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Abstract: Background: Rewiring of metabolism induced by oncogenic K-Ras in cancer cells involves both glucose
and glutamine utilization sustaining enhanced, unrestricted growth. The development of effective anti-cancer
treatments targeting metabolism may be facilitated by the identification and rational combinatorial targeting of
metabolic pathways.

Methods: We performed mass spectrometric metabolomics analysis in vitro and in vivo experiments to evaluate
the efficacy of drugs and identify metabolic connectivity.

Results: We show that K-Ras-mutant lung and colon cancer cells exhibit a distinct metabolic rewiring, the latter
being more dependent on respiration. Combined treatment with the glutaminase inhibitor CB-839 and the PI3K/
aldolase inhibitor NVP-BKM120 more consistently reduces cell growth of tumor xenografts. Maximal growth
inhibition correlates with the disruption of redox homeostasis, involving loss of reduced glutathione regeneration,
redox cofactors, and a decreased connectivity among metabolites primarily involved in nucleic acid metabolism.

Conclusions: Our findings open the way to develop metabolic connectivity profiling as a tool for a selective
strategy of combined drug repositioning in precision oncology.
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Background
A metabolic rewiring in which glucose is converted to
lactate, while glutamine-derived α-ketoglutarate (Akg)
enters the tricarboxylic acid cycle (TCA)—undergoing
partial reductive carboxylation to citrate [1]—
characterize a large number of cancer cells. This basic
scheme may be modified by the presence in the cellular
environment (both in vitro and in vivo) of lactate and/or
amino acids such as proline, arginine, and asparagine,
thereby generating a variety of complex and flexible
metabolic pathways sustaining the enhanced and unre-
stricted growth of cancer cells [2–5].
Genetic [6, 7] and tissue-related factors, as well as nu-

trients and cytokines in the stromal environment of the
tumor, affect cancer metabolic rewiring (CMR) [8, 9],
i.e., CMR may be activated by oncogenic K-Ras, which is
mutated in approximately 35% of lung adenocarcinomas
and 45% of colorectal cancers. K-Ras activation increases
tumorigenicity, promotes environmental adaptation and
acquisition of drug resistance, resulting in poor progno-
sis [9].
Although metabolic rewiring has already been pro-

posed to open therapeutic windows for new drugs, the
connectivity and heterogeneity of cancer metabolism
have not allowed full exploitation of CMR for precision
oncology yet [10]. The high degree of connectivity in
metabolism requires integrating experimental metabolic
profiling and innovative computational-network analysis
to extract more in-depth information. This new ap-
proach will open the way to systems metabolomics as a
new, robust, customizable tool for cancer precision
medicine [11].
The CMR inhibitor CB-839 is a reversible non-

competitive allosteric glutaminase (GLS) inhibitor, exhi-
biting anti-proliferative activity in triple-negative breast
cancer cell lines, and in xenografts [12]. CB-839 is well
tolerated in pre-clinical studies (no weight loss or tox-
icity in mice) but shows reduced in vivo activity com-
pared with in vitro studies [1, 13]. On the other hand,
inhibitors of signaling pathways, such as the pan-PI3K
inhibitor NVP-BKM120 (BKM120), are known to inhibit
cell growth and decrease glucose consumption by de-
creasing the release of active aldolase from the actin
cytoskeleton both in vitro and in vivo [14].
To gain a more in-depth insight into the interplay be-

tween oncogenic K-Ras, tissue origin, cancer metabolic
rewiring, and drug sensitivity, here, we provide evidence
that K-RasG12S A549 lung cancer and K-RasG13D

HCT116 colon cancer cells present substantial differ-
ences in their metabolic rewiring: as a result, the latter
cell line appears to be more dependent on respiration.
Combinatorial drug treatment with the glutaminase in-
hibitor CB-839 and the PI3K/aldolase inhibitor BKM120
effectively down-regulates the growth of A549 and

HCT116 xenografts. The double treatment disrupts
redox homeostasis and dramatically reduces the inter-
pathway connectivity of metabolites involved primarily
in nucleic acid metabolism. Since metabolic profiling
and its connectivity analysis effectively recapitulate infor-
mation obtainable from more extensive analyses, includ-
ing metabolic pathway identification by isotope labeling
and metabolic flux analysis, we propose using metabolic
connectivity profiling as a tool for selecting more effect-
ive combined drug treatments in precision oncology.

Methods
Cell culture and mice
Cell culture, cell proliferation analysis, cell treatments,
and mice are described in detail in the Supplementary
Materials and Methods.

Glucose uptake, lactate production, and seahorse
metabolic analysis
Glucose and glutamine uptake and lactate and glutamate
secretion YSI analysis, Seahorse XF Cell Mito Stress
Test, Aldolase activity in cell samples, ROS levels meas-
urement, ATP quantification in cell samples, ALT and
AST activity in liver tissues, and NADP/NADPH assay
were detailed described in the Supplementary Materials
and Methods.

