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Abstract
Rough sets use a partition of a base set induced by a given indiscernibility relation 𝜌. In practice such partitions

can result from clustering the data. DLs with concept operators relying on a single 𝜌 for upper and lower

approximations of concepts have been investigated so far. The use of a hierarchy of such equivalence relations as

it can result from hierarchical clustering methods is not explored yet in a DL setting. In this paper we extend

the rough DL ℰℒ𝜌
⊥ with a hierarchy of indiscernibility relations as and develop a decision procedure for testing

subsumption.
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1. Introduction

Rough description logics extend usual description logics by concept operators that use rough sets to add

a qualitative form of vagueness to concepts. In the field of rough sets, the domain is partitioned by an

equivalence relation, the so-called the indiscernibility relation 𝜌, that groups indistinguishable elements

into equivalence classes, also known as granules. Based on this partition, each set 𝑀 is associated with

two additional sets. One is the lower approximation 𝑀 , which contains all elements whose equivalence

class is completely contained in 𝑀 . The second set is the upper approximation 𝑀 , which contains

all those elements that belong to an equivalence class that has an overlap with 𝑀 . When applied to

concepts, the lower approximation 𝐶 models the “strong” or typical instances of 𝐶 , while the upper

approximation 𝐶 models elements that are at least “close” or similar to instances of 𝐶 .

Rough description logics have been defined as extensions of several classical DLs ranging from

ℰℒ to 𝒜ℒ𝒞. Reasoning in those rough DLs has mostly been investigated in relation to subsumption

[1, 2, 3, 4, 5] or answering conjunctive queries [6]. Rough DLs are well-behaved in the sense that

reasoning in them is usually of the same complexity as for their classical counter parts. Besides simply

admitting a controlled form of vagueness in concept descriptions, there are other uses of rough DLs for

ontology building and maintenance such as ontology engineering [7] and modeling concept drift [8].

Already rough sets alone have been used to structure data early on [9] as they can cluster the data, and

the vagueness they introduce makes them resilient against incomplete or noisy data. There have been

indiscernibility relations devised for different application domains in the literature. Varying the “degree”

of indiscernibility, admits structuring the data into finer or coarser granules and thus considering

the data on different levels of abstraction. There are also methods to obtain indiscernibility relations

that give a hierarchy of granulations [7, 10, 11], that result in a linearly ordered set of indiscernibility

relations.

In more general settings, clustering algorithms are a prime means to structure data as these algorithms

group data items according to their homogeneity or proximity into clusters. There is a plethora of

such methods and corresponding implementations readily available. A common and well-used type of

clustering methods are the hierarchical clustering methods like the classical COBWEB algorithm [12]
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and its variants. These clustering algorithms partition the data and effectively construct a dendrogram

of the data; i.e., they result in a hierarchy of clusters. The corresponding partitions are then a linearly

ordered set of equivalence relations.

The hierarchy of partitions obtained from hierarchical clustering or from indiscernibility relations

motivates the extension of rough DLs by a finite, linearly ordered set of equivalence relations (being

used as indiscernibility relations) 𝜌1, . . . , 𝜌𝑛. The results of clustering the data can be incorporated in

the knowledge base by augmenting the ABox with the role assertions for pairs from the same cluster, i.e.,

from pairs related by 𝜌𝑖. Such an augmentation of the ABox could be achieved by a mapping commonly

used in ontology-based data access (OBDA) [13]. The idea to incorporate an indiscernibility relation in

the ABox by an ODBA mapping was already described in [14].

In this paper we extend the rough DL ℰℒ𝜌
⊥ (originally introduced in [4]), which uses a single granula-

tion by one indiscernibility relation, to ℰℒ𝜌/lin

⊥ which uses a finite, linearly ordered set of indiscernibility

relations, and as such admits the use of a hierarchy of granulations. In this initial study on ℰℒ𝜌/lin

⊥ , we

investigate subsumption in ℰℒ𝜌/lin

⊥ and develop a decision procedure based on a completion algorithm

that essentially computes canonical models for ℰℒ𝜌/lin

⊥ TBoxes. This algorithm serves as a starting point

for investigating ABox reasoning tasks for this logic. The paper is organised as follows: in the next

section we introduce the rough DL ℰℒ𝜌/lin

⊥ . In Section 3 we develop the reasoning algorithm based on a

normal form and completion rules. In Section 4 we supply a brief discussion on possible extensions and

we end the paper with conclusion and an outlook on future work.

2. The Logic ℰℒ𝜌/lin
⊥

We consider an extension of ℰℒ𝜌
⊥ where several equivalence relations (representing indiscernibility at

different levels of detail) are used. In our setting, these relations are totally ordered from the coarsest to

the most finely-grained. More formally, given 𝑛 ≥ 1, we consider 𝑛 equivalence relations ∼1, . . . ,∼𝑛

such that ∼𝑖 ⊆ ∼𝑖+1 for all 1 ≤ 𝑖 < 𝑛. That is, ∼1 is the most fine-grained relation, while ∼𝑛 is the

coarsest. Note that ∼𝑖 partitions each equivalence class of ∼𝑖+1 into (possibly) smaller classes.

