ∼0 and 0 = ∼1. Further, for any element a it holds
the Brouwer condition “∼a = ∼∼∼a”.

Example 2.1. Let us consider the pre–Brouwer distributive lattice drawn in Fig-
ure 1.

•
1 = ∼0

• b

??
??

??
??

•

∼1 = 0 = ∼b

��
��

��
��

•∼a = a ????????

•
��������

Figure 1. A pre–Brouwer lattice

In this example, it can be easily seen that the de Morgan law (B2a) is not
satisfied: ∼(a ∧ b) = 1 6= 0 = ∼a ∨ ∼b. Thus, not all pre–Brouwer distributive
lattices are de Morgan. Moreover, the non contradiction law is not satisfied, indeed
a∧∼a = a; nor the strong contraposition law, indeed, ∼b ≤ ∼a but not a ≤ b; nor
the double negation law, indeed ∼∼b = 1.

2.2. Brouwer lattices.

Definition 2.2. A structure A = 〈A,∧,∨,∼, 0, 1〉 is a Brouwer (resp., de Morgan
Brouwer) distributive lattice if it is a pre–Brouwer (resp., de Morgan pre–Brouwer)
lattice satisfying the further property

(B3) a ∧ ∼a = 0 (non contradiction law)

Trivially, any Brouwer lattice is a pre–Brouwer lattice but not vice versa. For
example, the pre–Brouwer lattice of Figure 1 is not a Brouwer lattice since a∧∼a =
a 6= 0.

The operation ∼ is called a Brouwer or intuitionistic complement. In fact, it
behaves properly with respect to the main principles of an intuitionistic negation
since it satisfies neither the excluded middle law nor the double negation law,
whereas it satisfies the non contradiction law (B3).

Remark 1. Sometimes, the term Brouwerian lattice (for instance, by Birkhoff [2,
p. 45]) is used to mean what we call a Heyting algebra in the following.

2.3. Brouwer Zadeh lattices. By enriching Brouwer lattices with a further unary
negation operator which respects Kleene’s conditions (see K1-K3 below), one ob-
tains the so called Brouwer Zadeh lattices [10, 11]. We give now their definitions and
show how it is possible to define modal–like operators and rough approximations
by the interaction of the two negations [4, 6].

Definition 2.3. A system A = 〈A,∧,∨,¬,∼, 0, 1〉 is a Brouwer Zadeh (BZ) (resp.,
de Morgan Brouwer Zadeh (BZdM )) distributive lattice if the following conditions
hold:
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(1) The substructure 〈A,∧,∨,∼, 0, 1〉 is a distributive Brouwer (resp., de Mor-
gan Brouwer) lattice;

(2) The unary operation ¬ : A 7→ A is a Kleene (or Zadeh) complementation.
In other words:

(K1) ¬(¬a) = a
(K2) ¬(a ∨ b) = ¬a ∧ ¬b
(K3) a ∧ ¬a ≤ b ∨ ¬b

(3) The two negations are linked by the following interconnection rule:
(in) ¬∼a = ∼∼a

Let us note that under condition (K1), the de Morgan law (K2) is equivalent to each
of the following properties (and consequently they are mutually equivalent among
them):

(K2a) the dual de Morgan law “¬(a ∧ b) = ¬a ∨ ¬b”
(K2b) the weak contraposition law “a ≤ b implies ¬b ≤ ¬a”
(K2c) the strong contraposition law “¬b ≤ ¬a implies a ≤ b “

Let us note that 0 = ¬1 and 1 = ¬0. In general neither the non-contradiction
law “∀a : a ∧ ¬a = 0” nor the excluded-middle law “∀a : a ∨ ¬a = 1” holds with
this negation, also if for some particular elements e (for instance e = 0, 1) it may
happen that e ∧ ¬e = 0 and e ∨ ¬e = 1.

Example 2.2. Let us consider the BZdM distributive lattice drawn in Figure 2.

•
∼0 = 1 = ¬0

• a = ¬a

•
∼1 = 0 = ¬1 = ∼a

Figure 2. A BZdM distributive lattice

Clearly, a satisfies neither non contradiction law nor excluded middle law with
respect to the Kleene negation.

Remark 2. Let us stress that the Kleene negation is also a de Morgan negation
according to the usual definition [20, 13, 14] which requires only properties (K1)
and (K2) and not necessarily (K3).

A third kind of complement, called anti-intuitionistic complementation, can be
defined in any BZ lattice.

Definition 2.4. Let A be a BZ lattice. The anti-intuitionistic complement is the
unary operation ♭ : A 7→ A defined as follows:

♭a := ¬∼¬a

One can easily verify that ♭ satisfies the following conditions:

(AB1) ♭♭a ≤ a
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(AB2) ♭a ∨ ♭c = ♭(a ∧ c) [equivalently, a ≤ c implies ♭c ≤ ♭a,]
(AB3) a ∨ ♭a = 1

If A is a BZdM lattice also the dual de Morgan law is satisfied:

(AB4) ♭a ∧ ♭c = ♭(a ∨ c)

2.3.1. Modal Operators induced in BZ lattices. Let us consider a BZ lattice A. For
any element a ∈ A we can define the following two modal–like operators

Necessity:

ν(a) := ∼¬a = ♭♭a

Possibility:

µ(a) := ¬ν(¬a) = ¬∼a = ∼∼a

The name of modal–like operators is justified by the following facts:

(1) The substructure 〈A,∧,∨,¬, 0〉 is a Kleene algebra, i.e., a distributive lat-
tice with a Kleene negation ¬, instead of a Boolean algebra;

(2) The operators ν and µ satisfy the classical properties of an S5 modal system
as it is explained in the following proposition.

