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Abstract: Cancer patients show heterogeneous phenotypes and very different outcomes and responses even to common treatments, 

such as standard chemotherapy. This state-of-affairs has motivated the need for the comprehensive characterization of cancer 

phenotypes and fueled the generation of large omics datasets, comprising multiple omics data reported for the same patients, which 

might now allow us to start deciphering cancer heterogeneity and implement personalized therapeutic strategies. In this work, we 

performed the analysis of four cancer types obtained from the latest efforts by The Cancer Genome Atlas, for which seven distinct 

omics data were available for each patient, in addition to curated clinical outcomes. We performed a uniform pipeline for raw data 

preprocessing and adopted the Cancer Integration via MultIkernel LeaRning (CIMLR) integrative clustering method to extract cancer 

subtypes. We then systematically review the discovered clusters for the considered cancer types, highlighting novel associations 

between the different omics and prognosis. 
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1. Introduction 

Cancer is a heterogeneous disease, whose characterization requires the comprehension of complex molecular and 
cellular phenotypes, together with their interaction with the environment. It is now widely recognized that cancer patients 
present heterogeneous phenotypes that can lead to different responses even to common treatments, such as standard 
chemotherapy. Therefore, precision medicine stands as an emerging approach for cancer treatment, with the aim to exploit 
molecular characteristics of individual patients in order to determine the best therapeutic intervention1. 

Recently, high throughput experimental technologies have been exploited to collect large omics datasets, spanning 
from genomics to transcriptomics, providing multiple omics data obtained from the same patient. Such multi-omics 
datasets provide a unique opportunity for a comprehensive characterization of molecular and clinical features of cancer 
patients2. To this end, the identification and characterization of cancer molecular subtypes, showing a significant 
correlation with patients’ outcomes becomes a crucial aspect. 

In this work, we performed the analysis of four cancer types obtained from the latest multi-omics dataset released 
by The Cancer Genome Atlas (TCGA)3, providing seven omics data for each patient, in addition to curated clinical 
outcomes, namely: substitutions and small insertions/deletions, copy number alterations, methylations, gene expression 
profiles, microRNAs, reverse-phase protein microArrays and microbiome data. 

We adopted a uniform pipeline for the preprocessing of raw data and exploited the Cancer Integration via 
MultIkernel LeaRning (CIMLR) integrative clustering method4 to detect subtypes from such multi-omics datasets, 
particularly focusing on the molecular characteristics that could explain significant association to prognosis. We 
systematically review the four considered cancer types, highlighting the valuable molecular insights achieved by our 
multi-omics approach, shedding some light into the biology underlying the specific tumor heterogeneity. 

2. Results 

We performed multi-omics integrative clustering analysis in four cancer types, showing significant association to 
prognosis, namely overall survival (OS) and progression-free survival (PFS), over a 10-year period. The considered 
cancer types were (i) bladder urothelial carcinoma, (ii) endometrial carcinoma, (iii) sarcoma and (iv) thymoma. 

Our selection of the four cancer types considered in this study was based on several criteria. Firstly, we focused on 
cancers for which there is no clear consensus on multi-omics subtypes. Secondly, we prioritized cancers for which we 
had full data available, including all seven omics data types and survival data. Finally, we selected cancers for which new 
omics data, such as microbiome data, could potentially have a significant impact on our understanding of the disease. 

