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Transverse-momentum cuts on undistinguished particles in two-body final states induce an enhanced 
sensitivity to low momentum scales. This undesirable feature, which ultimately leads to an instability 
of the fixed-order series, poses additional challenges to non-local subtraction schemes. In this letter, 
we address this issue for general colour-singlet processes within the qT -subtraction formalism, focusing
on neutral-current Drell–Yan production. We present a simple procedure to reduce the dependence on 
the slicing parameter from linear to quadratic, by accounting for the linear power corrections through 
an appropriate recoil prescription. We observe a dramatical improvement of the numerical convergence 
and a reduction of the systematic uncertainties. We also discuss how a linear dependence in qT can be 
avoided for Drell–Yan production by using staggered cuts, which, to the best of our understanding, could 
be used in experimental analyses. We show that our approach can be successfully applied also to on-
shell Z Z production. We finally study diphoton production and verify that our approach is insufficient 
to capture the linear power corrections introduced by the isolation procedure. The recoil prescription is 
available in version 2.1 of Matrix.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Accurate comparisons between experimental measurements 
and theoretical predictions are a key ingredient of the preci-
sion programme at the Large Hadron Collider (LHC). In order to 
minimize model-dependent assumptions as a source of bias in 
data–theory comparisons, experimental analyses at high energy 
colliders define fiducial regions close to the phase space accessi-
ble to the experiments. Within the fiducial phase space theoretical 
predictions can be compared directly with data without relying on 
models to extrapolate beyond the experimental acceptance.

The definition of the fiducial phase space translates to a set 
of cuts on kinematical variables of the detected particles, which 
typically involve their transverse momenta and (pseudo-)rapidities. 
In two-body final state systems, a lower limit on the transverse
momenta of final state particles is usually applied. Typical choices 
in experimental analyses are the application of a common value for 
the minimum transverse momentum (symmetric cuts, henceforth) 
or a different value of the transverse momenta of the leading and 
subleading final state particles (asymmetric cuts). Other choices of 
cuts on the minimum transverse momentum are possible, although 
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much less common; for instance, different cuts could be applied 
on identified particles in the final state, e.g. on the positive and 
negative leptons in neutral current Drell–Yan production (staggered
cuts).

It was pointed out more than two decades ago [1–3] that the 
use of a common minimum transverse momentum cut on each 
particle in a two-body final state can spoil the convergence of the 
fixed-order series. This instability of the perturbative series is due 
to an enhanced sensitivity to soft radiation when the two particles 
are back-to-back in the transverse plane, which manifests itself in 
the form of large logarithmic contributions of the imbalance. Al-
though initially pointed out in the context of dijet production, the 
poor behaviour of the perturbative series in the presence of sym-
metric cuts affects also other relevant collider processes, such as 
neutral-current Drell–Yan production or the two-body decays of a 
Higgs boson.

The enhanced sensitivity to soft radiation when symmetric cuts 
are applied poses a challenge [4–7] to non-local subtraction meth-
ods, such as qT -subtraction [8] or N-jettiness subtraction [9–11]. 
In the context of qT subtraction for colour-singlet production the 
problem is related to the fact that the scaling of missing power 
corrections is changed from being quadratic [12–16] to linear in 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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qT [4,6]. In order to correctly compute perturbative corrections, 
one should ideally lower the technical slicing cutoff to very small 
values and/or perform an extrapolation to a vanishing cutoff, which 
affects stability and performance of these methods especially at 
higher orders. This situation challenges the applicability of these 
subtraction methods for benchmark processes like neutral-current 
Drell–Yan production, where symmetric cuts have been used in the 
past and a particularly high precision is demanded.

As a consequence of the observations made in Refs. [1–3], ex-
perimental analyses started to define fiducial regions by applying 
asymmetric cuts on the transverse momenta of the leading and 
subleading final-state particles (ordered in transverse momentum) 
in processes with a two-body final state. The use of asymmetric 
cuts is now common practice in the definition of the fiducial phase 
space, for instance in recent H → γ γ analyses at the LHC [17,18]. 
Nevertheless, symmetric cuts are still in use in various experi-
mental analyses, most notably in some neutral-current Drell–Yan 
measurements, see e.g. Refs. [19,20].

However, relying on asymmetric cuts in general does not cure 
the problem of linear power corrections (linPCs) present in the 
symmetric case. Indeed, the same linear dependence is observed 
when asymmetric transverse-momentum cuts are applied on the 
leading and subleading leptons in neutral-current Drell–Yan pro-
duction or on the two final-state photons from H → γ γ decays in 
the gluon fusion production channel [4,21,22].

