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� Simpler experimental setups for EEG recording were preferred (i.e., 10–20 International System and reduced number of electrodes).
� Qualitative and quantitative features were equally investigated but they are rarely studied together.
� The adoption of robust, generalisable, and validated methods for DoC prognosis is lacking and great heterogeneity exists among methods.
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Objective: Disorders of consciousness (DoC) are acquired conditions of severely altered consciousness.
Electroencephalography (EEG)-derived biomarkers have been studied as clinical predictors of conscious-
ness recovery. Therefore, this study aimed to systematically review the methods, features, and models
used to derive prognostic EEG markers in patients with DoC in a rehabilitation setting.
Methods: We conducted a systematic literature search of EEG-based strategies for consciousness recov-
ery prognosis in five electronic databases.
Results: The search resulted in 2964 papers. After screening, 15 studies were included in the review. Our
analyses revealed that simpler experimental settings and similar filtering cut-off frequencies are pre-
ferred. The results of studies were categorised by extracting qualitative and quantitative features. The
quantitative features were further classified into evoked/event-related potentials, spectral measures,
entropy measures, and graph-theory measures. Despite the variety of methods, features from all cate-
gories, including qualitative ones, exhibited significant correlations with DoC prognosis. Moreover, no
agreement was found on the optimal set of EEG-based features for the multivariate prognosis of patients
with DoC, which limits the computational methods applied for outcome prediction and correlation anal-
ysis to classical ones. Nevertheless, alpha power, reactivity, and higher complexity metrics were often
found to be predictive of consciousness recovery.
Conclusions: This study’s findings confirm the essential role of qualitative EEG and suggest an important
role for quantitative EEG. Their joint use could compensate for their reciprocal limitations.
Significance: This study emphasises the need for further efforts toward guidelines on standardised EEG
analysis pipeline, given the already proven role of EEG markers in the recovery prognosis of patients with
DoC.
� 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction which is known to be crucial for semantic processing, compared
Patients who are comatose after severe acquired brain injuries
(sABI) often develop disorders of consciousness (DoC). Specifically,
the condition of sABI is defined as ‘traumatic, post-anoxic, vascular,
or other brain damages that cause coma for at least 24 hours’
(Gazzetta Ufficiale della Repubblica Italiana, 1998). Patients who
transition to a state of DoC can be classified as having unresponsive
wakefulness syndrome (UWS) or being in a vegetative state (VS) or
minimally conscious state (MCS); the latter can additionally be
subdivided into minus (MCS � ) or plus (MCS + ) (Bruno et al.,
2011). These diagnostic categories are defined by the presence
and nature of behavioural responses (reflexive in UWS/vS and
intentional in MCS) to multisensorial stimuli (Giacino et al.,
2002). Lastly, some patients may emerge from their MCS and be
classified as emergence from MCS (E-MCS). Clinically, the differ-
ence between MCS and EMCS can be based on responses to pre-
sented stimuli (e.g., functional object use) with a large increase
in functional connectivity between anticorrelated brain networks
(Perri et al., 2016; Sun et al., 2018). These clinical conditions, char-
acterised by fluctuating but detectable conscious behaviour, could
persist chronically, especially with the latest advances in life-
saving medical technology significantly increasing survival rates
for patients with DoC (Abeyasinghe et al., 2020).

The mechanisms underlying recovery from UWS and MCS
remain unknown and have high inter-individual variability, condi-
tioned by aetiology, severity at baseline, and medical complica-
tions (Edlow et al., 2021; Estraneo et al., 2021). In particular,
patients in an MCS (compared with UWS) are associated with a
superior prognosis in terms of consciousness and functional
improvement (Liuzzi et al., 2022; Mannini et al., 2021; Portaccio
et al., 2018b, 2018a) as well as patients with a traumatic brain
injury, respectively considering the baseline stratification and the
aetiology (Edlow et al., 2021; Liuzzi et al., 2022). Thus, conducting
a thorough assessment of patients with DoC remains a critical chal-
lenge. Such an assessment is required to define an effective reha-
bilitation plan in terms of duration, intensity, and the
information provided to caregivers. Moreover, a precise diagnosis
is essential for ensuring a reliable prognostic prediction.

In terms of clinical diagnostic tools, the Coma Recovery Scale-
Revised (CRS-R) is the reference scale currently used for the clinical
assessment of consciousness level (Seel et al., 2010). The CRS-R
enables a fast stratification of DoC into UWS, MCS�, MCS+, or E-
MCS based on various subitems related to the auditory, visual,
motor, oromotor, communication, and arousal domains. A study
reported that when a diagnosis is based on non-standardised clin-
ical scales only, up to 40 % of patients may receive an incorrect
diagnosis, and using the CRS-R can partially reduce this error
(Schnakers et al., 2009). Furthermore, the following suggestions
for containing misdiagnosis errors have been proposed: repetition
of the assessment at least five times (Wannez et al., 2017), involve-
ment of the caregiver (Formisano et al., 2011), and mirror use
(Keromnes et al., 2019). However, clinical assessment alone does
not seem sufficient for achieving a high level of diagnostic accuracy
(Formisano et al., 2019a). Therefore, the latest international guide-
lines recommended the introduction of instrumental evaluations,
such as functional neuroimaging or electroencephalography
(EEG) in addition to clinical evaluation for an improved conscious-
ness diagnosis and, consequently, prognosis definition (Giacino
et al., 2018; Kondziella et al., 2020). Evidence in the literature also
supports this suggestion; for example, Aubinet et al. (Aubinet et al.,
2020) demonstrated that patients in the MCS + group presented a
higher metabolism mainly in the left middle temporal cortex,
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with the MCS � group. Furthermore, Thibaut et al. (Thibaut et al.,
2021) demonstrated how the use of FDG-PET improves patient
assessments by enabling the identification of a specific condition
called ‘non-behavioural MCS’ or ‘MCS*’.

In the last century, EEG has been introduced into clinical prac-
tice for patients with DoC (Comanducci et al., 2020; Scarpino
et al., 2020b). The aim is to increase the number of information
sources related to patients’ consciousness levels, reduce misclassi-
fication rates, and find new prognostic factors. Among the various
instrumental evaluations suggested in the guidelines for DoC diag-
nosis, EEG is more economical and easier to apply directly at the
bedside; moreover, it is probably the most straightforward method
for obtaining neurophysiological information from the human
brain in a non-invasive manner (Pastor et al., 2021). In the last dec-
ades, the crucial contributions of EEG in the diagnosis and progno-
sis of patients with DoC have become increasingly evident (Sondag
et al., 2017).

Regarding the reporting of EEG recordings, many modalities
have been used. They can be broadly distinguished as qualitative
or quantitative methods, which are described as follows:

Qualitative EEG measures are features that can be detected by
the neurophysiopathologist/neurologist by visually inspecting the
recordings. Specifically, Doerrfuss et al. (Doerrfuss et al., 2020)
defined qualitative EEG analysis as an investigation that comprises
the characterisation of the frequency, amplitude, and localisation
of cortical electrical activity. On the other hand, quantitative EEG
has been defined as a set of computerised algorithms capable of
extracting features objectively following precise numerical rules
(Gudmundsson et al., 2007; Kaiser, 2007).

When first used, qualitative modalities were characterised by
higher degrees of subjectivity in terms of the adopted nomencla-
ture and medical reporting guidelines, which are strongly influ-
enced by the interpreter (Grant et al., 2014). To address this
issue, an attempt has been made to reduce the interrater variability
among neurophysiologists by introducing a consensus for EEG
interpretation through developing guidelines (Hirsch et al., 2021,
2012). The first step was to standardise the terminology (neutral
from clinical connotations; e.g., ictal and epileptiform), allow
multi-centre research projects, and facilitate communication. The
second step was to promote more precise boundaries (e.g., in volt-
age, frequency, and the number of bursts per minute) to reduce
interrater variability. Although the guidelines introduce some
objectivity into EEG analysis, the information extracted is mostly
represented by qualitative or binary (present/absent) variables.
Noteworthily, however, examples of confirmed associations of
these features with the patient outcome are available in the litera-
ture. For instance, the bilateral absence of the N20 cortical compo-
nent of somatosensory evoked potentials in traumatic patients has
been found to be associated with a poor outcome (Amantini et al.,
2005), whereas the presence of mismatch negativity (Qin et al.,
2008), and the positive component of P300 (Cavinato et al., 2009)
were found to be predictors of better recovery from vascular and
traumatic encephalopathy. Qualitative methods of EEG analysis
provide simple and essential information determined through dec-
ades of clinical experience. Qualitative features have already
demonstrated their fundamental predictive power, paving the
way for EEG to be used as a prognostic tool.

