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Abstract Corallivory causes considerable damage

to coral reefs and can exacerbate other disturbances.

Among coral predators, Drupella spp. are considered

as delayer of coral recovery in the Republic of

Maldives, although little information is available on

their ecology. Thus, we aimed to assess their popula-

tion structure, feeding behaviour and spatial distribu-

tion around 2 years after a coral bleaching event in

2016. Biological and environmental data were col-

lected using belt and line intercept transects in six

shallow reefs in Maldives. The snails occurred in

aggregations with a maximum of 62 individuals and

exhibited a preference for branching corals. Yet, the

gastropods showed a high plasticity in adapting

feeding preferences to prey availability. Drupella

spp. were homogenously distributed in the study area

with an average of 9.04 ± 19.72 ind/200 m2. How-

ever, their occurrence was significantly different at the

reef scale with the highest densities found in locations

with higher coral cover. The impact of Drupella spp.

appeared to be minimal with the population suffering

from the loss of coral cover. We suggest that

monitoring programs collect temporal- and spatial-

scale data on non-outbreaking populations or non-

aggregating populations to understand the dynamics of

predation related to the co-occurrence of anthro-

pogenic and natural impacts.

Keywords Corallivory � Coral � Coral bleaching �
Coral recovery � Predation � Acropora � Pocillopora

Introduction

Coral reefs are among the most diverse and dynamic

ecosystems on the planet, and critically important for

providing ecological goods and services to human

communities (Williams et al., 2019; Woodhead et al.,

2019). Yet, reefs are continuously deteriorating due to

anthropogenic and natural disturbances such as global

climate change, coral predators, and extreme weather

events (De’ath et al., 2012; Hoegh-Guldberg et al.,

2017; Hughes et al., 2017a, b; Rice et al., 2019).

Knowing the scale of these impacts is essential for

driving well-informed management decisions on reef

conservation (i.e. Hughes et al., 2017a, b; Shaver et al.,

2018). In particular, anthropogenic disturbances are

reported to exacerbate the negative effects of coral
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predation (Rice et al., 2019). For example, the crown-

of-thorns seastar, Acanthaster spp., have been

reported to cause high coral mortality during out-

breaks, reducing coral cover up to 80% (Pratchett

et al., 2014, 2017) with an increased effect during

temperature-induced coral bleaching (Saponari et al.,

2018). Other corallivores have been reported for the

reduction in coral cover, among those, Drupella spp.

feed exclusively on living coral tissue and is known to

cause large-scale disturbances to coral reef ecosys-

tems (e.g. Bruckner et al., 2017; Koido et al., 2017).

Drupella is a genus of marine gastropods compris-

ing four species, Drupella cornus (Röding, 1798), D.

eburnea (Küster, 1862), D. fragum (Blainville, 1832)

and D. rugosa (Born, 1778) (Claremont et al., 2011).

These tropical gastropods occur on coral reefs of the

Indo-Pacific Ocean (Claremont et al., 2011) at low

densities (0–2 ind/m2; Cumming 1999, 2009a),

although populations of Drupella spp. may display

transitions between low density periods with outbreak

and/or local aggregation events with up to 20 ind/m2 or

250 ind/colony, respectively (Cumming et al., 2009a;

Bruckner et al., 2017).

Large aggregations of D. rugosa have been

observed in the Indo-Pacific Ocean and are well

documented on the Great Barrier Reef (Cumming,

1999), while outbreaks of Drupella spp. were reported

from a wide range of regions including Kenya

(McClanahan, 1994), Western Australia (Ayling &

Ayling, 1987), Hong Kong (Cumming, 1998; Morton

and Blackmore, 2009), Red Sea (Antonious, A. & B.

