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ABSTRACT: The use of scintillators for the detection of ionizing
radiation is a critical aspect in many fields, including medicine,
nuclear monitoring, and homeland security. Recently, lead halide
perovskite nanocrystals (LHP-NCs) have emerged as promising
scintillator materials. However, the difficulty of affordably
upscaling synthesis to the multigram level and embedding NCs
in optical-grade nanocomposites without compromising their
optical properties still limits their widespread use. In addition,
fundamental aspects of the scintillation mechanisms are not fully
understood, leaving the scientific community without suitable
fabrication protocols and rational guidelines for the full
exploitation of their potential. In this work, we realize large
polyacrylate nanocomposite scintillators based on CsPbBr3 NCs,
which are synthesized via a novel room temperature, low waste turbo-emulsification approach, followed by their in situ
transformation during the mass polymerization process. The interaction between NCs and polymer chains strengthens the
scintillator structure, homogenizes the particle size distribution and passivates NC defects, resulting in nanocomposite
prototypes with luminescence efficiency >90%, exceptional radiation hardness, 4800 ph/MeV scintillation yield even at low
NC loading, and ultrafast response time, with over 30% of scintillation occurring in the first 80 ps, promising for fast-time
applications in precision medicine and high-energy physics. Ultrafast radioluminescence and optical spectroscopy experiments
using pulsed synchrotron light further disambiguate the origin of the scintillation kinetics as the result of charged-exciton and
multiexciton recombination formed under ionizing excitation. This highlights the role of nonradiative Auger decay, whose
potential impact on fast timing applications we anticipate via a kinetic model.

The detection of high-energy photons (X or γ), particles
(α, β) and neutrons, commonly referred to as ionizing
radiation, is at the heart of many strategic applications in

both science and technology,1 including high-energy/particle
physics,2 space exploration,3 medical diagnostics,4−6 cargo
screening,7 border security,8 and industrial and environmental
monitoring.9,10 Typically, ionizing radiation is detected using
direct radiation-to-charge converters11,12 or scintillator materi-
als13−15 which emit UV−visible photons upon interaction with
ionizing radiation by physical processes dependent on the nature
of the radiation itself, such as Coulomb collisions, Compton
scattering, photoelectric effect, and carrier pair formation.16 The
fundamental characteristics of a scintillator are the probability of
interaction with ionizing radiation, which scales with the nth
power of the average atomic number Z (where n = 1−5
depending on the type of interaction),17,18 the scintillation
efficiency or light yield (LY), expressed as the number of

photons emitted per unit of absorbed energy, and the stability at
high doses of absorbed radiation, also known as radiation
hardness.19−22 The scintillation rate is of paramount importance
when radiation detection is performed in time-of-flight (TOF)
mode, which assigns a precise time tag to each scintillation
event.23 In particle physics, TOF techniques are essential for
discriminating rare events in high-luminosity accelerators, where
picosecond fast detection is required to mitigate the effects of
signal build-up and to identify event peaks.24 Precise time
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tagging is also used in time-of-flight positron emission
tomography (TOF-PET) to improve image spatial resolution
and signal-to-noise ratio to accurately distinguish small
neoplastic formations in oncology, as well as in neurological,
rheumatological, infectious, and cardiological diagnosis.25−30

Specifically, TOF-PET scanners use the coincident detection of
two 511 keV photons emitted 180° apart in the same direction
to reconstruct the map of electron-positron annihilation events
caused by a radiopharmaceutical tracer in the body. The time
delay between the arrival of the two γ-photons is proportional to
the difference in their path lengths and thus contains
information about the spatial location where the annihilation
process took place. It follows that any improvement in the so-
called coincidence time resolution (CTR)31 has a direct
beneficial effect on the resolution of TOF-PET images, thus
motivating the technology race toward a CTR < 10 ps,
corresponding to millimeter resolution, which represents a
more than 10-fold improvement compared to state-of-the-art
commercial TOF-PET scanners.23 Finally, for rapid industrial
technology transfer and large-scale applications, it is essential
that scintillators can be manufactured in large sizes and/or
quantities using methods that are affordable in terms of both
process energy and raw materials.32

Recently, so-called nanocomposite scintillators based on high-
Z scintillator nanocrystals (NC) embedded in polymeric
matrices have emerged as promising alternatives to traditional
materials,33 such as inorganic scintillator crystals�which are
prohibitively expensive and energy-intensive and cannot be
produced in large sizes/volumes19�or plastic scintillators,34