2.1. Bladder urothelial carcinoma 

Urothelial carcinoma of the bladder is one of the major causes of morbidity and mortality worldwide, with 430,000 
new cases and more than 165,000 related deaths per year5. At diagnosis, 75% of the patients present non-muscle-invasive 
bladder cancer (NMIBC), while 25% of the patients have muscle invasive bladder cancer (MIBC), with an associated 
high risk to develop metastatic disease. Heterogeneity in disease response to therapy suggests that different subtypes 
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might exist within and between NMBIC and MIBC6. The most comprehensive attempt to classify MIBC was proposed 
by Robertson and colleagues who generated separate clustering for each of 7 omics and finally integrated mRNA, lncRNA 
and miRNA expression clusters using the Cluster of Clusters method. This effort allowed the identification of 5 different 
subtypes, dominated by mRNA data: luminal-papillary, luminal-infiltrated, luminal, basal/squamous, and neuronal7. We 
applied CIMLR to the classification of 332 MIBC cases from TCGA, simultaneously integrating all available data types. 
Our analysis of classified MIBC patients in 6 different clusters (C1-6) showing significantly different OS and PFS (see 
Figure 1, Supplementary Figures 1 and 2 and Supplementary Table 1). C1, showing the longest OS and PFS, is almost 
totally composed of luminal-papillary tumors and shows distinct features of this histological subtype, such as high 
mutational rate of FGFR3 and low mutational rate of TP53 and RB1. Moreover, C1 shows high expression of BMP5, a 
marker of sonic-hedgehog (SHH) signaling in luminal-papillary subtype, and high expression of BMP7, EEF1A2 and 
SOX15, which were identified to be downregulated in carcinoma in situ (CIS) lesions. As CIS lesions are associated with 
high risk of disease progression8, this suggests that expression of such genes negatively correlates with bladder cancer 
aggressiveness. In addition, our multi-omics analysis revealed high demethylation and high expression of DMBT1 and 
MSMB genes (Figure 1A, Supplementary Table 1). DMBT1 was previously reported in bladder carcinoma and its 
expression correlates with tumor grade9, while MSMB is described as a biomarker in prostate cancer, but not in bladder10. 
Furthermore, C1 tumors exhibit copy number loss and reduced expression of GAS1, an unfavorable prognostic marker in 
several cancers. Finally, C1 shows high methylation level and consequently low expression of CDO1 and IGF1; CDO1 
promoter is methylated in multiple human cancers11, while IGF1 axis promotes tumorigenesis and confers resistance to 
treatment in cancer12. Hence, C1 summarizes several features from various datasets that, independently, have been linked 
to good prognosis, thus validating our approach. 

Focusing on C6, which shows the worst OS and PFS (see Figure 1B and Supplementary Figure 1), we observed 
heterogeneous histological subtypes within the cluster (Figure 1C) and a similar gene expression profile to C3. The two 
clusters show the highest levels of expression of GAS1, CDO1 and IGF1. In addition, they also have a high expression 
of RSPO2, a secreted glycoprotein that is known for its role in the stimulation of Wnt/β-catenin signaling and has been 
reported as a cancer driver13. Particularly, aberrant RSPO2 expression levels were associated with worse prognosis in 
bladder cancer14. C3 and C6 also share increased protein levels of RICTOR and MYH11 by RPPA.  Expression of 
RICTOR is associated with poor clinical outcomes and resistance to treatment15. Notably, high levels of RICTOR and 
MYH11 were already identified in bladder cancer patients with poor outcome7. We then analyzed differences between 
C6 and C3, that may explain different outcomes of the patients in the two subgroups: interestingly, we identified higher 
levels of FN1 in C6. FN1 is involved in cell adhesion, motility and extracellular matrix formation, and its expression 
correlates with unfavorable prognosis in many cancers, such as breast cancer16 and gastric adenocarcinoma17. Thus, our 
analysis yielded a comprehensive, multi-level portray of bladder cancer patients with a poor prognosis. 

Finally, in the last few years, the role of microbiota in the regulation of tumor development has gained increasing 
attention18, and alterations in the urinary microbiota have been found in bladder cancer patients in comparison to healthy 
individuals19. We sought to examine a possible correlation between microbiota taxa and survival probability. Comparing 
microorganisms’ presence across our clusters, we found that bacteria from the Methylibium, Sphaerotilus and 
Sediminibacterium genera, which have been reported as potential biomarkers in lung cancer20, are represented in C1 two 
times more than in C6. What we found is in line with the work of Mifuchi and colleagues, who described antitumor 
activity of Sphaerotilus in mice, suggesting that its involvement against tumor depends on macrophages activation21 and 
highlights how microbiota may be used as a novel biomarker also in bladder cancer. 