Given a fixed but arbitrary 𝑛 ∈ N, the set of ℰℒ𝜌/lin

⊥ concepts is constructed through the syntactic rule

𝐶 ::= 𝐴 | ⊤ | ⊥ | 𝐶 ⊓ 𝐶 | ∃𝑟.𝐶 | 𝐶 𝑖 | 𝐶
𝑖

where 𝐴 ∈ NC, 𝑟 ∈ NR, and 1 ≤ 𝑖 ≤ 𝑛. Concepts of the form 𝐶 𝑖 are called lower approximation of 𝐶

w.r.t. ∼𝑖 and those of the form 𝐶
𝑖

are called upper approximation of 𝐶 w.r.t. ∼𝑖. As usual, a ℰℒ𝜌/lin

⊥ TBox
(or ontology) is a finite set of GCIs of the form 𝐶 ⊑ 𝐷, where 𝐶 and 𝐷 are ℰℒ𝜌/lin

⊥ concepts.

The semantics is based on interpretations of the form ℐ = (Δℐ , ·ℐ , {∼𝑖 | 1 ≤ 𝑖 ≤ 𝑛}) where (Δℐ , ·ℐ)
is a standard DL interpretation, and ∼1, . . . ,∼𝑛 are equivalence relations over Δℐ

such that ∼𝑖 ⊆ ∼𝑖+1

holds for all 1 ≤ 𝑖 < 𝑛. Given an element 𝛿 ∈ Δℐ
, we denote as [𝛿]𝑖 the equivalence class of 𝛿 w.r.t. ∼𝑖,

which is the class of all objects 𝜂 ∈ Δℐ
such that (𝛿, 𝜂) ∈ ∼𝑖. The interpretation function is extended

to arbitrary ℰℒ𝜌/lin

⊥ concepts as usual for ⊤, ⊥, ⊓, and ∃, while for the lower and upper approximations,

we define

(𝐶 𝑖)
ℐ := {𝛿 ∈ Δℐ | [𝛿]𝑖 ⊆ 𝐶ℐ} and

(𝐶
𝑖
)ℐ := {𝛿 ∈ Δℐ | [𝛿]𝑖 ∩ 𝐶ℐ ̸= ∅}.

An interpretation satisfies the GCI 𝐶 ⊑ 𝐷 (denoted as ℐ |= 𝐶 ⊑ 𝐷) iff 𝐶ℐ ⊆ 𝐷ℐ
. The interpretation ℐ

is a model of the TBox 𝒯 (denoted ℐ |= 𝒯 ) iff ℐ |= 𝐶 ⊑ 𝐷 holds for all GCIs 𝐶 ⊑ 𝐷 ∈ 𝒯 .

Note in particular that for every 𝛿 ∈ Δℐ
and every 𝑖, with 1 ≤ 𝑖 < 𝑛, it holds that [𝛿]𝑖 ⊆ [𝛿]𝑖+1, and

hence also (𝐶 𝑖+1)
ℐ ⊆ (𝐶 𝑖)

ℐ ⊆ (𝐶
𝑖
)ℐ ⊆ (𝐶

𝑖+1
)ℐ for all concepts 𝐶 . The following proposition is a

consequence of these properties.



Proposition 1. For all 𝑖, 𝑗 with 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, all concepts 𝐶 , and all interpretations ℐ the following
equivalences hold:

1. (a)

(︀
(𝐶 𝑖)𝑗

)︀ℐ
= (𝐶 𝑗)

ℐ ; (b)

(︀
(𝐶 𝑗)

𝑖

)︀ℐ
= (𝐶 𝑗)

ℐ ;

2. (a)

(︀
(𝐶

𝑖
)
𝑗)︀ℐ

= (𝐶
𝑗
)ℐ ; (b)

(︀
(𝐶

𝑗
)
𝑖)︀ℐ

= (𝐶
𝑗
)ℐ ;

3.

(︀
(𝐶 𝑗)

𝑖)︀ℐ
= (𝐶 𝑗)

ℐ ; and

4.

(︀
(𝐶

𝑗
)
𝑖

)︀ℐ
= (𝐶

𝑗
)ℐ .

Proof. We prove only the claims 1. and 3.; the other two can be shown analogously.

For Claim 1.(a), 𝛿 ∈ ((𝐶 𝑖)𝑗)
ℐ

iff [𝛿]𝑗 ⊆ (𝐶 𝑖)
ℐ

iff (since ∼𝑖 ⊆ ∼𝑗) [𝛿]𝑖 ⊆ [𝛿]𝑗 ⊆ 𝐶ℐ
iff 𝛿 ∈ (𝐶 𝑗)

ℐ
.

Similarly for 1.(b), 𝛿 ∈ ((𝐶 𝑗)
𝑖
)ℐ iff [𝛿]𝑖 ⊆ (𝐶 𝑗)

ℐ
iff for every 𝜂 ∈ [𝛿]𝑖, it holds that [𝜂]𝑗 ⊆ 𝐶ℐ

iff (since

𝛿 ∼𝑖 𝜂 holds and implies that 𝛿 ∼𝑗 𝜂 holds) [𝛿]𝑗 ⊆ 𝐶ℐ
iff 𝛿 ∈ (𝐶 𝑗)

ℐ
.