It was recently shown that the presence of a linear dependence 
in qT is actually a more fundamental problem, as it ultimately 
leads to a factorial growth of the coefficients in the perturbative 
series [22]. Despite the asymptotic limit of the series being well 
defined, the sequence of its fixed-order truncations is badly be-
haved and will eventually start to develop a divergent trend. There-
fore, there is an associated ambiguity in the fixed-order prediction, 
which also depends on the Casimir scaling of the processes, and 
can be already observed in the H → γ γ case [23,24].

We remark that this undesired behaviour does not depend on 
the subtraction method used. It can be prevented by using alter-
native fiducial cuts, as those suggested in Refs. [22,25–28]. For the 
Drell–Yan case, a very simple alternative is to impose different cuts 
on the transverse momenta of the lepton and the anti-lepton, i.e. 
the aforementioned staggered cuts. At variance with symmetric 
and asymmetric cuts, these cuts do not induce a linear depen-
dence in qT , as noticed in Ref. [4], and they are experimentally 
viable thanks to the excellent identification performance of the ex-
perimental apparatus at the LHC [29,30].

However, while future analyses will hopefully adopt new defini-
tions of fiducial cuts that are free from the issues discussed above, 
theoretical predictions must be provided for legacy analyses that 
used symmetric or asymmetric cuts. A possible option is to supple-
ment fixed-order predictions with resummation, which stabilises 
the perturbative series [22,24] by including the linPCs at all orders 
in αs [21]. While theoretically this is probably the cleanest option, 
for benchmark processes like Drell–Yan production it would still 
be desirable to have predictions at fixed order, which are required, 
for instance, in the extraction of parton densities.

In this work, we present a simple algorithm to include the 
missing linPCs below the cutoff in the qT -subtraction formalism 
of Ref. [8], circumventing the numerical instabilities related to the 
use of a tiny value of the slicing parameter. In this way, the missing 
power corrections become quadratic, analogously to the inclusive 
case, rendering the method more efficient and suitable for bench-
marking purposes. The idea is based on the observation that the 
origin of linPCs is ultimately related to phase-space effects, which 
was used to compute the linPCs in qT subtraction for Higgs and 
Drell–Yan production in Refs. [21,24].
2

We start by recalling the formula for the cumulative cross sec-
tion computed in the qT -subtraction formalism [8], which can be 
written as

σ qT -sub(rcut) =
∫

d�FH+
[∫

d�F+jet
dσ F+jet

d�F+jet
θ(qT /Q − rcut)

−
∫

d�F

∫
dqT

dσ CT

d�F dqT
θ(qT /Q − rcut)

]
, (1)

where the hard-virtual function H is independent of the trans-
verse momentum qT of the colour-singlet system F and defined 
on the Born phase space �F . The second term corresponds to the 
cross section for F +jet production with the respective phase space 
denoted as �F+jet , while the qT -subtraction counter term (CT) in-
cludes all contributions that are singular in the limit qT → 0 and 
is computed from the expansion of the qT -resummation formula 
to the given fixed order in αs . As a consequence, the difference 
between the second and the third term in Eq. (1) contains only 
non-singular contributions in qT . However, since both the F +jet 
cross section and the (non-local) subtraction term diverge at small 
qT , a qT -slicing cutoff must be imposed in order to numerically 
compute the quantity in square brackets. Typically, a cutoff rcut is 
introduced on the dimensionless quantity qT /Q , where Q is the 
hard scale of the process.

Due to the presence of this slicing cutoff the cross section in 
Eq. (1) misses non-singular contributions below rcut. While some 
work has been devoted to study such corrections in the inclu-
sive case [13–16], an exact computation for general processes in 
presence of fiducial cuts is more challenging. In Ref. [21] the au-
thors performed an all-order resummation of linPCs for Drell–Yan 
production, using a tensor decomposition of the hadronic and lep-
tonic tensors, and showed that this is equivalent to resorting to a 
suitable recoil prescription as applied in the context of qT resum-
mation [31–39]. In particular, the linPCs can be resummed to all 
orders in perturbation theory by boosting the leading-order kine-
matics to a frame in which the colour-singlet system has trans-
verse momentum qT [21].