Riegel, 1998), Thailand (Scott et al., 2017a, b) and

India (Marimuthu & Tripathy, 2018). These events

appeared to be caused by overfishing of natural

predators, high coral mortality and changes in tem-

perature and salinity (Turner, 1994a, b; Cumming,

2009a, b), although the causes are complex and still

not completely understood (McClanahan, 1994, 1997;

Lam & Shin, 2007; Ratianingsih et al., 2017). When

these events occur, the damage on coral reefs may be

severe reducing coral cover by 35 to 70% (Cumming,

2009a, b). Furthermore, impacts mediated by coralli-

vores may synergically act with other coral stressors

exacerbating coral mass mortality (Saponari et al.,

2014, 2018; Pisapia et al., 2016, 2019) and delay reef

recovery (Bruckner & Coward, 2018). Thus, both

outbreak and aggregation events may affect coral reef

communities by reducing reef resilience and recovery

(Lam & Shin, 2007), causing population shifts and

increasing disease incidences (Nicolet et al.,

2013, 2018; Scott et al., 2017a, b). The feeding habits

of these corallivores may also be influenced by the loss

in coral abundance and diversity due to coral bleach-

ing (Rice et al., 2019 and references included). For

instance, Drupella spp. were reported changing diet-

ary habits from the favourite genera Acropora and

Pocillopora to the less palatable fungiid corals after a

major coral bleaching event in Thailand (Hoeksema

et al., 2013; Moerland et al., 2016).

Drupella spp. were recently reported to aggregate

in the Republic of Maldives concurrent to the coral

bleaching event in 2016 by Bruckner et al. (2017), but

limited information is available prior to this event (see

Taylor, 1978). The Republic of Maldives has been

affected by a coral bleaching event in 2016 resulting in

a loss of 30% and up to 95% of live coral cover (Perry

& Morgan, 2017; Pisapia et al., 2019). In addition, the

Maldivian coral reef is threatened by increasing

tourism and coastal development (Brown et al.,

2017), land reclamation (Fallati et al., 2017) and

natural stressors such as diseases (see Montano et al.,

2012, 2015a, b, 2016; Seveso et al., 2012). Thus, both

coral loss and recovery may vary between and within

Atolls based on the different occurrence of distur-

bances (Zahir, 2000; McClanahan & Muthiga, 2014;

Pisapia et al., 2019), and consequently, variation in

coral cover may differently influence the ecology and

biology of associated organisms, such as corallivores.

The impact of corallivores in Maldives has recently

started to attract scientific attention focusing on

outbreaks of Acanthaster planci (Linnaeus, 1758)

(Saponari et al., 2014, 2018), the ecology of Culcita

spp. (Bruckner & Coward, 2018; Montalbetti et al.,

2019a, b) and the population dynamics of Drupella

spp. after a bleaching event (Bruckner et al., 2017).

However, very little information is available on the

ecology of Drupella spp. in non-outbreaking or non-

aggregating populations (Turner, 1994a; Cumming,

1999). Furthermore, the population dynamics of

corallivores are still poorly described in the Maldives

calling for more in-depth research. Here, we aim to

explore the ecological traits of Drupella spp. In

particular, we surveyed a population around 2 years

after a mass coral bleaching event to examine the

effects of variation in coral cover on the population

structure, feeding behaviour and spatial distribution of

Drupella snails.
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Materials and methods

Biological and environmental data collection

Although both species D. rugosa and D. cornus are

reported from the Maldives (Taylor, 1978) the in-field

identification was difficult since the shells of the

specimens were often heavily encrusted with coralline

red algae and different epifauna. Thus, to avoid

misidentification, gastropod snails were identified to

the genus level and considered as Drupella spp.

(Fig. 1).

To examine the effects of variation in coral cover

on Drupella spp. population structure, feeding beha-

viour and spatial distribution, we surveyed a total of 6

sites in two different Atolls (3 in Ari Atoll and 3 in

Faafu Atoll) in the Republic of Maldives (Fig. 2)

between November 2018 and March 2019. Sites were

randomly selected according to accessibility and

surveyed by snorkelling between 0 and 5 m, in

accordance with other studies that found Drupella

spp. mainly in the shallower reefs (Taylor, 1978;

Turner, 1994a; Cumming, 2009a, b; Hoeksema et al.,

2013; Bruckner et al., 2017; Koido et al., 2017; Scott

et al., 2017a, b; Hamman, 2018; Marimuthu &

Tripathy, 2018). To evaluate density variation within

and among sites, belt transects of 200 m2 (50 9 4 m

each) were conducted both on the reef flat (6 transects

at 0–2 m) and along the reef crest (6 transects at

2–5 m) in each site. The belt transects were randomly

placed parallel to the shoreline and spaced 10–30 m

apart. Each snail encountered in each belt transect was

counted and removed from the position to avoid

recount bias. In addition, size data was collected by

measuring the long axis of each shell from the apex to

the tip of the siphonal canal. The sizes were measured

in the field to the nearest mm, while the analysis and

results were presented in cm for consistency with coral

size data.