which can be produced cheaply in large sizes and customized
shapes but are radiation-soft22 and have lower energy
resolution.35 By exploiting the efficient and fast scintillation of
NCs36,37 in combination with the flexibility of plastic fabrication,
nanocomposite scintillators hold promise to bridge the gap
between the single crystal and plastic approaches, thus enabling
a leap forward in radiation detection schemes. In particular, lead
halide perovskites (LHP) NCs, in the inorganic and hybrid
forms APbX3 (where A ismethylammonium, formamidinium, or
Cs and X is a halogen), have recently emerged as promising
nanoscintillators11,14,38−40 valued for their tunable fast and
efficient scintillation41 and unique tolerance to structural
defects,42,43 enabling competitive LY and radiation hardness
up to extreme radiation levels,44 comparable to the annual dose
accumulated in nuclear reactors or high-brightness particle
accelerators.45,46 Despite these advantages, the widespread use
of nanocomposite scintillators based on LHP-NCs has been
hampered mainly by manufacturing constraints. In particular,
hot-injection synthesis methods47,48 used for high-optical-
quality LHP NCs are not suitable for mass production, and
more scalable ligand assisted reprecipitation (commonly
referred to as LARP)49−51 techniques, in which NCs growth is
initiated by the addition of antisolvents at room temperature,
may suffer from concentration gradients in the reaction
environment (especially at multi-liter scale) resulting in
generally poorer optical performance.52,53 The recently reported
kinetically controlled synthesis of spheroidal LHP NCs by
Akkerman et al. offers exciting possibilities for further develop-
ment in this respect.54 However, a common problem with wet
syntheses of LHP-NCs is the use of excess reagents and the
formation of byproducts that generally result in the amount of
waste produced exceeding the product by orders of magnitude.
In the case of LHPNCs, the problem is particularly severe due to
the non-negligible contamination with toxic lead compounds.

Although considerable efforts are being made to develop
protocols for the recovery of lead from spent LHP-based
devices, only a few studies55,56 have been reported for the
recycling of the waste generated during NCs synthesis. Finally,
the compatibility of LHP NCs with optical polymeric matrices,
such as polyacrylates (e.g., poly(methyl methacrylate)) or
polystyrenes (e.g., polystyrene, poly vinyl toluene) is typically
limited by their ionic nature: acrylate monomers can be mass
polymerized using room temperature photoradical processes,
but their polarity damages the NC surfaces.57,58 Monomers that
do not affect the NCs such as styrene, on the other hand, require
thermal polymerization approaches at high T (≥80 °C)59−61

that degrade the NCs and/or cause crystallinity transitions to
nonemissive phases.62,63 Direct synthesis of NCs by thermal
annealing of polymer blends containing LHP precursors has also
been explored,64 but the slow nucleation of supersaturated
precursors in the residual solvents often leads to uncontrolled
NC size and aggregation, resulting in poor optical quality and
cloudy samples even at very lowNC loadings.65 As a result, most
LHP-NCs composite scintillators reported to date have been
prepared by solvent evaporation from NC/polymer solutions,
which produces useful model systems but is incompatible with
large scale manufacturing.33,41 To date, the fabrication of
efficient LHP-NCs nanocomposite scintillators by scalable and
affordable means remains an open challenge.
Here, we aim to contribute to this effort by realizing large,

ultrafast, optical-grade nanocomposite scintillators based on
high-emissivity CsPbBr3 NCs synthesized by a high-throughput,
multigram-scale turbo-emulsified method followed by their in
situ passivation during the polymerization process. This fast and
low-waste approach offers significant advantages over conven-
tional methods. Namely, the turbo-emulsifier homogenized
synthesis of CsPbBr3 NCs, performed here for the first time, is
inherently large scale and cost-effective, and in contrast to
common behavior, the polymer embedding almost completely
suppresses nonradiative quenching channels and unifies the NC
population in the final product. Low boiling and highly volatile
solvents are used in the synthesis, making their separation by
distillation and the further recovery of unreacted species
effective and energy efficient. As a result, large scale nano-
composites (60 × 50 × 0.3 cm3) with photoluminescence (PL)
quantum yields up to ΦPL = 90%, spectrally pure narrow
excitonic radioluminescence (RL) with LY up to ∼4800
photons/MeV even at relatively low NC loadings (0.8 wt %),
and radiation hardness up to extreme irradiation conditions (up
to 1 MGy 60Co γ-ray dose) can be fabricated inexpensively at
room temperature, and the recovered residue can be used to
synthesize a new batch of NCs with comparable optical
properties. Fundamentally for radiation detection, time-resolved
RL experiments show that the scintillation of our nano-
composites is ultrafast, with over 30% of the emitted photons
radiated faster than 80 ps, resulting in a potential CTR in the
range of about 39 to 90 ps with 511 keV gamma excitation,66 a
very promising figure for TOF-PET applications. Transient
absorption (TA)measurements performed in parallel with time-
resolved PL excited by pulsed synchrotron radiation up to 40 eV
(more than six times the ionization potential of CsPbBr3)

67,68

allow us to unambiguously assign the scintillation kinetics to
multiexciton and charged-exciton decay dominated by non-
radiative Auger recombination (AR). Finally, numerical
simulations of decay kinetics in the biexciton regime suggest
that CTR is essentially independent of AR, which quenches and
accelerates scintillation to a comparable extent. In addition to
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their technological relevance, these results elucidate important
fundamental aspects of scintillation in nanostructured compo-
sites and suggest a viable strategy for the mass fabrication of
ultrafast, radiation-resistant nanocomposites for advanced, fast-
time radiation detection schemes.
To realize large size nanocomposites embedding CsPbBr3