If such recoil prescription is implemented, also the expansion 
of the qT -resummed result captures all the linPCs to a given order 
in αs . As a consequence, the missing linPCs below the qT -slicing 
cutoff rcut can be included by computing the difference

�σ linPCs(rcut) =
∫

d�F

rcut∫
ε

dr′
(

dσ CT

d�F dr′ 	cuts(�
rec
F )

− dσ CT

d�F dr′ 	cuts(�F )

)
, (2)

where 	cuts(�) collects the fiducial cuts on the phase space �, 
and �rec

F ≡ �rec
F (�F , r′) is the phase space where a recoil prescrip-

tion has been applied. The technical parameter ε can be pushed 
to arbitrary low values ε > 0 since the integral is finite and the 
cancellation between the two terms is local in r′ . Thus, no large 
numerical cancellations appear after the integration, at variance 
with Eq. (1). The origin of the correction in Eq. (2) can be under-
stood as follows: The first term provides an approximation of the 
F +jet cross section below the cutoff, including all singular terms 
in qT and the linPCs, while the second term is the usual subtrac-
tion term that removes all the singular contributions. Hence, what 
remains in their difference are the linPCs below rcut, which can 
be directly added to Eq. (1) in order to correct the qT -subtraction 
formula for linPCs. Note that Eq. (2) can also be derived directly 
from expanding the formula for the fixed-order matching of qT -
resummation with recoil prescription.
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The contribution in Eq. (2) can be straightforwardly added to 
any numerical code that contains an implementation of the qT -
subtraction formalism.1 We have implemented this contribution 
in the Matrix framework [4] by using a boost from the Collins–
Soper rest frame of the colour singlet system [42] to the laboratory 
frame where it has transverse momentum equal to qT [31,32].2

We have then studied the effect of adding this contribution for 
various setups that suffer from linPCs. In particular, we have fo-
cused on Drell–Yan production with symmetric and asymmetric 
cuts, which proceeds through s-channel diagrams at Born level, 
and on on-shell Z Z production, where symmetric cuts are applied 
on the transverse momenta of the two Z bosons. Although the 
fiducial region in Z Z production is usually defined through cuts 
on the decay products of the two Z bosons, in which case no lin-
ear behaviour is observed [4], it is interesting to consider a process 
which at Born level proceeds through t-channel diagrams. For that 
case a formal proof of the all-order resummation of linPCs along 
the lines of Ref. [21] is less straightforward. However, as we will 
see, resorting to a recoil prescription allows us to include them 
since the procedure accounts for the phase-space effects responsi-
ble for the appearance of the linPCs.

We now turn to discussing the numerical effects of including 
the linPCs via Eq. (2) in Matrix predictions. Unless stated oth-
erwise, we consider 

√
s = 13 TeV proton–proton collisions at the 

LHC and use the PDF set NNPDF31_nnlo_as_0118 [43] as well 
as renormalization and factorization scales μR = μF = mZ . We 
start by considering the neutral-current Drell–Yan production pro-
cess with symmetric cuts on the leptons, requiring a transverse 
momentum of pT ,
 > 27 GeV and a rapidity of |y
| < 2.5 for the 
leptons as well as a 66 GeV < m

 < 116 GeV invariant-mass win-
dow for the lepton pair. Fig. 1 shows the fiducial cross section 
at next-to-leading order (NLO) in QCD as a function of the qT -
slicing cutoff rcut, normalized to the rcut-independent reference 
cross section at NLO QCD that is obtained with Catani–Seymour 
(CS) subtraction [44] in Matrix, shown in blue. The result without 
linPCs is given in green and that including the linPCs via Eq. (2)
in orange, where the vertical error bars reflect the statistical er-
rors for each individual rcut value. The horizontal lines correspond 
to the rcut → 0 extrapolation of the respective cross sections, using 
their rcut dependence down to rcut = 0.01% by means of the ex-
trapolation procedure described in Ref. [4], and the corresponding 
bands include both numerical and extrapolation uncertainties.

First of all, the extrapolated results in either case are fully 
consistent with the reference CS prediction. However, it is quite 
remarkable how much the rcut dependence of the cross section re-
duces once linPCs are included. Indeed, Fig. 1 clearly shows that, 
in case of symmetric cuts on the leptons, the cross section features 
a linear dependence on the cutoff rcut, and that this linear depen-
dence is turned into quadratic (at worst) as soon as the linPCs
are included. This observation confirms that linPCs are captured 
through recoil effects as implemented in Eq. (2). We would like 
to stress that the remaining effects after including the linPCs are 
well below one permille of the NLO QCD cross section. While the 
extrapolated results with and without linPCs are compatible with 
each other and the reference result, the substantial stabilisation 
of the rcut dependence in the case with linPCs is an important 
advancement. Within numerical uncertainties essentially any fixed 
rcut value in the plotted range would yield a viable prediction of 
the cross section such that also comparably high fixed rcut values 
would provide accurate results. Using a higher rcut value renders 

1 In principle it can also be useful in the context of NNLO-matched predictions 
that include a qT -slicing cutoff [40,41].