On the other hand, quantitative EEG (qEEG) includes any type of
online/offline numerical method used to obtain insights into the
frequency and temporal domains, brain dynamics and synchroni-
sation patterns, and connectivity graphs. Time-domain analysis
reveals the modification of signals in time, which are often
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event-locked, whereas the frequency-domain analysis provides
information about the contribution of the different frequency
bands in a range of frequencies.

Features extracted from quantitative analyses are often more
complex, and therefore, they are currently underused in clinical
practice (Doerrfuss et al., 2020). Additional problems encountered
are the lack of interpretation training and the practical complexity
of assembling or synchronising complex setups. However, given
the already promising results (Amantini et al., 2005; Cavinato
et al., 2009; Qin et al., 2008), the possibility of introducing more
complex and informative features should be explored by promot-
ing further specialised training in interpreting such measures and
guidelines for multimodal assessment setups (e.g., TMS-EEG,
polygraphy, and ECG-EEG synchrony).

Findings related to the use of qEEG in patients with DoC have
indicated that functional connectivity is usually impaired
(Rizkallah et al., 2019; Wang et al., 2022) and the connection
between cortical and subcortical structures is often damaged
(Schiff et al., 2014). It is clear that a relationship exists between
clinical evaluations and brain activity. Specifically, Lechinger
et al. (Lechinger et al., 2013) reported a correlation between the
peak frequency of the power spectrum and the CRS-R score. Alpha
power was recognised as an indicator of consciousness, specifically
in frontoparietal networks (Naro et al., 2016a). Moreover, its
increase over time was positively associated with consciousness
recovery (Stefan et al., 2018), while a consistent decrease was
found in UWS patients compared with MCS patients (Rossi
Sebastiano et al., 2015). Furthermore, Engemann et al. reported
that such a significant difference is independent of the EEG config-
uration, also providing robust results for smaller configurations
(Engemann et al., 2018).

Today, the new frontiers for EEG analysis are the optimisation of
this information source by improving the mathematical and tech-
nical tools applied after EEG acquisition. Complex artefact rejection
and feature extraction methods, connectivity measures, graph the-
ory analysis, and machine learning (ML) models may still be far
from daily clinical practice; however, parameters extracted
through qEEG analysis are already finding their place as biomark-
ers for prognostic prediction (Wutzl et al., 2021). Furthermore,
qEEG has the potential to provide additional insights when com-
bined with other diagnostic tools. For instance, Gosseries et al.
(Gosseries et al., 2016) demonstrated that, despite the clear poten-
tial of various neuroimaging techniques, their joint use increases
the possibility of providing a precise rehabilitative assessment in
patients with DoC. This was also demonstrated by Hermann et al.
(Hermann et al., 2021). Similarly, Chennu et al. (Chennu et al.,
2017) reported that neuroimaging tools and advanced analytics
are crucial in improving outcome prediction in this population,
while also recognising the prognostic utility of qEEG.

To summarise, both qualitative and quantitative techniques have
their merits and pitfalls. In particular, the low sensitivity and high
interrater variability of qualitative analysis are compensated for by
the ease of reporting EEG recordings in clinical daily settings. By
contrast, qEEG could improve the reliability and deepen the infor-
mation extracted from raw neurophysiological data about the cere-
bral functional state while increasing the level of complexity.
Indeed, such measures and the cut-offs derived from numerical
analyses require extensive validation in different settings, with dif-
ferent machines and noise levels (Gudmundsson et al., 2007). Fur-
thermore, conditioned on thorough validations, quantitative cut-
offs allow the easier generalisation of results to a wider population
as well as the use of such data for training multivariate prediction
models. Such models, specifically in the case of ML models, require
data to be extracted following the same rules across training and
testing, rehabilitative/acute settings, and neurophysiologists. The
latter indubitably calls for automated extraction pipelines to sim-
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plify the burden on doctors and promote the translatability of such
solutions.

In patients with DoC, these aspects have not been fully explored
due to the complexity of the mechanisms that underlie this condi-
tion. Indeed, due to the heterogeneity of aetiologies and damage
severity, the neurophysiological patterns that originate from brain
injuries in DoC are considered among the most complex (Aubinet
et al., 2020; Bodart et al., 2017, 2013; Giacino et al., 2014). More-
over, complex computational methods require large datasets col-
lected with a systematic instrumental approach as well as robust
and noise-insensitive protocols. The availability of such data sets
is often impractical in patients with DoC, particularly regarding
noise. Indeed, EEG signals can intrinsically store a large amount
of information, but the processing of such data is not always effort-
less. In these patients, the presence of artefacts can often deeply
affect the quality of data, and thus, it is vital to be extremely careful
in both data collection and processing. Several methods and dedi-
cated toolboxes (e.g., EEGLab, FieldTrip, BrainVision Analyzer,
Brainstorm, MNE, and sLORETA; (Huang, 2019) exist for extracting
quantitative information from data, but different conclusions and
interpretations can be drawn just by choosing different prepro-
cessing parameters, feature extraction steps, and correlation/inter-
pretation models (Khosla et al., 2020). For these reasons, we chose
to take stock of the pipelines used to study EEG signals in DoC,
focusing on prognostic purposes. Currently, reviews in the litera-
ture about the use of qEEG in patients with DoC (Bai et al., 2020;
Wutzl et al., 2021) have aimed to provide an overall analysis of
extracted features. However, a distinction between diagnostics
and prognostics and a detailed analysis of the methodological
implementation of solutions have not yet been reported. In this
systematic review, given the growing interest in the prognosis of
consciousness recovery, we aimed to investigate which EEG fea-
tures have been found to be predictors of consciousness recovery
in patients with DoC. Moreover, we extended previous literature
through a systematic analysis of preferred computational methods
adopted for the extraction of qualitative and quantitative EEG fea-
tures, focusing on prognostic purposes. The remaining paragraphs
of this paper is structured as follows: Methods, Results, Discussion,
Limitations, and Conclusions. Specifically, the section of Methods is
subdivided into Selection criteria, Search method, Data collection,
Data synthesis and Data availability, performing a description of
the chronological steps performed for the analysis of this system-
atic review.

Concerning the Results section, sub-paragraphs were created to
report separately information regarding the included studies
(Search results and selection of studies), the samples enrolled in
each (Population), the analyses applied (Analysis pipeline), and
the outcomes selected (Outcome measures). The Analysis pipeline
section was further subdivided distinguishing the different phases
of analysis of the EEG signals: EEG Signal Pre-processing, Domain
Analysis, EEG Features Extracted, and Data Analysis.
2. Methods

We performed a systematic review following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines (Moher et al., 2009). The protocol was regis-
tered on PROSPERO (CRD42021231435).
2.1. Selection criteria

The papers to include in this study were selected according to
the Population, Intervention, Comparison, and Outcome (PICO)
framework (Eriksen and Frandsen, 2018). The search string was
also designed over the same framework.
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We included studies that involved patients affected by sABI
with prolonged DoC in the subacute or chronic phase assessed with
the CRS-R. Since the CRS-R was published and validated in 2004,
only papers from that year onward were selected. Due to their
strong heterogeneous characteristics, we excluded papers from
the search involving sABI participants with metabolic, neoplastic,
and infectious aetiology. In terms of age, only adult participants
(age � 18 years) were considered. More precisely, for all criteria
regarding population characteristics (i.e., time from injury, age
and aetiology), we evaluated papers as follows: those for which
the results of a nonconforming group of patients could be sepa-
rately distinguished were included considering only the group
within the criteria; by contrast, for papers with non-separable
results, only those with non-conforming participants accounting
for less than 5 % of the total sample size were included.