Proposition 2.1. [6] In any BZ distributive lattice the following conditions hold:

(mod–1)

ν(1) = 1.

That is: if a sentence is true, then also its necessity its true (necessi-
tation rule or according to [12, p. 20] the N–principle).

(mod–2)

a ≤ b implies ν(a) ≤ ν(b)

if a conditional and its antecedent are both necessary, then so is the
consequent (which is the characteristic K–principle of modal logic
see [12, p. 7]).

(mod–3)

ν(a) ≤ a ≤ µ(a).

In other words: necessity implies actuality and actuality implies pos-
sibility (the characteristic T–principle).

(mod–4)

ν(a) = ν(ν(a)) and µ(a) = µ(µ(a)).

whatever is necessary (resp., possible) is necessarily necessary (resp.,
possibly possible) (the characteristic 4–principle).

(mod–5)

µ(a) = ¬(ν(¬a))

which embodies the idea that what is possible is just what is not–
necessarily–not (the DF♦–principle).

(mod–6)

a ≤ ν(µ(a)).

Actuality implies necessity of possibility (the characteristic B–principle).
(mod–7)

µ(a) = ν(µ(a)), ν(a) = µ(ν(a)).

Possibility is equal to the necessity of possibility; whereas necessity is
equal to the possibility of necessity (the characteristic S5–principle).
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Thus, we have that from a modal point of view, the structure 〈A,∧,∨, ν,¬, 0〉 is
a “weak” S5 modal system, since it satisfies all S5 axioms but it is based on Kleene
lattice instead of on a Boolean algebra.

Further, if we consider BZdM lattices, we obtain a more deviant, with respect to
the above weak one, modal structure since necessity and possibility satisfy also the
distributive properties:

ν(a ∨ b) = ν(a) ∨ ν(b)(DDν)

µ(a ∧ b) = µ(a) ∧ µ(b)(DDµ)

We note that these properties do not make sense in a classical (Boolean) environ-
ment, since under DDν (equivalently, DDµ) ν and µ trivially collapse to the identity
operator. However, here the underlying structure is a Kleene lattice and ν and µ
are distinct non–trivial operators satisfying all S5 axioms and also DD conditions,
as can be seen in the following example.

Example 2.3. Let us consider the BZdM lattice of Figure 2, then

ν(a) = 0 6= a 6= 1 = µ(a).

Finally, when considering the relationship among the modal–like and the nega-
tions operators, one obtains:

∼a = ν(¬a) = ¬µ(a)

♭a = ¬ν(a) = µ(¬a)

On this basis, similarly to the modal interpretation of intuitionistic logic, the
Brouwer complement ∼can be interpreted as the negation of possibility or impossi-
bility (also the necessity of a negation). Analogously, the anti-Brouwer complement
♭ can be interpreted as the negation of necessity.

2.3.2. Rough approximation spaces in BZ lattices. We are now interested to those
elements which satisfy some classical properties and which can be therefore consid-
ered as exact, crisp in contraposition to the other fuzzy elements. First of all, we
consider those elements for which e = µ(e) (equivalently, e = ν(e)), i.e., to the situ-
ations where we cannot distinguish among necessity, actuality and possibility. This
picture leads one to define the substructure of all Modal sharp (M-sharp) (exact,
crisp) elements, denoted by Ae,M :

Ae,M := {e ∈ A : µ(e) = e} = {e ∈ A : ν(e) = e}

However, this is not the only way to define sharp elements. In fact, we have seen that
the two non–standard negations ¬ and ∼ do not satisfy some classical properties.
Thus, we can define the Kleene sharp (K-sharp) elements as those elements which
satisfy the non contradiction (or equivalently the excluded middle) law with respect
to the Kleene negation:

Ae,¬ := {e ∈ A : e ∧ ¬e = 0} = {e ∈ A : e ∨ ¬e = 1}

Alternatively, we can define the Brouwer sharp (B-sharp) elements as those ele-
ments satisfying the double negation law with respect to the Brouwer negation:

Ae,B := {e ∈ A : ∼∼e = e} = {e ∈ A : ♭♭e = e}

The relation among all these different substructures of exact elements is figured out
in the following proposition.
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Proposition 2.2. [9]. Let A be a BZ lattice. Then

Ae,B = Ae,M ⊆ Ae,¬

Let A be a BZdM lattice. Then

Ae,B = Ae,M = Ae,¬

In the case of a BZdM lattice all the subsets of exact elements coincide, thus, we
can simply talk of sharp elements and write Ae.

