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CytofIn enables integrated analysis of public mass
cytometry datasets using generalized anchors
Yu-Chen Lo 1, Timothy J. Keyes1,2, Astraea Jager1, Jolanda Sarno 1, Pablo Domizi 1, Ravindra Majeti 3,

Kathleen M. Sakamoto1, Norman Lacayo1, Charles G. Mullighan 4, Jeffrey Waters5, Bita Sahaf5,

Sean C. Bendall 5,6 & Kara L. Davis 1,5✉

The increasing use of mass cytometry for analyzing clinical samples offers the possibility to

perform comparative analyses across public datasets. However, challenges in batch nor-

malization and data integration limit the comparison of datasets not intended to be analyzed

together. Here, we present a data integration strategy, CytofIn, using generalized anchors to

integrate mass cytometry datasets from the public domain. We show that low-variance

controls, such as healthy samples and stable channels, are inherently homogeneous, robust

against stimulation, and can serve as generalized anchors for batch correction. Single-cell

quantification comparing mass cytometry data from 989 leukemia files pre- and post nor-

malization with CytofIn demonstrates effective batch correction while recapitulating the gold-

standard bead normalization. CytofIn integration of public cancer datasets enabled the

comparison of immune features across histologies and treatments. We demonstrate the

ability to integrate public datasets without necessitating identical control samples or bead

standards for fast and robust analysis using CytofIn.
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Mass cytometry (cytometry time of flight or CyTOF) is an
increasingly widespread technique for the discovery and
monitoring of cell populations using single-cell, high-

parameter protein measurements1. Mass cytometry offers the
ability to analyze millions of cells quickly and inexpensively
compared to single-cell genomic platforms yet can be combined
with approaches like single-cell RNA sequencing for the com-
plimentary analysis of cell populations2. The utility of mass
cytometry has been demonstrated in numerous studies relating to
immune response, cancer, and healthy tissue development3–8.
Furthermore, mass cytometry is being widely integrated into
correlative studies in clinical trials such as in the Cancer Immune
Monitoring and Analysis Centers (CIMAC) and the Partnership
for Accelerating Cancer Therapies (PACT) initiatives, where it
has been used to determine immune correlatives associated with
clinical outcomes in cancer immunotherapies9. The rapid growth
in the applicability of mass cytometry for clinical measurement
also led to an increased availability of mass cytometry data in the
public domain. Platforms such as FlowRepository and Cytobank
support storage, annotation, and sharing of flow and mass cyto-
metry datasets10,11. Consequently, integrating datasets from dif-
ferent studies for comparative analysis emerges as a desired
approach that could lead to unexpected discoveries not afforded
by individual studies.

Batch effects remain a major limiting factor when comparing
mass cytometry datasets. In this case, biological signals can be
confounded by technical noise that is irrelevant to biological
sources, making data interpretation and inference challenging.
Batch effects arise from multiple factors during the experimental
procedures including differential sensitivity across cytometers,
metal sensitivity and oxidation, antibody variations, and channel
spillover12 (Fig. 1A). Batch effects can be minimized by stan-
dardized experimental protocols where sources of variation are
systematically reduced, including consistent sample preparation
and staining, careful control of antibody reagents, and consistent
instrument setup13,14. Still, some batch variability will always
exist between CyTOF experiments even when highly standardized
workflows are followed15.

Within individual studies, batch effects are commonly
addressed using bead normalization16. Bead normalization uses
metal labeled polystyrene beads added to the cell suspension to
correct for signal fluctuations during data acquisition16. Leipold
et al. demonstrated that bead normalization alone achieved
a < 30% coefficient of variation (CV) of median signal intensity
when comparing healthy human peripheral blood mononuclear
cells (PBMCs) analyzed at six different centers17. In this study, all
PBMC samples were prepared at a single center a priori, therefore
removing one common source of variability. Since bead infor-
mation is not prevalently shared between experiments conducted
at different centers, public datasets lacking bead data often cannot
be normalized with new datasets. In addition, bead data only
corrects for unimodal instrument sensitivity differences across
channels.

Recently, several normalization approaches have been proposed
that obviate the need for bead standards. Methods like CyTofRUV
and CytoNorm include identical technical replicates, (aliquots of the
same sample) in each batch to correct data distributions of protein
signals based on a goal distribution18–20. However, the lack of
identical replicates across existing datasets remains a major limitation
to applying these methods for the analysis of public datasets or
datasets collected over time19. Non-anchor-based normalization
methods like quantile normalization estimate a reference distribution
based on the average of each quantile across all samples under the
assumption that the statistical distributions of all samples are
identical21. Although identical controls are not required when using
quantile normalization, the reference distribution needs to be re-

estimated with the addition of new samples and the assumption that
all samples are identically distributed can remove features of biolo-
gical importance as well as introduce artificial bias22. Thus, a method
to enable cross-dataset comparison without identical technical
replicates is needed (Supplementary Table 1)19.

File heterogeneity between datasets is common when different
naming conventions are adopted for antibodies or antibodies are
labeled on different metals between panels. Homogenizing such
heterogeneous files is often the first step to enable comparative
analyses yet is currently unwieldy for large datasets. Panel
homogenization refers to the process of aligning the antigen
panels across multiple CyTOF experiments by removing channels
not shared across cohort samples and standardizing the antigen
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Fig. 1 Overview of CytofIn for mass cytometry data integration. A The
challenge of mass cytometry dataset integration from the public domain is
limited by sources of data variability during experimental procedures,
sample acquisition, and instrument variations, resulting in datasets with
heterogeneous files and batch effects. B CytofIn, a computational pipeline
for integrated analysis of mass cytometry data from the public domain.
First, CytofIn organizes mass cytometry data by extracting sample
information and experimental conditions and summarizes using a
metatable for batch processing. Using regular expression matching, CytofIn
homogenizes mass cytometry data files by identifying common text
patterns found in heterogeneous sets of channel labels. Finally, CytofIn
normalizes mass cytometry datasets using generalized anchors, which are
non-identical references that exhibit low signal variability across
experiments, eliminating the need for beads or identical technical
replicates. Figure created with Biorender.
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name used in each channel. When comparing mass cytometry
data across independent sources, multiple panels will need to be
homogenized simultaneously. Although programs like Fluidigm
and Premessa (https://github.com/ParkerICI/premessa) enable
manual editing of panel labels, preprocessing panels from large
cohorts is prohibitively time-consuming and therefore necessi-
tates automation.

Here we present CytofIn (CyTOF Integration), a computa-
tional pipeline for integrating mass cytometry data from the
public domain using generalized anchors, which include healthy
control samples and stable channels that exhibit low signal
variability across datasets and can be used as an approximation of
identical anchors (Fig. 1B). Using data from 989 leukemia patient
samples and a small subset of lymphoma patient samples, we
demonstrate the utility of CytofIn for integrating and comparing
datasets across instruments or over time without necessitating
identical control samples or bead standards. Application of
CytofIn to five cancer datasets from the public domain enables
comparison of infiltrating immune cells across cancer histologies
and identifies immune features associated with immune check-
point inhibition therapies.