Regarding the interventions, we selected papers that used any
qualitative or computational method to elaborate participants’
EEG to gain insights into prognostic factors. This was performed
independently on the presence and type of applied stimulations
since we did not consider specific exclusion criteria for this aspect.
We considered prognostic analysis to be any type of method that
used data derived from a longitudinal assessment of the cohort,
independent of the presence of model validation. Thus, we selected
studies that evaluated predictors assessed at the admission of the
rehabilitation unit and outcomes occurring either at discharge,
upon follow-up, or in intermediate evaluations during recovery.
For this reason, regarding the design of the studies, no specific cri-
teria were applied except for the exclusion of cross-sectional stud-
ies. Otherwise, both prospective and retrospective works were
included.

The outcome of interest was the recovery of consciousness
defined as a full recovery, a clinical status change, or an improve-
ment in assessment based on any measurement scale. In each
paper, only analyses with an outcome of consciousness recovery
were included.

Finally, in terms of the type of study, we selected all types of
primary studies, excluding overviews and reviews.
2.2. Search method

We conducted a systematic search in the PubMed, Web of
Science, Scopus, Embase, and CENTRAL databases. The search
string was designed using the PICO framework as a guideline and
the following main keywords: ‘Disorders of Consciousness’,
‘Electroencephalography’, ‘Brain injury’, ‘Prognosis’, and ‘Rehabili-
tation’ (Supplementary Material Table 1).

Once the results had been exported, three reviewers (SB, SC, and
PL) screened the titles and abstracts, followed by the full texts. A
fourth reviewer (AM) was involved if a disagreement occurred.
During this phase, only papers in English were considered eligible
for screening. The selection concerning outcomes was not applied
during the search phase; it was performed in the screening phase
only.

Moreover, studies included by other reviews close to our topic
were analysed (Bai et al., 2020; Wutzl et al., 2021), through which
three additional papers were included (Bai et al., 2019; Bareham
et al., 2020; Formisano et al., 2019b).
2.3. Data collection

For the data collection, the CHecklist for critical Appraisal and
data extraction for systematic Reviews of prediction Modelling
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Studies (CHARMS) was used (Moons et al., 2014). The following
data were extracted from the included studies:

- Source of data (authors’ names and year of publication);
- Participant characteristics (age, number, consciousness stratifi-
cation, aetiology, time from event, and presence of epilepsy);

- Setting (monocentric or multicentric, number of electrodes,
sampling frequency, and signal duration);

- Study design (randomised controlled trial [RCT] or non-RCT);
- Stimuli (auditory, visual, electric, tactile, transcranial direct cur-
rent stimulation [tDCS], transcranial magnetic stimulation
[TMS], and others);

- Methods (preprocessing filters and segmentation parameters,
analysed domain, model type, model performances, and fre-
quency band);

- Features (measures used to quantify an independent variable);
- Outcomes (measures used to evaluate a dependent variable and
its timing).

2.4. Data synthesis

Only the content of papers that fulfilled the inclusion criteria
was used for the analyses. The results were displayed through nar-
rative data synthesis since, due to the heterogeneity of the meth-
ods in the extraction pipelines, a meta-analysis was not
applicable. For the same reason, the use of the PROBAST tool to
evaluate the methodological quality of prognostic studies was
not possible (Wolff et al., 2019).

Moreover, a PICO format was generally used to display the
results. First, a general description of the participants included in
the studies and the experimental setting was provided. Then, the
intervention types were displayed following the consecutive steps
of the analysis pipeline, namely the EEG signal preprocessing meth-
ods, the domain analysis performed (time, frequency, or both), the
EEG features extracted, and the data analysis used to identify candi-
date prognostic factors (Fig. 1). Lastly, a brief paragraph was dedi-
cated to the description of the outcomes. In line with the definition
of the string and selection criteria, the PICO component of ‘Com-
parison’ was not addressed in the results.

Regarding features, the results were presented distinguishing
between qualitative and quantitative features. In the case of the lat-
ter, additional categorisation was conducted as follows: evoked
potentials (EPs) and event-related potentials (ERPs), spectral mea-
sures, entropy measures, and graph-theory measures.

2.5. Data availability

Data were extensively included within the manuscript and Sup-
plementary Material. However, a comprehensive version of the
data set with the data extracted from the included papers can be
obtained for research purposes by submitting a request to the cor-
responding author.

3. Results

3.1. Search results and selection of studies

Our systematic review included 12 papers out of 2964 found in
the initial search (Fig. 2). Additionally, three more papers were
included from external sources due to missing specifications about
the subacute or chronic phase of patients (Bai et al., 2019; Bareham
et al., 2020) and the use of EEG (Formisano et al., 2019b) in the
abstract, title, or keywords. Thus, a total of 15 papers were
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included. Unsurprisingly, the two main reasons for exclusion were
the absence of a baseline clinical status evaluation with the CRS-R
and the absence of a prognostic aim in the study intervention.
3.2. Population

The number of participants ranged between 4 and 260 and their
ages varied from a minimum of 20 ± 3.4 to a maximum of 69.9 ± 1
1.4 years. Although different DoC clinical states were considered in
the search string, the studies were mainly focused on UWS and
MCS patients, and the latter were further stratified into
MCS � and MCS + in four studies. Three studies included E-MCS
patients (Arnaldi et al., 2016; Bareham et al., 2020; Martens
et al., 2020), whereas no study investigated coma patients. Regard-
ing locked-in syndrome, one study (Pan et al., 2020) investigated
the presence of cognitive motor dissociation (CMD), also known
as functional locked-in syndrome, with a brain-computer interface
(BCI)-based algorithm in patients initially classified as UWS or
MCS. By contrast, some studies have considered this condition an
exclusion criterion. The majority of patients included in the studies
were in a subacute (1–3 months after non-TBI and 1–12 months
after TBI) rather than chronic state (3 months after non-TBI and
12 months after TBI) (Giacino et al., 2018). Moreover, 13 studies
included both traumatic and nontraumatic aetiology, comprising
anoxic, ischaemic, haemorrhagic, and vascular ones, whereas the
remaining two works (Bareham et al., 2018; Straudi et al., 2019)
included only patients with traumatic sABI. Furthermore, two
studies specified the presence of epileptiform activity in the
included patients (Bagnato et al., 2016; Pascarella et al., 2016) as
Fig. 1. Steps commonly adopted within the EEG analysis pipeline: data p
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a potential predictor in patients with DoC. More information about
the population is reported in Table 1.
3.3. Experimental setting

The number of EEG channels varied between 6 and 128, with
nine studies using fewer than 20 electrodes and 11 studies apply-
ing the 10–20 International System for Electrode Placement. The
sampling frequency varied between 128 and 2500 Hz (median
500 Hz [IQR = 628]). More information about the experimental set-
ting is reported in Table 2.

Most studies did not use any stimulation, except when
extracted features were strongly related to the presence of physical
stimulation (e.g., to elicit EPs). We found two papers that applied
tDCS to investigate whether it affected the recovery of conscious-
ness (Martens et al., 2020; Straudi et al., 2019). Six studies used
auditory, visual, tactile, or electrical stimuli, but only two studies
performed intra-stimulus comparisons (Pan et al., 2020; Wu
et al., 2011).
3.4. Analysis pipeline

3.4.1. EEG signal preprocessing
Thirteen studies used a band-pass filter, whereas the remaining

two (Scarpino et al., 2020a, 2019) used a low-pass filter (Fig. 3a).
The band-pass filter cut-off frequencies varied between 0.48 ± 0.
3 Hz and 52.69 ± 22.04 Hz. Seven studies, in which the band-
pass included power line interference (50 or 60 Hz, depending on
the country in which the study was conducted), also applied a
reprocessing, domain analysis, feature extraction, and data analysis.
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Notch filter to remove it (Fig. 3a). Furthermore, three studies
applied independent component analysis (Fig. 3a) to identify and
reject noisy components (Bai et al., 2019; Bareham et al., 2020,
2018), whereas the remaining studies removed artefacts through
visual inspection or automatic detection with voltage threshold-
based algorithms. Moreover, nine studies divided signals into
epochs (Fig. 3a); the epoch length was set in accordance with the
EEG feature requirements, and this step was applied depending
on the EEG features extracted. For instance, segmentation into
epochs was used in studies that extracted entropy-related features
(Martens et al., 2020; Wu et al., 2011).