To further test the association between microbiome and prognosis, we performed regularized Cox regression 
analysis (see Methods) to stratify patients into high-risk vs low-risk groups considering the whole microbiome. We then 
associated these features to survival data. In particular, bacteria of the Shimia genus were found as the most relevant risk 
factor for both OS and PFS. Moreover, Criblamydia, Sodalis and Whispovirus were associated with poor prognosis and 
Microvirus with better prognosis. Finally, Methyloferula, Microvirga, Rufibacter were associated with bad prognosis and 
Anaplasma, Lymphocryptovirus, Saccharophagus were associated with good prognosis for progression free survival. We 
finally stratified patients based on the selected features, obtaining very significant prognostic groups (see Figure 1D and 
Supplementary Figure 2), highlighting novel associations between microbiome and prognosis. 

Overall, multi-omics clustering applied to the available data allowed stratification of bladder cancer patients based 
on multiple phenotypic features, leading to a higher resolution and highly significant associations with survival. 
Moreover, we uncovered a novel microbiome-based biomarker that may play an important role in disease outcome 
prediction. These results demonstrate that multi-omics CIMLR analysis is able to extract several important characteristics 
from various heterogeneous datasets and merge the information into a single clustering that, in our opinion, better captures 
cancer heterogeneity. 
 

2.2. Endometrial carcinoma 

Endometrial carcinoma (EC) is the sixth most common cancer in women globally, with 417,367 new cases (2.2% 
of all sites) and 97,370 deaths (1% of all sites) in 202022. We considered a dataset comprising 393 tumors23 and performed 
an integrated multi-omics clustering analysis, which identified seven different clusters (C1-7) (Figure 2, Supplementary 
Figures 3 and 4 and Supplementary Table 2). We compared our multi-omics stratification to the one by TCGA23. C1 is 
mostly of the CN Low subtype by TCGA, while C7 is mostly CN High. The other clusters are mixed, comprising CN 
Low, CN High, MSI and POLE TCGA subtypes at different frequencies (Figure 2C). Thus, our clusters C2-6 are 
transversal to the TCGA ones and highlight novel molecular features and prognostic associations. 
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At the genomic level, the main alterations which significantly characterize the clusters are substitutions, with 67 
genes significantly different among the clusters. The patients in C1 show the lowest mutational burden, when compared 
with all other clusters. Moreover, C1 is characterized by copy number gain of CTNNA3, EBF3 and FGF8 genes. C2 
shows copy number gain of AIM2 and CNTN2 genes, while C7 has reduced substitutions in PTEN and a general increase 
in copy number alterations compared to the other clusters, especially C1 (see Figure 2A). Interestingly, by comparing the 
two clusters with the most differences in prognosis, i.e., C1 and C7, we observe that they show an opposite genomic 
pattern (see Figure 2A-B). 

Next, to analyze multi-omics features specifically associated with the outcome, we merged the clusters with similar 
(good) prognosis (C1 to C6) into a single macro-cluster (MC). We then compared MC with C7, i.e., the cluster with the 
worst prognosis. With this analysis, we highlighted the main molecular differences which correlated with survival. Here 
below we review the most interesting findings, which, to the best of our knowledge, have not emerged from previous 
analyses, demonstrating the potential impact of multi-omics approaches. 