Metabolites extraction and metabolic profiling
Metabolites extraction from cell culture and tissue sam-
ples detailed protocol and GC-MS and LC-MS detailed
information are described in the Supplementary Mate-
rials and Methods.

13-C Metabolic flux analysis
13C MFA was carried out using INCA v1.7 based on
Elementary Metabolite Unit (EMU) framework [15, 16].
Flux through a metabolic network consisting of Glycoly-
sis, PPP, TCA, FA, & Biomass synthesis was constructed
[17] and was estimated by the least-squares regression of
metabolite labeling pattern and measured extracellular
fluxes. The network’s flux values were iteratively ad-
justed using a Levenberg-Marquardt (local search) algo-
rithm to minimize the sum of squared residual (SSR)
objective function. The best global fit was found after es-
timating at least 50 times using random initial guesses
for all reactions in the metabolic network. All the fluxes
were subjected to chi-square statistical test to assess
goodness of fit, and 95% confidence intervals were com-
puted [18]. Schematic representation of fluxes was per-
formed using the Escher software https://escher.github.
io/#/.
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Animal model, positron emission tomography imaging,
and pharmacological therapy
Animal models, positron emission tomography imaging
and PET imaging and quantification detailed are de-
scribed in the Supplementary Materials and Methods.
NVP-BKM120 was formulated in NMP/PEG300 (10/

90, v/v). The solution was freshly prepared daily just be-
fore gavaging by dissolving the powder, first in N-
Methyl-2-pyrrolidone (NMP, Sigma Aldrich) with sonic-
ation and then by adding the remaining volume of
PEG300 (Sigma Aldrich) as previously described [19].
The application volume was 10 mL/kg. CB-839 was dis-
solved in a vehicle containing 25% (w/v) hydroxypropyl-
b-cyclodextrin (Cayman Chemical Company) in 10
mmol/L citrate (pH 2.0). The formulation was 20 mg/mL
for a final dosing volume of 10 mL/kg, as previously de-
scribed [12]. For labeling experiments, 1M [U-13C6]
glucose in sterile PBS was infused injecting 80 μl (20 mg)
of solution at 15-min intervals three times before the
sacrifice. For survival study, treatments were adminis-
tered until (1) a tumor dimension reached 15 mm, (2)
both dimensions exceeded 10mm, or (3) for evident
signs of disease (i.e., motion difficulty). To calculate
tumor growth inhibition, we used the following formula:
TGI = [1 − (TF/T0)A/(TF/T0)V] × 100, where TF is the
time point analyzed, T0 is the initial time, A is the corre-
sponding drug, and V is the vehicle [20].

Quantification and statistical analysis
Results are expressed as mean value ± SD. Experimental
differences were tested for significance with the Stu-
dent’s t test or, when possible, with the two-way
ANOVA test. A p value of 0.05 or less was considered
statistically significant. Statistics are included in the fig-
ure legends.

Connectivity pattern correlation
Connectivity heatmaps were obtained by calculating
Spearman correlation coefficients among each pair of
metabolic traits and cell number (or volume) for A549
and HCT116 tumor cells (tissues) in the control condi-
tion and under single or combined drug treatments.

Pathway connectivity analysis
To summarize the overall profile of a given pathway, me-
tabolites were assigned to different pathways using KEGG.
We computed the pathway “eigenmetabolite” defined as
the first principal component of the metabolites belonging
to each pathway [21]. Thus, the pathway eigenmetabolite
can be considered a representative metabolite able to con-
dense each pathway into one and can be used to explore
the relationships among the different pathways in control
and treatment conditions (Figure S6 S5C).

Connectivity network
In metabolic networks of connectivity, nodes repre-
sent metabolites and a link occurs between two nodes
if the absolute value of Spearman correlation between
their expression levels is greater than a selected
threshold (i.e., 0.6) and statistically significant (FDR <
0.05). Modules in the network correspond to locally
dense subgraphs obtained by using the Cytoscape plu-
gin MCODE.
We visualized the screened cluster networks with

Cytoscape software [22] and identified the most signifi-
cant clusters using the Cytoscape plugin MCODE (Mo-
lecular Complex Detection Algorithm) [23]. MCODE is
a relatively fast method for clustering, which allows de-
tecting highly interconnected (locally dense) regions
within a network. In particular, MCODE exploits a
vertex-weighting scheme based on the clustering coeffi-
cient, which measures the density of the neighborhood
of a vertex. The algorithm starts from the weighted ver-
tex networks. It seeds a module with the highest
weighted vertex (node) and recursively moves outward
from the seed vertex to isolate the densest regions (mod-
ules) according to given parameters. These include de-
gree cutoff (controlling the minimum degree necessary
for scoring a node), node score cutoff (controlling clus-
ter expansion by adding only nodes with a score deviat-
ing from the seed node’s score by less than the set cutoff
as new cluster members), k-core (filtering out clusters
that do not contain a maximally inter-connected sub-
cluster of at least k degrees), and max depth (limiting
the distance from the seed node within which MCODE
can search for cluster members). In our analysis, we set
the MCODE parameters as follows: degree cutoff = 2,
node score cutoff = 0.2, k-core = 2, max depth = 100.
Resulting modules are then ranked based on a score

defined as the product of the module subnetwork dens-
ity (i.e., D = |E|/|E|max, with |E| the number of module
edges and |E|max the total number of the network
edges) and the number of vertices in the module subnet-
work. Larger, denser modules appear higher in the
ranked list.