As we have seen, in any BZ algebra it is possible, making use of the composition
of the two negations, to introduce the modal operators, ν and µ. These operators
give a rough approximation of any element a ∈ A by M-sharp definable elements.
In fact, ν(a) (resp., µ(a)) turns out to be the best approximation from the bottom
(resp., top) of a by M-sharp elements. To be precise, for any element a ∈ A the
following holds:

(I1) ν(a) is M-sharp (ν(a) ∈ Ae,M ).
(I2) ν(a) is an inner (lower) approximation of a (ν(a) ≤ a).
(I3) ν(a) is the best inner approximation of a by M-sharp elements (let

e ∈ Ae,M be such that e ≤ a, then e ≤ ν(a)).

By properties (I1)–(I3), it follows that the necessity of an element a can be expressed
in the following form:

ν(a) = max{x ∈ Ae,M : x ≤ a}

Analogously

(O1) µ(a) is M-sharp (µ(a) ∈ Ae,M ).
(O2) µ(a) is an outer (upper) approximation of a (a ≤ µ(a)).
(O3) µ(a) is the best outer approximation of a by M-sharp elements (let

f ∈ Ae,M be such that a ≤ f , then µ(a) ≤ f).

By properties (O1)–(O3), it follows that the possibility of an element a can be
expressed in the following form:

µ(a) = min{y ∈ Ae,M : a ≤ y}

Definition 2.5. Given a BZ lattice A the induced rough approximation space is
the structure 〈A,Ae,M , ν, µ〉 consisting of the set A of all approximable elements,
the set Ae,M of all definable (or M-sharp) elements, and the inner (resp., outer)
approximation map ν : A→ Ae,M (resp., µ : A→ Ae,M ).
For any element a ∈ A, its rough approximation is defined as the pair of M-sharp
elements:

r(a) := 〈ν(a), µ(a)〉 [with ν(a) ≤ a ≤ µ(a)]

drawn in the following diagram:

a ∈ A

ν

wwnnnnnnnnnnnn
µ

''PPPPPPPPPPPP

r

��

ν(a) ∈ Ae,M

''OOOOOOOOOOO
µ(a) ∈ Ae,M

wwooooooooooo

〈ν(a), µ(a)〉
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So the map r : A→ Ae,M ×Ae,M approximates an unsharp (fuzzy) element by a
pair of M-sharp (crisp, exact) ones representing its inner and outer sharp approxi-
mation, respectively. Equivalently, it is possible to identify the rough approximation
of a with the pair necessity, impossibility:

r⊥(a) := 〈ν(a),¬µ(a)〉 = 〈ν(a),∼a〉

drawn in the following diagram:

a ∈ A

ν

wwooooooooooo
∼

''OOOOOOOOOOO

r⊥

��

ν(a) ∈ Ae,M

''OOOOOOOOOOO
∼a ∈ Ae,M

wwppppppppppp

〈ν(a),∼a〉

Clearly, M-sharp elements are characterized by the property that they coincide with
their rough approximations:

e ∈ Ae,M iff r(e) = r⊥(e) = 〈e, e〉.

We remark that our interest in the study of abstract rough approximations is
due to the possibility of giving an algebraic approach to concrete rough sets. The
interested reader can see [4, 6].

3. Residuated lattices

Let us consider residuated lattices [33], i.e., lattice structures 〈A,∧,∨, 0, 1〉 where
it is possible to define a pair of binary operators (∗,→), called respectively multi-
plication and residuation, such that the substructure 〈A, ∗, 1〉 is a monoid and the
following hold ∀a, b, c ∈ A:

a ∗ c ≤ b implies c ≤ a→ b(R1)

a ∗ (a→ b) ≤ b(R2)

Trivially, (R1) and (R2) can be equivalently expressed by the following adjointness
condition:

(AC) c ≤ (a→ b) iff a ∗ c ≤ b

As pointed out in the introduction, it is emerged by Hajek et al. works [19, 16]
that the residuated lattice structure common to all logics based on the unit interval
[0, 1] is a Basic Logic (BL) algebra. In this section, we are going to study BL algebra
and some of its enrichments. For any algebra we will introduce in the sequel, its
underlying lattice structure is put in evidence.

3.1. Basic Logic algebras. As it is mentioned above, the first structure we are
going to consider is the so called Basic Logic algebra. As its name suggests it
is a very general structure, which can be enriched in several ways to obtain the
underlying structure of many valued logical systems with different adjoint operators.

Definition 3.1. A system A = 〈A,∧,∨, ∗,→, 0, 1〉 is a Basic Logic (BL) algebra if
∧,∨, ∗,→ are binary operators on A and 0, 1 are constants such that:
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(1) 〈A,∧,∨, 0, 1〉 is a lattice with least element 0 and greatest element 1 with
respect to the lattice ordering a ≤ b iff a ∧ b = a;

(2) 〈A, ∗, 1〉 is a monoid, i.e., the binary operation ∗ on A is commutative,
associative and for all a ∈ A, 1 ∗ a = a;

(3) the following properties are satisfied by all a, b, c ∈ A
(a) a ∧ (b→ (a ∗ b)) = a
(b) ((a→ b) ∗ a) ∨ b = b
(c) (a ∧ b) ∗ c = (a ∗ c) ∧ (b ∗ c)
(d) (a→ (a ∨ b)) = 1
(e) (c→ a)→ (c→ (a ∨ b))) = 1
(f) a ∧ b = a ∗ (a→ b)
(g) (a→ b) ∨ (b→ a) = 1 (Dummett condition)

Remark 3. As proved in [19, p.50], properties (a)–(e) are equivalent to the non–
equational property (AC). Thus, any BL algebra is trivially a residuated lattice
satisfying also properties (f) and (g).