We identified 6 mRNAs significantly over-expressed in C7 vs MC: CTCFL, EEF1A2, LMO1, MAGEA11, SSX4 and 
TKTL1. Each of these genes have previously been associated with prognosis in different settings: SSX Family Member 4 
(SSX4) is a transcriptional repressor, highly expressed in endometrial, ovarian and cervical cancer24. Its expression  has 
been correlated with the clinical stage of multiple myeloma patients25. MAGE Family Member A11 (MAGEA11) acts as 
an androgen receptor coregulator that increases androgen receptor activity26. It is frequently expressed in human cancers, 
increases during tumor progression, and correlates with poor prognosis27. LIM Domain Only 1 (LMO1) modulates gene 
expression programmes by regulating the assembly of transcriptional complexes28. It has been associated with 
progression, metastasis and apoptosis of leukemia29, colorectal cancer30, lung cancer31,32 and gastric cancer33. 
Transketolase Like 1 (TKTL1) regulates the nonoxidative pentose-phosphate-pathway (PPP)34. In endometrial 
carcinomas, TKTL1 expression is significantly increased compared to benign endometrial tissue35 and is associated with 
disease progression and worse prognosis36-38. Eukaryotic Translation Elongation Factor 1 Alpha 2 (EEF1A2) promotes 
binding of aminoacyl-tRNAs to ribosomes during protein biosynthesis39. EEF1A2 shows high expression levels in 
approximately 30% of all primary ovarian tumors40, as well as in breast41, lung42, prostate43 and liver cancer44. In prostate 
cancer, EEF1A2 expression correlated with tumor stage45. CCCTC-Binding Factor Like (CTCFL) is transiently expressed 
in pre-meiotic male germ cells46. Its silencing leads to senescence and death of cancer stem cells47. CTCFL mRNA level 
has been associated with poor survival in endometrial cancer48. High CTCFL expression was also detected in uterine 
mixed mesodermal tumors49 and gastric cancer cells50, where it provides invasive properties. Finally, in our analysis, 
miR-3131 was downregulated in C7. According to the miRDB51, miR-3131 targets LMO1, one of the 6 most upregulated 
genes in C7. Interestingly, hsa-miR-3131 was significantly downregulated in gastric cancer patients compared with 
healthy subjects52. 

Expression of these 6 mRNAs plus one miRNA potentially represents a signature of poor outcome. In order to verify 
the predictive potential of the identified genes, we performed regularized Cox regression analysis (see Methods) to stratify 
patients into high-risk vs low-risk groups. In particular, we considered gene expression log2 values for the 7 transcripts 
discussed above, namely: CTCFL, EEF1A2, LMO1, MAGEA11, SSX4, TKTL1 and miR-3131. We then associated these 
genes to OS and PFS data. The expression of 4 genes (CTCFL, EEF1A2, LMO1 and MAGEA11) was found as a risk 
factor for both analyses, indicating that they are associated with poor prognosis. We finally stratified patients based on 
the 4 selected genes, which led to very significant prognostic groups (see Figure 2D and Supplementary Figures 4), 
highlighting the prognostic potential of our approach. 

In conclusion, our analysis showed that C7 is uniquely characterized by the highest expression of CTCFL, EEF1A2, 
LMO1, MAGEA11, SSX4, TKTL1 (mRNA) and the lowest expression of miR-3131 (miRNA). It is interesting to note 
that CTCFL and EEF1A2 expression data correlated with the genomic analysis at the cluster level, in fact more than 50% 
of C7 patients showed copy number gain of these two genes. The differential expression of these targets, compared to the 
other clusters, may explain the worse prognosis observed in patients belonging to C7. Notably, all these features have 
been previously described in separate reports, but were never found, as a whole, associated with survival in endometrial 
cancer. 

2.3. Sarcoma 

Sarcoma is a heterogeneous disease generally classified based on its mesenchymal tissue of origin. Soft tissue 
sarcoma and primary bone sarcoma are the two main histological groups. Soft tissue sarcoma comprises six major 
subtypes including dedifferentiated liposarcoma (DDLPS), leiomyosarcoma (LMS), undifferentiated pleomorphic 
sarcoma (UPS), myxofibrosarcoma (MFS), malignant peripheral nerve sheath tumor (MPNST) and synovial sarcoma 
(SS)53. 

We adopted a multi-omics approach to analyze a dataset of 206 soft tissue sarcoma patients, including 80 LMS, 50 
DDLPS, 44 UPS, 17 MFS, 10 SS and 5 MPNST54. Our analysis led to the identification of 4 clusters (C1–4) characterized 
by significantly different OS and PFS (Figure 3B and Supplementary Figures 5). C1 includes mostly LMS (50% of the 
patients in the cluster), MFS/UPS (12.5%) and DDLPS (12.5%). C2 includes MFS/UPS (50%) and DDLPS (48%). C3, 
which shows the best overall survival, consists mostly of LMS (95%), while C4, comprising 70% MFS/UPS, 20% LMS 
and 10% DDLPS, showed the shortest survival (Figure 3B-C and Supplementary Figures 5). 