During the survey, the substratum directly beneath

the snail was noted specifying the coral genus, size and

morphology when the snail was found on a coral

colony, or other substrata, such as coral rubble, dead

coral or sand. Snails were considered ‘preying’ when

associated with alive coral (i.e. over the living tissue or

a dead part of a living coral colony in an aggregation or

with a nearby feeding scar). In contrast, snails not

associated with alive coral were considered ‘moving’

Fig. 1 a The picture was taken during the survey in Bathala. The specimens ofDrupella spp. (highlighted by an arrow) were feeding on
a colony of the genus Pocillopora. b Upper and lower view of Drupella spp., bars in a and b indicate 1 cm
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Fig. 2 Map of the study area located in Ari and Faafu Atolls in

the Republic of Maldives (black arrow). a Bathala, b Athuruga,

c Thudufushi (Ari Atoll), dAdhanga, eMaaga and fMagoodhoo

(Faafu Atoll). Solid lines represent reef limits, in black the

islands and in grey the closed lagoon. Total scale bars are 0.5 km
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based on the concept that they need to move from one

coral colony to the other to find shelter and food

(Cumming, 1999; Morton et al., 2002). Further, we

measured the maximum diameter of the scar area and

the coral colony were measured. The scar size was

then divided in two categories, specifically[ 50%

or\ 50% of the size of the coral colony. Data for the

abundance of corals in the sites was collected by using

the Line Intercept Transect (LIT) method with three

10 m long transects spaced 10 m apart, on the same

belt transect used for abundance and size structure of

Drupella spp. Benthic categories were selected fol-

lowing Saponari et al. (2018).

Statistical analysis

Drupella spp. size data was pooled into three classes

comprising recruits (\ 1 cm), juveniles (1–2 cm) and

adults ([ 2 cm), following Turner (1994a, b). The

Hartigan’s dip test (Hartigan & Hartigan, 1985) was

used to test the size distribution for unimodality in

order to assess the presence of a multiple (i.e. non-

unimodal) or single (i.e. unimodal) recruitment event

(see Saponari et al., 2018). The statistical analysis was

performed using RStudio (R Core Team, 2017) with

the dip.test package (Maechler, 2016).

Furthermore, we investigated the feeding prefer-

ences of Drupella spp. The Ivlev’s (1961) electivity

index (Ei) was used with the formula:

Ei ¼ ri � pið Þ � ri þ pið Þ:

For this equation ri represents the proportion of

prey in the diet and pi represents the proportion of prey

in the environment. Values of Ei range between 1

(maximum preference) and - 1 (maximum avoid-

ance), whereby 0 indicates random feeding. We

calculated ri as the frequency of snails on a specific

i genus or family of corals in relation to all the preyed

colonies. After, we obtained pi as the mean relative

abundance of each single genus or family of corals in

the environment.

Statistical comparisons of the spatial variation,

number of snails per aggregation within genera,

morphology, locations, differences in shell size

between locations and differences in coral cover

between locations were analysed using the Mann–

Whitney U-test and the Kruskal–Wallis test with

Tukey’s post hoc test because data failed in meeting

the normality assumption (Zar, 1999). Comparisons

within coral genera occupied by Drupella spp., the

number of snails per aggregations and the occurrence

of aggregations on different coral morphologies,

genera and locations were analysed with v2 good-

ness-of-fit tests. Spearman’s rank correlation was used

to examine whether the density of Drupella spp. was

related to benthic categories and to the number of

genera on each location. This allowed us to verify

which variables among benthic coral or occurrence of

genera drive Drupella spp. density. Further, a simple

linear regression was used to examine the relationship

between coral cover and snail density variation by

plotting the number of snails and the average coral

cover for each 50 m transect, across sites. Statistical

analysis was performed using SPSS ver. 24 (IBM,

New York). All data is represented as arithmetic

means ± standard deviation.