Circos plots analysis
CIRCOS plots [24] were constructed using table viewer
(http://mkweb.bcgsc.ca/tableviewer/). Up-regulated me-
tabolites and pathways identified using Metaboanalyst
[25] are shown outside of the circle.

Transcriptome sequencing (RNA-seq) and data analysis
Transcriptome sequencing (RNA-seq) experiments and
data analysis are described in the Supplementary Mate-
rials and Methods.
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Results
Human HCT116 colon cancer cells are more respiratory
than A549 lung cancer cells
Oncogenic K-Ras may alter glucose and glutamine
metabolism to sustain enhanced cell proliferation [13,
26]. Although both A549 and HCT116 cancer cells
harbor a constitutively activated K-Ras gene, they
show a distinctive metabolic phenotype, as evidenced
by a combination of physiological and metabolic ana-
lyses (Figs. 1 and 2).
Compared with HCT116 cells, A549 cells are more

sensitive to the limitation of glucose (Glc) and glutamine
(Gln) (Fig. 1a). In A549 cells, both glucose and glutam-
ine limitations severely restrict the proliferation after 24
h. In HCT116 cells, glucose limitation reduces growth

after 48 h, while glutamine limitation has little or no ef-
fect on cell growth during the first 72 h. The rates of
glucose consumption and lactate production are similar
in the two cell lines (Fig. 1b). HCT116 cells secrete less
lactate than A549 cells, but the difference is not statisti-
cally significant.
Compared with HCT116 cancer cells, the A549 cell

line presents a distinct metabolic profile (Fig. 1c), with
significantly higher levels of metabolites involved in
amino acid metabolism (such as alanine-aspartate-
glutamate, arginine-proline-cysteine, and methionine),
glycolysis, pentose phosphate pathway (PPP) and TCA
cycle. The HCT116 cell line, instead, shows an increase
in metabolites involved in the maintenance of the redox
status, such as folate, glutathione, and polyamine

Fig. 1 Metabolic phenotyping of human K-RasG12S A549 (A549) and K-RasG13D HCT116 (HCT116) cancer cell lines. a Proliferation curves of A549
and HCT116 cancer cells. Cells were plated onto 6-well plates in standard medium. The culture medium was replaced after 18 h with standard
medium ( , Glc 25 mM), or medium containing 1 mM glucose ( ), or 0.5 mM glutamine ( ). Cells were collected and counted at the indicated
time points. Error bars indicate SD (n = 3). b Extracellular uptake ( ) of Glc/Gln and secretion ( ) of Lac/Glu in lung and colon cancer cells
grown for 48 h. c Untargeted metabolic profiling of A549 lung and HCT116 colorectal cancer cell lines grown in standard growth condition.
Hierarchical clustering heatmaps show significantly different intracellular metabolites by LC-MS and GC-MS. d, e Circos plots show the most
significant up-regulated metabolites and cognate enriched pathways in A549 cells (panel c d) and HCT116 (panel d e). (p ≤ 0.05)
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metabolism (Fig. 1c). Pathway enrichment analysis of
metabolites whose level differ at least 2-fold in a statisti-
cally significant manner between the two cell lines pro-
vides a first indication that nutrient limitation up-
regulates fatty acid oxidation, amino acid metabolism,

and glycolysis/gluconeogenesis in A549 cells (in com-
parison with HCT1116 cells) (Fig. 1d). Compared with
the A549 cell line, HCT116 cells show increased levels
of metabolites involved in the maintenance of the redox
status, such as folate metabolism (Fig. 1e).