Among the studies that involved stimulation, we did not find
that different preprocessing steps or analyses had been conducted
on the signals during stimulation compared with the resting state.
In two studies (Formisano et al., 2019b; Pan et al., 2020), the
epochs for signal segmentation were centred around stimulus pre-
sentation, whereas the other studies provided the epochs’ length
but not their boundaries.
3.4.2. Domain analysis
Nine studies extracted features in the temporal domain, five did

so in the frequency domain, and one did so in both (Arnaldi et al.,
2016) (Fig. 3b). Most temporal domain analyses were associated
with studies that performed a qualitative extraction of features.

The oscillatory activity of the EEG, in clinical practice, is divided
into five bands depending on its oscillation frequency: delta (0–
103
4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and
gamma (>30 Hz). Some studies further divided these bands into
subgroups or used mildly different frequency boundaries; for
example, sigma (12,25–16 Hz in Arnaldi et al. (Arnaldi et al.,
2016) is a subclassification of the beta band. Frequencies above
30 Hz, although critical in cognitive research, are not customarily
used in clinical practice due to the notably lower gamma power
that patients with DoC retain (Naro et al., 2016a). On the other
hand, gamma waves were evaluated only when applying transcra-
nial alternating (Naro et al., 2016b) or direct (Naro et al., 2016c)
current stimulation. Ten studies focused their analysis on the delta,
theta, and alpha bands, which are typical frequencies generally
investigated in patients with DoC; three added beta bands
(Arnaldi et al., 2016; Straudi et al., 2019; Wu et al., 2011); and only
one also included sigma band (Arnaldi et al., 2016) (Fig. 3b, inner
plot).
3.4.3. EEG feature extraction
We found high heterogeneity in the type and number of fea-

tures extracted (Supplementary Material Table 2). Five studies
focused on an analysis of a single feature, whereas Bareham et al.
(Bareham et al., 2020) examined 42 features, 14 for each of the
three frequency bands (i.e., delta, theta, and alpha).

To obtain an enhanced understanding of the differences
between measures, we considered the distinction between qualita-
tive and quantitative features. Table 3 presents a summary of the



Table 1
Information about the population in terms of number, age, baseline clinical state, aetiology, time post-onset, scales used for assessment, and presence of epileptic seizures.

Author Participants Age range Clinical state Aetiology Time Post Onset Assessment Scale Epileptic patients Stimuli

Wu et al., 2011 37 Patients
30 Controls

19–80 21 UWS
16 MCS

32 Traumatic
35 Vascular

67 Subacute CRS-R
GCS
GOS

No Electrical
Auditory

Arnaldi et al., 2016 27 Patients 18–81 20 UWS
2 MCS –
4 MCS+
1 E-MCS

13 Traumatic
8 Anoxic
6 Haemorrhagic

27 Subacute CRS-R No -

Bagnato et al., 2016 112 Patients 36.6 ± 16.5 65 UWS
47 MCS+

61 Traumatic
51 Non Traumatic

- CRS-R Yes -

Pascarella et al., 2016 130 Patients 55.8 ± 17.33 97 UWS
33 MCS

36 Traumatic
45 Anoxic
49 Vascular

130 Subacute CRS-R Yes -

Wang et al., 2017 11 Patients
5 Controls

26–60 6 UWS
5 MCS

2 Traumatic
2 Vascular
2 Ischemic
5 Haemorrhagic

4 Subacute
7 Chronic

CRS-R No Auditory

Bareham et al., 2018 4 Patients 20–45 2 UWS
2 MCS-

4 Traumatic 4 Chronic CRS-R
GCS

No -

Bai et al., 2019 51 Patients
20 Controls

17–79 31 UWS
20 MCS

10 Traumatic
18 Anoxic
14 Vascular
9 Haemorrhagic

- CRS-R No -

Formisano et al., 2019a 15 Patients
10 Controls

25–73 7 UWS
3 MCS-
5 MCS+

7 Traumatic
1 Anoxic
7 Haemorrhagic

15 Subacute CRS-R No Auditory

Scarpino et al., 2019 102 Patients 55.5[15.2] 61 UWS
41 MCS

30 Traumatic
31 Anoxic
41 Vascular

102 Subacute CRS-R Yes Auditory

Straudi et al., 2019 10 Patients 21–63 10 MCS 10 Traumatic 10 Chronic CRS-R No tDCS
Bareham et al., 2020 39 Patients 19–75 16 UWS

15 MCS-
7 MCS+
1 E-MCS

18 Traumatic
14 Anoxic
5 Vascular
2 Other

11 Subacute
28 Chronic

CRS-R No -

Estraneo et al., 2020 147 Patients 49.4 ± 20.41 71 UWS
76 MCS

55 Traumatic
36 Anoxic
56 Vascular

147 Chronic CRS-R
DRS

No Tactile
Electric
Visual
Auditory

Martens et al., 2020 46 Patients 20–77 17 UWS
23 MCS
6 E-MCS

22 Traumatic
24 Non traumatic

16 Subacute
30 Chronic

CRS-R No tDCS

Pan et al., 2020 78 Patients
8 Controls

15–66 45 UWS
33 MCS

41 Traumatic
17 Anoxic
20 Vascular

72 Subacute
6 Chronic

CRS-R No Visual
Auditory

Scarpino et al., 2020 260 Patients 67[21] 108 UWS
152 MCS

71 Traumatic
50 Anoxic
139 Vascular

260 Subacute CRS-R Yes -

Abbreviations: CRS-R = Coma Recovery Scale – Revised; DRS = Disability Rating Scale; E-MCS = Emergence from Minimally Conscious State; GCS = Glasgow Coma Scale; GOS = Glasgow Outcome Scale; MCS = Minimally Conscious
State; UWS = Unresponsive Wakefulness Syndrome.
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Table 2
Information about experimental settings. In particular, the number and configuration of electrodes, sampling rate, and duration of the recordings were reported together with
information on rejected data.

Author, Year Number of electrodes 10–20 International System Signal Duration, minutes Rejected/Retained Data Sampling Rate (Hz)

Wu et al., 2011 16 Yes > 5 Total of 5 epochs rejected 500
Arnaldi et al., 2016 8 Yes 1440 not reported 128
Bagnato et al., 2016 19 Yes > 30 not reported 256
Pascarella et al., 2016 19 Yes > 30 not reported -
Wang et al., 2017 128 No not reported not reported 1024
Bareham et al., 2018 91 No 15 10.7 minutes retained on avg. 500
Bai et al., 2019 62 Yes 20 not reported 2500
Formisano et al., 2019a 27 Yes not reported not reported 512
Scarpino et al., 2019 19 Yes 30 not reported 128
Straudi et al., 2019 6 Yes 15 not reported 1000
Bareham et al., 2020 91 No 15 17 trials rejected on avg. 500
Estraneo et al., 2020 19 Yes > 35 not reported 1024
Martens et al., 2020 8 Yes 20 not reported 500
Pan et al., 2020 30 No not reported not reported 250
Scarpino et al., 2020 19 Yes 30 not reported 128

Abbreviations: avg. = average; E-MCS = Emergence from Minimally Conscious State; MCS = Minimally Conscious State; UWS = Unresponsive Wakefulness Syndrome.
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models realised in each study together with the baseline clinical
status, aetiology, and numerosity of samples. Only models in which
at least one feature resulted in statistical significance were
reported. Colours were used to describe classes of features
included in the study. In particular, the green dashed box repre-
sents qualitative features, red represents EPs or ERPs, orange repre-
sents spectral measures, blue represents entropy measures, and
purple represents graph-theory measures.