Proposition 3.1. [19, p. 48] Let A = 〈A,∧,∨, ∗,→, 0, 1〉 be a BL algebra. Then,
the following property holds:

a ≤ b implies (b→ c) ≤ (a→ c).

In the following, some results about the completeness of BL algebras are reported.

Proposition 3.2. [19, p. 53]. Any BL algebra is a subalgebra of the direct product
of a system of linearly ordered BL algebras.

Proposition 3.3. [19, p. 54]. Let φ and ψ be well-defined terms, in the traditional
way, on the language of BL algebra. An equation φ = ψ is satisfied in all linearly
ordered BL algebras iff it is satisfied in all BL algebras.

BL algebras can be extended in different ways, in particular it is possible to
obtain Wajsberg algebras [31, 32] or Heyting algebras [22, 23] as shown in the
following.

Definition 3.2. A structure A = 〈A,→,¬, 1〉 is a Wajsberg algebra if the following
axioms are satisfied:

(W1) 1→ a = a
(W2) (a→ b)→ ((b→ c)→ (a→ c)) = 1
(W3) (a→ b)→ b = (b→ a)→ a
(W4) (¬a→ ¬b)→ (b→ a) = 1

Let us remark that in any Wajsberg algebra it is possible to define an order relation
as

a ≤ b iff a→ b = 1

With respect to this order relation, 1 is the maximum element and 0 := ¬1 the
minimum element and once defined the meet and join operators in the usual manner:
a ≤ b iff a ∧ b = a iff a ∨ b = b, the structure 〈A,∧,∨, 0, 1〉 is a distributive lattice.
Further, the negation ¬ is a Kleene negation, i.e., it satisfies properties (K1)–(K3)
of Section 2.3.

Proposition 3.4. [30, p. 46] A BL algebra is a Wajsberg algebra iff it satisfies also
the axiom

(W) (a→ 0)→ 0 = a.
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Let us remark that in any BL algebra satisfying also axiom (W), the identity
a ∗ b = ¬(a → ¬b) holds ∀a, b ∈ A and the lattice operator ∨ is linked to the
residuation operator → by the equality a ∨ b = (a→ b)→ b.

Definition 3.3. A Gödel algebra is a BL algebra plus the axiom

(G) ∀a ∈ A : a ∗ a = a

Let us remark that in any Gödel algebra it holds the identity ∀a, b ∈ A : a∗b = a∧b.

Definition 3.4. A system A = 〈A,∧,∨,→, 0〉, where A is a non empty set, ∧,∨,→
are binary operators, 0 is an element of A, is called a Heyting algebra if the following
axioms are satisfied:

(H1) a→ a = b→ b
(H2) (a→ b) ∧ b = b
(H3) a→ (b ∧ c) = (a→ c) ∧ (a→ b)
(H4) a ∧ (a→ b) = a ∧ b
(H5) (a ∨ b)→ c = (a→ c) ∧ (b→ c)
(H6) 0 ∧ x = 0

In [22] it is proved that Heyting algebras are equivalent to residuated lattices where
the multiplication operator coincides with the lattice meet operator, i.e., ∀a, b ∈ A :
a ∧ b = a ∗ b. Further, the unary operator ∼a := a→ 0 is a Brouwer negation, i.e.,
it satisfies properties (B1)–(B3) of Section 2.2.

Proposition 3.5. Gödel algebras are Heyting algebras satisfying also the Dummett
condition

(D) (a→ b) ∨ (b→ a) = 1

Proof. It is an immediate consequence of the equivalence of Heyting algebras and
residuated lattices with ∧ = ∗ given by Monteiro [22]. �

Remark 4. Let us note that the correct form of axiom (H3) is the one of Defini-
tion 3.4, as it was given in the original work [22], and not the following one:

(H3’) a→ (b ∧ c) = (a→ b) ∧ (a→ c)

as it has been used later by Monteiro himself [23] and other authors. Indeed, if
this form is used, the underlying substructure 〈A,∧,∨〉 is no more a lattice, since
in general the operation ∧ is not commutative as shown in the following example.

Example 3.1. Let us consider the algebraic structure 〈{0, a, 1},∧,∨,→〉 where the
operators are defined according to Table 1.

Table 1. An example of the non correctness of axiom (H3’).

→ 0 a 1
0 1 1 1
a 1 1 1
1 0 a 1

∧ 0 a 1
0 0 0 0
a a a a
1 0 a 1

∨ 0 a 1
0 0 0 1
a 0 0 1
1 1 1 1
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Clearly, this structure satisfies all axioms (H1),(H2),(H3’), (H4), (H5) and (H6).
However, the operators ∧ and ∨ do not define a lattice. For instance, the commu-
tative property of ∧ is not satisfied, since a∧ 0 6= 0∧ a and ∨ is not an idempotent
operator, since a ∨ a = 0.