Results
Healthy controls as generalized anchors. Healthy controls are
potential generalized anchors for batch normalization due to their
low individual variability as well as their wide availability from
clinical experiments. We first evaluated the within- and between-
cohort variability using seven cohorts of acute lymphoblastic
leukemia (ALL) samples collected over 6 years in our laboratory.
Within each cohort, a healthy bone marrow or peripheral blood
control was included in each barcode plate for a total of 989
leukemia samples distributed across 50 plates. The ALL samples
were analyzed using three antibody panels on two generations of
mass cytometers where each antibody panel had slight variations
in naming conventions, the number of proteins measured, and
the protein-metal label (Fig. 2A and Supplementary Table 2).
Here, the original data refers to data files that underwent bead
normalization within each cohort to account for instrument-
related signal decay but no further batch normalization was
performed (see Methods). In addition, we use the term bead
normalization for batch normalization using bead signals across
cohorts (in addition to within cohorts).

To facilitate cross-dataset analysis, we developed a computa-
tional pipeline for automated panel homogenization of leukemia
samples across the datasets. To enable batch preprocessing, a
metadata table consisting of subfields including cohort names,
plate numbers, patient identifiers, and perturbation conditions
was used to annotate the datasets (Supplementary Data 1). Next,
regular expression searches were used to capture common text
patterns found in channel labels among 989 CyTOF files to
identify non-identical, synonymous terms. These files were then
automatically homogenized to a single panel of 36 consensus
markers (Fig. 1B and Supplementary Data 2)23.

Since some of the healthy control samples had undergone
ex vivo perturbation with cytokines or small molecule inhibitors,
we evaluated the impact of perturbation on protein expression
across the healthy controls. Except for treatment with the
phosphatase inhibitor sodium orthovanadate (PVO4), we did
not observe significant differences in the overlap in distributions
of the mean protein expression in the stimulated or basal
condition across the 36 consensus markers (Fig. 2B and
Supplementary Fig. 1). Visualization of the data using multi-
dimensional scaling (MDS) based on the mean expression profiles
demonstrated that healthy controls were, in fact, strongly
segregated by cohort rather than the stimulation condition,

suggesting that the major source of variation between healthy
samples was batch effects (Fig. 2C).

We next evaluated the variability of healthy controls compared
to the patient samples to assess their robustness as generalized
anchors. Ideally, signal variability between healthy controls
should be small so that adjustments after normalization can be
attributed to batch effects. Indeed, network-based similarity
clustering of mean expression profiles from both healthy controls
and selected leukemia samples matched by stimulation condition
resulted in distinct healthy and patient subclusters (Fig. 2D)24.
Comparing the network connectivity of these distinct subclusters,
the healthy subcluster exhibited a higher level of network
connectivity (node degreeavg= 24.4) than the patient subcluster
(node degreeavg= 10.9), as revealed by denser between-node
edges, indicating smaller within-sample variations (Fig. 2E, F). A
stronger cohort stratification in the healthy subcluster was
consistent with the observed batch variations (Fig. 2C). Taken
together, our analysis demonstrated that healthy controls
exhibited low signal variability and their resistance to ex vivo
stimulation made them potential generalized anchors for batch
normalization.

CytofIn batch normalization using healthy controls. Given that
the healthy controls in leukemia cohorts were robust to ex vivo
stimulation and exhibited low signal variability, we proceeded to
utilize them as generalized anchors for batch normalization. We
evaluated several normalization functions to fit the generalized
anchors to a goal distribution based on central tendency and
dispersion of the 36 consensus markers (Fig. 1B and Methods).
The healthy control files from the leukemia cohorts (n= 50) were
aggregated by concatenating the mean expression of 36 consensus
channels from all cells to define a reference distribution, referred
to as universal reference. To select healthy anchors from each
plate, we prioritized healthy samples in basal over stimulation
conditions or stimulation conditions that have minimal effect on
the expression. The data distribution of each healthy anchor was
adjusted to the universal reference distribution using normal-
ization functions (see Methods). The same adjustment was then
used to normalize patient samples in groups per barcode plate
(Fig. 1B). We assessed the effect of four well-characterized nor-
malization functions: meanshift (MSFT), meanshift bulk
(MSFTB), variance (VAR), and z-score (Z) to batch-normalize
original mass cytometry data from the seven leukemia cohorts
(see Methods)25. In addition, we proposed a bead-like (BL)
normalization function that scales original mean expression based
on the slope of a best-fit regression curve between healthy and
universal reference expression across all channels, similar to that
performed by the bead standardization procedure (Fig. 3A)16.
Finally, the cohorts were also batch normalized using bead nor-
malization for comparison. The expression and variance values of
36 markers from one representative healthy control pre- and
post-normalization using each normalization function are shown
in Fig. 3B.

To identify the normalization function that best preserved the
original data distribution of each channel, we first quantified the
changes in mean expression, variance, and peak intensity of
healthy samples from the raw signal post batch normalization.
Expression profiling of 36 consensus markers using
1-dimensional density plots showed that MSFT, MSFTB, and
BL normalizations had a minimal effect on raw protein marker
distributions (Fig. 3C, Supplementary Fig. 2 and Supplementary
Table 5). By contrast, larger fluctuations in peak intensity and
variance values were observed using the Z or VAR normal-
izations, particularly in several lineage markers like CD45, CD20,
CD24, and CD33 (Fig. 3C, Supplementary Fig. 2 and
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Supplementary Table 5). Consistently, data normalized using the
MSFTB and BL normalization functions attained the highest
correlation to the original signals compared to MSFT, VAR or Z
normalizations based on each of the three parameters (Fig. 3D
and Supplementary Fig. 3).

To further assess the degree of batch effect reduction by each
normalization function, we sub-sampled 2000 cells from three
representative healthy control samples per cohort among 7
cohorts and compared their single-cell distribution pre and post
batch normalization using Uniform Manifold Approximation and
Projection (UMAP) by projecting onto the same embedded space

of the original samples (Fig. 3E and Methods)26,27. As expected, a
strong batch effect was observed in the original samples while in
the bead normalized samples, the batch effects were reduced
(Fig. 3E and Supplementary Fig. 4). We saw various degrees of
batch effect reduction using each of the five normalization
functions (Fig. 3E and Supplementary Fig. 4). To quantify how
each normalization function altered the distance between cells
within and between cohorts, we compared the average cohort
cell-to-cell Euclidian distance between the original and the batch
normalized data (Supplementary Fig. 5). Overall, all normal-
ization functions resulted in decreased intra and inter cohort