Results

Drupella spp. population structure

Shell size was measured for all the individuals,

ranging from 0.2 to 4.8 cm, and yielding a mean

value of 2.62 ± 0.53 cm. The resulting population

structure was not unimodal as determined by the dip

test (P\ 2.2 9 10-16). The snail population was

constituted mainly by adults ([ 2 cm) with 90.3% of

the individuals, while only 9.1% were juveniles

(1–2 cm) and 0.6% were recruits (\ 1 cm) (Fig. 3).

Snail size was significantly larger in Faafu than Ari

atoll (U = 79,998, z = 2,383, P\ 0.001) as well as on

the reef crest compared to the reef flat considering the

data pooled (U = 51,246, z = 2,231, P = 0.027). The

analysis revealed a significant difference between

locations (K–W, P\ 0.001). The post hoc test sug-

gested that Magoodhoo had bigger snail sizes com-

pared to Bathala, Thudufushi and Adhanga, as well as

Adhanga compared to Thudufushi (K–W, P\ 0.05).

Feeding behaviour

Prey preferences changed in different locations fol-

lowing the availability of coral prey. Pocillopora had a

positive index value for Bathala, Thudufushi,

Adhanga and Maaga, while Acropora for Bathala

and Thudufushi and Porites for Athuruga and

Magoodhoo. The genus Pavona had a positive index
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only for Bathala and the genus Hydnophora only in

Adhanga. In all other cases negative values indicated

avoidance (Table 1). Looking at the pooled data, the

electivity index (Ei) showed a positive value, by

meaning preferred, for the genera Pocillopora and

Acropora, 0.35 and 0.17 respectively, while random

choice resulted for Porites with an electivity index of

0.002. We observed negative electivity values for

Pavona and Hydnophora, - 0.75 and - 0.79 respec-

tively (Fig. 4). In addition, the predation was not

found to be lethal at the moment of the survey, since

82% of the occupied colonies were damaged by less

than 50% of the colony size and only 1 colony was

found dead.

The size of the preyed upon coral colony varied

from 8 to 500 cm in maximum diameter. The size

class most represented was 25–35 cm (17.9%), fol-

lowed by 15–25 and 35–45 cm (15.4% and 10.9%,

respectively). Notably, no individuals ofDrupella spp.

were found preying upon coral recruits\ 5 cm in

maximum diameter, despite their occurrence in every

location.

Individuals of Drupella spp. were mostly found on

live coral colonies (85.6%), although few individuals

were found on dead corals (13.2%) and coral rubble

(1.2%). Overall, 92% of the snails were classified as

‘‘preying’’, while the remaining 8% were considering

moving, likely searching for other coral colonies. The

snails were found on 232 colonies of corals, and

considering the whole dataset pooled, the genus

Porites was the most frequently occupied (43.7%)

followed by Pocillopora (33.4%), Acropora (22.4%),

Pavona (1%) and only 1 individual was found on a

single colony of the genus Hydnophora

(v2(4) = 440.708, P\ 0.001).

Drupella spp. were found aggregating on 54.7% of

the colonies, with a minimum of 2 and a maximum of

62 individuals (Fig. 5), which were found on a single
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Fig. 3 Distribution of

Drupella spp. divided into

size classes following

Turner (1994a, b)

Table 1 Feeding preferences of Drupella spp. according to the Ivlev’s Electivity Index (Ei) considering the genera preyed upon at

each location

Porites Acropora Pocillopora Pavona Hydnophora

Bathala - 0.77 1.00 0.75 0.45 - 1.00

Athuruga 0.79 - 1.00 - 1.00 - 1.00 - 1.00

Thudufushi - 0.80 0.26 0.44 - 0.39 - 1.00

Adhanga - 0.24 - 0.02 0.59 - 0.80 0.24

Maaga - 1.00 - 1.00 0.38 n.d n.d

Magoodhoo 0.17 - 0.16 - 0.64 - 1.00 - 1.00

The genera Pavona and Hydnophora were absent in Maaga, thus no data (n.d.) were reported
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branching colony of the genus Acropora. Aggrega-