Fig. 2 Cancer metabolic fluxes in A549 lung cancer and HCT116 colon cancer cells. a, b Schematic representation of central carbon
metabolism with net flux values estimated by 13C MFA in A549 (a) and HCT116 (b) in control condition. Arrows colors (red color = up
flux, violet = down flux) and thickness represent the significantly different fluxes (based on 95% confidence intervals). c Mitochondrial
respiration reflected by OCR levels in A549 ( ) and HCT116 ( ) cancer cells under basal conditions or following the addition of
oligomycin (1 μM), the uncoupled FCCP (1 μM), or the electron transport inhibitor Rotenone (0.5 μM) (n = 5). d, e Mitochondrial ATP (d)
and intracellular ROS levels (e) were measured by Seahorse assay and DCFDA staining, respectively, in A549 ( ) and HCT116 ( ) maintained in
standard growth medium for 48 h. Error bars indicate SD (n = 3)
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Enrichment analysis is not sufficient to unambiguously
identify differentially regulated pathways in a pair-wise
comparison because some metabolites (such as ADP or
coenzyme A) are present in many pathways. Thus, their
presence within a list of differentially regulated metabo-
lites is sufficient to enrich for that pathway. Metabolic flux
analysis allows to estimate intracellular metabolic fluxes
(Supplementary Tables 1–2 and Supplementary file 1).
The technique uses relative incorporation of uniformly la-
beled glucose ([U-13C6]Glc) and glutamine ([U-13C5]Gln)
tracers in the different metabolites (Figure S1A) to con-
strain an elementary metabolite unit (EMU)-based algo-
rithm. The resulting computed metabolic fluxes (Fig. 2a
and b) indicate that A549 and HCT116 show a similar
sustained glycolytic flux from glucose to extracellular lac-
tate (Fig. 1b). Glutamine-derived alpha-ketoglutarate
(AKG) can enter the TCA cycle and follow either a canon-
ical clockwise direction, whose first step is its conversion
to succinyl CoA, or a reverse route back to citrate, whose
final destiny is lipid production. A549 cells also follow the
glutamine reductive carboxylation route, as previously re-
ported in lung cancer cells [27]. Instead, HCT116 cells
show a slightly higher flux through the forward TCA cycle
route, suggesting a preferential use of respiration (Fig. 2a
and b). This interpretation is confirmed by Seahorse ana-
lysis that indicates that HCT116 cells have higher basal
and maximal (i.e., uncoupler-induced) respiration as com-
pared to A549 cells (Fig. 2c), consistent with the increased
mitochondrial ATP (Fig. 2d). ROS levels do not change
significantly between the two cell lines (Fig. 2e), suggesting
that differential mitochondrial activity is not due to the
dysfunction of mitochondrial complexes. In summary,
these results indicate that the A549 and HCT116 cancer
cell lines present a detectably different metabolic rewiring,
the colon-derived HCT116 cells being more respiratory
than the lung-derived A549 cells.

Combinatorial treatment with glutaminase and PI3K/
aldolase inhibitors blocks the proliferation of xenografts
induced by A549 lung and HCT116 colon human cancer
cells
Cancer cells use both glucose and glutamine for their
metabolic needs [1]. We tested the effect of single or
combined inhibition of glucose utilization and glutamine
metabolism on tumor formation in nude mice. Prelimin-
ary experiments showed that BKM120 (a pan-PI3K in-
hibitor that decreases glucose consumption by reducing
the release of active aldolase from actin cytoskeleton)
and CB-839 (a reversible non-competitive allosteric GLS
inhibitor) are active on both A549 and HCT116 cancer
cell lines, eliciting the expected biochemical effect, i.e., a
decrease in aldolase activity and intracellular glutamate
concentration (Figure S1B and C). When tumors
reached a volume of 130–150 mm3, mice were treated

with either the vehicle (CTR), or BKM120 (50 mg/kg)
[19, 28], or CB-839 (200 mg/kg) [1, 12], or their combin-
ation. Although the CB-839 glutaminase inhibitor was
not effective on tumor growth of both xenografts when
administered as monotherapy, its combined utilization
with the BKM120 aldolase inhibitor had a synergistic ef-
fect by increasing the tumor growth inhibition (TGI)
from 37 to 70% (p < 0.05) and from 47 to 66% (p < 0.05)
for A549 and HCT116 xenografts, respectively, as indi-
cated by caliper measurement over a 14 days window
(Fig. 3a and c) and by post-mortem weight determin-
ation (Figure S1D and E). Moreover, the continuous
combinatorial administration of the two drugs signifi-
cantly increases the survival of both tumor mice models
(Fig. 3b and d): the median survival of HCT116 tumor-
bearing mice raises from 14 to 21 days (p < 0.0001),
whereas the median survival of A549 tumor-bearing
mice shifts from 36 to 62 days (p < 0.01). Treated mice
well tolerate the combined treatment, since they show
neither weight loss (Figure S1D and E) nor alteration in
aspartate transaminase (GOT) and alanine transaminase
(GPT) activity, standard indicators of hepatic function
(Fig. 3e and f). Combined drug treatment of A549 and
HCT116 xenografts significantly reduces the uptake of
[18F] FDG (Fig. 3g–i and k, circled area, while the un-
marked area shows uptake in the spinal cord with its en-
closing vessels). The combined treatment also decreases
lactate production from labeled glucose (Fig. 3j and l)
[29] and reverses the reduced/oxidized ratio of glutathi-
one (Fig 3m and o). The NADH/NAD+ ratio is also sig-
nificantly decreased by drug treatment in A549
xenografts, while showing a moderate, not significant,
increase in HCT116 xenografts (Fig. 3n and p).
Association (connection) of nodes in a network can be