Cohort Samples (N) CyTOF Instrument Panel
Cohort 1 56 1st generation Panel 1
Cohort 2 354 1st generation Panel 1
Cohort 3 77 1st generation Panel 1
Cohort 4 235 1st generation Panel 1
Cohort 5 57 Helios Panel 2
Cohort 6 120 Helios Panel 3
Cohort 7 90 Helios Panel 3
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Fig. 2 Characterization of healthy controls as generalized anchors. A Seven cohorts of B-lymphoblastic leukemia samples were collected during
2014–2019. The samples were collected on two different CyTOF instruments using three antibody panels with slight variations in naming conventions,
the number of proteins measured, and protein-metal labels. B Effects of ex vivo perturbation with cytokines or small molecules on the mean expression
of 36 consensus markers in the healthy control samples. The significance of the overlap in the distribution was quantified by P-values using a two-sided
Wilcoxon test across 36 protein markers comparing basal v. perturbation conditions. The perturbation conditions include B-cell receptor cross-linking
(BCR), Dasatinib (DAS), thymic stromal lymphopoietin (TSLP), BEZ-235 (BEZ), sodium orthovanadate (PVO4), tofacitinib (TOF), and IL-7 (IL7).
C Multidimensional analysis of the 50 healthy controls from 7 cohorts. Note that shapes represent conditions and colors represent cohorts. D
Unsupervised clustering of both healthy and patient samples using an expression similarity network where nodes represent samples and edges represent
the cosine similarity between sample mean expressions. The healthy samples form a highly connected subcluster distinctly separated from that of the
patient samples using a stringent similarity threshold of 0.9. Comparison of node degree (number of connected edges) distribution between (E) healthy
(red) and (F) patient subclusters (blue). The healthy subcluster exhibited a higher degree of network connectivity (node degreeavg= 24.4) to the patient
subcluster (node degreeavg= 10.9), as revealed by denser between-node edges, indicating smaller within-sample variations. Source data are provided as a
Source Data file.
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distances except variance and z-score normalization functions
(Supplementary Fig. 5). Compared to the original data, the
average cell-cell distances between and within cohorts became
closer after our CytofIn normalization procedure. Interestingly,
MSFTB normalization attained the most similar cell-cell distance
changes to that by the bead normalization.

We compared our batch normalization approach to two
existing mass cytometry normalization methods, CytoNorm (CN)
and CytofRUV (CV), and Seurat (ST), a batch correction method
for scRNA-seq (Supplementary Figs. 6 and 7)18,28,29. CN and CV
rely on identical anchors, thus we made the assumption that the
healthy anchors from each batch are approximately identical due
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to their low variance. We sampled 10% of the cells (200 cells per
cohort) and compared performance using two benchmarking
metrics kBET and LISI, which measure local batch and cell
mixing effects by comparing the local and global label distribu-
tion on the UMAP space (Supplementary Figs. 6A, 7A and
Methods)30–32. Here, a low kBET index or a high LISI index were
correlated to increased label mixing. In addition, we included the
original and bead normalized samples as negative and positive
controls.

Our benchmark study showed that MSFTB, MSFT, and BL
normalization performed favorably in terms of batch mixing
based on the difference between their kBET and LISI indexes
compared to bead normalization (Supplementary Fig. 6C, D).
Importantly, there were minimal changes in cell distribution of
data normalized by MSFTB in contrast to CV or ST batch
normalization although CV indicated a higher level of batch
mixing (Supplementary Fig. 6A). To evaluate CytofIn’s ability to
maintain cell types after batch normalization, we performed
FlowSOM clustering (100 clusters) on batch normalized healthy
samples (Supplementary Fig. 7A)33. Except for CV, all methods
were similar to bead normalized data based on the kBET index,
possibly due to the small size of each cell cluster. MSFTB, CN,
and ST performed similarly to bead normalization based on the
LISI index (Supplementary Fig. 7B, C). Overall, our analyses
demonstrated that MSFTB and BL normalization performed
favorably to the gold standard bead normalization enabling
healthy control samples to be used as generalized anchors for
batch normalization going forward.

CytofIn replicates bead normalization on patient leukemia
samples. Bead normalization is currently the gold standard for
reducing batch effects across datasets provided that the bead
information is available. We next evaluated the ability of CytofIn
to replicate the performance of bead normalization using the full
leukemia cohorts. To compare the performance of batch nor-
malization using the MSFTB and BL normalization functions to
the bead standardization, the leukemia cohorts were separated
into two batches: Batch A (cohort 1–4) obtained on a CyTOF 1
cytometer and Batch B (cohort 5–7) obtained on a Helios cyt-
ometer, where these two cytometers exhibited differences in
sensitivity for signal readout (Supplementary Data 1). To
determine the mean expression difference between the batch and
bead normalized signals across 36 consensus markers, bead
normalization was first performed as is standard by normalizing
Batch A and Batch B together prior to debarcoding (Supple-
mentary Fig. 8, left). In parallel, each batch was independently
bead normalized and then batch normalized using each of the
five normalization functions for comparison (Supplementary
Fig. 8, right).

The differences between batch and bead normalized mean
expression of 36 consensus markers from 989 samples were
quantified by root-mean-square-deviation (RMSD) values (Sup-
plementary Fig. 9A). Batch correction using MSFTB achieved the

highest consistency to that by bead normalization with an average
RMSD value of 0.33 (Fig. 4A and Supplementary Fig. 9B). BL
performed reasonably well with an average RMSD value of 0.45
while MSFT, VAR, or Z normalizations all resulted in RMSD
values of > 0.5 (0.6–1.33) (Fig. 4A and Supplementary Fig. 9B).
Likewise, both MSFTB and BL-normalized signals achieved
strong correlations (R2 > 0.99) to bead normalized signals
(Fig. 4B). One important assumption for our approach is that
the variance between generalized anchors should be a fair degree
smaller than that between target samples in order for batch effects
to be accurately estimated and corrected. Indeed, by correlating
the RMSD values between each plate-specific healthy anchor to
the universal healthy reference, we saw that the normalized
samples that have the strongest deviation from the bead
normalization result e.g., cohort 6 in our data, are the ones with
the highest RMSD values and vice versa (Supplementary
Fig. 10A). We further evaluated the correlation between the
deviation of the healthy anchor mean expression from each plate
(batch) to the universal healthy reference using each normal-
ization function and then assessed the accuracy of the batch
normalization result (measured using the deviation from the bead
normalization result). We showed that the amount of deviation
from the aggregated universal reference was indeed correlated to
the normalization performance for all CytofIn normalization
methods (Supplementary Fig. 10B).