tions constituted of a few individuals, with an average

of 5.63 ± 7.1 ind per aggregation and the majority in

between 2 and 5 individuals (v2(15) = 125.455,

P\ 0.001). The data showed non-significant differ-

ences in number of individuals per aggregation within

different coral genera (K–W, P = 0.336), morphology

(K–W, P = 0.104) nor for locations (K–W,

P = 0.085). Thus, the number of individuals was

randomly distributed among four genera of corals

(Porites spp., Acropora spp., Pocillopora spp. and

Pavona spp.) and there was no preference in mor-

phology nor in locations. Furthermore, Drupella spp.

were aggregated more frequently on branching corals

(79.8%) than massive (5.6%), digitate (12.4%) or

encrusting (2.2%) (v2(3) = 144.303, P\ 0.001). The

aggregations occurred more frequently on Porites

(49.4%) than Pocillopora (33.7%), Acropora (14.6%)

and Pavona (2.2%) (v2(3) = 46.236, P\ 0.001) and

more frequently in Magoodhoo (v2(4) = 75.931,

P\ 0.001) than other locations.

Spatial distribution

During the study period, the monitoring survey for the

population of the snail Drupella spp. was performed

with a total of 72 transects covering an area of 1.44 ha.

We counted 651 individuals of Drupella spp. with an

overall mean density of 9.04 ± 19.72 ind/200 m2. The

distribution of the snail was homogeneous at a large

spatial scale, as highlighted by the U-test, which

showed non-significant differences in densities
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between Ari and Faafu Atoll (U = 741.5, z = 1.103,

P = 0.270). Similarly, no significant differences were

found comparing the density of individuals on the flat

and the crest reef area (U = 762, z = 1.351,

P = 0.177) and the comparison within flat and crest

area in each location (U-test, P[ 0.05 for all

comparisons). Contrarily, at the location scale, the

distribution of individuals varied significantly

(Fig. 6a). Thudufushi, Magoodhoo and Adhanga pre-

sented the highest densities with 22.8 ± 26.9,

22.3 ± 33.3 and 5.25 ± 5.6 ind/200 m2 respectively,

while Drupella spp. occurrence was lowest in Athu-

ruga with 0.25 ± 0.9 ind/200 m2 (K–W, P\ 0.001).

The data on coral cover, from 216 LIT pooled,

showed that benthic coverage was mostly dominated

by dead corals (50.2% ± 29.9) and coral rubble

(35% ± 30.4) with alive coral coverage accounting

for 8.6% ± 13.2. Further, coverage of live coral was

significantly different between locations (K–W,

P\ 0.001; Fig. 6b) with Magoodhoo, Thudufushi

and Adhanga showing the highest values

(14.5% ± 18.1, 13.9% ± 9.4, 13.% ± 9.2, respec-

tively) and Maaga showing the lowest (0.7% ± 1.3).

Yet, there was a significant positive correlation

between density of Drupella spp. and live coral

coverage (Spearman’s rho q = 0.546, P\ 0.001),

while, the number of genera in each location did not

correlate significantly with the density of Drupella

spp. (Spearman’s rho q = 0.771, P = 0.72). Snail

density was also negatively correlated with the

presence of macroalgae (Spearman’s rho

q = - 0.330, P = 0.005) and dead coral (Spearman’s

rho q = - 0.266, P = 0.024). Furthermore, a signif-

icant regression equation was found (F(1,70) = 71.393,

R2 = 0.5049, P\ 0.001, Fig. 7) showing that around

50.5% of the variation in number of snails was

explained by the variation in average coral cover per

transect, across sites.