Qualitative measureswere obtained from a visual analysis of EEG
patterns that informed the researchers about the characteristic fre-
quency, amplitude, and localisation of cortico-electrical activity
(Doerrfuss et al., 2020). Visual inspection of the signal provides
Fig. 3. Analysis pipeline details from the included studies: (A) EEG signal preprocessing
segmentation into epochs; (B) domain analysis: bar plot depicting the domain in which th
and (C) predictive models.
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information related to the background activity of patients as well
as epileptiform activity (e.g., detecting sharp waves, spikes, and
polyspikes) and sleep-related markers (e.g., observing spindles
and K-complexes). This category also includes EPs, which are
dependent on the stimulus type (e.g., visual or auditory), and ERPs,
which are associated with the late stages of information processing
(Comanducci et al., 2014). This activity could be elicited by differ-
ent types of stimulation, such as auditory, somatosensory, visual,
and painful, and it could be identified visually. Nine studies
extracted qualitative features from EEG signals, four of which
focused on EP/ERP, two of which focused on epileptiform activity,
and another focused on sleep-related markers (Arnaldi et al., 2016;
: bar plots report information about filtering, independent component analysis, and
e studies extracted features; the inner plot indicates the frequency bands analysed;
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Bagnato et al., 2016; Estraneo et al., 2020; Formisano et al., 2019b;
Pascarella et al., 2016; Scarpino et al., 2020a, 2019; Wang et al.,
2017; Wu et al., 2011).

Quantitative measures were obtained using various computa-
tional methods with the aim of maximising the amount of informa-
tion extracted from EEG signals. These methods can be applied in
the frequency or temporal domain, allowing for the investigation
of different cerebral mechanisms. In this review, we considered
the following categories:

- EPs and ERPs: In this category, only EPs and ERPs investigated in
a quantitative manner were included (Genna et al., 2017). Only
one study was included, in which the identification of EPs was
automatised by employing a support vector machine (Pan
et al., 2020).
Table 3
Summary of results with the different features and models in each study. Only statistically s
status, aetiology, and number of participants. Each square represents a model, and the di
particular, the green dashed box represents qualitative features, red represents evoked po
blue represents entropy measures, and purple represents graph-theory measures.

Author, year Significant features resulted in each
model

Population

Wu et al., 2011 37

Arnaldi et al., 2016 27

Bagnato et al., 2016 112

Pascarella et al., 2016 130

Wang et al., 2017 11

Bareham et al., 2018 4

Bai et al., 2019 51
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- Spectral measures: These measures were obtained from a math-
ematical investigation in the frequency domain. In most cases,
they consisted of an estimation of the oscillations at given fre-
quency ranges; this is typically assessed using various types
of transforms and generally expressed as either the dominant
frequency or power spectral density per frequency band
(Geraedts et al., 2018). Six studies reported spectral features,
one of which focused on sleep-related measures (Arnaldi
et al., 2016; Bai et al., 2019; Bareham et al., 2020, 2018;
Martens et al., 2020; Straudi et al., 2019).

- Entropy measures: These measures were obtained with nonlin-
ear analyses of patterns that provided information about the
complexity of EEG signals. For instance, in a population with
DoC, abnormally low entropy values are related to pathological
ignificant features obtained by each model are reported together with baseline clinical
fferent colours provide information about the class of features used in the study. In
tentials (EPs) or event-related potentials (ERPs), orange represents spectral measures,

Clinical
State

Aetiology Outcome

MCS
UWS

Traumatic
Vascular

Recovered versus non-Recovered (defined with
GOS scale)

E-MCS
MCS
UWS

Traumatic Recovery of consciousness (defined with CRS + )

MCS
UWS

Traumatic
Vascular
Anoxic
Other
aetiology

UWS versus MCS (defined with CRS-R)

MCS
UWS

Traumatic
Vascular
Anoxic

Improvement versus non-improvement
(defined with CRS-R)

MCS
UWS

Traumatic
Vascular

UWS vs MCS (defined with CRS-R)

MCS
UWS

Traumatic Change of clinical state (defined with CRS_R)

MCS
UWS

Traumatic
Vascular

CRS-R score increase or change of clinical state



Table 3 (continued)

Author, year Significant features resulted in each
model

Population Clinical
State

Aetiology Outcome

Anoxic
Formisano et al., 2019a 15 MCS

UWS
Traumatic
Vascular
Anoxic

EMCS versus no recovery (defined with CRS-R)

Scarpino et al., 2019 102 MCS
UWS

Traumatic
Vascular
Anoxic

Change of clinical state or towards EMCS (defined
with CRS-R)

61 UWS Traumatic
Vascular
Anoxic

Change of clinical state or towards EMCS (defined
with CRS-R)

Straudi et al., 2019 10 MCS Traumatic DCRS-R score between one week after baseline
and baseline

Estraneo et al., 2020 147 MCS
UWS

Traumatic
Vascular
Anoxic

Improvement in patients’ clinical diagnosis
(defined with CRS-R)

Martens et al., 2020 29 E-MCS
MCS

Traumatic
Vascular
Anoxic
Other

DCRS-R score between baseline and end of
treatment

Pan et al., 2020 33 MCS Anoxic Change of clinical state from MCS (defined with
CRS-R)

45 UWS Anoxic Change of clinical state from UWS (defined with
CRS-R)

Scarpino et al., 2020 260 MCS
UWS

Traumatic
Vascular
Anoxic

Change of clinical state (defined with CRS-R)

(continued on next page)
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Table 3 (continued)

Author, year Significant features resulted in each
model

Population Clinical
State

Aetiology Outcome

Bareham et al., 2020 39 MCS
UWS

Traumatic
Vascular
Anoxic
Other

Normalized DCRS-R score between 9 and
12 months from baseline

Abbreviations: ApEn = Approximate Entropy; BCI = Brain Computer Interface; Cross-ApEn = Cross-Approximate Entropy; CRS-R = Coma Recovery Scale – Revised;
dwPLI = debiased weighted Phase Lag Index; E-MCS = Emergence from Minimally Conscious State; LZC = Lempel-Ziv Complexity; LZW = Lempel-Ziv Welch Complexity;
MCS = Minimally Conscious State; NMI = Normalised Mutual Information; QPSC = Quadratic Phase Self-Coupling; SSVEP = Steady-State Visual-Evoked Potential; SWS = Slow
Wave Sleep; UWS = Unresponsive Wakefulness Syndrome.
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states since the nervous system loses the ability to promptly
respond to changes (Gosseries et al., 2011). Two studies anal-
ysed entropy measures (Martens et al., 2020; Wu et al., 2011).

- Connectivity measures: These measures were obtained to inves-
tigate brain connectivity and the organisation of cerebral pat-
terns. Functional connectivity is fundamental for
understanding the mutual connection of EEG patterns recorded
in different brain regions (Chennu et al., 2014; Vecchio et al.,
2021). Two studies reported connectivity measures (Bareham
et al., 2020, 2018), but that of Bareham et al. (Bareham et al.,
2018) was only a case report; thus, this feature was analysed
only on a descriptive basis. The remaining study aimed to assess
information on cluster dimensions and the strength of the net-
work division in communication and functional modules.

Furthermore, one study compared models with qualitative and
quantitative aspects as well as both together (Arnaldi et al.,
2016), while five studies implemented models based on different
quantitative feature classes (Arnaldi et al., 2016; Bareham et al.,
2020, 2018; Martens et al., 2020; Wu et al., 2011). Only Bareham
et al. (Bareham et al., 2020) included connectivity and spectral fea-
tures within the same multivariate model; the remaining papers
focused on a single type of measure, excluding the comparison
between features belonging to different categories.
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3.4.4. Data analysis
Various approaches were used to understand the predictive

power of the features extracted from EEG signals on the recovery
of consciousness. The algorithms were selected according to the
type of variable considered for the outcome and treated either as
categorical (e.g., recovered/non-recovered) or numerical variables
(e.g., the CRS-R score at discharge). Among the studies that imple-
mented group comparisons, the chi-square test was used four
times (Formisano et al., 2019b; Pan et al., 2020; Pascarella et al.,
2016; Wu et al., 2011), and the t-test was used two times
(Pascarella et al., 2016; Wu et al., 2011), while the Mann–Whitney
test (Bai et al., 2019) and analysis of variance (Bagnato et al., 2016)
were each used one time. Regarding tests targeting the association
between variables, three studies (Arnaldi et al., 2016; Bareham
et al., 2020; Scarpino et al., 2019) adopted multivariate linear
regressions, three studies (Estraneo et al., 2020; Scarpino et al.,
2020a, 2019) adopted multivariate logistic regression, and two
studies (Martens et al., 2020; Straudi et al., 2019) adopted univari-
ate correlation (Fig. 3c). Two studies did not conduct any quantita-
tive analysis because one was a case study while the other
conducted a descriptive interpretation of the results (Bareham
et al., 2018; Wang et al., 2017).