We performed enrichment analysis to assess the presence of differences among the clusters for each considered omic 
data. In terms of genetic alterations, such as fusions and substitutions, we did not appreciate substantial differences across 
clusters. However, clusters 3 and 4, which displayed very different survival curve trends, showed opposite profiles of 
gene methylation (Figure 3A-B). Cluster 3 was hypermethylated in comparison to the other clusters, especially compared 
to cluster 4. Furthermore, C4 displayed not only the lowest gene methylation profile in terms of enrichment analysis, but 
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also the lowest methylation degree, with an average methylation value of 0.3, compared to the other clusters (C1: 0.71, 
C2: 0.78, and C3: 0.90). 

In particular, Runt-related transcription factor 2 (RUNX2) gene was methylated in 98% of C3 and in 10% of C4 
patients. RUNX2 methylation profile correlated with its mRNA expression levels, as RUNX2 expression in C4 was 
twofold higher than in C3. Another molecular mechanism that could impact on RUNX2 expression was revealed by 
analyzing differences in miRNA expression across clusters: miR-320d expression was higher in C3 than in the other 
clusters, in particular cluster 4 displayed the lowest expression. Notably, RUNX2 is a target of miR-320 family55. These 
findings suggest that promoter methylation and miRNA expression could be a double inhibitory mechanism which 
positively impacts on the survival rate of cluster 3 by favoring RUNX2 downregulation. In support of this hypothesis, 
high RUNX2 expression has been correlated with poor response to chemotherapy in osteosarcoma56.  

A similar trend was displayed by expression of genes belonging to the WNT family, such as WNT10B, WNT11, 
WNT2, WNT5A, WNT1, WNT7A, which were upregulated in C4 compared to C3. WNT10B expression was in line with 
its methylation, as it was demethylated in approximately 60% of C4 and in less than 10% of C3 (Figure 3A and 
Supplementary Table 3). Alterations of the components of the WNT signaling pathway have been documented in 
sarcomagenesis57, and a reciprocal regulation between RUNX genes  and the WNT pathway has been shown58. Based on 
these results, we can speculate an involvement of RUNX2 in epithelial-to-mesenchymal transition in sarcoma regardless 
of the specific histological subtype, as it has been documented by an integrative multi-omics analysis of a colon cancer 
cell line59. Furthermore, we found that the protein expression of E-cadherin, whose loss is considered a hallmark of 
epithelial-to-mesenchymal transition, is very low in C4. 

To further dissect whether RUNX2 expression could directly impact on prognosis, we stratified patients in two 
groups based only on RUNX2 expression levels, and we found that the two macro-clusters (RUNX2high and RUNX2low) 
displayed statistically different OS and PFS (Figure 3D and Supplementary Figures 6). Notably, these two macro-clusters 
comprised similar percentages of histological subtypes, highlighting the importance of molecular subtyping. 

In conclusion, our multi-omics analysis identified RUNX2 as a new candidate prognostic factor that may impact on 
sarcoma outcome. This analysis also allowed us to dissect possible multi-level molecular mechanisms that may control 
RUNX2 expression, such as methylation and miRNA expression levels. 

2.4. Thymic epithelial tumors  

Thymic epithelial tumors (TETs) are extremely rare primary tumors of the mediastinum, with an incidence of 0.15 
cases per 100.000 person-years. TETs include thymoma, classified into five histological subtypes A, AB, B1, B2 and B3, 
and thymic carcinoma (TC), which is far less common but more aggressive60. Thymoma types A, AB and B1 have an 
excellent OS rate of more than 90% at 10 years, while TC shows a dismal 5-year survival of only 48%61. 

We analyzed a dataset providing multi-omics data for 87 TETs60. Our method identified three clusters (C1-3) 
showing significantly different survival, with C3 showing the worst OS and PFS compared to C1 and C2 (Figure 4, 
Supplementary Figures 7 and 8 and Supplementary Table 4). 