Critical downstream analyses of mass cytometry data depend
on the identification of cell populations and their features. To this
end, we quantified the population abundance and mean
expression of the 36 consensus markers among 15 subpopulations
previously characterized in B-cell ALL (Supplementary Fig. 11A)6.
To enable controlled comparison, the gating parameters for each
subpopulation were optimized by gating on the concatenated
healthy samples and the same parameters were applied to classify
pre and post-normalized samples (Supplementary Fig. 11A). By
evaluating the difference (Δmean ± s.d.) between batch and bead
normalized subpopulation frequencies across 15 subpopulations,
we showed that, on average, MSFTB normalization was best at
capturing bead standardized subpopulation abundances than
MSFT, BL, VAR, or Z normalizations (Fig. 4C, Supplementary
Fig. 12). Among the classified subpopulations, the ProB2 and
PreB1 cells were most affected by the batch normalization
procedure as these two subpopulations were defined by a similar
set of protein markers (Fig. 4C and Supplementary Fig. 11A). For
each subpopulation, we further examined the mean signal
intensity of four selected proteins: CD10, CD45, pS6 and pCreb
not used to gate the developmental populations. As expected, the
expression differences (Δmean ± s.d.) of these 4 markers from the
bead standardized expression were minimal using MSFTB and BL
normalizations compared to MSFT, VAR, or Z normalizations
(Fig. 4D, Supplementary Fig. 13 and Supplementary Table 6). To
determine if MSFTB and BL normalizations alter data distribu-
tion at single-cell resolution, we compared the biaxial plot of
CD45-CD10 and pS6-pCreb of the ProB2 subpopulation

Fig. 3 Batch normalization functions. A Batch normalization using bead-like (BL) normalization. Markers of healthy control were used to generate plate-
specific slopes to fit the universal healthy reference data distribution. To minimize batch effects, mean expressions of protein markers from each sample on
the plate were scaled according to each plate-specific slope as in the bead standardization procedure. B The effect of five normalization functions:
meanshift (MSFT), meanshift bulk (MSFTB), variance (VAR), z-score (Z), and bead-like (BL) on the data distribution of one representative healthy control
sample. The changes in mean expression and variance values of 36 consensus markers were visualized using heatmaps where the colors were correlated to
signal intensity. C Density plot of 8 consensus protein markers from healthy samples (n= 3) pre- and post-batch normalization using each five
normalization functions (See Supplementary Fig. 3 for the distribution of all 36 consensus markers). D Correlation analysis between bead and batch
normalized signals using each of the five normalization functions assessed by mean expression, variance values, and peak intensity: MSFT, MSFTB, VAR, Z,
and BL normalizations. E Visualization of batch effects in 50 healthy anchors normalized by each five normalization functions using UMAP. Note that points
represent single cells and were colored according to respective cohorts. Source data are provided as a Source Data file.
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(Supplementary Fig. 11B). Our analyses showed that the MSFTB
normalization had minimal effect on the single-cell data
distributions and that the adjustment was similar to that made
by bead standardization (Supplementary Fig. 11B). On the other
hand, the reduction in contour size by BL normalization may
likely be due to mean scaling that minimizes the data variance

and a similar effect was also observed in the BL batch normalized
healthy anchor expression (Fig. 3C and Supplementary Fig. 5).
Still, the RMSD values of mean marker expression of BL to that
by bead normalization were the second-lowest following MSFTB
(Supplementary Fig. 9A, B). Overall, our analysis showed that
MSFTB and BL normalization can faithfully recapitulate the bead
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normalized signal in 7 leukemia cohorts with similar effects on
subpopulation abundances and features.

Low variance channels as generalized anchors for batch nor-
malization. Given that healthy controls may not be present in all
datasets, we further explored the possibility of using low variance
channels as generalized anchors for normalizing mass cytometry
data (Fig. 5A). Similar to healthy control samples, we assume that
channels with low signal variability are more likely to be invariant
between samples in the same batch than channels with high signal
variability; thus, their variations between batches can be used to
estimate batch effects. To test the feasibility of this approach, we
compared the performance of batch normalization using two
types of generalized anchors—healthy controls or stable channels
—to bead normalization on peripheral blood mononuclear cells
(PBMCs) from three lymphoma patients undergoing CAR-T cell
therapy (Fig. 5A). These samples were collected over 18 months
in three batches in which one healthy PBMC control sample was
included in each batch (Fig. 5A). Each patient sample was first
homogenized to a panel of 30 consensus markers. All three
samples were separately normalized using either healthy control
as generalized anchors, stable channels as generalized anchors, or
bead normalization for comparison. For batch normalization
using healthy control samples, the mean expression of three
healthy PBMC controls were aggregated to generate the universal
reference and then batch normalized using either the MSFTB or
BL normalization.

To identify suitable stable channels for batch normalization, we
applied a PCA-based non-redundancy score (NRS) to rank-order
the variability of each marker across the three patient samples
and identify stable channels (Fig. 5B and Methods)34. To further
determine the optimal number of stable channels for batch
normalization, RMSD values were computed between the batch
and bead normalized signals by varying the number of included
stable channels. In two of the three samples, RMSD values
reached a minimum when three to four stabilized channels were
considered, which corresponds to NRS cutoff < 1 (Fig. 5C and
Supplementary Fig. 14). Overall, the average RMSD values slowly
decrease with increasing NRS after the first two stable channels
(Supplementary Fig. 14). To determine whether stable channels
were strictly limited to low expression markers, we compared the
mean expression to NRS values of each marker but did not
observe a correlation (R2 < 0.27) (Fig. 5D).

To batch-normalize the three lymphoma patient samples, the
mean expression of the three most stable channels—CD127,
CD274, and CD137—were aggregated to define the universal
reference and subsequently normalized using the MSFTB
normalization function. For validation, all three samples that
were batch normalized using healthy controls achieved high
correlations to bead normalized signal (R2 > 0.99) (Fig. 5E).
Importantly, we showed that batch normalization using stable
channels as generalized anchors was able to achieve comparable
performance (R2 > 0.99) (Fig. 5E). We yielded similar kBET and
LISI indexes when evaluating healthy sample data normalized by
healthy control, stable channel or the two combined (Supple-
mentary Fig. 15). Together, these results demonstrate that stable
channels identified from shared markers across multiple CyTOF
datasets may serve as robust generalized anchors for batch
normalization. The flexibility of this approach enables batch
normalization to be performed across mass cytometry datasets in
the public domain.

CytofIn dataset integration in the public domain. Flow Repo-
sitory is one of the largest public repositories of mass cytometry
data10,35. To test the utility of the CytofIn pipeline for public

databases, we first examined the number of datasets that may
have sufficient overlapping panels to use with CytofIn. We
queried the Flow Repository database for any dataset tagged with
the term PBMC. This retrieved a total of 44 mass cytometry
datasets (Fig. 6A). After merging one representative panel from
each dataset, we identified a total of 192 overlapping markers
suitable for integration from a total of 808 panels, with 1 panel
per file (Fig. 6A). By assessing the degree of panel overlap within
the top 50 consensus markers based on their frequency in the
retrieved panels, we showed that > 89% of the datasets have
panels that overlap within the top 3 markers, which can be sui-
table for CytofIn integration (Fig. 6B).

Differences in metal-antibody pairing across cohorts following
panel homogenization could be another important source of
technical variation and a limitation to dataset integration. Across
the 44 PBMC datasets from Flow Repository, we surveyed the
frequency of metal-antibody pairing on the top five most
common overlapping markers. We found that 4 of 5 were paired
with the same metal over 50% of the time (CD3, CD4, CD8,
CD19) (Supplementary Fig. 16). We analyzed the impact of
differences in metal-antibody pairing on these four markers in
two publicly available PBMC datasets from patients with
melanoma. Between the two panels, these four antibodies were
present in both panels but between the two panels, only one
marker was labeled on the same metal (CD19). We quantified the
differences in metal sensitivity as previously reported (Supple-
mentary Fig. 17A)36. Using files from patients treated with
Pembrolizumab at 3 weeks from both datasets, we evaluated the
mean marker expression relative to the metal sensitivity
difference between the two panels. The mean expression of these
markers was not significantly different before and after batch
normalization (Supplementary Fig. 17B). Biaxial plots demon-
strate the preservation of these populations after normalization
with CytofIn (Supplementary Fig. 17C).