Moreover, 10 studies implemented predictive models only with
EEG features, while the remaining five also considered other clini-
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cal variables, including age, gender, aetiology, CRS-R score, diagno-
sis at admission, time since brain injury, and lesion site. Martens
et al. (Martens et al., 2020) and Bareham et al. (Bareham et al.,
2020) compared the performances of models including EEG-
based features with those including only clinical variables; how-
ever, given our focus on EEG-derived features, we did not report
the models that considered clinical variables exclusively.
3.5. Outcome measures

The selected outcome for this study was the recovery of con-
sciousness. All of the included papers used the CRS-R as the pre-
ferred measure for the definition of the outcome, except for that
of Wu et al. (Wu et al., 2011), who used the Glasgow Outcome Scale
(GOS). Even though the measure used was similar, different modal-
ities were used for the definition of the specific outcome metric.
Specifically, four studies considered a continuous score (Arnaldi
et al., 2016; Bareham et al., 2020; Martens et al., 2020; Straudi
et al., 2019), two studies considered both a dichotomised and a
continuous metric (Estraneo et al., 2020; Pascarella et al., 2016),
and the remaining nine studies considered a categorical metric.
Among the studies that selected a continuous outcome, three cal-
culated a delta version of the CRS-R score (Bareham et al., 2020;
Martens et al., 2020; Straudi et al., 2019), one used the CRS-R total
score weighted on the clinical state of the patients (the so-called
CRS + ) (Arnaldi et al., 2016), and two used the total CRS-R score
(Estraneo et al., 2020; Pascarella et al., 2016). Regarding categorical
metrics, the majority of the studies determined a dichotomised
version of recovery of consciousness. The modalities used for these
dichotomous metric calculations were based on the following:

� Emergence from the MCS (Formisano et al., 2019b);
� A change in clinical state (Bareham et al., 2018; Pan et al., 2020;
Pascarella et al., 2016; Scarpino et al., 2020a; Wu et al., 2011);

� A combination of emergence from the MCS and a change in clin-
ical state (Estraneo et al., 2020; Scarpino et al., 2019);

� The comparison of two consciousness-state groups (Bagnato
et al., 2016; Wang et al., 2017);

� A combination of a change in clinical state and a minimum
increase in the CRS-R total score (Bai et al., 2019).

Regarding the outcome timing, three studies (Martens et al.,
2020; Scarpino et al., 2020a, 2019) selected an outcome at dis-
charge from hospitalisation or end of treatment, three studies at
the 3-month follow-up (Bagnato et al., 2016; Bai et al., 2019; Pan
et al., 2020), and nine studies at a follow-up longer than 6 months
after the event or admission to hospital, reaching up to 30 months
(Pascarella et al., 2016). Additionally, two studies selected the out-
come through multiple intra-treatment or hospitalisation assess-
ments (Bareham et al., 2018; Straudi et al., 2019).
4. Discussion

This systematic review aimed to investigate which EEG features
have been found to be predictors of consciousness recovery in
patients with DoC after rehabilitation as well as which are the pre-
ferred technical pipelines for extracting these features from EEG
signals.

Given the systematic reviews that already exist on this topic in
the literature, we did not want to strictly focus our study on the
extracted features, but rather to extend the analysis to the pro-
cesses and computational methods used. The objective of this anal-
ysis was to provide a useful tool that is able to summarise the
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methods and information extracted for consciousness recovery
prognosis. Thus, the analysis and data extraction of this study
chronologically followed the analysis pipeline for feature extrac-
tion, starting from the definition of the experimental setting up
to the prognostic analyses. Moreover, given our rehabilitation con-
text, we focused on the prognostic application only. The aim was to
offer useful insights for the future development of automated tools
that can support clinical decisions and rehabilitation optimisation
through the inclusion of instrumental assessments based on EEG.

As previously mentioned, the aspect that we studied first was
the experimental setting, for which the selected number of elec-
trodes and sampling frequency seemed to lack consensus (Table 2).
Regarding the configuration of channels, the included studies
mostly used a limited number, suggesting that some predictive
EEG features could even be extracted from low-density EEG. How-
ever, also critical to mention is that lower-density EEGs are typi-
cally found in clinical practice; thus, this number could partially
have resulted from the availability and routine preference for using
lower-density EEGs in hospitals over higher-density ones. For this
reason, higher-density EEG should be further investigated given
the results obtained in the literature. As an example, Chennu
et al. (Chennu et al., 2017) demonstrated that the use of 256 chan-
nels could reach high performances and correlate with other func-
tional neuroimaging methods.

Similarly, we did not find a clear consensus on the sampling fre-
quency, which varied over a wide range (128–2500 Hz). Consider-
ing the great advantage of having a high temporal resolution in
EEG, the choice of a sampling rate that is too low could lead to a
loss of information. Thus, as proposed by five of the included stud-
ies, a possible trade-off between the computational cost for param-
eter calculation and the temporal resolution of signals for
qualitative analysis exists in the acquisition of recordings at high
frequencies followed by down-sampling.

Regarding the extraction pipeline, the very first preprocessing
steps were shared across solutions, namely the use of band-pass
filtering, use of a notch filter, and selection of common frequency
bands (Fig. 3). Nevertheless, the following preprocessing steps
did not reach an agreement across the included studies (Fig. 3).
Although the majority of quantitative studies segmented the sig-
nals, there was no consensus on the epoch parameters. Similarly,
even though all included works applied methods for noise removal,
different approaches were proposed, leading to extremely distinct
effects on artefacts. It is also crucial to view these results in light of
the type of stimuli applied when present. However, even if the
operations applied are strictly related to the features to be
extracted, the definition of general guidelines in preprocessing
steps could ensure more robust and reliable analyses. Indeed, in
the definition of protocols for data acquisition, the wrong prepro-
cessing steps could affect the results (Khosla et al., 2020). For
example, Robbins et al. (Robbins et al., 2020) found significant dis-
crepancies in signals analysed with different processing pipelines,
although the results exhibited common characteristics. These
aspects are critical in patients with DoC since their complex condi-
tions are combined with the absence of collaboration, resulting in
the presence of several artefacts in signals, which are added to the
common disturbances typically present (e.g., those related to mus-
cle, ocular, and cardiac activity). For these reasons, a structured
procedure for artefact detection is crucial in this population.
Among the studies included, five (three of which applied indepen-
dent component analysis) used automated or quasi-automated
procedures based on a voltage threshold, above which all epochs/
channels were completely removed. Regardless of the reliability
of visual inspection for artefact detection, the use of automated
algorithms based on different features could reduce the computa-
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tional time as well as support clinicians. The automation process
can be based on different features and parameters, allowing one
to choose the final data quality. However, independent of the
specific artefact-rejection technique, only a few epochs of the
entire EEG recording are often retained for further analyses in
patients with DoC. This is a consequence of frequent involuntary
movement, hyperhidrosis, and difficulty in performing closed-eye
recordings in such a case mix. In our analysis, among the included
studies, only three of them explicitly reported details about the
number of epochs processed (Bareham et al., 2020, 2018; Wu
et al., 2011).

Thus, as previously mentioned, the formulation of shared and
standardised guidelines, including automatic methods for artefact
rejection, is crucial. They could promote the generation of stan-
dards according to the preprocessing steps to apply for feature
extraction given the specific characteristics of the sample.

Moreover, uniformity in the characteristics of the experimental
design and preprocessing methods could favour the analyses based
on patient conditions, providing more insights regarding which
EEG-derived biomarkers are effective predictors given the different
characteristics of baseline patients. Among the included studies,
three (Martens et al., 2020; Pan et al., 2020; Scarpino et al.,
2019) have already attempted to differentiate the features associ-
ated with consciousness recovery in different DoC clinical statuses,
obtaining both common and different significant features for each
group. Similarly, as demonstrated by Estraneo et al. (Estraneo et al.,
2020), the clinical complexity varies based on the various
aetiologies.