NCs in a single multigram process, PbBr2 and tetrabutylammo-
nium bromide (TBAB) (1:1 mol ratio) were dissolved at 80 °C
in a mixture of oleylamine (540 mmol), propionic acid (540
mmol), and isopropanol (60 mL). After complete dissolution,
themixture was cooled down to room temperature. A solution of
Cs2CO3 (6 mmol) in propionic acid (6 mL) was also prepared
and diluted in 3.6 L of a heptane/isopropanol solution (2:1 in
volume). The latter was put under turbo-emulsifier homoge-
nization (15k rpm) and the first solution was swiftly added,
inducing a rapid change from colorless to bright yellow. The
mixture was allowed to homogenize for 30 s. The final crude
solution looked clear and brightly green luminescent under
ambient illumination, highlighting the formation of CsPbBr3
NCs (Figure 1a, hereafter referred to as nativeNCs). The crude
solution was washed with 1.8 L of isopropanol and centrifuged at
4500 rpm for 2 min. The final weight of the dry product was ∼8
g. The process allows for the recycling of both the volatile
solvents and the nonvolatile residue, as detailed in a separate
section of the Supporting Information. Scanning transmission
electron micrographs (STEM) of the product revealed the
formation of a mixture of particles with different aspect ratios, as
commonly observed for large batch room temperature synthesis

processes (size, 13± 3 nm; thickness, 5± 1 nm; Figure 1b), with
a predominance of rectangular particles as highlighted by the
respective high-resolution TEM image in the inset of Figure 1b
and the STEM overviews in Figure S1. The dried NCs were
dispersed in a mixture of methyl methacrylate/lauryl meth-
acrylate (MMA/LMA, 80:20 wt %)monomers with the addition
of 2,2-dimethoxy-2-phenylacetophenone (0.33 wt %) that acts
as photoinitiator (using 365 nm light) for the radical mass
polymerization of an optical-grade random PMMA/PLMA
copolymer69 unaffected by macroscopic phase segregation. The
choice of PMMA as the main host material was dictated by its
excellent optical properties and good radiation hardness,22,44,70

as further confirmed herein, that make it one of the main
polymeric materials for fabricating optical components71 and in
scintillator fibers.22,72 In turn, LMAwith its long alkyl side chains
creates a near-native nonpolar polymeric environment for the
NCs, improving their miscibility and preserving their optical
properties.73 Figure 1c reports a photograph of a fabricated
nanocomposite with dimensions of 60× 50× 0.3 cm comprising
[NC] = 0.2 wt %. Fundamentally, the polymerization reaction
not only led to the formation of a mechanically solid matrix but
also played an active role for the evolution of the native NC
mixture to a uniform ensemble of CsPbBr3 NCs with nearly
perfect emission efficiency directly in a polymer host. TEM
images of 70 nm thin cut nanocomposite slices (Figure 1d and
Figure S2) and corresponding EDS elemental analysis
performed in ADF-STEM mode (Figure S3) show nano-
platelet-like CsPbBr3 NCs (side, 14 ± 3 nm; thickness, 9 ± 2

Figure 1. (a) Photograph of the turbo-emulsifier homogenized synthesis of 8 g of CsPbBr3 NCs in a 5 L reactor. (b) STEM-HAADF image of the
NC sample after washing. Inset: correspondingHRTEM image. (c) Photograph of a fabricated PMMA−PLMAnanocomposite with dimensions
of 60 × 50 × 0.3 cm comprising CsPbBr3 [NC] = 0.2 wt % under ambient illumination. (d) TEM micrographs of 70 nm thin nanocomposite
section showing domains of CsPbBr3 NCs in the polymeric matrix. (e) Powder X-ray diffraction patterns of the native NCs (top, black line) and
of the NCs embedded in the nanocomposite displayed in panel c (middle, green line), together with the calculated PXRD pattern for
orthorhombic CsPbBr3 (bottom, purple line, ICSD 97851). The diffraction halo pattern associated with the polymeric host matrix in the PXRD
of the nanocomposite was subtracted for clarity (Figure S6). The peaks denoted by star symbols are associated withminor crystalline impurities
included in the nanocomposite (red stars, CsBr). (f) Optical absorption (top panel) and PL (bottom panel, excitation energy 3.1 eV) of 0.2 wt %
dispersions of CsPbBr3 NCs in LMA:MMA (20:80%vol) during the polymerization reaction (time evolution indicated by the black arrow). The
initial spectra before the activation of the UV initiators and at the end of the process are highlighted in black and green, respectively. (g)
Evolution of the PL quantum yield was observed during the polymerization process. The photographs of the liquid monomer mixture and the
polymerized solid under UV illumination (3.4 eV) are reported as inset. (h) Contour plot of the spectrally resolved PL decay traces of the native
NCs (top panel) and the final nanocomposite (middle panel) excited at 3.1 eV and (bottom panel) representative decay curves collected at the
emission energies indicated by the dashed lines in the contour plots and the vertical bars in panel f. (i) 1H NMR free induction decay (FID) at
333 K indicating faster relaxation for the nanocomposite (green dots, 0.2 wt %) with respect to the bare polymer matrix (black dots). The solid
red lines are the fitting functions. (l) HRTEM image (top panel) and corresponding Fast Fourier Transform (FFT) pattern (bottom panel) of
CsPbBr3 NCs evolved in a solution of acrylate monomers.
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nm)mostly concentrated in larger nanodomains, which suggests
a particle ripening/merging process that occurs during the
solidification of the polymer host, in agreement with recent
results on CsPbBr3 nanowires-to-nanocubes transformation.74