To determine CytofIn’s utility in datasets collected across tissue
types, we applied CytofIn to three datasets analyzing tumor-
infiltrating leukocytes (TIL) across four different cancer histol-
ogies (breast37 and Flow Repository ID FR-FCM-ZYJP; and
glioma, kidney, sarcoma38). The datasets shared 11 consensus
markers and CytofIn used the top three stable channels for
normalization. We found that before normalization, the TIL’s
from the breast cancer samples did not cluster together but
following CytofIn normalization these samples clustered together
and away from glioma, a known cold tumor with fewer
infiltrating immune cells (Fig. 6D, E). Similarly, improvements
in clustering were also observed within the breast and glioma
datasets. Quantification of the clustering quality showed that the
adjusted Rand Index increases from 0.48 to 0.61 post CytofIn
normalization by comparing to designated cancer type labels.
Likewise, pairwise RMSD values of the mean expression profile
between samples for each cancer type consistently decreased post
CytofIn normalization, indicating a decrease in batch variation
(Supplementary Fig. 18). This combined analysis of infiltrating
immune cells from patients of multiple cancer types demonstrates
the feasibility of CytofIn across tissue types from different studies.

CytofIn dataset integration uncovers immunotherapy corre-
lates. With the growing use of mass cytometry for immune
monitoring in the context of immunotherapy treatment for cancer,
we analyzed two datasets from Flow Repository examining the
effects of immune checkpoint inhibition on peripheral blood
immune populations in melanoma patients39,40. Greenplate et al.
demonstrated that treatment with the PD-1 inhibitor Pem-
brolizumab results in a reduction of CD4+PD1+ T cells and
CD8+PD1+ T cells compared to the pretreatment samples39.
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Conversely, Wei et al. found CD8+PD1+ T cells were expanded in
PBMC samples of melanoma patients treated with Nivolumab,
Pembrolizumab, or Ipilimumab (a CTLA4 inhibitor) monotherapy,
but the effects of these immunotherapies on CD4+PD1+ T cells

were not well-characterized40. To investigate how each immu-
notherapy affects T cells and other immune populations in mela-
noma patients, we integrated these datasets for combined analyses:
dataset 1 containing the pretreatment and Pembrolizumab-treated
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PBMC’s from Greenplate et al. and dataset 2 containing Pem-
brolizumab, Nivolumab, Ipilimumab, or a combination of Ipili-
mumab and Nivolumab treated PBMC samples by Wei et al.
(Supplementary Data 3).

To analyze these datasets together, the FCS files from
each dataset were homogenized to a panel of 17 consensus
markers. To minimize batch effects, MSFTB batch normalization

was performed using the top three stable channels: PD1, TIM3,
and CD68 as generalized anchors ranked by NRS (Fig. 7A). To
define each T cell population, we gated samples from both
datasets into eight immune subpopulations using the gating
strategy outlined by Greenplate et al. (Fig. 7B)39. To ensure that
the signals between the two datasets were comparable post batch
normalization, we first compared the population frequency of
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pembrolizumab-treated samples at the week 3 time point from
both datasets. We saw an increase in the correlation between T
cell subpopulation frequencies from the two datasets after
performing our batch normalization procedure (R2 values
increase from 0.89 to 0.92) (Supplementary Fig. 19A). Similarly,
the difference in the T cell subpopulation frequency between the
corresponding samples decreased after batch normalization
(average RMSD values decrease from 0.29 to 0.27) (Supplemen-
tary Fig. 19B). Importantly, the frequency of T cells, particularly
CD4+ T cells, were most impacted by the batch normalization
and is the subpopulation that exhibited the highest sensitivity to
immunotherapy from both studies (Supplementary Fig. 19B).

Our integrative analysis showed that Nivolumab monotherapy
or combination therapy with Ipilimumab resulted in a significant
reduction in the CD4+PD1+ T cells similar to the effect of
Pembrolizumab as previously observed in Greenplate et al.
(Fig. 7C). There were no significant changes in CD4+PD1+ T cell
frequency in Ipilimumab-treated patients when compared to their
pretreatment sample (Fig. 7C). Although all anti-PD1 therapies
appeared to reduce CD8+PD1+ T cell abundance, the changes
were not as significant as in the CD4+ PD1+ T cell

subpopulation (Supplementary Fig. 20). Interestingly, an expan-
sion in the CD8+ T cell population was seen in the Nivolumab
but not the Pembrolizumab-treated samples (Supplementary
Fig. 20). In CD4+PD1+T cells, 11 out of 15 proteins had reduced
expression after immune checkpoint inhibition compared to the
pretreatment PBMC samples, including CXCR5 and CD69
(Fig. 6D and Supplementary Fig. 21). On the other hand,
CD45RO, CD45, and CD3 were elevated across all treatments
(Fig. 7D and Supplementary Fig. 21). Interestingly, TIM3 was
elevated only in a subset of the Ipilimumab-treated samples but
not in the anti-PD treatments (Fig. 7D and Supplementary
Fig. 21). This integrative analysis was able to capture both
immune features reported in the original study as well as on
subpopulations not previously defined in the original study via
combined analysis. Our approach enabled cross-study compar-
ison to reveal single-cell features that exhibit a differential
response to immunotherapy.

Discussion
Batch normalization across mass cytometry datasets remains a
major bottleneck for performing large-scale data integration from
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public databases. Current approaches for mass cytometry data
normalization across datasets often demand the use of identical
replicates or bead standards and whose absence can hamper
cross-dataset comparison. To address these challenges, we pre-
sented a data integration strategy combining batch channel
homogenization and data normalization using generalized
anchors for comparative analysis of mass cytometry data. We
validated our approach by comparing batch normalization out-
comes with that by bead normalization across 989 leukemia
samples and showed that our approach can accurately recapitu-
late the result of bead normalization, the current gold standard
for mass cytometry normalization. Similarly, we showed that our
approach had minimal effect on the subpopulation frequency and
protein marker distribution while achieving high consistency and
robustness at the single-cell level compared to the current gold
standard, bead normalization. To demonstrate the utility of our
approach for mining publicly available mass cytometry datasets,
we implemented CytofIn to integrate three tumor-infiltrating
lymphocyte datasets and two melanoma datasets from Flow-
Repository and identified immune features from melanoma
patients sensitive to immune checkpoint inhibition.

Several approaches for batch normalization have been devel-
oped that obviated the use of bead standards. Methods like
BatchAdjust compute a scaling factor between protein measure-
ments in each sample and a shared reference sample to make
sample adjustments in each batch19. Given that single batch
adjustment based on the bulk expression may not accurately
reflect the adjustment needed at the single-cell level, CytoNorm
was then proposed18. In this approach, the batch adjustment was
achieved based on a cell cluster generated by FlowSOM, which is
then used to define cluster-specific goal distribution for fitting
and transforming each protein measurement. Other methods like
CytofRUV used landmark proteins to improve consistency
between batches28,41. However, for cross-dataset analysis from
public databases, the requirement of identical replicates in each
batch is a major limitation underlying these methods. Recent
deep learning approaches such as distribution-matching residual
networks or multi-tasking neural networks offer potential solu-
tions, yet these methods require substantial computation time for
parameter tuning tailored for specific training data thus limiting
their general use20,42. Methods like Seurat risk losing biological
signals as they merely integrate expression data based on mutual
nearest neighbor without using meaningful anchors.