Discussion

Drupella spp. population structure

Size structure of the population surveyed revealed a

dominant proportion of adults compared to juveniles

0 10 20 30 40 50 60

Average snail density (ind/200m )2

0 5 10 15 20 25 30

Average coral cover (%)baFig. 6 a Data showing the

differences in snail density

for each location and

b average coral cover in

percentage for each

location. Bars indicate

standard deviation
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and recruits, with the presence of more than one

generation as suggested by the dip test. In a scenario of

limited resources, such as a decreased coral cover for

food and shelter, aggregations may lead to intraspeci-

fic competition where size-dependent density tends to

consist of the better competitors with large conse-

quences on population dynamics (De Roos et al.,

2003; De Roos & Persson, 2013). In this case, adults

may be considered as better competitors dominating

the resource and hence causing juvenile mortality

(Nicholson, 1954; May et al., 1974; Furness &

Birkhead, 1984). An additional explanation may be

related to a lower rate of reproduction, as recruits were

uncommon. Such limitations in reproduction may be

caused by the reduction of substrate for egg capsule

attachment. Drupella spp. lays egg capsules on the

bare skeleton of corals (Sam et al., 2017; Scott et al.,

2017a, b), but the reduction of prey presence and the

increased competition with algae may lead to a

reduction of space for the eggs and hence reduction

in reproduction success.

Feeding behaviour

Drupella spp. was found feeding only on scleractinian

corals which is in accordance with its ecology as an

obligate corallivore (Morton et al., 2002; Rotjan &

Lewis, 2008). Few individuals were found on dead

corals and coral rubble, probably moving in search for

corals following scars or conspecific cues (Morton

et al., 2002; Hamman, 2018).

The snails were aggregated mostly on branching

corals, particularly of the genus Porites, followed by

Pocillopora and Acropora, which also reflects the

general prey preferences in the study area, apart from

the genus Porites which resulted a random choice. In

this study, looking at location scale, Drupella spp.

feeding preferences changed following coral cover,

with preference for Porites in locations with low coral

cover such as Athuruga and Maaga, while Acropora

and Pocillopora were preferred in locations with

higher coral cover such as Thudufushi and Magood-

hoo. It is known that acroporids are the favourite prey

of Drupella spp. (Moyer et al., 1982; Fujioka &

Yamazato, 1983; Turner, 1994a, b; Cumming, 1999;

Morton et al., 2002; Al-Horani et al., 2011), however,

prey preferences may change according to the avail-

ability of corals. In Thailand, Drupella spp. was

reported to shift from acroporids to fungiid corals

following a temperature-induced coral mortality event

(Hoeksema et al., 2013; Moerland et al., 2016). Also,

in the Maldives, the snail was found extending the

prey range from Acropora and Pocillopora to more

than 10 genera, including Porites, in the aftermath of

the 2016 bleaching event (Bruckner et al., 2017).

However, we found the snail occupying only five coral

genera, likely due to the highest mortality of other

genera which may have different susceptibility to heat

waves (Pisapia et al., 2016, 2019) and the slower

recovery from the mortality event (Pisapia et al.,

2016).

Spatial distribution

The population of Drupella spp. was monitored and

documented around 2 years after the 2016 large scale

coral bleaching event. In this study, the total mean

density of Drupella spp. was much lower than in other

studies (e.g. Ayling & Ayling, 1987; Turner, 1994a, b;

Al-Moghrabi, 1997; Cumming, 1999, 2009a, b;
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Bruckner et al., 2017). Notably, it was around 70-fold

less than the density reported by Bruckner et al.

(2017), in South Malé Atoll in 2016 (0.045 ind/m2 in

this study, against 3.4 ind/m2 from Bruckner et al.,

2017). This result suggests a possible collapse of

Drupella spp. population in the aftermath of the

bleaching event. Furthermore, no outbreak was

reported as the mean density never exceeded the

outbreak threshold of[ 2 ind/m2 defined by Cum-

ming (2009a, b). Mean density was lower than the

level of 0.62 ind/m2 suggested by Bessey et al. (2018)

as the density beyond which consumption of prey is

faster than its growth rate (specifically for Acropora

spicifera).

Although not in outbreak, the population showed

the presence of mainly small aggregations, most of

which were found in locations (Magoodhoo and

Thudufushi) with the highest coral cover. These sites

also had the largest snails observed during the study.

Such findings is in accordance with the theory of

optimal foraging, which predicts that predators will

aggregate most likely in areas with high prey density

(see Cumming, 2009a). Generally, the number of

aggregations and the individuals per aggregation were

lower compared to other studies (Cumming 2009a, b)

and especially compared to the findings of Bruckner

et al. (2017) who reported aggregations of up to 250

individuals on a single coral colony in South Malé

Atoll, Maldives.