The powder X-ray diffraction (PXRD) patterns of the native
NCs and of the NCs embedded in the nanocomposite are
reported in Figure 1e, and they correspond in both cases to the
orthorhombic phase of CsPbBr3 and indicate that the NCs
crystal structure is preserved after the polymerization reaction of
the host matrix. The evolution of the native NCs during
nanocomposite formation is rendered possibly more evident by
in situ monitoring of their optical properties (Figure 1f−h).
The optical absorption and PL spectra of the initial monomer

dispersion (t = 0 min) featured multiple contributions at ∼2.4,
2.5, and 2.6 eV, and a substantial scattering tail consistent with
the coexistence of different sized/shaped particles (Figure 1f).
The convolution of multiple contributions in the emission
profile was further confirmed by the spectral analysis of the PL
decay traces in Figure 1h, showing faster decay kinetics for the
blue side of the PL spectrum. Strikingly, during the polymer-
ization of the acrylate matrix, the absorption spectrum
progressively evolved toward the typical profile of CsPbBr3
NCs, with a prominent first excitonic peak at 2.4 eV, matching
well the average particle thickness of 9 ± 2 nm75,76 extracted
from the TEM analysis of the nanocomposite (Figure S2). The
isosbestic point at 2.45 eV in Figure 1f confirmed the conversion
of the heterogeneous population of native particles into a
homogeneous NCs ensemble. Crucially for our purposes, NCs
evolution led to substantial improvements of both the emission
spectral purity and efficiency. As shown in Figure 1f−h, the PL
efficiency monotonically increased from ΦPL = 43 ± 5% to 90 ±
5%, and the final nanocomposites featured narrow PL (FWHM
= 17 nm, 78 meV) with identical PL lifetime, τPL = 11 ns (as
extracted from the time after which the PL intensity had
dropped by a factor e) across the whole spectrum, around twice

as long as any emission contribution by the native NCs. Based
on the near unity ΦPL and the very low excitation fluence
(corresponding to average exciton occupancy ⟨N⟩ ∼ 0.01), we
ascribe the observed PL lifetime to the radiative decay of single
excitons. The whole body of spectroscopic data in Figure 1
indicates the gradual passivation of nonradiative losses likely
associated with surface electron traps by the nonbonding
electron pairs of the oxygen atoms of the polyacrylate chains.77

Time domain 1H NMR measurements acquired with the MSE
refocusing block produced the fast-relaxing free induction decay
(FID) expected for polymers below the glass transition. As
shown in Figure 1i, the decay is faster in the nanocomposite,
indicating a reduction in the local mobility of the polymer chains
in the presence of the NCs. The Gaussian contribution
associated with a fully rigid fraction extracted by bimodal fitting
quantitatively demonstrate an increased rigid fraction from 59 ±
1% to 66 ± 1% in the nanocomposite, which is a typical
consequence of the decrease of polymer chain motions due to
attractive interactions with the NCs.78 Here, it is a further
indication of the strong affinity between the NCs and the
polymer matrix, which contributes to avoiding aggregation and
obtaining a homogeneous dispersion. To further investigate the
possible roles of the polymerization initiators or UV light in the
NC evolution process, we monitored the structural and optical
properties of native NCs dispersed in the monomer mixture
without initiators or UV illumination over time. As shown in
Figure 1 and in Figure S4 the NCs ensembles evolved very
similarly, resulting in orthorhombic structured particles with the
characteristic optical spectra of CsPbBr3 NCs and enhanced PL
efficiency, thus suggesting that the gradual increase in the
viscosity of the nanocomposite plays a negligible role in the
process.
Based on the promising optical properties of our nano-

composites, we proceeded with investigating their scintillation
and radiation hardness properties. In Figure 2a we show the RL

Figure 2. (a) RL spectra of polyacrylate nanocomposites containing increasing concentration of CsPbBr3 NCs together with respective
photographs under ambient or UV light. (b) Corresponding LY values obtained via absolute (triangles) or relative (circles) methods. The black
line is the fitting function with a power law IRL = A × [NC]p with p = 1.1. (c) Optical absorption (dashed lines), RL spectra (solid lines) and
photographs under ambient or UV light of polyacrylate nanocomposites with [NC] = 0.1 wt % at increasing cumulative γ-ray doses from 0Gy to
1 MGy (bottom to top). The spectra have been normalized at the emission maxima and respective absorption edge and vertically shifted for
clarity. (d) LY (circles) and corresponding ΦPL (triangles) as a function of cumulative dose. Inset: TEM micrographs of 70 nm thin
nanocomposite sections before and after irradiation (scale bar 50 nm). (e) Normalized PL decay curves and (f) and FTIR transmission spectra
at 0Gy and 1MGy showing no variation of theNCdecay kinetics and nomodification of the vibrational spectrum of the polymer indicating high
radiation resistance.
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spectra of five nanocomposites containing increasing loadings of
CsPbBr3 NC ([NC] = 0.05 → 0.8 wt %; the respective
transmission spectra are reported in Figure S5). In each case, the
RL spectra were sharp single peaks due to the band-edge
excitonic transition, thus further confirming the absence of
structural defects that have been shown to cause spurious low-
energy spectral contributions.44 The absolute LY of the five
nanocomposites obtained using monochromatic 15 keV X-ray
excitation and confirmed by side-by-side comparison with the
commercial plastic scintillator EJ273D excited with a
Bremsstrahlung distribution of X-rays with similar mean energy
(∼7.2 keV) are reported in Figure 2b showing progressively
higher LY with increasing [NC] reaching LY = 4800 ph/MeV
for the 0.8 wt % composite.
Fundamentally, such LY and spectral properties were