Definition 3.5. A system A = 〈A,∧,∨,→, ¬〉 is a symmetric Heyting algebra if it
satisfies (H1)–(H5) and ¬ is a de Morgan negation, i.e., it satisfies properties (K1)
and (K2). Trivially, any symmetric Heyting algebra is a Heyting algebra once
defined 0 := ¬(a→ a).

We can summarize the dependencies among these structures with the following
diagram.

BL

vvnnnnnnnnnnnnn

))TTTTTTTTTTTTTTTTT

BL+(W) = Wajsberg Gödel = BL+(G) = Heyting+(D)

3.1.1. BL lattice structure.

Proposition 3.6. Let 〈A,∧,∨, ∗,→, 0, 1〉 be a BL algebra. Then, once defined
∼a := a → 0, the underlying lattice structure 〈A,∧,∨,∼, 0〉 is a pre–Brouwer de
Morgan lattice.

Proof. We have to show that the following properties hold:

(B1) a ∧ ∼∼a = a;
(B2b) ∼a ∨∼b = ∼(a ∧ b).

(B1). Setting b = 0 in axiom (b) we have ∼a ∗ a = 0. Setting a = ∼b in axiom
(a), we have (∼b → (b ∗ ∼b)) ∧ b = b. Putting these two results together, we have
a ∧ ∼∼a = a.
(B2b). We prove that it holds in all linearly order BL algebras, then by Proposition
3.3 it holds in any BL algebra. Let us suppose that a ≤ b. Then, we have ∼(a∧b) =
∼a and on the other side ∼b ≤ ∼a by Proposition 3.1. Thus, ∼a ∨ ∼b = ∼a =
∼(a ∧ b). �

The underlying structure is not a Brouwer lattice, because, in general, a BL
algebra does not satisfy the noncontradiction law ∀a : a ∧ ∼a = 0, as can be seen
in the following counterexample.

Example 3.2. Let us consider the BL algebra, with support {0, a, b, 1} and oper-
ators defined in Table 2.

Table 2. An example of {0, a, b, 1} BL algebra with ∗, → opera-
tors and derived negation ∼ .

∗ 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

x ∼x
0 1
a a
b 0
1 0

In figure 3, it is drawn the Hasse diagram of the underlying lattice structure.
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•
1 = ∼0

• b

• a = ∼a

•

∼1 = 0 = ∼b

Figure 3. Hasse diagram of the lattice structure underlying the
BL algebra of Table 2.

In this structure we have that a ∧∼a = a. So, ∼ is not a Brouwer negation and
furthermore it is not a de Morgan negation, since ∼∼b = 1 6= b.

Further, we have that in all BL algebras the Kleene condition is satisfied by the
∼negation.

Proposition 3.7. Let 〈A,∧,∨, ∗,→, 0, 1〉 be a BL algebra. Then, for all a, b ∈ A
the condition

(K3) a ∧∼a ≤ b ∨∼b

holds.

Proof. We prove that (K3) holds in all linearly order BL algebras. Then, by Propo-
sition 3.3, (K3) holds in any BL algebra. Let us suppose that a ≤ b, then, trivially,
a ∧ ∼a ≤ a ≤ b ≤ b ∨ ∼b. On the other hand, if b ≤ a then by Proposition 3.1, we
have ∼a ≤ ∼b and finally, a ∧ ∼a ≤ ∼a ≤ ∼b ≤ b ∨ ∼b. �

3.2. Strict Basic Logic algebras. Let us consider BL algebras based on the unit
interval [0, 1] where ∗ is a triangular norm without non–trivial zero divisors [21],
i.e., verifying:

∀a, b ∈ [0, 1] : x ∗ y = 0 iff a = 0 or b = 0.

So, the Gödel algebra 〈[0, 1],∧,∨,→G, 0, 1〉 is an example of this kind of structure,
whereas the Wajsberg algebra 〈[0, 1],→L, ¬, 1〉 is not. Following [16], a new axiom
can be introduced in BL algebras in order to obtain as models exactly these kind
of structures.

Definition 3.6. A structure A = 〈A,∧,∨, ∗,→, 0, 1〉 is a Strict Basic Logic (SBL)
algebra if it is a BL algebra and satisfies the further axiom

(a ∗ b)→ 0 = (a→ 0) ∨ (b→ 0)

Proposition 3.8. [16]. Let A be a Gödel algebra then A is a SBL algebra.

Proposition 3.9. [16]. Let φ and ψ be well-defined terms, in the traditional way,
on the language of SBL algebra. An equation φ = ψ is satisfied in all linearly
ordered SBL algebras iff it is satisfied in all SBL algebras.
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3.2.1. SBL lattice structure.

Lemma 3.1. Let A be a SBL algebra and define ∼a := a→ 0. Then, for all a ∈ A,
the condition

a ∧ ∼a = 0

holds.