Our study demonstrated the potential utility of generalized
anchor-based batch normalization, implemented as CytofIn, for
fast and robust integrated analysis of public mass cytometry
databases. We found that several types of unexpected controls,
including healthy samples and stable channels, were suitable
anchors for batch normalization. These anchors exhibit small
variability between batches yet remain robust control for mon-
itoring batch variations. When tested on large cohorts of leuke-
mia patient samples, we showed that batch effects can be
systematically reduced. Since the stable channels were identified
from shared markers between samples, CytofIn obviates the need
for pre-selected housekeeping or landmark markers. Also, in
contrast to deep learning approaches, CytofIn does not require
pretraining and can be easily integrated into existing mass cyto-
metry workflows. Additionally, we showed the batch correction
can be accurately propagated to the subpopulation level even
though the signal adjustment was performed on the bulk
expression data.

We have proposed five batch normalization functions includ-
ing MSFT, MSFTB, VAR, Z, and BL where each has different
effects on marker distribution, cell abundance, mean expression
as well as batch and cell mixing. In particular, MSFTB and BL
normalization perform most similarly to bead normalization with

the lowest RMSD values (Supplementary Fig. 9B). Although
MSFTB appears to be the optimal normalization from our study,
BL normalization has led to a greater reduction in variance values
between samples after normalization (Supplementary Fig. 5). On
the other hand, normalization based on VAR and Z deviated
significantly from the bead normalization result possibly due to
the strong assumption of equal variance between healthy samples.
However, we anticipate that these functions could be useful when
identical control samples were used, as a special case of gen-
eralized anchors. By comparing local and global label distribution,
we showed that Z and MSFT normalization increase batch mixing
over bead normalization while MSFT, MSFTB, and BL are the top
three methods that are closest to bead normalization based on
kBET and LISI index. MSFTB and Z normalization were found to
be best at maintaining cell type specificity among the five nor-
malizations. The performances of five CytofIn normalization
functions against different metrics evaluated in our study are
summarized in Supplementary Fig. 22.

In conclusion, CytofIn is a fast, accurate, and robust mass
cytometry data integration pipeline that supports CyTOF data
standardization and batch normalization without necessitating
bead information or identical technical replicates. The high
flexibility of our framework enables multiple forms of generalized
anchors as well as normalization functions to be developed. In
addition to healthy controls and stable channels considered in
this study, the generalized anchor can be extended to include
stable cell subpopulations identified across analyzed samples.
Recent advances in embedding techniques also hint at the pos-
sibility of using more abstract anchors generated by autoencoders
on an embedded space42. Although mean expression and variance
values are robust proxies for data distribution, non-linear trans-
formations for direct mapping of probability density between
samples or using a more realistic representation, such as Gaussian
mixture models may further improve the resolution of batch
corrections. While our approach is currently limited to datasets
with shared markers, imputation techniques like nearest neighbor
clustering could be used to infer non-overlapping markers thus
expanding the applicable datasets43–45. Identification of shared
markers can be automated using natural language processing,
such as computing similarity between the labels using weighted
edit-distances followed by the Hungarian assignment algorithm
for finding an optimal bipartite matching. While metal tag-
antibody pairings may be a limitation across all shared markers,
we did not find differential metal sensitivity a more prominent
source of variability than other potential sources of batch effects
such as antibody staining or instrument sensitivity, and we
demonstrate the ability to identify comparable populations even
while labeled with different metals. Regardless, researchers should
evaluate populations carefully across panels to understand the
impact of metal tag-antibody labels between datasets. Further,
with the increasing availability of harmonized data46 and com-
mercially available antibody panels, more and more datasets will
have consistent metal tag-antibody pairings, easing these com-
parisons. Our batch normalization approach is not limited to
mass cytometry data but can be potentially applicable for diverse
datasets such as genomic data, RNA-seq data, flow cytometry
data, and spatial mass cytometry data. Finally, with the increasing
availability of publicly available data from clinical mass cytometry
experiments, we expect that CytofIn will be useful to aid in large-
scale CyTOF data integration and enable predictive modeling
across large clinical cohorts.

Methods
Primary samples. De-identified bone marrow or peripheral blood primary sam-
ples from patients with ALL or lymphoma were obtained under informed consent
from Lucile Packard Children’s Hospital and Stanford Hospital at Stanford
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University (Stanford, CA, USA) and from the Pediatric Clinic of University of
Milano-Bicocca (San Gerardo Hospital, Monza, Italy) and from St. Jude Children’s
Research Hospital (Memphis, TN, USA). The use of these samples was approved by
the Institutional Review Boards at each institution. Cryopreserved primary bone
marrow and peripheral blood samples, from leukemia or lymphoma patients or
healthy controls, thawed rapidly in thawing media (RPMI 1640 supplemented with
10% fetal bovine serum, 1% penicillin-streptomycin, and glutamine, 20 U/mL
sodium heparin, and 0.025 U/mL Benzonase)6. Cells were rested for 30 min at
37 °C and cisplatin viability stained47. Cells then underwent ex vivo perturbation as
shown in Supplementary Data 1.

Mass cytometry. After ex vivo perturbation, cells were fixed with paraf-
ormaldehyde, washed in cell staining media (CSM) twice, followed by one wash in
PBS and one wash in PBS+ 0.02% saponin. Cells were then 20-plex barcoded,
using new in-house batch preparations. Aliquots of the same healthy BM controls
were used, one per barcode plate. Samples were washed in CSM after barcoding
and combined into a single tube. Blocking was performed with Human TruStain
FcX receptor blocking solution (Biolegend, 422302). Cells underwent surface
staining with surface markers outlined in Supplementary Table 2. Following
surface staining, cells were washed, permeabilized, and intracellular stained
(Supplementary Table 2). Once intracellular stained, samples were washed in
CSM, Iridium intercalated, washed in CSM, followed by two washes in ultra-pure
double-distilled water. To prepare for acquisition, cells were resuspended with
normalization beads16. Cohorts 1–5 were acquired on a CyTOF1 generation
machine, while Cohorts 6 and 7 were acquired on the Helios (3rd generation
CyTOF).

Data processing. Data acquired for internal cohorts on the CyTOF1 was down-
loaded and re-processed along with external cohorts acquired from the Helios. Due
to the limitations of the first-generation instrument, some FCS files were re-
processed to include the IMD header, re-extracted from IMD and concatenated
through the Fluidigm software. Once all barcoded files for internal and external
cohorts were concatenated into single individual files, the data was bead
normalized16. Following bead normalization, the FCS files were de-barcoded into
individual samples48.