expressed using the Spearman’s correlation index so that
the elements of the resulting connectivity matrix are in
the interval [−1, 1] [30]. Network connectivity analysis
among tumor volume (taken as a relevant phenotypic
descriptor of the xenograft aggressiveness) and all pos-
sible pairs of metabolites (data obtained from metabolic
profiling of A549 and HCT116 xenografts tumor per-
formed by mass spectrometry analysis) identifies a total
of 838 statistically significant interactions in untreated
xenografts (Figure S1F). A total of 528 and 266 interac-
tions are specific for A549 and HCT116 xenografts, re-
spectively (Figure S1F). Only 54 (about 6%) are common
to both xenografts. The metabolite interactions in com-
mon between the two cell lines do not include any inter-
action with tumor volume (Figure S1G).
Using the Cytoscape plugin MCODE, we could extract

locally dense modules of connected metabolites from the
whole A549 and HCT116 connectomes (Fig. 4a and b).
In the untreated A549 xenografts (Fig. 4a), we find three
modules connected either directly or through two
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Fig. 3 Analysis of A549 lung tumors and HCT116 colon tumors under combinatorial treatment. a and c A549 (a) and HCT116 (c) tumor volume
measured by caliper in mice treated for 14 days with vehicle (CTR ), or BKM120 ( ), or CB-839 ( ), or a combination of BKM120 plus CB-839 (
). b and d Kaplan–Meier survival curves of A549 lung (b) and HCT116 colon (d) tumor-bearing mice. The combined treatment significantly

increases survival, as compared with BKM120 alone (p < 0.05). e, f Evaluation of hepatotoxic effects of drugs by assessing aspartate transaminase
(GOT) and alanine transaminase (GPT) on the liver from A549 (e) and HCT116 (f) tumor-bearing mice exposed to the combinatorial treatment
compared to CTR. g, h Representative transaxial [18F]FDG PET images of A549 (g) and HCT116 (h) tumors in CTR and combined-treatment mice
performed before and after drug administration for 1 or 2 weeks. The color scale is expressed as Standardized Uptake Value. i and k [18F]-FDG
uptake in A549 (i) and HCT116 (k) tumors exposed to the combined treatment (Treat) compared with CTR, expressed as tumor to background
ratio (T/B). j and l Lactate labeling evaluated by [U-13C6]Glc infusion in A549 (j) and HCT116 (l) xenograft mice exposed to the combined
treatment compared to CTR and analyzed by GC-MS. m and o GSSG/GSH ratio in CTR ( ) or combined treatment ( ) in A549 (M) and HCT116
(o) xenografts based on relative abundance obtained by LC-MS analysis. n and p NADH/NAD+ ratio in CTR ( ) or combined treatment ( ) in
A549 (N) and HCT116 (P) xenografts based on relative abundance obtained by LC-MS analysis. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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bridging nodes (arginine and glucosamine-6 phosphate).
In module 1, glucose positively correlates with metabo-
lites involved in amino acid metabolism and tumor vol-
ume (Fig. 4a). The combined drug treatment of A549
cells induces a strong connectivity rewiring (Fig. 4c), the
most apparent change being the inversion in the polarity

of the connection between glucose and tumor volume:
the connection is positive in control samples and turns
out negative in treated samples (Fig. 4a vs. c). In un-
treated HCT116 (Fig. 4b), we find two non-connected
modules. In module 2, tumor volume negatively corre-
lates with the second messenger cAMP. In module 1,

Fig. 4 Connectivity analysis between metabolism and tumor growth of lung tumor and colon tumor-bearing mice. a, b The network of
connections of A549 (a) and HCT116 (b) xenografts tumor in the control condition. c, d The network of connections of A549 (c) and HCT116 (d)
xenografts tumor under combined treatment condition. All networks are specific for each tissue and obtained by keeping only the connections
not shared between the two tissues. In each network, nodes represent metabolites. Nodes color corresponds to the different metabolic classes
and tumor size, whereas the color of the edges indicates positive (light blue) or negative (light red) correlation. A greater size highlights nodes
of interest
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glutamine is a local hub showing an average positive,
strong correlation with metabolites involved in the redox
and nucleotide metabolism (Fig. 4b). A single module is
present in the drug-treated xenograft (Fig. 4d), indicating
that the combined drug treatment induces severe meta-
bolic rewiring in the lung xenograft. Glutamine loses its
centrality, becoming a poorly connected, peripheral
node.

Rewired metabolism of treated cells results from cellular
attempts to counteract the effect of inhibitory drug
treatment
Even though some differences in the behavior of cell
lines and cognate xenotransplants are expected [13], cell
lines allow easier access to labeling techniques that, in
turn, enable to follow metabolic rewiring in more detail.
In 2D-cultures, the combined treatment with BKM120
plus CB-839 is also more effective than the single treat-
ments, although the combinatorial drug administration
is less dramatic than observed in xenografts, at least in
the case of the HCT116 cell line. In both cell lines,
metabolic profiles of cells treated with both BKM120
and CB-839 cluster with the metabolite profile of cells
treated with the drug that mostly affects proliferation
(Fig. 5a–c).
Metabolic profiling identifies significantly higher levels

of metabolites involved in the first step of glycolysis, pen-
tose phosphate pathway (PPP), and amino sugar metabol-
ism (Figs. 5b and S2A–B), suggesting an attempt to
activate alternative glucose-dependent pathways and ROS
scavengers metabolic pathways such as one carbon and
methionine cycle (Figs. 5c and S2C–D) in ROS-stressed
cells under combined treatment (Figure S2E and F).
We then used labeling with [U-13C6]Glc and