perfectly retained even after exposure to extremely high
radiation levels comparable to the yearly γ-dose accumulated
by the inner walls of a nuclear reactor or by the inner magnetic
coil of the Large Hadron Collider.45,46 Specifically, to assess the
radiation hardness of our systems, we used the Calliope
irradiation facility (see the irradiation certification in the
Supporting Information)79 to expose nanocomposite samples
to uniform γ-ray irradiation by a 60Co source at a dose rate of
3.05 kGyair h−1 and monitored their optical and scintillation
properties at increasing cumulative doses up to as much as 1

MGy. The linear attenuation coefficient (μ) of CsPbBr3 at the
mean γ-ray emission energy (1.25 MeV) of 60Co is μ = 0.261
cm−1, corresponding to a mass attenuation coefficient, μ/ρ =
5.376 × 10−2 cm2 g−1, where ρ is the density.80 For the tested
nanocomposite containing 0.1 wt % of NCs, μ/ρ = 6.185 × 10−2

cm2 g−1 and μ = 7.008 × 10−2 cm−1. The fraction of energy
deposited in the nanocomposite by the single γ photon is 2%,
whereas the cumulative dose is 2.3 MGy, corresponding to 1.4 ×
1021 eV. Remarkably, the optical absorption and RL spectra were
perfectly preserved at all accumulated doses (Figure 2c) and so
were the respective efficiencies and PL dynamics (Figure 2d,e
and Figure S7 for NCs dispersed in the monomeric solution),
thus demonstrating the stability of the nanocomposites even at
extremely high radiation doses. The hardness is also
corroborated by the TEM images reported as inset of Figure
2d and showing similar morphologies before and after 1 MGy
irradiation. We emphasize that such resistance to ionizing
radiation is not due to their relatively low density, as
conventional plastic scintillators based on organic dyes with
comparable attenuation coefficients and densities typically
undergo strong quenching at much lower gamma doses.22 A
possible cause of such a remarkable property could be found in
the self-healing ability of lead halide perovskites after structural
damage, such as the creation of vacancies or surface segregation
of metallic lead, as recently reported by Milotti et al.81 As a

Figure 3. (a) Scintillation decay of the five nanocomposites shown in Figure 2a. The scintillation decay is shown in a linear scale over 24 ns. The
inset shows details of the ultrafast component (over 5 ns) in semilogarithmic scale; the shaded gray line represents the system IRF. The solid
curves are the fit functions. (b) Transient absorption spectra (in semilogarithmic scale) at increasing time (t = 2, 7, 12, 23, 50, 200, 500, 1000,
3000 ps) after the excitation pulse for progressively larger average exciton population ⟨N⟩ showing the emergence of bi- and multiexciton
spectral contributions.83 The respective decay traces taken at the energies indicated in the figure are shown in the right-hand panels highlighting
gradually faster decay with increasing ⟨N⟩. (c) TA dynamics at increasing average exciton population ⟨N⟩. (d) Differential TA curves extracted
from panel c representing single-order, charged-order, bi-order, and higher order exciton dynamics. (e) PL decay traces excited by synchrotron
light at increasing energy up to EEXC = 19 eV together with the respective single exponential fitting curves. (f) Corresponding PL decay times vs
EEXC. Inset: schematic depiction of the ionization of CsPbBr3 NCs upon excitation with the EEXC ≥ IE.
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further confirmation of the radiation hardness of the polymeric
matrix, the Fourier transform infrared spectra of a pristine and a
1 MGy-irradiated nanocomposite shown in Figure 2f are
essentially identical, with no peaks emerging after irradiation,82

suggesting negligible radiation induced damage even at huge
radiation doses.
Next, we focused on the timing performance of our

nanocomposites by performing scintillation kinetic measure-
ments (scintillation rise and decay times) in time-correlated
single photon counting (TCSPC) mode under X-ray excitation
using the experimental configuration schematically depicted in
Figure 3a. The scintillation decay curves of the five nano-
composites shown in Figure 2a are also reported in Figure 3a
along with their fitting curves to a convolution of the IRF
(FWHM = 160 ps) and the intrinsic scintillation rate. Notably,
for all samples, we observed a prompt ultrafast decay component
modeled with a Gaussian function (relative weight RP ∼ 30% )
and a τ1 ∼ 0.6 ns long decay component with comparable weight
followed by a longer-lived tail of around τ2 ∼ 10 ns matching the
respective PL lifetime, τPL. The time constant, relative weights
and corresponding effective scintillation lifetime, τEFF extracted
as the weighted harmonic average of the decay contributions, are
summarized in Table 1 for the five nanocomposites and match
well the timing performance recently reported for CsPbBr3 NCs
synthesized by conventional hot-injection method and incorpo-
rated into a polystyrene host by solvent evaporation.41 The
ultrafast timing capability demonstrated, in particular, by the
prompt kinetic component is of great relevance for TOF
technologies. Combining scintillation decay time and light
outputmeasurements, the potential time resolution reachable by
these prototypes may be calculated from the following
equation:31 = ×CTR 3.33