File homogenization. Before data normalization, the antigen panels in FCS files
were homogenized. Briefly, a standard antigen panel containing metal name,
antigen name, regular expression pattern, and the standardized name was gener-
ated (Supplementary Table 2). The regular expression pattern was used to search
and standardize antigen names. We have implemented a computational pipeline
for data homogenization and batch normalization and is accessible from the
CytofIn R package (https://github.com/bennyyclo/cytofin).

CytofIn batch normalization algorithm. CytofIn implements two strategies for
batch normalizing CyTOF datasets. The first of these strategies uses healthy control
samples (1 per barcoding plate) as generalized anchors to batch correct each plate
relative to the universal reference. The universal reference is obtained by con-
catenating and averaging the data from each plate’s generalized anchor. The second
of CytofIn’s batch normalization strategies uses the combined datasets’ most stable
(i.e., least variable) channels as generalized anchors in order to batch correct all
other antigen channels in the consensus CyTOF panel. The implementation of
these strategies is discussed in-depth below:

Batch normalization using healthy control samples: CytofIn batch
normalization using healthy control samples as generalized anchors is performed
in 3 steps. First, one control sample per batch is identified as that batch’s
generalized anchor. Second, universal reference statistics are computed using the
combined single-cell data from all generalized anchors. Third, the differences in
marker expression means and/or variances between each generalized anchor and
the universal reference are used to define a normalization function (from a choice
of 5 functions) that adjusts each generalized anchor to match the universal
reference. Finally, the same normalization function is then applied to all other
samples of the same batch until all samples are batch normalized. The
mathematical details of this procedure are outlined in the Supplementary
Methods.

Determination of the universal reference. The universal reference for batch
normalization is computed by concatenating the single-cell data from all control
samples to form an expression matrix X 2 Rccontrol ´m , where ccontrol is the total
number of cells across all control samples and m is the number of markers in the
consensus antigen panel. The mean signal intensity (MSI) of the universal
reference, MSIðuniversalÞ 2 Rm , can then be defined by finding the column means of
X as follows:

MSIðuniversalÞ ¼ ∑ccontrol
j¼1 X½j;1:m�
ccontrol

ð1Þ

where X[j, 1:m] represents an m-dimensional vector corresponding to the jth row of
X. Likewise, the vector of marker variances VarðuniversalÞ 2 Rm across all cells in the

universal reference can be calculated as follows:

VarðuniversalÞ ¼
∑ccontrol

j¼1 ðX½j;1:m� �MSIðuniversalÞÞ2

ccontrol
ð2Þ

Both MSI(universal) and Var(universal) are used in the next step of the algorithm.
Fitting healthy control samples as generalized anchors to the universal

reference. We have proposed five normalization functions for fitting the mean
expression of generalized anchors to the universal reference based on a
combination of the anchors’ and reference’s mean and variance values.

First, we define the mean signal intensity (MSI) of the control sample from batch
j, which we denote as MSI controlð Þ

j ¼ x1; x2; ¼ ; xm
� � 2 Rm where each element

xi 2 R is the mean expression of marker i across all cells in the generalized anchor
(i.e., control sample) from batch j. Similarly, we define the marker variance vector
across all cells in the control sample from batch j, which we denote as Var controlð Þ

j ¼
v1; v2; ¼ ; vm
� � 2 Rm where each element vi 2 R is the variance of marker i across
all cells in the generalized anchor (i.e., control sample) from batch j.

For each batch j, we also define the single-cell expression matrix obtained by
concatenating (row-wise) cells from all samples within batch j. We denote this
expression matrix as

Tj 2 Rcj ´m

where cj is the total number of cells in batch j and m is the number of markers in
the consensus panel.

Using these definitions, we can then apply any of the following batch
normalization functions to the data from batch j to estimate and correct batch
effects:

Meanshift normalization. This function performs per-channel additive
adjustment to each entry in Tj based on the differences between the entries of
MSIðcontrolÞj and MSI universalð Þ . The batch-corrected expression matrix TðcorrectedÞ

j 2
Rcj ´m is generated as follows:

T ðcorrectedÞ
j ¼ Tj þ MSI controlð Þ

j �MSI universalð Þ
� �

ð3Þ

where the difference on the right-hand side of the equation is broadcasted to each
row of Tj.

Meanshift bulk normalization. This function performs additive adjustment
based on the difference in the mean (across markers) of MSIðcontrolÞj and the mean

(across markers) of MSI universalð Þ . The batch-corrected expression matrix
T ðcorrectedÞ
j 2 Rcj ´m is generated as follows:

T ðcorrectedÞ
j ¼ Tj þ

∑m
i¼1MSIðcontrolÞj

m

 !

� ∑m
i¼1MSIðuniversalÞ

m

� �" #

ð4Þ

Variance normalization. This function first performs additive correction (as in
meanshift normalization) followed by scaling based on the ratio of the standard

deviation (SD) value of the generalized anchor from batch j, SD controlð Þ
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var controlð Þ

j

q
2 Rm to that of the universal reference. Thus, the batch-corrected

expression matrix T ðcorrectedÞ
j 2 Rcj ´m is generated as follows:

T ðcorrectedÞ
j ¼ Tj þ MSI controlð Þ

j �MSI universalð Þ
� �h i

� SD
universalð Þ

SD controlð Þ
j

ð5Þ

Z-score normalization. This function performs Z-score standardization. The
batch-corrected expression matrix TðcorrectedÞ

j 2 Rcj ´m for batch j is generated as
follows:

TðcorrectedÞ
j ¼ ðTj �MSIðcontrolÞj Þ � SD

ðuniversalÞ

SDðcontrolÞ
j

þMSIðuniversalÞ ð6Þ

Bead-like normalization. This function performs a multiplicative correction
based on the slope between MSIðcorrectedÞj and MSIðuniversalÞ . The slope was
approximated by regression analysis. The batch-corrected expression matrix
T ðcorrectedÞ
j 2 Rcj ´m for batch j is generated as follows

T ðcorrectedÞ
j ¼ Tj � Reg

MSIðuniversalÞ

MSIðcontrolÞj

 !

ð7Þ

where Reg denotes the regression function.
Batch normalization using stable channels. CytofIn batch normalization using

stable channels as generalized anchors is performed in 3 steps. First, the most stable
channels across all datasets being integrated are identified using a principal
components-based non-redundancy score (NRS)33,34. Second, the n most stable
channels in the combined dataset are used to establish a universal reference that
can be used to batch correct the expression values of all samples in the combined
dataset. Finally, the meanshift bulk normalization function is used to perform the
batch correction for all samples in the combined dataset. Each of these steps is
discussed in more detail below:
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Identification of stable channels to be used as generalized anchors. To identify
the most stable channels across multiple samples from different batches, we first
express each sample s as a single-cell expression matrix, T ðsÞ 2 RcðsÞ ´m , where c(s) is
the number of cells in sample s and m is the number of markers in the consensus
antigen panel. For each sample, the top three principal components (PCs) of the
expression matrix T(s) are then computed to yield the top three PC loadings for
each marker. Doing so results in the matrix PðsÞ 2 Rm ´ k of principal component
loadings on each antigen, where m is the number of markers in the consensus
antigen panel and k is the number of principal components (for our analyses,
generally k= 3). In addition, the standard deviation (SD) vector SDðsÞ 2 Rk for each
PCA loading is also computed. Using these quantities, the variability of each
marker j can then be rank-ordered using a PCA-based non-redundancy score
(NRS) as previously described34:

NRSj ¼
∑R

s¼1 ∑
k
i¼1 ðSDðsÞ

i Þ2PðsÞ
½j; i�

R
ð8Þ

where SD sð Þ
i is the standard deviation of the i-th PC in sample s, PðsÞ

½j;i� is the entry in
the j-th row and i-th column of P(s) (that is, the loading of the i-th PC on marker j
in sample (s) and R is the total number of input samples to be integrated). Thus,
each NRSj represents the average (across all samples) of the following quantity for a

given marker j, ∑k
i¼1ðSDðsÞ

i Þ2 PðsÞ
½j; i� .