Finally, a standardised set of guidelines as well as deeper
research into characteristic-specific EEG biomarkers could also
pave the way for more advanced prognostic analyses, for which
the present study highlighted high heterogeneity. Indeed, this
study highlighted how the prognostic analyses applied to con-
sciousness recovery are all characterised by the absence of valida-
tion approaches, with many of the included studies not even
addressing multivariable analyses. This panorama is very different
from that in other pathologies, such as epilepsy (Ayodele et al.,
2020; Rasheed et al., 2020), depression (Li et al., 2020), schizophre-
nia (Aslan and Akin, 2020) or stroke (Hosseini et al., 2020). In fact,
while probably in the latter contexts the most influential prognos-
tic factors are known andmore attention is paid to model complex-
ity or result validation, these aspects have not yet been addressed
in consciousness recovery. Statistical analyses allow for the detec-
tion of correlations and associations/differences among groups
(Fig. 3c); instead, more complex methods (e.g., ML algorithms)
can find patterns within data and have the capability to generalise
prediction results. Given these characteristics, statistical methods
are typically easier in terms of interpretation and computational
complexity, whereas ML requires a larger amount of data to guar-
antee the accuracy and reliability of findings. Reasonably, the delay
in the use of more complex models could be due to the identifica-
tion of EEG-based predictive features associated with conscious-
ness recovery still being an open issue for patients with DoC,
preventing a straightforward validation of the methods that start
from such measures. This is also reasonable considering that the
possibility of a robust clinical stratification of patients from both
diagnostic and prognostic points of view is relatively recent due
to the introduction of new capable and efficient clinical scales, such
as the CRS-R (Seel et al., 2010).

Another aspect characterised by heterogeneity was the type of
features extracted from EEG data. To enhance the interpretability
of the results, we considered the typical categorisation in qualita-
tive and quantitativemeasures due to the different approaches used
to extract information from an EEG track. Then, we subdivided
each of these categories into groups depending on the nature of
the features extracted and the methods used. No specific trend
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was noted among the feature classes selected by the studies and
the baseline characteristics of participants in terms of aetiology
and clinical status (Table 3).

Moreover, the analysis revealed that qualitative studies are
equally as common as quantitative ones. The ability of skilled clin-
icians to visually analyse recordings and easily extract a large
amount of information explains this tendency. Moreover, medical
personnel’s expertise may help in the detection of particular neu-
rophysiological patterns, leading to single-subject/precision medi-
cine. On the other hand, the objectivity of quantitative features can
help to identify small but significant variations in signals and hid-
den processes that would be more complex to detect without auto-
matic algorithms, such as the identification of particular cerebral
patterns or the reconstruction of brain maps (Fellinger et al.,
2011; Rizkallah et al., 2019). For instance, the identification of pre-
dominant background EEG frequency, relevant for assessing the
level of consciousness of patients with DoC, is qualitatively identi-
fied by counting the number of cycles per second; this method,
especially in a long EEG track, is time-expensive and subject to
inaccuracy. Quantitative EEG analysis can overcome these prob-
lems by introducing automatic methods (e.g., different types of
transforms) for calculating the contribution of a given frequency
band. Indeed, although the introduction of bias within analyses is
sometimes unavoidable, automatic approaches could prevent the
influence of possible subjective factors present in visual inspec-
tions (e.g., experience, fatigue, distractions, and misinterpretation).

In our analysis, most studies that performed a qualitative
inspection of signals (four out of nine) included the features in pre-
dictive models with other clinical variables (e.g., age, gender, aeti-
ology, CRS-R at admission, time since brain injury, and activating
drugs). Among the clinical variables considered, age and CRS-R
assessment at admission resulted to be predictors of consciousness
recovery in various studies, including those of Arnaldi et al.
(Arnaldi et al., 2016), Estraneo et al. (Estraneo et al., 2020), and
Scarpino et al. (Scarpino et al., 2020a, 2019), in accordance with
the literature. Among the qualitative features, background reactiv-
ity was found to be one of the features most significantly associ-
ated with the recovery of consciousness. This was also confirmed
and investigated in another systematic review on this topic
(Azabou et al., 2018). By contrast, features related to the presence
of epileptiform activity did not result in high predictive power for
consciousness recovery, since significant results were achieved in
only one study (Scarpino et al., 2020a) out of the four that investi-
gated them.

Among the subgroups of qualitative measures, EPs/ERPs were
recorded with different types of stimulation. Responses elicited
by auditory stimuli were the most studied, as in five of the
included studies (Estraneo et al., 2020; Formisano et al., 2019b;
Pan et al., 2020; Scarpino et al., 2019; Wang et al., 2017; Wu
et al., 2011). These included the N400 component, mismatch neg-
ativity (MMN), and brain auditory EP (BAEP). Among these poten-
tials, the presence or absence of N400 in the centroparietal area
was found to be significantly associated with consciousness recov-
ery (Formisano et al., 2019b). This is in agreement with and well
demonstrated in other studies in the literature (Balconi, 2011;
Balconi et al., 2013; Steppacher et al., 2013). Conversely, BAEP
was not found to be a predictor of improvement, nor were
Somatosensory-Evoked Potentials (SSEPs) elicited by somatosen-
sory stimulation (Wu et al., 2011). Regarding the MMN component,
only a descriptive analysis of how it could be related to the recov-
ery of consciousness was conducted. The same analysis was per-
formed on the P300 component, which obtained similar results;
sudden changes in the amplitude and latency of these components
may be helpful for predicting changes in consciousness (Wang
et al., 2017). In Wang et al. (Wang et al., 2017), the two evoked
responses were found to be located in the temporal area, specifi-
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cally in the superior and middle areas for MCS and the inferior and
middle areas for UWS. Regarding P300, other studies in the litera-
ture have confirmed its ability to predict recovery (Cavinato et al.,
2009).

Noteworthily, EPs/ERPs were addressed using both qualitative
and quantitative methods. Relative to the latter, no study computa-
tionally extracted event-related responses, except for that of Pan
et al. (Pan et al., 2020), who used P300 and the steady-state
visual-evoked potential (SSVEP) to define a real-time index (i.e.,
the BCI accuracy index) during BCI experiments. This index was
employed to divide the population into CMD and non-CMD
patients. The BCI index-based classification was found to be signif-
icantly associated with the outcome of patients, depending on the
type of stimulation that elicited the potentials (Pan et al., 2020).

Another feature significantly associated with a positive out-
come in patients with DoC was the presence of alpha frequency,
for which there was again a tendency to analyse both qualitative
and quantitative points of view. In particular, in terms of qualitative
analyses, the overall background frequency was considered and
found to be significantly associated with consciousness recovery
in two studies (Scarpino et al., 2020a, 2019). In terms of quantita-
tive analyses, spectral analysis in the alpha band was found to be a
predictor of consciousness recovery Bai et al. (Bai et al., 2019), and
Straudi et al. (Straudi et al., 2019). Moreover, these two studies
investigated different cerebral areas, namely the frontal, and pari-
etal areas, respectively. Considering both qualitative and quantita-
tive analyses, an agreement seemed to exist that alpha power is a
promising result. Still, no study included the shape of the spectral
density function among the independent variables, instead evalu-
ating only the spectral power through numerical integration. This
information may play a crucial role for patients with DoC since it
is characterised by a higher power in lower frequency bands.
Hence, the evaluation of the frequency content is performed
through a cumulative measure inherently lacking in case of shifts
in the frequency axes of functional EEG peaks (Chandrasekaran
et al., 2019; Weber et al., 2020). Features of sleep transients and
sleep structure were transversally indicated by Arnaldi et al.
(Arnaldi et al., 2016) as well as Scarpino et al. (Scarpino et al.,
2020a, 2019) as candidate predictors of consciousness recovery.

In terms of quantitative analysis of the frequency domain, the
most explored bands were delta, theta, and alpha, which was
expected since they are typical in DoC (Rivera-Lillo et al., 2021).
Various studies have demonstrated the presence of an association
between the power modulation of these three frequency bands and
the CRS-R score. In particular, Bareham et al. (Bareham et al., 2018)
reported that a decrease in delta power was significantly corre-
lated with an increase in CRS-R score. Regarding the theta band,
Bai et al. (Bai et al., 2019) reported that the quadratic phase self-
coupling in this band and frontal side is significantly associated
with consciousness recovery.