For Claim 3., 𝛿 ∈ ((𝐶 𝑗)
𝑖
)ℐ iff [𝛿]𝑖 ∩ (𝐶 𝑗)

ℐ ̸= ∅ iff there exists 𝜂 ∈ [𝛿]𝑖 such that 𝜂 ∈ (𝐶 𝑗)
ℐ

iff there

is 𝜂 ∈ [𝛿]𝑖 with [𝜂]𝑗 ⊆ 𝐶ℐ
iff (because 𝛿 ∼𝑖 𝜂 holds and implies that 𝛿 ∼𝑗 𝜂 holds) [𝛿]𝑗 ⊆ 𝐶ℐ

iff

𝛿 ∈ (𝐶 𝑗)
ℐ

.

If 𝑖 = 𝑗 Claims 1 and 2 from Proposition 1 cover idempotence of both kinds of approximations. This

affects the design of the completion rules that treat propagation within the same level of roughness, that

is w.r.t. one 𝜌𝑖. For 𝑖 < 𝑗 the claims from Proposition 1 indicate how information is to be propagated or

absorbed between different levels of roughness.

Other important properties which combine the approximation concept constructors for each given

indiscernibility relation are the following, which were originally proven in [4].

Proposition 2. For any three ℰℒ𝜌/lin
⊥ concepts 𝐶,𝐷,𝐸 and all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛, the following properties

hold:

1. 𝒯 |= 𝐶
𝑖 ⊑ 𝐷 iff 𝒯 |= 𝐶 ⊑ 𝐷𝑖; and

2. if 𝒯 |= 𝐶 ⊑ 𝐷
𝑖 and 𝒯 |= 𝐷 ⊑ 𝐸 𝑖, then 𝒯 |= 𝐶 ⊑ 𝐸 𝑖; and

3. if 𝒯 |= 𝐶 ⊑ 𝐷
𝑖 and 𝒯 |= 𝐷𝑖 ⊑ 𝐸, then 𝒯 |= 𝐶 ⊑ 𝐸 𝑖.

These properties indicate how information is to be propagated within the same level of roughness.

All of these properties will be useful when we design a reasoning algorithm for ℰℒ𝜌/lin

⊥ in the following

section.

The rough DL ℰℒ𝜌
⊥ is the special case of ℰℒ𝜌/lin

⊥ where 𝑛 = 1; that is, where only one equivalence

relation is used. Since ℰℒ⊥ is a particular case of ℰℒ𝜌
⊥, where the GCIs 𝐴 ⊑ 𝐴1 and 𝐴

1 ⊑ 𝐴 are satisfied

for all 𝐴 ∈ NC, ℰℒ𝜌/lin

⊥ is obviously a generalisation of the classical DL ℰℒ⊥. As usual in these logics,

we are mainly interested in deciding whether a consequence follows from an ontology; in this case,

we consider the problem of deciding subsumption between two concept names. We say that 𝐴 ∈ NC

is subsumed by 𝐵 ∈ NC w.r.t. the TBox 𝒯 (𝒯 |= 𝐴 ⊑ 𝐵) iff every model of 𝒯 also satisfies the GCI

𝐴 ⊑ 𝐵.

3. Reasoning in ℰℒ𝜌/lin
⊥

We are interested in developing a reasoning algorithm capable of deciding subsumption relationships

between concepts w.r.t. a given ℰℒ𝜌/lin

⊥ TBox. As this logic is an extension of ℰℒ𝜌
⊥, we extend the known

completion algorithm [4] to handle the new cases required by the multiple indiscernibility relations

available.

As a first step, we need to limit the form that GCIs can take, requiring the TBox to comply with a

normal form; that is, that all the axioms are of one of the forms

𝐴1 ⊓𝐴2 ⊑ 𝐶, 𝐴 ⊑ ∃𝑟.𝐵, ∃𝑟.𝐴 ⊑ 𝐶, 𝐴𝑖 ⊑ 𝐶, 𝐴 ⊑ 𝐵 𝑖, 𝐴 ⊑ 𝐵
𝑖
,



Table 1
Normalisation rules. Where 𝐴 ∈ NC ∪ {⊤}, 𝐶,𝐷 are complex concepts, and 𝑋 is a new concept name.