[U-13C6]Gln in A549 and HCT116 cells treated with
both drugs (Figures S3A and C, blue and purple dots;
S3B and D, green and violet dots, respectively). MFA in-
dicates that the combinatorial drug treatment of A549
cells induces a significant flux reduction in the upper
part of glycolysis, accompanied by an increased F6P flux
towards the PPP with a significant re-feeding of ribulose
5 phosphate (Ru5P) to G6P (Figures S3C and S4A). As a
result, the flux in the lower part of glycolysis is also se-
verely reduced, leading to a reduced flux towards lactate
production and secretion. The increased fluxes may
partly support the residual lactate flux through the PDH
and malic enzymes (Figure S4A). The citrate produced
from the AcetylCoA flux is diverted to the ACL enzyme,
even more heavily than in untreated cells, while Oaa is
primarily used in the formation of Asp. Combined with
the decreased Gln oxidation resulting from GLS inhib-
ition, these metabolic changes lead to a decrease of basal
mitochondrial respiration (Fig. 5d) and mitochondrial
ATP production (Fig. 5f).

The combined treatment impacts less profoundly on
the glycolytic flux of HCT116. The flux to lactate re-
mains sustained, and the PPP pathways flux is much less
activated than in A549 cells (Figures S3B and S4B).
Similar to what is observed in A549 cells, the combina-
torial drug treatment induces a significant reduction of
glutamine oxidation flux via the TCA cycle as compared
with CTR (Figure S4B), leading to a decrease of basal
mitochondrial respiration (Fig. 5e) and mitochondrial
ATP production (Fig. 5g). Taken together, the less pro-
nounced effect of the combined treatment on the second
step of glycolysis observed in HCT116 cells, and the
higher flux of malic enzyme are all metabolic mecha-
nisms able to increase NADH levels (Fig. 5h–i), which in
turn may also affect epigenetic regulation leading to sur-
vival pathways [31].
To better investigate the metabolic plasticity of A549 and

HCT116 cancer cell lines and to assess their tendency to
escape combinatorial drug treatment through drug-
dependent metabolic reprogramming, we performed a
more in-depth isotope labeling analysis. The labeling of me-
tabolites involved in amino sugar metabolism (M4 UDP-
Glc, M6-N-Ac-GlcN-1P, and M6-UDP-N-Ac-GlcN) and
PPP (M5-Ru5P) coming from [U-13C6]-Glc, observed in
both A549 (Figure S3C) and HCT116 cells (Figure S3D)
under combined drug treatment, confirms an attempt to
reprogram glucose metabolism to fulfill anabolic demands
[32]. Ribulose 5 phosphate M5-Ru5P labeling indicates an
independent activation of PPP in all experimental condi-
tions, while the significantly decreased labeling of hypoxan-
thine (Hpx, Figure S3C) correlates with reduced
proliferation since it is not observed in HCT116 cells
treated with CB-839 (Figs. 5a and S3D). Moreover, the sig-
nificantly lower adenine labeling, coming from [α-15N]-Gln
(Fig. 6a and b, fuchsia dots), found in cancer cells under
combined treatment as compared with CTR and single
treatments, is consistent with the strong effect of combined
treatments on cell proliferation arrest (Fig. 5a), thus con-
firming the in vitro efficacy of the inhibitors [9].
Labeling with [U-13C5]Gln and [15N]Gln stable iso-

topes (highlights the activation of glutamine alternative
metabolic pathways in both cancer cell lines Fig. 6a and
b, violet, and pink dots, respectively). Both Asn and cre-
atinine (Cre) derive from the forward utilization of glu-
tamine in the TCA cycle and by the coordinated activity
of ATP citrate lyase (ACLY), pyruvate carboxykinase
(PCK), and glycine amidinotransferase (AGAT) N-
guanidinoacetate methyltransferase (GAMT) (Fig. 6a
and b). The combination treatment does not signifi-
cantly affect the labeling of M2-Cre (Fig. 6, light blue
color), but increases levels of labeled Asn (Fig. 6a, pink
color), an amino acid promoting cancer cell proliferation
[33] and survival [3]. The combined treatment also in-
creases Gln-derived labeling of glutathione (M2-GSH
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and GSSG) (Fig. 6a and b, green color) and metabolites
involved in proline metabolism (yellow color), such as
M5-Pro and M5 4-hydroxy glutamate semialdehyde (4-
H-Glu-S-A), in both cell lines.