Proof. By Definition 3.6 and de Morgan properties ∼(a ∗ b) = ∼a ∨ ∼b = ∼(a ∧ b)
and by BL axiom (f) ∼(a ∗ b) = ∼(a ∗ (a → b)). Now, by the property x ∗ ∼x = 0
we have

0 = [a ∗ (a→ b)] ∗ ∼[a ∗ (a→ b)] = [a ∗ (a→ b)] ∗ ∼(a ∗ b).

Finally, setting b = ∼a, we have the thesis. �

Proposition 3.10. Let 〈A,∧,∨, ∗,→, 0, 1〉 be a SBL algebra. Once defined ∼a :=
a→ 0, the structure 〈A,∧,∨,∼, 0〉 is a de Morgan Brouwer lattice.

Proof. Since any SBL algebra is a BL algebra and hence a pre–Brouwer lattice, we
have only to prove that a ∧ ∼a = 0 which is just Lemma 3.1. �

3.3. SBL¬ algebras. Finally, a new unary operator is added to SBL algebras.
The axioms characterizing this new operator are developed in order to obtain a de
Morgan negation i.e., a negation satisfying the double negation law, “∀a : ¬¬a = a”
and the contraposition law “∀a, b : ¬a ≤ ¬b implies b ≤ a”; and in order to define
a unary operator ν as the algebraic counterpart of the Baaz operator ∆ [1].

Definition 3.7. A system A = 〈A,∧,∨, ∗,→,¬, 0, 1〉 is a SBL¬ algebra if

(1) 〈A,∧,∨, ∗,→, 0, 1〉 is a SBL algebra
(2) ¬ is a unary operator such that, once defined ∼a = a→ 0 and ν(a) = ∼¬a,

the following are satisfied
(SBL¬1) ¬¬a = a
(SBL¬2) ∼a ≤ ¬a
(SBL¬3) ν(a→ b) = ν(¬b→ ¬a)
(SBL¬4) ν(a) ∨ ν(¬a) = 1
(SBL¬5) ν(a ∨ b) ≤ ν(a) ∨ ν(b)
(SBL¬6) ν(a) ∗ (ν(a→ b)) ≤ ν(b)

Proposition 3.11. [16]. Let φ and ψ be well-defined terms, in the traditional way,
on the language of SBL¬ algebra. An equation φ = ψ is satisfied in all linearly
ordered SBL¬ algebras iff it is satisfied in all SBL¬ algebras.

3.3.1. SBL¬ lattice structure.

Proposition 3.12. Let 〈A,∧,∨, ∗,→,¬, 0, 1〉 be a SBL¬ algebra. Then, once de-
fined ∼a := a→ 0, the structure 〈A,∧,∨,¬,∼, 0〉 is BZdM lattice.

Proof. Since any SBL¬ algebra is a SBL algebra and hence a Brouwer de Morgan
lattice, we have only to prove that

(K1) ¬¬a = a
(K2) ¬(a ∨ b) = ¬a ∧ ¬b
(K3) a ∧ ¬a ≤ b ∨ ¬b
(in) ¬∼a = ∼∼a
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(K1) It is an axiom of SBL¬ algebras.
(K2) It has been proved in [16].
(K3) Similar to Proposition 3.7.
(in) By ∼a ≤ ¬a, we get ∼a = ∼a ∧ ¬a, and applying this to ν(a): ∼ν(a) =
∼ν(a) ∧ ¬ν(a). By axioms (a) and (b), we have ¬ν(a) = ¬ν(a) ∧ [ν(a)→ (¬ν(a) ∗
ν(a))] = ¬ν(a) ∧ ∼ν(a). So, we have that ∼ν(a) = ¬ν(a), which, once applied to
¬a, gives the thesis. �

4. HW algebras

At the top level of our hierarchy, we introduce and study the new structure of
Heyting Wajsberg (HW) algebra [5, 7]. Its originality consists in the presence of
two implication connectives as primitive operators.

Definition 4.1. A system A = 〈A,→L,→G, 0〉 is a Heyting Wajsberg (HW ) alge-
bra if A is a non empty set, 0 ∈ A and →L,→G are binary operators, such that,
once defined

1 := ¬0(2a)

¬a := a→L 0(2b)

∼a := a→G 0(2c)

a ∧ b := ¬((¬a→L ¬b)→L ¬b)(2d)

a ∨ b := (a→L b)→L b(2e)

the following are satisfied:

(HW1) a→G a = 1
(HW2) a→G (b ∧ c) = (a→G c) ∧ (a→G b)
(HW3) a ∧ (a→G b) = a ∧ b
(HW4) (a ∨ b)→G c = (a→G c) ∧ (b→G c)
(HW5) 1→L a = a
(HW6) a→L (b→L c) = ¬(a→L c)→L ¬b
(HW7) ¬∼a→L ∼∼a = 1
(HW8) (a→G b)→L (a→L b) = 1

Lemma 4.1. In any HW algebra the following properties hold

(L1) a→L a = 1
(L2) a→L b = ¬b→L ¬a
(L3) ¬¬a = a
(L4) a ∧ 1 = a; 1 ∧ a = a
(L5) 1→G c = c
(L6) a ∧ b = b ∧ a