NF1 𝐹 ⊓ 𝐶 ⊑ 𝐸 −→ {𝐶 ⊑ 𝑋,𝐹 ⊓𝑋 ⊑ 𝐸}
NF2 ∃𝑟.𝐶 ⊑ 𝐸 −→ {𝐶 ⊑ 𝑋,∃𝑟.𝑋 ⊑ 𝐸}
NF3 𝐶 𝑖 ⊑ 𝐸 −→ {𝐶 ⊑ 𝑋,𝑋 𝑖 ⊑ 𝐸}
NF4 𝐶

𝑖 ⊑ 𝐸 −→ {𝐶 ⊑ 𝐸 𝑖}
NF5 𝐶 ⊑ 𝐷 −→ {𝐶 ⊑ 𝑋,𝑋 ⊑ 𝐷}

NF6 𝐴 ⊑ 𝐸 ⊓ 𝐹 −→ {𝐴 ⊑ 𝐸,𝐴 ⊑ 𝐹}
NF7 𝐴 ⊑ ∃𝑟.𝐶 −→ {𝐴 ⊑ ∃𝑟.𝑋,𝑋 ⊑ 𝐶}
NF8 𝐴 ⊑ 𝐶 𝑖 −→ {𝐴 ⊑ 𝑋 𝑖, 𝑋 ⊑ 𝐶}
NF9 𝐴 ⊑ 𝐶

𝑖 −→ {𝐴 ⊑ 𝑋
𝑖
, 𝑋 ⊑ 𝐶}

NF10 ⊥ ⊑ 𝐸 −→ ∅

where 𝐴,𝐵 ∈ NC ∪ {⊤}, 𝐶 ∈ NC ∪ {⊤,⊥}, and 1 ≤ 𝑖 ≤ 𝑛.
1

Any TBox 𝒯 can be transformed into normal form applying the rules from Table 1—where NF1
uses the commutativity of conjunction—until no rule can be applied anymore. The resulting TBox is a

conservative extension of 𝒯 which, importantly, is only polynomially larger than 𝒯 as it is found after

only a polynomial number of rule applications.

Our completion algorithm extends the ideas introduced in [4] to handle lower and upper approxima-

tion concepts. Briefly, the completion algorithm for ℰℒ𝜌
⊥ preserves, for each concept name 𝐴 appearing

in a normalised TBox 𝒯 , a family of completion sets, which preserve the information of how the lower

and upper approximations of other concept names relate to 𝐴. This information is needed for an

adequate handling of the properties of these concept constructors. In the present case, we must extend

this idea to differentiate between the available indiscernibility relations.

More formally, for each 𝐴 ∈ NC ∪ {⊤} appearing in the normalised TBox 𝒯 , and for each 1 ≤ 𝑖 ≤ 𝑛

we preserve two sets called 𝑆
𝑖
(𝐴) and 𝑆 𝑖(𝐴). In addition, we keep track of a set 𝑆(𝐴) and for each

role name 𝑟 ∈ NR appearing in 𝒯 a set 𝑆(𝐴, 𝑟). Hence, for each such 𝐴, we keep 2𝑛 + ℓ + 1 many

such completion sets, where ℓ is the number of role names in 𝒯 . With polynomially many 𝐴s in the

normalised TBox, the completion algorithm uses polynomially many completion sets.

The elements of each completion set all belong to NC ∪ {⊤,⊥}. The idea is that these sets are sound

w.r.t. subsumption relations among simple concepts. Specifically, throughout the completion algorithm,

the application of completion rules preserves the following invariants:

1. if 𝐵 ∈ 𝑆
𝑖
(𝐴) then 𝒯 |= 𝐴 ⊑ 𝐵

𝑖

2. if 𝐵 ∈ 𝑆 𝑖(𝐴) then 𝒯 |= 𝐴 ⊑ 𝐵 𝑖

3. if 𝐵 ∈ 𝑆(𝐴) then 𝒯 |= 𝐴 ⊑ 𝐵 and

4. if 𝐵 ∈ 𝑆(𝐴, 𝑟) then 𝒯 |= 𝐴 ⊑ ∃𝑟.𝐵

for all 𝐴 ∈ NC ∪ {⊤}, 𝐵 ∈ NC ∪ {⊤,⊥}, 𝑟 ∈ NR, and 1 ≤ 𝑖 ≤ 𝑛. These are essentially the same

invariants that were used for ℰℒ𝜌
⊥ in [4].

The completion sets are initialized with obvious tautologies; that is, at the beginning of the algorithm

the sets are defined as

𝑆(𝐴) = 𝑆
𝑖
(𝐴) := {𝐴,⊤}, 𝑆 𝑖(𝐴) := {⊤}, 𝑆(𝐴, 𝑟) := ∅

for all 𝐴 ∈ NC ∪ {⊤}, 𝑟 ∈ NR, 1 ≤ 𝑖 ≤ 𝑛. Clearly this initialization preserves the invariants mentioned

above. These sets are extended through application of the completion rules described in Table 2. As

1

For brevity, we consider axioms of the form 𝐴 ⊑ 𝐵 as ⊤ ⊓𝐴 ⊑ 𝐵.



Table 2
Completion rules for ℰℒ𝜌/lin

⊥ .