N
RISE EFF (where N is the estimated

number of emitted photons for a 511 keV excitation), resulting
in an estimated time resolution in the range of about 39 to 90 ps
with 511 keV gamma excitation, a very promising value for TOF-
PET applications.
Besides the potential applicative performance of our CsPbBr3

NCs-based composites, it is relevant for future material
optimization to identify the nature of the emissive states
responsible for ultrafast RL dynamics. Previous studies on CdSe
nanoplatelets by Turtos and co-workers37 ascribed ultrafast
scintillation components (<200 ps) to the decay of multi-
excitons generated by highly energetic X-ray excitation, in line
with pulsed cathodoluminescence studies by the Schaller group
on quantum dots of the same composition,84 yet for LHP NCs
such an ascription is still debated. To disambiguate the origin of
scintillation contributions between multiexcitonic and trapping
processes39 in our CsPbBr3 NCs nanocomposites, we probed
(multi)excitonic kinetics using transient absorption (TA)

experiments as a function of increasing excitation fluence. The
normalized TA spectra for the 0.2 wt % nanocomposite collected
at increasing delay time after the excitation pulse (2 ps to 3 ns) at
progressively higher excitation fluence�corresponding to the
single exciton (X, average exciton occupancy ⟨N⟩ ≪ 1),
biexciton (XX, ⟨N⟩ ≥ 1), and higher order multiexciton (MX,
⟨N⟩ > 2) regimes�are reported in Figure 3b. In the X regime,
the TA spectrum showed the characteristic peak at 2.41 eV due
to bleaching of the 1S exciton absorption at all times. The
corresponding time dynamics was essentially single exponential
with characteristic time, τX = 10 ns, which matches well the
corresponding τPL = 11 ns, measured at vanishingly low
excitation power, thus confirming that the bleach recovery is
due to radiative decay of 1S excitons. In agreement with previous
reports showing predominant attractive character of XX in
CsPbBr3 NCs,85,86 for ⟨N⟩ ≥ 1 the TA spectra showed a low-
energy shoulder at 2.34 eV, ∼80 meV below the main peak, with
∼200 ps decay time.86 Consistent with that, the TA dynamics
developed an initial ultrafast decay portion characteristic of
biexciton decay limited by Auger recombination (AR, Figure
3c),87 whose amplitude followed the characteristic ⟨N⟩2 trend of
the Poisson biexciton state-filling statistics (Figure S8). Upon
increasing the excitation fluence further, the TA spectra showed
a contribution on the high-energy side of the 1S bleach peak with
decay time of ∼80 ps, which we ascribe to higher order
multiexcitons in line with previous observations on CsPbBr1.5I1.5
NCs88 under intense optical pumping. We further examined the
(multi)excitonic dynamics following the procedure introduced
by Klimov et al.,87 where the TA curves vs ⟨N⟩ were first
normalized to their slow single exciton tail and then
progressively subtracted to each other. The extracted TA
decay curves are shown in Figure 3d together with the X trace
measured for ⟨N⟩ ≪ 1 for direct comparison. For ⟨N⟩ > 1, the
differential TA curves accelerated substantially with respect to
the single exciton kinetics, yielding a biexciton lifetime τXX ∼ 200
ps. Considering a biexciton radiative lifetime,87 τXX,Rad = τX,Rad/4,
and a single exciton radiative lifetime of τX,Rad = 10 ns, we obtain
a that the picosecond XX decay is largely dominated by AR, with
a biexciton yieldΦXX = τXX/τXX,Rad ∼ 0.08 consistent with similar
CsPbBr3 materials.88−95 Further increasing the excitation
fluence to ⟨N⟩ > 2 resulted in higher order multiexciton lifetime
as short as τMX ∼ 60 ps, in agreement with recent reports on
CsPbBr3 NCs of comparable size.41 For intermediate excitation
fluence (⟨N⟩ ≤ 1), the bleach kinetics featured a lifetime of ∼0.8
ns, matching the intermediate timing component of the RL
kinetics (τ1). To investigate the origin of such a component, we
used pulsed synchrotron excitation at DESY laboratories to
monitor the evolution of the PL dynamics of our nano-
composites (0.2 wt %) up to excitation energies largely above
the ionization energy of CsPbBr3 (IE = 5.6−5.8 eV see refs 67,

Table 1. Decay Times (τ, ns) and Respective Relative Weights (R) Extracted from the Fitting of the RL Decays in Figure 3aa

[NC], wt % RP R1 τ1, ns R2 τ2, ns τEFF, ns LY, ph/MeV N Estimated at 511 keV CTR Estimated (ps)

0.05 0.30 0.37 0.61 0.33 22 1.13 238 121 93
0.1 0.32 0.21 0.62 0.47 8.7 1.76 489 250 81
0.2 0.34 0.22 0.60 0.44 6.8 1.54 1056 541 51
0.4 0.29 0.09 0.58 0.62 10.3 3.3 2014 1007 55
0.8 0.30 0.07 0.62 0.63 10.5 4.1 4800 2323 39

aFor extracting the effective scintillation lifetime, the fit function was normalized so that the weights of the three components add up to one (RP +
R1 + R2 = 1), but the effective decay time was calculated with the re-normalized ratio of components τ1 and τ2 according to τEFF = (R1n/τ1 + R2n/
τ2)−1, Rin = Ri/(R1 + R2).