Proof. (L1) Setting b = a in (HW8) and using (HW1), we get 1→L (a→L

a) = 1. Now, by (HW5) we have the thesis.
(L2) Setting a = 1 in (HW6), we have 1→L (b→L c) = ¬(1→L c)→L ¬b,

then by (HW5) we derive the thesis.
(L3) First, by definition of ¬ and (HW5), we can derive that ¬1 = 0. Now,

applying (L2) to (HW5), we get ¬a →L ¬1 = a. Finally, by ¬1 = 0
and definition of ¬, we get ¬¬a = a.
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(L4) By ∧ definition:

a ∧ 1 = ¬((¬a→L ¬1)→L ¬1) (L2), (L3)

= ¬(1→L ¬(1→L a)) (HW5)

= ¬(1→L ¬a) (HW5), (L3)

= ¬¬a = a

Similarly, we get 1 ∧ a = a.
(L5) Setting a = b = 1 in (HW2), we get 1→G (1∧ c) = (1→G c)∧ (1→G

1). Then, by (HW1) and (L4) we have the thesis.
(L6) Simply by setting a = 1 in (HW2) and using (L5).

�

Proposition 4.1. Let A be a HW algebra. Then, the following equations are
mutually equivalent:

a→L b = 1(3a)

a→G b = 1(3b)

a ∧ b = a(3c)

Proof. a→L b = 1 implies a ∧ b = a. By definition of ∧:

a ∧ b = ¬[(¬b→L ¬a)→L ¬a) (L2), (L3)

= ¬[a→L ¬(a→L b)] Hypothesis

= ¬(a→L ¬1) (L2), (HW5), (L3)

= ¬¬a = a

b ∧ a = a implies a→G b = 1. Setting c = a in axiom (HW2) we get:

a→G (b ∧ a) = (a→G b) ∧ (a→G a) Hypothesis, (HW1)

a→G a = (a→G b) ∧ 1 (HW1), (L4)

1 = a→G b

a →G b = 1 implies a →L b = 1. Using (HW8) and hypothesis, one has
1→L (a→L b) = 1. Then by axiom (HW5), a→L b = 1.

�

Proposition 4.2. Let A be a HW algebra. The binary operator ≤ defined as

a ≤ b iff a→L b = 1 (equivalently, iff a→G b = 1 iff a ∧ b = a)

is a partial order on A.

Proof. a ≤ a is property (L1).
Let us suppose that a ≤ b and b ≤ a. By (HW3) and a→G b = 1 we get a = a ∧ b.
Dually, by (HW3) and b →G a = 1 we have b = b ∧ a and by (L6) we have the
thesis.
Finally, let us suppose that a ≤ b and b ≤ c. By (HW2) and (L4), we obtain
1 = (a→G c), that is a ≤ c. �

The following result is now quite trivial.
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Proposition 4.3. The concrete structure 〈[0, 1],→L,→G, 0〉 based on the real unit
interval, where the operators →L and →G are the ones introduced in equations (1a)
and (1b), satisfies HW axioms. As its name suggests, an HW algebra is a pasting
of a Heyting and a Wajsberg algebra as stated in the following propositions.

Proposition 4.4. Let A be a HW algebra. Then, by defining ∧ and ∨ as in Defi-
nition 4.1, we have that 〈A,→G,∧,∨,¬〉 is a symmetric Heyting algebra according
to Definition 3.4.

Proof. Axioms (H1), (H3), (H4) and (H5) are axioms (HW1)–(HW4). We prove
(H2). By definition of ∧ and setting b = 1 in (HW4) we have:

1→G c = ¬{[¬(a→G c)→L ¬(1→G c)]→L ¬(1→G c)}

By (L5) and ∧ definition we obtain c = (a→G c) ∧ c, i.e., (H2).
(K1) is property (L3). (K2) follows from ∧,∨ definitions and (K1). �

Proposition 4.5. Let A be a HW algebra. Then 〈A,→L,¬, 1〉 is a Wajsberg algebra
according to Definition 3.2.

Proof. Axiom (W1) is axiom (HW5). Axiom (W2) can be derived by the lattice
property b ∧ a ≤ b ∨ c and Proposition 4.1 as follows:

1 = b ∧ a→L b ∨ c Def. ∧,∨

= ¬((¬b→L ¬a)→L ¬a)→L ((b→L c)→L c) (L2)

= ¬((a→L b)→L ¬a)→L ((b→L c)→L c) (HW6)

= (a→L b)→L ¬(((b→L c)→L c)→L ¬a) (HW6)

= (a→L b)→L ((b→L c)→L (a→L c))

By definition of ∨, axiom (W3) is equivalent to a ∨ b = b ∨ a which holds in any
lattice (and hence in any Heyting algebra). Finally, axiom (W4) can be derived by
property (L2). �

When considering the underlying lattice structure of HW algebras, the following
result can be proved.

Proposition 4.6. Let A be a HW algebra. Then, once defined ∧, ∨, ∼, ¬ and 1
as in Definition 4.1, the structure 〈A,∧,∨,¬, ∼, 0, 1〉 is a BZdM lattice.