cr1 if {𝐵1, 𝐵2} ⊆ 𝑆(𝐴) and 𝐵1 ⊓𝐵2 ⊑ 𝐶 ∈ 𝒯 , then add 𝐶 to 𝑆(𝐴)

cr2 if 𝐵 ∈ 𝑆(𝐴) and 𝐵 ⊑ ∃𝑟.𝐶 ∈ 𝒯 , then add 𝐶 to 𝑆(𝐴, 𝑟)

cr3 if 𝐵 ∈ 𝑆(𝐴, 𝑟), 𝐶 ∈ 𝑆(𝐵) and ∃𝑟.𝐶 ⊑ 𝐷 ∈ 𝒯 , then add 𝐷 to 𝑆(𝐴)

cr4 if {𝐵1, 𝐵2} ∈ 𝑆 𝑖(𝐴) and 𝐵1 ⊓𝐵2 ⊑ 𝐶 ∈ 𝒯 , then add 𝐶 to 𝑆 𝑖(𝐴)

cr5 if 𝐵1 ∈ 𝑆 𝑖(𝐴), 𝐵2 ∈ 𝑆
𝑖
(𝐴) and 𝐵1 ⊓𝐵2 ⊑ 𝐶 ∈ 𝒯 , then add 𝐶 to 𝑆

𝑖
(𝐴)

cr6 if 𝐵 ∈ 𝑆 𝑖(𝐴) and 𝐵 𝑖 ⊑ 𝐶 ∈ 𝒯 , then add 𝐶 to 𝑆 𝑖(𝐴)

cr7 if 𝐵 ∈ 𝑆
𝑖
(𝐴) and 𝐵 ⊑ 𝐶 𝑖 ∈ 𝒯 , then add 𝐶 to 𝑆 𝑖(𝐴)

cr8 if 𝐵 ∈ 𝑆
𝑖
(𝐴) and 𝐵 ⊑ 𝐶

𝑖 ∈ 𝒯 , then add 𝐶 to 𝑆
𝑖
(𝐴)

cr9 if 𝐵 ∈ 𝑆 𝑖(𝐴), then add 𝐵 to 𝑆(𝐴)

cr10 if 𝐵 ∈ 𝑆(𝐴), then add 𝐵 to 𝑆
𝑖
(𝐴)

cr11 if 𝐵 ∈ 𝑆 𝑗(𝐴) and 𝑖 < 𝑗, then add 𝐵 to 𝑆 𝑖(𝐴)

cr12 if 𝐵 ∈ 𝑆
𝑖
(𝐴) and 𝑖 < 𝑗, then add 𝐵 to 𝑆

𝑗
(𝐴)

cr13 if 𝐵 ∈ 𝑆 𝑖(𝐴) and 𝐶 ∈ 𝑆(𝐵), then add 𝐶 to 𝑆 𝑖(𝐴)

cr14 if 𝐵 ∈ 𝑆
𝑖
(𝐴) and 𝐶 ∈ 𝑆

𝑖
(𝐵), then add 𝐶 to 𝑆

𝑖
(𝐴)

cr15 if 𝐵 ∈ 𝑆 𝑖(𝐴) and 𝐶 ∈ 𝑆 𝑖(𝐵), then add 𝐶 to 𝑆 𝑖(𝐴)

cr16 if 𝐵 ∈ 𝑆(𝐴, 𝑟) and ⊥ ∈ 𝑆(𝐵), then add ⊥ to 𝑆(𝐴)

cr17 if 𝐵 ∈ 𝑆
𝑖
(𝐴) and ⊥ ∈ 𝑆

𝑖
(𝐵), then add ⊥ to 𝑆 𝑖(𝐴)

cr18 if ⊥ ∈ 𝑆
𝑖
(𝐴), then add ⊥ to 𝑆 𝑖(𝐴)

usual for these kinds of algorithms, the rules are only applied if they add an element to one of the sets

involved; that is, if the concept to be added is not already present in the set. The completion algorithm

applies rules until no rule is applicable anymore; at that point, we say that the algorithm is saturated.

Note that this algorithm becomes saturated after at most polynomially many rule applications (in

𝑛 and the size of 𝒯 ). Indeed, there are (2𝑛+ ℓ+ 1)𝑚 sets, where ℓ is the number of role names in 𝒯
and 𝑚 is the number of concept names in 𝒯 . Each of this sets contains at most 𝑚+ 2 elements (the

concept names in 𝒯 plus ⊤ and ⊥). Since each rule application adds one element to one of the sets,

at most (2𝑛+ ℓ+ 1)(𝑚+ 2)𝑚 rule applications are needed before reaching saturation. In addition,

the conditions for the application of a rule require only a lookup between the sets and the GCIs in 𝒯 ,

which can also be performed in polynomial time. Thus, overall the algorithm needs only polynomial

time to be saturated.

The result of the completion algorithm can be used to decide all the atomic subsumption relations

entailed by the TBox 𝒯 . That is, for every 𝐴,𝐵 ∈ NC we get that 𝒯 |= 𝐴 ⊑ 𝐵 iff 𝐵 ∈ 𝑆(𝐴). Soundness

is a consequence of the invariants described above.

Lemma 3. The completion algorithm preserves the four invariants, throughout all rule applications.

Proof. The proof is by induction on rule applications. The induction base is satisfied by the initialization.

For rules without rough constructors (cr1-cr3 and cr16) soundness was shown already in [15].