Determination of the universal reference. Using the NRSj calculations from
the previous step, the universal reference can then be computed. To do so, we
use the average expression of the n markers with the lowest NRSj in the matrix T,
which we obtain by concatenating all R samples’ expression matrices T(s) row-
wise such that T 2 Rc ´m; where c is the total number of cells in the combined
dataset and m is the number of markers in the consensus antigen panel. Thus, if
we let q index the n most stable markers (from 1 to n) as defined above, we can
calculate the q-th entry in the universal mean signal intensity vector
MSI universalð Þ ¼ ðMSIðuniversalÞ1 ;MSIðuniversalÞ2 ; ¼MSIðuniversalÞn Þ 2 Rn as follows:

MSIðuniversalÞq ¼ ∑c
i¼1T ½i;q�
c

ð9Þ

Likewise, we can define the q-th entry in each sample’s mean signal intensity

vector MSI sampleð Þ ¼ ðMSIðsampleÞ
1 ;MSIðsampleÞ

2 ; ¼MSIðsampleÞ
n Þ 2 Rn as follows:

MSIðsampleÞ
q ¼

∑cðsÞ
i¼1T

ðsÞ
½i; q�

cðsÞ
ð10Þ

Finally, we can use these values of MSI(universal) and MSI(sample) to apply the
meanshift bulk normalization function defined above and yield the batch-corrected
expression matrix for sample s, which we denote as TðcorrectedÞ

s : Starting with the
uncorrected single-cell expression matrix for batch s, Ts, we can calculate TðcorrectedÞ

s
as follow:

TðcorrectedÞ
s ¼ Ts þ

∑n
i¼1MSIðsampleÞ

i

n

 !

� ∑n
i¼1MSIðuniversalÞi

n

 !" #

ð11Þ

Computational gating of subpopulations. Prior to computational gating, the raw
mass cytometry data were transformed using the arsinh function with a scaling
factor of 5. The gating parameters were optimized on the healthy samples: bone
marrow mononuclear cells for B-cell leukemia or the pretreatment PBMC sample
for melanoma. Each subpopulation was gated based on the biaxial plot as pre-
viously reported6,39. As a proxy to manual gating for the developmental classifi-
cation of ALL samples, we applied rectangular gates and a threshold of 10 counts
for defining positive and negative cells. To enable controlled comparison, the same
gating parameters were then applied to all samples in batch to retrieve the cor-
responding subpopulations. The computational gating was performed using the
FlowCore and openCyto R software package.

Benchmarking. The performance of CytofIn normalization on a combined sample
consisting of three representative healthy control samples from 7 cohorts was
compared to three existing normalization methods, CytoNorm, CytofRUV and
Seurat18,28,49. 2000 cells were sampled from three healthy samples of each 7 cohorts
and combined to form cohort-specific healthy samples. The original and bead
normalized healthy samples were also included as negative and positive controls.
Furthermore, comparisons between normalized data using generalized anchors
based on healthy control, stable channels, or the combination were also performed.
To evaluate local batch and cell mixing effects, 10% of the samples (200 cells) were
randomly sampled and mapped onto the UMAP space defined by all 36 channels
in the original healthy sample space. To assessed cell mixing, the healthy cohort
samples were computationally clustered into 100 cell types using flowSOM. We
compared local label distribution to global distribution using the k-nearest
neighbor batch effect test (kBET) and the local inverse Simpson’s index (LISI).
kBET computed local batch label distribution based on the k-nearest neighbors
around each data point after SVD dimension reduction. We used the expected
rejection rates (0–1) as the kBET index to quantify if the null hypothesis that all
batches being equally mixed is rejected. Similar to kBET, LISI assessed local label

distribution of a fixed number of k-nearest neighbors and perplexity. We used the
Simpson’s index outputted from the LISI program as LISI index to quantify the
diversity of label distribution in a local neighborhood.

Statistical analysis. Statistical analysis was performed using the R statistical
software (www.r-project.org). Statistical parameters for protein marker distribu-
tion, change in expression and population abundance were quantified based on
their mean and standard deviation (mean ± s.d.). Comparison between mean signal
intensity or population abundance of mass cytometry files was performed using the
Wilcoxon test. Comparison between bead and batch normalized signal was
quantified using correlation analysis quantified by the R-square values or root-
mean-square deviation (RMSD). Clustering quality assessments were quantified
using the adjusted rand index to compare the similarity of clustering pre- and post-
normalization to the pre-assigned cancer type label based on the mean expression
values.

Software. The mass cytometry data were extracted and processed using the Flu-
digm CyTOF software (version 7.0). The mass cytometry data were analyzed using
the following packages from the R bioconductor software (version 2.2): flowcore,
ggcyto, openCyto and flowWorkspace. Network and statistical analysis were per-
formed using the Cytoscape software (version 3.8.0) and the R statistical software
(version 3.6.3). Benchmark studies were conducted using the CytoNorm, CytoRUV
and Seurat (version 4.0.2) software packages and kBET, LISI and FlowSOM R
packages. Data integration and normalization were performed using the CytofIn R
package (https://github.com/bennyyclo/Cytofin/).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets for integrative comparative analysis were retrieved from the repositories,
“CyTOF mass cytometry of human glioma, kidney cancer, sarcoma, PBMC”
(FlowRepository ID: FR-FCM-Z3HK),” Single-cell map of diverse immune phenotypes
in the breast tumor microenvironment” (FlowRepository ID:FR-FCM-ZYJP),”Mass
Cytometry of Peripheral Blood from Melanoma Patients Receiving anti-PD-1”
(FlowRepository ID: FR-FCM-ZYDG) and “On-therapy PBMC samples”
(FlowRepository ID: FR-FCM-ZYQR) and can be accessed from the FlowRepository
database (https://flowrepository.org/)50. Source data underlying Figs. 2–5 i.e., the healthy
control samples, raw leukemia patient samples, and lymphoma patient samples used for
the CytofIn validation study are available at Zendo [https://doi.org/10.5281/
zenodo.5911417].

Code availability
The CytofIn R package is freely accessible at Github [https://github.com/bennyyclo/
Cytofin].
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