The amino-nucleotide sugar metabolism (pink color)
also uses glutamine as an amino group donor to
glucose-6-phosphate, to produce glucosamine-6-
phosphate. Hexosamine biosynthesis requires a

Fig. 5 Combined glycolysis and glutamine metabolism inhibitory drugs induce growth arrest in human cancer cell lines. a Proliferation curves of
A549 (left panel) and HCT116 (right panel) incubated with BKM120 ( ), CB-839 ( ), or BKM120 + CB-839 ( ) versus CTR ( ), collected and
counted at the indicated time points. b, c Untargeted metabolic analysis in A549 (b) and HCT116 (c) cancer cells. Hierarchical clustering
heatmaps show significantly different intracellular metabolites in the four experimental conditions assessed by LC-MS and GC-MS. (p ≤ 0.05). d, e
Mitochondrial respiration levels in A549 CTR ( ) or under combinatorial treatments ( ) (d), and in HCT116 CTR ( ) or under combinatorial
treatments ( ) (e), under basal conditions or following the addition of oligomycin (1 μM), the uncoupler FCCP (1 μM) or the electron transport
inhibitor Rotenone (0.5 μM) (n = 5). f, g Mitochondrial ATP level reflected by OCR levels in A549 (f) and HCT116 (g) CTR ( ) or under
combinatorial treatments ( ), under basal conditions or following the addition of oligomycin (1 μM), the uncoupler FCCP (1 μM) or the electron
transport inhibitor Rotenone (0.5 μM) (n = 5). h, i NADH/NAD+ ratio in CTR ( ) or under combined treatment ( ) in A549 (H) and HCT116 (I)
based on relative abundance obtained by LC-MS analysis
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coordinated utilization of glucose and glutamine, leading
to glycosylation of signal transduction components regu-
lating cell growth and proliferation [34]. A549 cells lose
this coordination under combinatorial and single CB-
839 treatment, as shown by the M1 UDP-N-Ac-GlcN

labeling derived from [15N]Gln (Fig. 6A, fuchsia dots).
We also found significantly lower labeling for some me-
tabolites (such as Glu, Ala, Pro, and Asp) in both human
cancer cell lines exposed to combined treatments com-
pared with CTR (Fig. 6a and b).

Fig. 6 Analysis of alternative pathways in lung cancer and colon cancer cells under combinatorial drug treatment. a, b Schematic representation
and percentage isotope labeling enrichment of metabolites from [U-13C5]Gln and [α15N]Gln in A549 (a) and HCT116 (b) cancer cells
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Consistent with these metabolic observations, RNA-
seq analysis shows a different response of both cell lines
to the combined treatment also at the transcriptional
level. HCT116 cells show only 31 genes with a statisti-
cally significant expression change in response to the
combined treatment (Supplementary File 2). Gene en-
richment analysis highlights that down-regulated genes
(n = 28 genes) mainly participate in metabolic processes,
such as organic acid, carboxylic acid, fatty acid, pyruvate,
propionate, acetate, and acetyl-CoA metabolisms (Figure
S4E). The three up-regulated genes are involved in cell
cycle and adhesion functions. Differently, A549 cells
show a more considerable transcriptional change in re-
sponse to treatments, with 73 statistically significant dif-
ferentially expressed genes (29 up- and 44 down-
regulated genes, Supplementary File 3). Interestingly,
down-regulated genes do not enrich any particular func-
tion, except for the up-regulated aldehyde dehydrogen-
ase 3A1 (ALDH3A1) gene. ALDH3A1 is involved in
many cellular oxidative processes and is highly expressed
in some human tumors [35]. Over-expression of
ALDH3A1 in cancer cells correlates with an increased
chemo-resistance to drugs [36, 37]. Therefore, the in-
creased ALDH3A1 expression level in A549 lung cancer
cells under combined treatment could counteract oxida-
tive stress (Figure S4F) and provide resistance against
combinatorial treatment.

Discussion
Yadav et al. [38] recently pointed out that a “non-linear”
relation between gene mutations and their phenotypic
penetrance is the rule, rather than the exception, in
multi-factorial diseases such as cancer. This non-linear
relation results from the fact that biological functions,
and their alterations in diseases, originate from the dy-
namic interactions of genes, proteins, and metabolites.
Since metabolism integrates information from genetic,
epigenetic, and environmental signals [39], metabolic al-
terations faithfully reflect perturbations that can modify
cell physiology [40]. Using an integrated systems meta-
bolomics approach [11] combining complementary tech-
niques, we here show that A549 and HCT116 cells, both
carrying an activated K-Ras oncogene, present distinct
phenotypic properties.
HCT116 colon cancer cells rely on respiration more

than A549 lung cancer cells (Figs. 1 and 2), in line with
previous reports on different metabolic properties of cells
harboring mutations in different codons of the ras gene
[41]. The combined treatment with the glutaminase in-
hibitor CB-839 and the PI3K/aldolase inhibitor BKM120
consistently reduces cell growth of both A549 and
HCT116 tumor xenografts, leading to a significant tumor
reduction and prolonged survival without associated tox-
icity (Figs. 3 and S1). The combined drug treatment