Furthermore, higher frequencies (e.g., beta and gamma
rhythms), typically related to sensorimotor information process-
ing, were not generally investigated in patients with DoC due to
lower spectral power (Naro et al., 2016a). These bands acquire
interest when external stimulation is applied, such as tACS (Naro
et al., 2016b) or tDCS (Naro et al., 2016c). This is due to the capa-
bility of the stimulation to arouse silent neurophysiological pat-
terns, causing a possible increase in activity in the superior
frequency ranges. This tendency was in agreement with various
studies included in our analysis. In particular, the beta band was
considered in both of the studies that used tDCS, even though Mar-
tens et al. (Martens et al., 2020) did not include it in their analysis
that focused on the lower frequency bands, while Straudi et al.
(Straudi et al., 2019) did not find the relative power in this fre-
quency range to be significant. Similarly, Wu et al. (Wu et al.,
2011) included the contribution of the beta band in the qualitative
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analysis of signals, which was not found to be significant in their
analysis. Finally, Arnaldi et al. (Arnaldi et al., 2016) used the rela-
tive power in different frequency bands, including beta, to calcu-
late an index of slow-wave sleep (SWS), which resulted in
significance. In particular, their comparison between the relative
power in SWS (delta oscillations) and fast activities (alpha and beta
oscillations) allowed them to assign a score for each time interval.
The index was obtained by averaging these interval scores and
weighing their total duration.

Among quantitative methods, more elaboration is required for
the extraction of features related to entropy and graph theory
due to their ability to describe and represent more complex cere-
bral processes. Regarding entropy, Lempel–Ziv complexity (LZC), a
useful complexity measure that describes the development of spa-
tiotemporal patterns (Kaspar and Schuster, 1987), was the most
analysed feature in two studies (Martens et al., 2020; Wu et al.,
2011). Among them, one of the studies found LZC to be more pre-
dictive in the delta band. In addition, approximate entropy (ApEn)
and cross-ApEn, the other two common measures for explaining
the randomness of EEG signals, were investigated. Although Wu
et al. (Wu et al., 2011) studied all three of these nonlinear indexes
in the bilateral frontal area and found all to be significantly associ-
ated with prognosis, a higher predictive value was associated with
ApEn and cross-ApEn. Furthermore, a comparison between DoC
and controls revealed that these features were significantly lower
in pathological groups than in healthy subjects. These findings
are in line with the idea that lower levels of complexity are associ-
ated with DoC pathological conditions due to the reduced and
slower response of the nervous system to changes (Thul et al.,
2016). Moreover, Martens et al. (Martens et al., 2020) and Wu
et al. (Wu et al., 2011) demonstrated that the prognostic value of
these measures depended on the stimulation with which it was
presented.

Different from entropy, a wide heterogeneity was found across
graph-theory measures, although each of them explained a different
aspect of cerebral connectivity. These features, such as the cluster-
ing coefficient, participation coefficient, path length, modularity,
and network centrality, allowed researchers to increase the knowl-
edge related to the transfer of cerebral dynamics information to
improve the prognosis in DoC. To compensate for this variety,
Bareham et al. (Bareham et al., 2020) merged various clinical, spec-
tral, and graph-theory measures for each frequency band (delta,
theta, and alpha) into one variable, which they subsequently used
in their model. Clinical and electrophysiological variables were
related to each other using canonical correlation analysis, and
the combination was found to be a predictor of consciousness
recovery (Bareham et al., 2020). In particular, a significantly pre-
dictive contribution was associated with high-density EEG (hd-
EEG) in theta band power and alpha band connectivity. Moreover,
the analysis confirmed the potential of hd-EEG-based features for
improving prognosis prediction when combined with clinical mea-
sures. Despite the heterogeneity, a consensus was noted where the
included studies mainly considered features calculated in the alpha
band (Bareham et al., 2018).

In addition, the potential of merging qualitative and quantitative
methods was not particularly deepened in the included studies.
Arnaldi et al. (Arnaldi et al., 2016) were the only authors to test this
approach, demonstrating that the joint use of the two techniques
could improve the results and prognosis of consciousness recovery
by compensating for their limitations. In particular, although the
qualitative identification of specific sleep patterns significantly pre-
dicted the outcome, the addition of a quantitative sleep-related
index further consolidated the prediction results. The qualitative
and quantitative indexes were only partially correlated; thus, this
implementation leads to an enrichment of the predictive model.
Moreover, in this study, considering the often long duration of
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polysomnographic tracks, the quantitative analysis could help clin-
icians in the assessment of sleep scoring. By contrast, a qualitative
inspection can rely on clinical experience, making the feature
extraction process more straightforward in EEG clinical daily
reporting and helping to detect particular patterns. This is particu-
larly relevant in patients with DoC, who are not cooperative and
might have uncontrolled spasms, resulting in EEG artefacts, fre-
quent ocular movements or blinking, or sweating.

Regarding the outcomes, although any criteria were set on the
outcome measures, the recovery of consciousness was assessed
through different measures obtained from the CRS-R score in all
cases except for in the study of Wu et al. (Wu et al., 2011), who cal-
culated the recovery of consciousness using the GOS. This observa-
tion confirmed the preferred use, both for research and clinical
purposes, of the CRS-R. Regarding the timing of outcome occur-
rence, five models developed by three authors considered long-
term outcomes (�12 months from onset). Among them, two iden-
tified candidate predictors of long-term recovery of consciousness
(Arnaldi et al., 2016; Formisano et al., 2019b). Similarly, Bareham
et al. (Bareham et al., 2020) performed multiple assessments up
to 2 years from the onset and found models that identified signif-
icant prognostic value for predicting long-term behavioural out-
comes in prolonged DoC. Among the remaining 11 studies that
considered outcomes � 12 months from the event, 20 out of the
55 models developed led to significant features. Given the com-
plexity connected to the long-term hospitalisation of patients with
DoC, it is reasonable that only a reduced number of the included
studies considered a long-term outcome. However, given the
increasing life expectancy of these patients, it could be worth
deepening the research to include long-term outcomes or out-
comes assessed at multiple time points.
5. Limitations

From a methodological point of view, we conducted a system-
atic search, but some limitations were still present. Regarding the
search, some restrictions were related to the English language and
the requirement for a baseline CRS-R evaluation of patients.
Despite such restrictions, we considered this standardisation
essential for a more robust stratification of participants, which
allowed us to display and evaluate the results considering the
heterogeneity of the populations.

Moreover, although other studies have successfully performed a
meta-analysis (e.g., (Kotchoubey and Pavlov, 2018), we considered
it unfeasible in our case. We recognise its utility for the identifica-
tion of optimal methods for extracting EEG-based features and
their effectiveness in terms of consciousness recovery prognosis;
however, we believe that a meta-analysis would be more useful
in studies that have already performed validation of prognostic
models to determine the degree of evidence of the obtained results.
In our case, the methods employed were highly heterogeneous and
difficult to compare. For all of these reasons, we believe that more
evidence should be available before considering a meta-analysis.
6. Conclusions

This systematic review investigated the combinations of pre-
processing techniques, feature extraction methods, and predictive
models for assessing prognostic factors in patients with DoC using
EEG. The results revealed high heterogeneity among EEG-based
predictors of consciousness recovery. This is mainly due to the
complexity of patients with DoC, who have different clinical beha-
viours and aetiologies. Regardless, beyond the aforementioned lim-
itations, the first attempts to combine clinical and instrumental
data to obtain a prognosis were encountered. Quantitative EEG
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enables access to additional information, unavailable at the quali-
tative level, at the expense of more complex and difficult-to-
interpret analyses. However, whether this additional level of infor-
mation improves the prediction of DoC prognosis still requires fur-
ther research.

We believe that to provide a large consensus on procedures and
methods for extracting prognostic models from EEG in patients
with DoC, more evidence is required. Future studies will need to
involve even larger pools of patients, thereby enabling the imple-
mentation of models that are complex enough to cope with the
heterogeneity of such a pathological condition.
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