27 For the estimation of the CTR, the risetime has been set to 84 ps, corresponding to the time needed for the IRF
amplitude to increase from 10% to 90% of the total signal.
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96, and 97). The PL decays excited up to 40 eV and the
respective lifetimes extracted from single exponential fitting are
shown in Figure 3e,f. For below-IE excitation, the PL kinetics
showed an identical ∼10 ns contribution to the single exciton
bleach dynamics (Figure 3d) and independently measured τPL
using 3.1 eV optical excitation (Figure 1i). Notably, when EEXC
reached ∼5.8 eV, the PL lifetime underwent steep acceleration
to τ ∼ 0.9 ns, matching the intermediate RL lifetime and TA
dynamics for ⟨N⟩ ≤ 1 (notice that the IRF for the synchrotron
excited time-resolved measurements was ∼800 ps). For higher
EEXC values, the PL lifetime remained constant. The close match
between the onset of such an acceleration and the ionization
energy of CsPbBr3 suggests that the ∼0.6 ns decay component is
possibly due to photocharged NCs following the release of an
electron from the top of the valence band occurring by
photoelectric effect under ionizing excitation or via AR-
mediated photoionization under intense optical pumping.
The similarity between the ultrafast RL components and the

multiexciton TA dynamics is a clear indication that the
scintillation timing of CsPbBr3 NCs is dominated by the
decay of multiexcitons and not by nonradiative trapping
processes (which are also effectively suppressed in our
composites) as previously hypothesized. This has profound
implications for the general understanding of scintillation in
LHP NCs and suggests a role of AR in both the kinetics and

efficiency of the scintillation process, which ultimately combine
in the applicative timing capability expressed by the CTR. To
clarify this aspect, it is instructive to compare the behavior of an
ideal two-level system, such as NCs in the X regime, with that of
NCs containing multiple excitons. In the first case, the effect of
nonradiative channels (with lifetime τNR) on the CTR,27

approximately described as
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is relatively straightforward, as the acceleration effect by
nonradiative processes on the effective emission lifetime, τEFF

∝ +( )1 1
1
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, is linearly compensated by the concomitant

decrease of the scintillation quantum yield, ΦSCINT ∝
+( )1

RAD

1

NR

1

RAD
, resulting in constant CTR values determined by

the product of the rise and radiative lifetimes. The effect of AR

Figure 4. (a) Schematic representation of the possible decay pathways for single (X) and biexciton (XX) states in the presence of AR. Other
nonradiative channels are neglected for simplicity. Simulated emission decay curves for ⟨N⟩ = 1.6 corresponding to nX(t=0) = 0.32 and nXX(t=0)
= 0.26 for (b) nonionizing or (c) ionizing AR. The inset in panel b highlights the similarity between the experimental TA kinetics for ⟨N⟩ = 1.6
and the simulation for ΦAR = 0.9 suggesting that in our case AR is mostly nonionizing. (d) Effective emission lifetime, τEFF, (e) integrated
emission, and (f) CTR extracted from the decay curves in panels a and b. The blue (red) symbols correspond to nonionizing (ionizing) AR.
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on the scintillation kinetics and ΦSCINT is, on the other hand, not
as trivial because i) “slow emitting” X and “fast emitting” XX
species inherently coexist in the multiexciton regime (based on
Poissonian filling of quantized states) and ii) radiative and
nonradiative (e.g., AR) decay of XX generate X, resulting in the
dynamic conversion of fast emitting species into slow emitting
ones.87,88,98 The schematic depiction of the fate of X and XX
species is sketched in Figure 4a in the approximation that AR is
the sole nonradiative process active in the system�i.e.,
neglecting multiphonon decay or trapping, which corresponds
to ΦPL = 1. Although the rigorous treatment of the scintillation
process would require accounting for the exact energy
deposition and (multi)exciton formation processes in a complex
inhomogeneous composite material,99 helpful insights of the
effect of AR on the timing performance can be gathered by
simulating the decay kinetics described by the rate equations:

= + +n n k n k k( )X X R,X XX AR R,XX (1)

= +n n k k( )XX XX R,XX AR (2)

where nX (nXX) and kR,X (kR,XX) are the X (XX) populations and
radiative rates and kAR is the biexciton AR rate. The positive term
in eq 1 describes the formation of X from the decay of XX, either
radiatively or via AR with efficiency Θ, where (1 − Θ) is the
probability of particle ionization by carrier ejection or by
trapping of hot carriers, as it occurs in so-called B-type
blinking.100 In Figure 4b,c we show the simulated emission
kinetics for Θ = 1 (nonionizing AR) and Θ = 0 (ionizing AR)
obtained by solving eq 1 and eq 2 (see Supporting Information
and Figure S9) as a function of the AR quantum yield,