For rules cr6 to cr15, cr17, and cr18 soundness is a consequence of Propositions 1 and 2. Since the

rules cr11 and cr12 treat the interaction of different indiscernibility relations, we give a detailed proof

of them. For cr11, suppose 𝒯 |= 𝐴 ⊑ 𝐵 𝑖 and 𝑖 < 𝑗. For every model ℐ and every 𝛿 ∈ Δℐ
, if 𝛿 ∈ 𝐴ℐ

,

then 𝛿 ∈ 𝐵 𝑗
ℐ

and thus [𝛿]𝑗 ⊆ 𝐵ℐ
. Since from 𝑖 < 𝑗 follows that [𝛿]𝑖 ⊆ [𝛿]𝑗 , we obtain [𝛿]𝑖 ⊆ 𝐵ℐ

holds

and thus 𝛿 ∈ 𝐵 𝑖
ℐ

. This implies 𝒯 |= 𝐴 ⊑ 𝐵 𝑖. The proof for cr12 is analogous.

The only remaining rules are cr4 and cr5. For the rule cr4, suppose that 𝒯 |= 𝐴 ⊑ 𝐵1 𝑖
and



𝐴∼𝑖

𝐴𝐶
∼𝑖

𝐴

𝐴,𝐵,𝐶
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𝐵
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𝐵

𝐴𝐶
∼𝑖
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𝐷
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𝑖

Figure 1: The construction of the model for the proof of Lemma 4. Each gray box is an equivalence class for ∼𝑖.

The details of [𝐴]∼𝑖 are given, relative to the derived subsumptions depicted on the left.

𝒯 |= 𝐴 ⊑ 𝐵2 𝑖
. For every model ℐ and every 𝛿 ∈ Δℐ

, if 𝛿 ∈ 𝐴ℐ
then [𝛿]𝑖 ⊆ 𝐵ℐ

1 ∩ 𝐵ℐ
2 and hence (as

ℐ |= 𝐵1 ⊓𝐵2 ⊑ 𝐶) [𝛿]𝑖 ⊆ 𝐶ℐ
, which implies 𝒯 |= 𝐴 ⊑ 𝐶 𝑖. Rule cr5 can be treated analogously.

For the converse direction—completeness—we follow the usual approach of building a sort of canonical

model of 𝒯 that serves as a counterexample for all the atomic subsumption relations which do not
appear explicitly in the generated sets. The domain Δℐ

of the canonical model is composed of three

kinds of elements. First, as usual for the ℰℒ family of DLs, it includes one domain element for each

satisfiable concept name 𝐴 appearing in 𝒯 , which stands for a standard instance representing that

concept; i.e., it is a minimal representative of 𝐴. Hence, it will belong to each concept 𝐵 that subsumes

𝐴 w.r.t. 𝒯 . The two other kinds of domain elements handle the lower and upper approximations of

named concepts in the interpretation domain. For the lower approximation, we include, for each ∼𝑖,

with 1 ≤ 𝑖 ≤ 𝑛, an element 𝐴∼𝑖 that belongs to all concepts 𝐵 such that 𝒯 |= 𝐴 ⊑ 𝐵 𝑖. In other words,

𝐴∼𝑖 keeps information about all the concept names 𝐵 such that all objects indiscernible from instances

of 𝐴 are necessarily in 𝐵.

Dealing with the upper approximations requires a more nuanced construction, as a single element

cannot fully witness the existence of indiscernible elements belonging to different concepts. We handle

this with the help of different objects. Specifically, for each concept name 𝐵 such that 𝒯 |= 𝐴 ⊑ 𝐵
𝑖
, we

create an element 𝐴𝐵
∼𝑖

which is a representative instance of 𝐵 (i.e., belongs to 𝐵 and all its subsumers),

but exists only through its connection to the representative of 𝐴. To handle the indiscernibility relations,

these elements 𝐴, 𝐴∼𝑖 , and 𝐴𝐵
∼𝑖

all belong to the same ∼𝑖-equivalence class. As this is not a trivial

structure, we explain it in more detail here. Note that 𝒯 |= 𝐴 ⊑ 𝐵
𝑖

means that every element of 𝐴 must

be associated (via ∼𝑖) with some element of 𝐵. In particular, the representative of 𝐴 must have such an

association as well. But we cannot connect 𝐴 to the representative of 𝐵 because the symmetry of ∼𝑖

would then entail that 𝐵 ⊑ 𝐴
𝑖
, which is not necessarily a consequence of 𝒯 . We can also not choose

only one representative, as we did for the lower approximations, because (again) we cannot guarantee

that the representative belongs to other concepts that are not known subsumers of 𝐵. Figure 1 describes

this intuition graphically. Each gray box is an equivalence class for ∼𝑖. There can be more elements

than those shown, in each class, but the figure zooms into some relevant elements of [𝐴]∼𝑖 , given by

the derivations shown at the left of the figure. Since 𝐴 ⊑ 𝐵 𝑖, the object 𝐴∼𝑖 belongs to the concept 𝐵.

On the other hand, since 𝐴 is subsumed by 𝐵
𝑖
, 𝐶

𝑖
, and 𝐷

𝑖
, we create the three objects 𝐴𝐵

∼𝑖
, 𝐴𝐶

∼𝑖
, and

𝐴𝐷
∼𝑖

, respectively. Importantly, these objects belong to the concepts 𝐵, 𝐶 , and 𝐷 (respectively), but not

to [𝐵]∼𝑖 , [𝐶]∼𝑖 , or [𝐷]∼𝑖 , represented as the three boxes on the right.