It is possible that the population of Drupella spp.

has decreased compared to the findings of Bruckner

et al. (2017). The reduction in live corals caused by the

bleaching event in 2016 may have influenced popu-

lation dynamics of the snail which uses coral colonies

as food and shelter (e.g. Ayling & Ayling, 1987;

Hamman, 2018). On the other hand, there is evidence

that coral predators showing dietary plasticity, like

other gastropods and fishes, may prey more heavily on

remaining corals (see Pratchett et al., 2004; Cole et al.,

2009; Hoeksema et al., 2013; Tsang & Ang, 2014;

Zambre & Arthur, 2018). Thus, even if the population

was apparently decreased, the dietary plasticity may

have pushed the snails to aggregate on remaining

corals, increasing local predation pressure. Drupella

spp. may have even moved to deeper areas of the reef

looking for live corals, since the shallow reef was

more exposed to the bleaching event, and thus may

have had the highest coral mortality (Pisapia et al.,

2016, 2019), although more research is needed to

clarify this aspect. Additionally, in response to tem-

perature-induced coral mortality, the snails may be

more exposed to predators (Hamman, 2018) and to

population decline as also reported for other obligate

corallivores such as the coral-dwelling crab Trapezia

cymodoce (Herbst, 1801) (Stella et al., 2011), butter-

flyfish (Graham et al., 2009), the filefishOxymonacan-

thus longirostris (Bloch and Schneider, 1801) (Hobbs

et al., 2010) and other coral-dependent fish (Booth &

Beretta, 2002).

The snail was homogeneously distributed along the

surveyed area at atolls (Ari and Faafu) and the reef

scale. Contrarily, differences were found when com-

paring localities, likely because coral cover was

differently affected by coral bleaching in 2016 in

different localities (Pisapia et al., 2019). Generally, the

density of Drupella spp. was higher in locations with

higher coral cover, such as in Magoodhoo and

Thudufushi, independently from the number of gen-

era. The variability in Drupella spp. density was

probably due to the plasticity in shifting feeding

preferences according to the availability of coral

genera.

Drupella spp. is likely to reduce resilience of live

corals when acting synergically with other stressors,

including temperature-induced mortality, diseases,

pollution or other corallivores (e.g. Nicolet et al.,

2013, 2018; Bruckner et al., 2017; Scott et al.,

2017a, b; Shaver et al., 2018). In addition, co-

occurrence of Drupella spp. with other corallivores

was noted during an ongoing survey (pers. comm.)

looking at the presence of three major corallivores in

Maldives after the bleaching event in 2016 (the

seastars Acanthaster planci and Culcita spp. and the

gastropod Coralliophila spp.).

In this study, we showed that 2 years after the coral

mortality event, the influence of Drupella spp. may be

considered lower, possibly due to the collapse of the

population. Furthermore, the majority of the corals

preyed upon were only partially damaged (\ 50%) at

the time of the surveys, indicating a lower effect on

coral cover. In this condition, the presence of coral

guards such as Trapezia cymodoce (Samsuri et al.,

2018) or the presence of deterring hydrozoans (Mon-

tano et al., 2017) may also reduce the predatory

pressure, although further research is needed to verify

this mechanism. In addition, no coral recruits were

preyed upon, despite their presence, indicating that

reef recovery is on-going.
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Conclusions

Drupella spp. showed a large-scale homogeneity in

density and only showed variation dependent on coral

cover at the site scale. The population collapsed and

showed less aggregations around 2 years after the

coral bleaching event in the study area, compared to

previous reports in the Maldives. The consequent

reduction in predatory pressure may enhance Maldi-

vian reefs resilience, unless other factors will threaten

coral survival. Further research should focus on larger

geographical areas, including other atolls both in the

north and in the south of Maldives and expand to

deeper areas of the reef to have a better overview of the

snail’s spatial distribution. In addition, snail behaviour

should be monitored including reefs with pre-bleach-

ing coral cover to clarify the predatory activity and

quantify the impacts with a focus on the co-occurrence

with other corallivores in the Maldives.
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