About 80% of TC patients in this dataset were allocated to C3 by our algorithm, which may explain its short survival 
and clearly different mutational and transcriptional profiles (Figure 4A-C, Supplementary Table 4). In particular, this 
cluster shows distinctive features of TC, such as significantly higher frequency of point mutations in CYLD. This gene 
acts as a tumor suppressor, through a negative regulation of NF-kB62 and has been reported to be mutated in 19% of TC63. 
Moreover, C3 presents increased mRNA and protein expression of KIT, a well-known oncogene associated with the TC 
subtype64. 

In addition, our method was able to identify novel genomic alterations that may better characterize patients with a 
bad prognosis. Particularly, C3 presented significantly higher frequency of copy number gains in RGS7, that were 
associated with an increase of its expression. RGS7 is a member of the regulator of G-protein signaling (RGS) family that 
regulates downstream signaling of G-protein coupled receptors. At the best of our knowledge, RGS7 has never been 
reported as a thymoma marker gene. Other members of the RGS family play a role in cancer progression65. Furthermore, 
our analysis revealed different epigenetic modifications in patients of C3: specifically, we observed a global 
demethylation and, in particular, a complete absence of methylation in FOS Like 1 (FOSL1) and Nuclear Protein 1 
(NUPR1) genes. These differences correlated with a higher expression of the two genes compared to C1 and C2. Both 
FOSL1 and NUPR1 have never been associated with thymoma, although FOSL1 was found upregulated in head and neck 
squamous cell carcinoma and correlated with a poor prognosis66. NUPR1 expression is higher in hepatocellular carcinoma 
samples than in normal tissue, and its silencing reduces tumor growth in vivo67. 

We focused our attention on NUPR1, as this gene showed consistent methylation and expression profiles both in 
clusters 1 and 2, which were different compared to cluster 3. Therefore, we verified if NUPR1 was predictive of prognosis, 
by stratifying the patients in two groups based on its expression levels, namely NUPR1low (patients with low NUPR1 
expression) and NUPR1high (patients with high NUPR1 expression). Kaplan-Meier analysis showed that NUPR1low 
patients have better prognosis (Figure 4D and Supplementary Figures 8). Interestingly, the NUPR1low cluster comprises 
5 samples of the TC subtype, which is normally expected to have poor outcome, that were instead stratified in the group 
with excellent survival, thus providing a finer classification than classical subgrouping. 

While preliminary, these findings highlight the importance of methods tailored to the analysis of multi-omics data 
and show a potential mechanism based on epigenetics associated with prognosis in thymic epithelial tumors, by 
identifying specific multi-omics features that are directly associated with the prognosis of this disease. We leave to future 
work a further investigation and the validation of the potential role of NUPR1 as a prognostic factor for TETs. 
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3. Discussion 

Cancer is a complex disease with heterogeneous phenotypes, making it difficult to treat with standard chemotherapy. 
Precision medicine has emerged as a new approach to cancer treatment, aiming to determine the best therapeutic 
intervention by exploiting molecular characteristics unique to each patient. 

The translational relevance of cancer subtyping based on multi-omics data is now widely recognized, also thanks to 
the availability of the latest state-of-the-art high-throughput experimental technologies. These technologies have 
generated large omics datasets that include multiple omics data measured for the same patients, allowing for a 
comprehensive characterization of cancer heterogeneity. As a result, efforts to understand and classify cancer subtypes 
have now become more feasible. 

We here focused on the analysis of four cancer types exploiting multi-omics data from TCGA, including seven 
omics data for each patient, and curated clinical outcome. We preprocessed the raw data with a uniform pipeline and 
applied the CIMLR integrative clustering method to detect subtypes based on molecular characteristics linked to 
prognosis. We systematically reviewed the multi-omics subtypes we discovered for the four cancer types, emphasizing 
the valuable insights our approach provided into understanding tumor heterogeneity and the underlying biology. 

Our findings underscore the significance of computational efforts focused on leveraging multi-omics data for 
defining cancer subtypes. As the availability of such data increases, we anticipate that the predictive power of these 
approaches will improve. Subtyping can be a valuable tool for stratifying patients and predicting outcomes, leading to 
improved personalized treatment strategies. 