Before formalising this construction, we recall that ⊥ requires a special treatment when it appears as

a subsumer of a concept name. If 𝒯 |= 𝐴 ⊑ ⊥, we know that every model makes 𝐴 empty, and hence

𝐴 is subsumed by all concepts. Rather than making all these relations explicit, we simply handle this

special case separately.



Lemma 4. Let 𝐴,𝐵 be two concept names appearing in the normalised ℰℒ𝜌/lin
⊥ TBox 𝒯 , and 𝑆(𝐴) the set

obtained after saturation of the completion algorithm. If {𝐵,⊥} ∩ 𝑆(𝐴) = ∅, then 𝒯 ̸|= 𝐴 ⊑ 𝐵.

Proof. We build a model ℐ of 𝒯 such that 𝐴ℐ ̸⊆ 𝐵ℐ
. The domain of this interpretation is

Δℐ := {𝐶,𝐶∼𝑖 , 𝐶
𝐷
∼𝑖

| 1 ≤ 𝑖 ≤ 𝑛, and 𝐶,𝐷 are concept names appearing in 𝒯 }.

For each 𝑖, with 1 ≤ 𝑖 ≤ 𝑛, the equivalence relation ∼𝑖 is the transitive, symmetric, and reflexive

closure of the relation

{(𝐶,𝐶∼𝑖), (𝐶,𝐶
𝐷
∼𝑖
) | 𝐶,𝐷 are concept names appearing in 𝒯 }.

Note that all objects in Δℐ
are of the form 𝐶 , 𝐶∼𝑖 , or 𝐶𝐷

∼𝑖
. By the definition of the equivalence relations

∼𝑖, for every 𝛿 ∈ Δℐ
there exists some concept name 𝐶 such that 𝛿 ∼𝑖 𝐶 . In particular, this means

that every equivalence class of ∼𝑖 contains at least one concept name or, in other terms, that for every

𝛿 ∈ Δℐ
there exists some 𝐸 ∈ NC such that [𝛿]𝑖 = [𝐸]𝑖.

To define the interpretation function ·ℐ , we set for each concept name 𝐶 appearing in 𝒯

𝐶ℐ := {𝐷 | 𝐶 ∈ 𝑆(𝐷)} ∪
{𝐷∼𝑖 | 𝐶 ∈ 𝑆 𝑖(𝐷)} ∪

{𝐷𝐸
∼𝑖

| 𝐶 ∈ 𝑆(𝐸), 𝐸 ∈ 𝑆
𝑖
(𝐷)} ∪

{𝐷𝐸
∼𝑖

| 𝐶 ∈ 𝑆 𝑖(𝐷), 𝐸 ∈ NC}

and for each role name 𝑟

𝑟ℐ := {(𝐶,𝐷) | 𝐷 ∈ 𝑆(𝐶, 𝑟)} ∪
{(𝐶∼𝑖 , 𝐷) | 𝐷 ∈ 𝑆(𝐸, 𝑟), 𝐸 ∈ 𝑆 𝑖(𝐶)} ∪

{(𝐶𝐸
∼𝑖
, 𝐷) | 𝐷 ∈ 𝑆(𝐸, 𝑟), 𝐸 ∈ 𝑆

𝑖
(𝐶)} ∪

{(𝐶𝐸
∼𝑖
, 𝐷) | 𝐷 ∈ 𝑆(𝐹, 𝑟), 𝐹 ∈ 𝑆 𝑖(𝐶), 𝐸 ∈ NC}.

By construction 𝐴 ∈ 𝐴ℐ
and since 𝐵 /∈ 𝑆(𝐴) we know that 𝐴 /∈ 𝐵ℐ

. It remains to show that this

is indeed a model of 𝒯 . This is shown through a case distinction over the possible types of axioms

admitted in the normal form. We show only the cases involving rough constructors.

[Case 𝐶 𝑖 ⊑ 𝐷] If 𝛿 ∈ (𝐶 𝑖)
ℐ

, then by definition [𝛿]𝑖 ⊆ 𝐶ℐ
. Let 𝐸 ∈ NC be such that [𝛿]𝑖 = [𝐸]𝑖.

Then 𝐸∼𝑖 ∈ 𝐶ℐ
and hence 𝐶 ∈ 𝑆 𝑖(𝐸). As the algorithm has finished, the rule cr6 is not applicable,

this means that 𝐷 ∈ 𝑆 𝑖(𝐸) and by cr9 𝐷 ∈ 𝑆(𝐸). Consider now an arbitrary 𝐸𝐹
∼𝑖

∈ [𝐸]𝑖. Since

𝐷 ∈ 𝑆 𝑖(𝐸), by construction we know that 𝐸𝐹
∼𝑖

∈ 𝐷ℐ
. Overall, this means that 𝛿 ∈ [𝐸]𝑖 ⊆ 𝐷ℐ

, which

proves the result.