Proof. Due to Theorems 4.4 and 4.5, the only properties that still need a proof are

¬ ∼a = ∼∼a(in)

∼ (a ∧ b) = ∼a ∨∼b(dM)

The first one follows from (HW7) and (HW8). Indeed, by (HW7) we have ¬∼a ≤
∼∼a. By (HW8) with b = 0 we get∼a ≤ ¬a which applied to∼a gives∼∼a ≤ ¬∼a
and so (in) is verified.

Let us prove the second one. As proved in [25], in a pseudo complemented lattice
[2, p. 125] and hence, in any Heyting algebra, the Stone condition

(S) ∼a ∨ ∼∼a = 1

implies the de Morgan property (dM). So, it is sufficient to prove that (S) holds
in any HW algebra. Let a ∈ A and define y = ∼a. So, by (in) we get ∼y = ¬y.
Using the non contradiction law for the Brouwer negation y ∧ ∼y = 0 (it holds in
any pseudo complemented lattice [27, p. 60] hence in any Heyting algebra [22] and
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by Theorem 4.4 in any HW algebra), we derive y ∧ ¬y = 0 and then y ∨ ¬y = 1.
Finally, we get y ∨ ∼y = 1, that is ∼a ∨ ∼∼a = 1. �

Hence, as we did in BZ lattices (see Definition 2.4), also in any HW algebra A it
is possible to define the anti–intuitionistic negation as ♭(a) := ¬∼ ¬a. Further, also
the modal–like operators of necessity ν(a) := ∼¬a and possibility µ(a) := ¬∼a
satisfy all the properties of Section 2.3.1. Finally, in any HW algebra it is possible
to induce an abstract approximation space in the sense of Definition 2.5.

Remark 5. It is well known that in any lattice it holds the duality principle [27], i.e.,
(∧,∨) and (0, 1) are pair of dual operators: by replacing an operator with the dual
one in a true statement, we again obtain a true statement. Monteiro [23] proved
that a duality principle holds also for symmetric Heyting algebras, i.e., Heyting
algebras with a de Morgan negation ¬. This result can be extended in a natural
way to HW algebras defining the dual operators of the Gödel and  Lukasiewicz
implications respectively as a←G b := ¬(¬a→G ¬b) and a←L b := ¬(¬a→L ¬b).

4.1. Monteiro implication. The two primitive implications,  Lukasiewicz and
Gödel, are not the only one definable in HW algebras. Here we focus our attention
on a third kind of implication, called “faible” in Monteiro [23]. This operator is
strictly linked to modalities and to the anti–intuitionistic negation.

Definition 4.2. For any pair a, b of elements of a HW algebra the Monteiro im-
plication is defined as:

a→M b := µ(¬a) ∨ b

It can be shown that the following hold.

Proposition 4.7. In any HW algebra the Monteiro implication satisfies the fol-
lowing properties:

(M1) a→M a = 1
(M2) a→M (b→M a) = 1
(M3) a→M (b→M c) = (a→M b)→M (a→M c)
(M4) ((a→M b)→M a)→M a = 1
(M5) 1→M a = a
(M6) a→M 0 = ♭a

Proof. These properties hold in all Heyting algebras with a Kleene negation ¬
satisfying also the Stone condition (S) of ∼ [23], hence they are valid also in HW
algebras. �

We remark that, as stated in (M6), the Monteiro implication permits to introduce
independently the anti-intuitionistic negation.

Since we are greatly interested in the unit interval, it is natural to consider
how behaves this kind of implication in [0, 1] and if it can be can defined as the
residuation of a t–norm. The following proposition is an answer to these questions.

Proposition 4.8. Let us consider the Monteiro implication on the unit interval
[0, 1]. It does not exist a t–norm t such that →M is the residuation of t , i.e., such
that for all a, b ∈ [0, 1]

a→M b = sup{c ∈ [0, 1] : atc ≤ b}
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Proof. Once considered on the unit interval, the Monteiro implication reduces to

a→M b =

{

b if a = 1

1 otherwise

Now, suppose that there exists a t–norm t generating →M . Then, for all a 6= 1
and for all b it should hold that at1 ≤ b. But if t is a t–norm then it must
hold at1 = a, and consequently a ≤ b, which, clearly, is not satisfied by all pairs
〈a, b〉 ∈ [0, 1)× [0, 1]. �

5. Conclusions

The original structure of HW algebra has been introduced. Some weakening of
HW algebras have been considered and their lattice structure has been studied. In
the following diagram the relationship existing among all the discussed algebraic
structures is summarized.

HW

��

BZdM

��

SBL¬
oo

��

BrouwerdM

��

SBLoo

��

pre−BrouwerdM BLoo

In the second part of this work [8], we will complete this diagram introducing
some other algebras equivalent to HW algebras. This result will also enable us to
show that SBL¬ algebras are a substructure of HW algebras and that any HW
algebra satisfies the Dummett condition for the Gödel implication.

An open problem about HW algebras is the proof of the independence of its
axioms. We are able to prove that all axioms but (HW7) are independent from the
others. In the case of (HW7) we cannot say if it depends or not from the others.
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