Ultimately, our results suggest that integrating multi-omics data into clinical decision-making can enhance patient 
care and contribute to the ongoing efforts to better understand and treat cancer. This method can be applied to any cancer 
type, as more data become available. 

4. Methods 

4.1. Data collection and preprocessing 

We considered data from the TCGA studies published within the PanCanAtlas initiative3. For each cancer type, we 
collected seven omics data types from cBioPortal68,69 (https://www.cbioportal.org/), considering the following four 
cBioPortal datasets: Bladder Urothelial Carcinoma, dataset ID: blca_tcga_pan_can_atlas_2018; Endometrial Carcinoma, 
dataset ID: ucec_tcga_pan_can_atlas_2018; Sarcoma, dataset ID: sarc_tcga_pan_can_atlas_2018; Thymoma, dataset ID: 
thym_tcga_pan_can_atlas_2018. Specifically, for each dataset we considered: (1) substitutions and small 
insertions/deletions, (2) copy number alterations, (3) methylations, (4) gene expression profiles, (5) microRNAs, (6) 
reverse-phase protein microArrays (RPPA) and (7) microbiome data. In addition, we also retrieved curated clinical 
information, particularly, overall survival and progression free survival. 

Substitutions reported information regarding presence/absence of somatic mutations in each patient. Copy number 
alterations provided log2 ratios between tumor and normal tissue for each gene. Methylations data consisted of beta-
values measuring intensities in the range of 0 and 1. Expression data provided RNA expression counts per gene. 
microRNA reported expression counts. RPPA provided expression levels for a set of around 200 proteins. Finally, 
microbiome data consisted of estimates of microbial signatures in tissue and blood70. 

Each of the seven data matrices (patients x features) was normalized such that each value ranged between 0 and 1. 

4.2. Multi-omics integrative clustering 

We adopted the CIMLR (Cancer Integration via MultIkernel LeaRning) algorithm4 to perform multi-omics 
integrative clustering considering the seven normalized data matrices described above. 

CIMLR is a kernel-based machine learning algorithm that integrates multi-omics data for cancer subtype 
classification and patient stratification. The algorithm starts by transforming different omics data types into kernel 
matrices that capture the sample similarity based on their feature values. These kernel matrices are combined into a single 
integrated kernel matrix using a weighted sum approach, where the weight values are also learned. The integrated kernel 
matrix is then subjected to dimensionality reduction to extract the most informative features. CIMLR's kernel-based 
approach allows it to capture complex patterns and nonlinear relationships between the different data types. Additionally, 
the algorithm can also identify the most informative data types and features for cancer classification, which can help guide 
future experiments and research. 

In our settings, the method first computed 55 gaussian kernels with different variance per data type, for a total of 
385 kernels since we considered seven omics input data. Then, it computed a patient x patient similarity matrix, which 
recapitulates the kernels and provides a quantitative measure to assess the similarity between patients. We then performed 
k-means clustering on such similarity. The optimal number of clusters was estimated using the standard elbow method. 

4.3. Survival analysis 

We considered two prognostic outcomes provided by TCGA, namely overall survival (OS) and progression-free 
survival (PFS), over a 10-year period. For both survival metrics, we censored data points corresponding to patients who 
died within 1 month from diagnosis or that were over the age of 80 years also, in order to limit uncertain observations. 

Associations between clusters and survival outcomes were assessed by Kaplan–Meier analysis using a log-rank test 
p-value, with a threshold of 0.05 for statistical significance. 
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4.4. Differential analysis and features selection 

We considered both categorical and continuous omics data. In particular, the considered categorical features were 
substitutions and small insertions/deletions (0 or 1 respectively to indicate absence and presence), copy number alterations 
(as GISTIC scores to indicate gain and loss copy number events), and methylations (beta-value >0.7 to indicate high 
methylation and <0.3 to indicate demethylation). The considered continuous features were gene expression profiles, 
microRNAs, RPPA and microbiome data. 

For categorical features we performed proportions z-test to assess statistical differences, while for continuous 
features we performed analysis of variance (ANOVA). We corrected p-values for multiple hypothesis testing to account 
for false discoveries using the Benjamini-Hochberg procedure and selected features with FDR-adjusted p-value <0.05. 