[Case 𝐶 ⊑ 𝐷𝑖] If 𝛿 ∈ 𝐶ℐ
and [𝛿]𝑖 = [𝐸]∼𝑖 for some 𝐸 ∈ NC, then by the rules cr9, cr10, and

cr14 it follows that 𝐶 ∈ 𝑆
𝑖
(𝐸) which, by rule cr7 implies that 𝐷 ∈ 𝑆 𝑖(𝐸) ⊆ 𝑆(𝐸) ⊆ 𝑆

𝑖
(𝐸). Then,

[𝛿]𝑖 = [𝐸]𝑖 ⊆ 𝐷ℐ
; that is, 𝛿 ∈ (𝐷𝑖)

ℐ
.

[Case 𝐶 ⊑ 𝐷
𝑖] As in the previous case, if 𝛿 ∈ 𝐶ℐ

with [𝛿]𝑖 = [𝐸]𝑖, then 𝐶 ∈ 𝑆
𝑖
(𝐸). Rule cr8

then implies that 𝐷 ∈ 𝑆
𝑖
(𝐸) and hence 𝐸𝐷

∼𝑖
∈ 𝐷ℐ

. By construction, 𝐸𝐷
∼𝑖

∈ [𝛿]𝑖, which implies that

[𝛿]𝑖 ∩𝐷ℐ ̸= ∅, and hence 𝛿 ∈ (𝐷
𝑖
)ℐ .

Thus we have a decision procedure for subsumption in ℰℒ𝜌
⊥. Overall, we get the main result from

this paper.

Theorem 5. Subsumption between concept names w.r.t. ℰℒ𝜌/lin
⊥ TBoxes can be decided in polynomial time.

Note that the completion algorithm can be used also to check TBox consistency and concept satis-

fiability. For the latter, we have from Lemma 4 that 𝐴 is unsatisfiable w.r.t. 𝒯 iff ⊥ ∈ 𝑆(𝐴). For the

former, we can add the GCI ⊤ ⊑ 𝑋 and check whether 𝑋 is unsatisfiable.



4. Discussions

Admitting Nominals. Extending ℰℒ𝜌/lin

⊥ with nominals would effectively give a means to identify

and address a particular granule in the TBox by using the concept {𝑎}𝑖. This might be useful for

some applications. The subsumption algorithm for rough ℰℒ++
in [4] even admits nominals, so that a

completion algorithm for ℰℒ𝜌/lin

⊥ extended by nominals would simply need to combine the techniques.

However, admitting nominals in the TBox would also admit to change the clustering results by GCIs

that add a nominal to a granule such as

{𝑎} ⊑ 𝐶
𝑖

or {𝑎}𝑖 ≡ {𝑏}𝑖,

or could remove individuals from a granule by disjointness axioms like 𝑎𝑖 ⊓ 𝐶
𝑖 ⊑ ⊥. This is not

compatible with the idea of having the granules populated by a mapping from the results of a clustering

algorithm. The TBox could then even contradict such a clustering. Nevertheless, it might be useful to

admit nominals and their approximations in the query language to reason over a knowledge base.

Partial Orders of Indiscernibility Relations. For this paper, we focused on a family of indiscerni-

bility relations that form a total order, from the most fine-grained (least rough) to the roughest. A

natural question is whether it is possible to relax the conditions to allow for partial orders between

these equivalence relations. This remains an open problem at the time, yet we argue that it is as hard

as the general case, where arbitrary equivalence relations (without any ordering between them) are

chosen, even if we require the partial order to be connected. Indeed, if we have 𝑛 arbitrary equivalence

relations, we can always represent them as a connected partial order of 𝑛+ 1 relations where the new

relation ∼0 is contained in all others.

The reason why arbitrary classes of indiscernibility relations is problematic is that there is no way

to predict the relationships between objects. For instance, we can have 𝛼 ∼1 𝛽 ∼2 𝛾 and there be no

relation between 𝛼 and 𝛾. A construction akin to our completion algorithm would need to preserve at

least 2𝑛 different objects to keep track of this information. Yet, we still do not know whether another

strategy could reduce the overall complexity to remain in polynomial time, or in a sub-exponential

class.

5. Conclusions and Future Work

In this paper we have extended the ℰℒ family by another rough member, that admits a (linear) hierarchy

of indiscernibility relations to be used in upper and lower approximation concepts. The resulting DL

ℰℒ𝜌/lin

⊥ can facilitate reasoning w.r.t. clustering results for data that vary in granularity. For the DL

ℰℒ𝜌/lin

⊥ , we have devised a subsumption algorithm based on completion rules. This algorithm runs in

polynomial time and can also be employed to test satisfiability of concepts.

The next thing to investigate for ℰℒ𝜌/lin

⊥ would be reasoning problems that answer queries over the

TBox together with an ABox. Instance checking and answering of conjunctive queries are so far only

studied to a small extent for rough DLs. Usually, completion algorithms for subsumption readily extend

to algorithms for instance checking, while their extension to algorithms for answering conjunctive

queries is more challenging.

Rough DLs have been employed for instance unification [16]. A similar task is solved in entity

resolution. Here, sometimes also information on non-equivalence of entities is given to avoid unifi-

cation. Likewise, some applications of rough sets consider a discernibility relation in addition to the

indiscernibility relation. It would be interesting to extend rough DLs by a discernibility relation that can

express that two elements are not members of the same equivalence class. As such a relation introduces

a form of negation, it is not immediately clear how to extend the reasoning algorithms.
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