induces a severe metabolic rewiring, with evidence of a
redox crisis. Both gamma-glutamylcysteine (Glu-Cys, a
glutathione precursor) and cysteine sulfuric acid (an irre-
versible oxidation product of cysteine) increase in treated
xenotransplants and cells cultivated in vitro, favoring the
oxidized form of glutathione compared to the reduced
one (Figs. 3m and o, and S4C and D). The combined drug
treatment also significantly increases the ROS levels (Fig-
ure S2E and F). Labeling experiments indicate that the ob-
served metabolic profiles depend on the primary effect of
the drugs and the attempts to counteract the drug activity.
By way of example, the less pronounced effect of the com-
bined treatment on the second step of glycolysis observed
in HCT116 cells, and the higher flux of malic enzyme are
all metabolic mechanisms able to increase NADH levels
(Fig. 3p), which in turn can also affect epigenetic regula-
tion leading to survival pathways [31]. Moreover, the sig-
nificant increase of Asp labeling, observed by using both
glucose and glutamine 13C stable isotope tracers in A549
and HCT116 cells (Figure S3), may act as a preserving
mechanism, confirming that aspartate acquisition is an en-
dogenous metabolic limitation for the growth of some tu-
mors [42]. Conversion of the de novo synthesized Asp to
Asn would sustain ASCT2 (Slc1a5) antiport with Gln,
which could feed the TCA cycle to produce ATP [43].
In a clinical setting, where a complete systems meta-

bolomics approach may not be routinely feasible, can
quantitative analyses of metabolite profiles act as a sub-
stitute for the integrated systems metabolomics analysis
used in this paper?
The combined treatment dramatically disrupts overall

pair-wise connectivity [44] among metabolites in A549
cells, while it has a little effect in HCT116 cells. In both
cell lines, the combined treatment induces a dramatic
loss of connectivity between metabolites involved in nu-
cleic acid metabolism and metabolites involved in other
pathways (Figure S5A and B, black boxes). A single ad-
ministration of BKM120 or CB-839 elicits the same ef-
fect on pair-wise metabolite connectivity only if it
strongly inhibits cell proliferation. These findings indi-
cate that the connectivity of metabolites involved in nu-
cleic acid metabolism with other metabolites is a
signature of effective treatments, regardless of whether it
is a single or double treatment.
The combined drug treatment results in significant up-

and down-regulation of 16 and 15 metabolites, respect-
ively, (plus NAD+ and NADH) involved in the redox me-
tabolism according to the KEGG database. Among these
metabolites, 14 (plus NAD+ and NADH) are common to
both cell lines, 10 (plus NAD+) showing a congruent
change in concentration in both A549 and HCT116 cells
(Supplementary Table 3). Globally, these alterations sug-
gest that the combined drug treatment induces a more ox-
idized state in both cell lines, as highlighted by the
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decrease in the ratio between reduced and oxidized gluta-
thione (Figs. 3m and o, and S4C and D).
Pathway connectivity analysis indicates that in the

A549 xenografts, the double treatment disrupts the con-
nectivity of redox metabolites (bottom lines in the panels
a–d, outlined in pink) with metabolites involved in other
pathways (Figure S5C). In this figure, each square repre-
sents pair-wise connectivity between metabolites belong-
ing to the color-coded pathway represented in the X and
Y axes. Each square’s color indicates whether the correl-
ation is positive (red) or negative (blue), each shade be-
ing more intense for stronger correlations. The
combined treatment reverses most correlations among
redox metabolites with metabolites from other pathways
(color reversal) and/or makes them less significant (de-
creased shade intensity). A similar, although possibly less
striking, effect on pathways connectivity is observed in
the HCT116 xenografts (Figure S5C).

Conclusions
Concurrent drug perturbation of glucose and glutamine
utilization pathways severely reduces the growth of
A549 and HCT116 xenografts and cell lines. This result
is consistent with the major role that glucose and glu-
tamine play in supporting cellular proliferation. How-
ever, results reported in Figure S6 indicate that the
magnitude of the inhibitory effect can vary considerably
in different cell lines and is not simply the result of ras
mutational activation, since we observe the strongest ef-
fect in A375 melanoma cells, which have two wild type
ras genes. In-depth metabolic analysis is therefore re-
quired to rationalize the results of the drug treatments
and to develop rational guidelines for effective combina-
torial drug protocols.
Our systems metabolomics analysis shows that the

metabolic unbalance originated by the combinatorial
drug treatment affecting both glucose utilization and
glutamine metabolism may be so significant that the
tumor is unable to maintain the redox homeostasis, con-
sistently with the proposed crucial role of redox control
for cancer cell growth [26, 45, 46]. These integrated ana-
lyses may be too costly, time-consuming, and even un-
feasible in a clinical setting. Since connectivity analysis is
performed on metabolic profiles that are faster, easier,
and cheaper to obtain, it could offer a viable alternative.
The tool requires testing on an appropriate panel of can-
cer cell lines and pre-clinical models, such as patient-
derived xenografts [47] and organoids [48]. This large ef-
fort will provide the appropriate dataset required to de-
velop an instrument able to assist in the design of
combinatorial drug treatments, as well as in following
their effects [44], thus opening new avenues for person-
alized medicine and precision oncology approaches.
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