= +k k k/(AR AR R,XX AR). For this simulation, we opted for the
exemplative case of ⟨N⟩ = 1.6 corresponding to nX(t=0) = 0.32
and nXX(t=0) = 0.26 (vide infra) and used representative decay
rates, kR,X = 0.1 ns−1 and kR,XX = 4× kR,X = 0.4 ns−1. The
corresponding τEFF obtained as the weighted harmonic average
of the X and XX lifetimes (see caption of Table 1), integrated
emission intensity, and CTR are shown in Figure 4d−f,
respectively. The acceleration effect of AR on the XX lifetime
is evident in both Figure 4b,c with the noticeable difference that,
in the case of nonionizing AR (Figure 4b), quenching of XX by
increasingly more efficient AR generates additional X species,
which results in AR-independent single exciton emission
intensity represented by the long-lived tail. Ionizing AR, on
the other hand, leads to a net loss of a photocarrier by a NC
which hinders the further formation of a single exciton, resulting
in a gradual decrease of the X emission intensity with increasing
ΦAR. As a result, τEFF decreases more steeply with an increase in
ΦAR when AR leads to particle ionization (Figure 4d).
Fundamentally, however, despite the dynamic interplay between
the two excitonic species, both types of AR lower the total
integrated emission intensity to a similar extent, as they
accelerate the effective lifetime (Figure 4e), resulting in a
CTR that is very weakly dependent on ΦAR. We clarify that, in
order to provide realistic values for the simulated CTR, we
scaled the simulated integrated emission intensities so that the
value for ΦAR = 0.9 for nonionizing AR coincided with the
estimated N = 2323 of our 0.8 wt % nanocomposite (see right
axis in Figure 4e and Table 1), which featured comparably
efficient AR. This choice was motivated by the qualitative match
between the simulation and the TA curve acquired for ⟨N⟩ = 1.6
(inset of Figure 4b) suggesting that AR does not lead to the
release of electrons in vacuum, which is also consistent with the

CB width of CsPbBr3 (∼3.5 eV; also indicated as electron
affinity “EA” in figure) largely exceeding the bandgap energy of
our NCs (∼2.4 eV). Essentially identical trends are found using
⟨N⟩ = 2 corresponding to nX(t=0) = nXX(t=0). The near
invariance of the timing performance with ΦAR provides
important degrees of freedom for optimizing the efficiency of
NC-based scintillators by increasing the stopping power and/or
optical quality without incurring concomitant losses due to
increased AR. For example, increasing the NC density in a
nanocomposite scintillator is key to increasing the average Z and
hence the interaction probability with ionizing radiation.
However, this is often accompanied by the formation of large
NC agglomerates, which can lead to significant scattering losses
of scintillation photons, reducing the selective outcoupling to
photodetectors coupled to the scintillator body and potentially
increasing self-absorption effects by increasing the average
propagation path length within the scintillator. In such a case, it
might be advantageous to use more easily dispersible small NCs
compared to larger particles, since the intrinsic timing behavior
of the scintillator would not be affected by an increased AR rate
in small NCs (kAR scales universally with the inverse of the
volume of a particle),98,101 but the technological performance of
the radiation detector could be significantly improved due to an
enhanced light collection.
In this context, it is worth noting that for fixed scintillation

kinetics, the CTR of NC-based nanocomposites could be
significantly improved by increasing the LY by increasing the
NC loading, eventually reaching such high densities that
individual particles become sources of secondary excitation of
other NCs through their electromagnetic shower released after
primary interaction events. However, formost fast-emittingNCs
of direct bandgap semiconductors, including CsPbBr3 NCs, this
requires overcoming the limitation represented by the
reabsorption of the scintillation light due to their typically
small Stokes shift. In a methodological perspective, it is worth
noting that the significant role of AR on the scintillation LY
(Figure 4e) suggests particular caution when comparing the
scintillation efficiency of NCs of different size or shape and, in
the particular case of ionic systems such as LHP NCs, which
have a strong tendency to coalesce into large agglomerates in the
solid or film state, specific aggregation or processing conditions
that could lead to different degrees of quantum confinement and
hence different AR efficiencies. Finally, we point out that despite
the apparent insignificance of AR for timing performance due to
the compensating effects of average lifetime acceleration and LY
quenching, other parasitic processes such as ultrafast trapping,
which typically occurs in 1−10 ps, are very likely to be overall
negative for the LY, since they “statically” quench scintillation on
a time scale much faster than the recombination of either exciton
type (X or XX), resulting in a net loss of LY without a
concomitant acceleration of timing.
In summary, we have developed a low-cost/low-waste

approach to fabricate large-scale nanocomposite scintillators
with near unity emission efficiency, high radiation hardness, and
ultrafast scintillation kinetics due to the recombination of
charged-exciton/multiexciton states formed under ionizing
excitation. These results elucidate fundamental processes in
LHP-NC-based scintillators and provide useful guidelines for
future advances in nanocomposite scintillators for radiation
detectors and fast timing applications.
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