We exploited the power of multi-omics data by further filtering out genomics features with expression data. 
Particularly, we verified that copy number gains and demethylations were associated with significant overexpression of 
the relative gene, while copy number losses and methylations were conversely associated with reduced expression. 

We finally filtered out features with a fold change <1.5 in each direction (over and under expression). 

4.5. Regularized Cox regression analysis 

We performed Regularized Cox regression analysis using the Coxnet algorithm71,72 to identify significant variables 
for predicting patient outcomes. The method is a variant of the Cox proportional hazards model, which assumes that the 
hazard rate (i.e., the risk of an event occurring at any given time) for a particular individual is proportional to a linear 
combination of their covariates (predictors), with a baseline hazard that is common to all individuals. Regularized Cox 
Regression adds a regularization term to the likelihood function of the Cox model, which shrinks the estimates of the 
regression coefficients towards zero and selects the most relevant predictors. 

The elastic net method with LASSO penalty73 was used to minimize cross-validation error and select the most 
relevant variables (i.e., the ones with a regularized regression coefficient different from 0). Using the Cox model, we 
calculated a risk score for each patient. The score can be computed as the weighted sum of the covariate values for each 
patient, where the weights are the corresponding estimated coefficients from the Cox model. This allowed us to stratify 
them into two distinct risk groups: those with risk scores greater than the dataset mean, indicating a high-risk group with 
poor prognosis, and those with lower risk scores, indicating a low-risk group with a more favorable prognosis. 
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Figure 1 - Clustering analysis of 332 bladder urothelial carcinomas. In panel (A) we show the mutational profiles of the 
significantly different genes among the clusters (the reported percentages correspond to the proportion of patients in the 
dataset who have a mutation in the specific gene). In panel (B) we report the overall survival Kaplan-Meier curve 
comparing the discovered clusters. In panel (C) we show the histological subtypes per cluster. Finally, in panel (D) we 
report the Kaplan-Meier curve obtained by stratifying the patients based on regularized Cox regression considering the 
microbiome. 
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Figure 2 - Clustering analysis of 393 endometrial carcinomas. In panel (A) we show the mutational profiles of the 
significantly different genes among the clusters (the reported percentages correspond to the proportion of patients in the 
dataset who have a mutation in the specific gene). In panel (B) we report the overall survival Kaplan-Meier curve 
comparing the discovered clusters. In panel (C) we show the histological subtypes per cluster. Finally, in panel (D) we 
report the Kaplan-Meier curve obtained by stratifying the patients based on regularized Cox regression considering the 
expression of 6 genes (CTCFL, EEF1A2, LMO1, MAGEA11, SSX4, TKTL1) and log2 values for miR-3131. 
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Figure 3 - Clustering analysis of 206 sarcomas. In panel (A) we show the mutational profiles of the significantly different 
genes among the clusters (the reported percentages correspond to the proportion of patients in the dataset who have a 
mutation in the specific gene). In panel (B) we report the overall survival Kaplan-Meier curve comparing the discovered 
clusters. In panel (C) we show the histological subtypes per cluster. Finally, in panel (D) we report the Kaplan-Meier 
curve obtained by stratifying the patients based on RUNX2 expression. 
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Figure 4 - Clustering analysis of 87 thymomas. In panel (A) we show the mutational profiles of the significantly different 
genes among the clusters (the reported percentages correspond to the proportion of patients in the dataset who have a 
mutation in the specific gene). In panel (B) we report the overall survival Kaplan-Meier curve comparing the discovered 
clusters. In panel (C) we show the histological subtypes per cluster. Finally, in panel (D) we report the Kaplan-Meier 
curve obtained by stratifying the patients based on NUPR1 expression. 
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1) Multi-omics data enable a comprehensive characterization of cancer patients. 
2) CIMLR clustering can detect subtypes from molecular data linked to prognosis. 
3) We provide valuable insights on tumor heterogeneity for 4 cancer types from TCGA. 
4) Multi-omics data can improve personalized treatment strategies. 
5) Integrating multi-omics data in clinical decisions can advance cancer treatment. 
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