2 We have also considered other choices of boosts which yield almost undistigu-
ishable results, in agreement with the observations made in Ref. [21], the effect 
being O(r2

cut).
3

Fig. 1. Dependence of the NLO QCD Drell–Yan cross section, calculated in the qT-
subtraction method with (orange) and without (green) linPCs, on the cutoff rcut, 
normalized to the reference CS result (blue) and with statistical errors. The horizon-
tal lines show the respective rcut → 0 extrapolations, with their combined numerical 
and extrapolation uncertainties depicted as bands.

the numerical integration much more efficient since the large can-
cellations between F +jet cross section and counterterm in Eq. (1)
are significantly reduced.

Moreover, the rcut → 0 extrapolation is fully compatible with 
the results obtained with a finite value of rcut in all the range con-
sidered in the plot. Whilst the extrapolated result (and its error) 
provides a more robust prediction than those obtained with finite 
values of rcut, the consistency of the results across rcut when linPCs
are included is particularly useful for distributions, for which an 
automated bin-wise extrapolation is supported only from version 
2.1 of the Matrix code (although already used before [45–52]).

While the NLO QCD results presented so far are instructive to 
study the effects of linPCs in comparison to a reference predic-
tion, the inclusion of linPCs in the qT -slicing cutoff becomes much 
more relevant at next-to-NLO (NNLO) in QCD perturbation theory. 
The evaluation of the O(α2

s ) coefficient in Matrix relies entirely 
on the qT -subtraction method, and no rcut-independent NNLO QCD 
cross section can be computed with the code. In Fig. 2 we study 
the rcut dependence of the NNLO QCD coefficient for different 
partonic channels, normalized to the respective rcut → 0 results 
with linPCs. The symbols for the partonic channels (qq̄, qg , gg , 
q(q̄)q′) are defined as usually, i.e. symmetrically with respect to 
the beam directions: gg for the gluon–gluon channel, qg includ-
ing all (anti-)quark–gluon channels, qq̄ referring to the diagonal 
quark–(anti-)quark channels present already at leading order, and 
q(q̄)q′ collecting all remaining (anti-)quark–(anti-)quark channels 
such that the four categories sum up to the full result.

In Fig. 2 we observe that the NNLO QCD coefficient features 
an analogous reduction in the rcut dependence when account-
ing for linPCs by including the contribution of Eq. (2). We note 
that starting from NNLO QCD the linear scaling can be enhanced 
by additional logarithms in rcut (i.e. terms of order rcut lnk(rcut), 
k ∈ [1, 2]), as can be seen from the figures. Like at NLO QCD the 
extrapolated rcut → 0 results are fully compatible, but the cross 
section with linPCs exhibits a considerably reduced rcut depen-
dence with the advantages discussed above. In Fig. 3 we compare 
the NNLO correction in different partonic channels with the NNLO-
jet results [38,53], which are obtained with the rcut–independent 
antenna subtraction method [54,55]. We use the same setup as dis-

cussed above, but we now take μF = μR =
√

m2


 + q2

T . We observe 
a very good agreement, down to the O(1%) level of the NNLO co-
efficient, in all the partonic channels.
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Fig. 2. Dependence of the NNLO QCD Drell–Yan coefficient on rcut for each partonic 
channel with (orange) and without (green) linPCs, normalized to the rcut → 0 result 
with linPCs. The horizontal lines show the respective rcut → 0 extrapolations. Errors 
indicated as in Fig. 1.

We continue with the discussion of differential distributions 
within the fiducial phase-space selection. Fig. 4 shows the rapid-
ity distribution of the positively charged lepton (y
+ ) at NLO QCD 
(left) and at NNLO QCD (right) in the main panel. Results for the 
fixed values rcut = 1% (dotted) and rcut = 0.15% (dashed) with their 
statistical uncertainties indicated by error bars are shown with (or-
ange) and without (green) linPCs in the upper and lower ratio 
panels, respectively. The extrapolated rcut → 0 results with (or-
ange) and without (green) linPCs with their combined numerical 
and extrapolation uncertainties indicated by bands are depicted in 
both ratio panels. At NLO QCD all curves in the two ratio panels 
are normalized to the reference rcut-independent CS result (blue), 
while at NNLO QCD all curves in the upper (lower) ratio panel are 
normalized to the extrapolated result without (with) linPCs.

The agreement at NLO QCD with the CS result is truly remark-
able, especially considering the very fine binning. As expected, only 
the curve with a high cutoff (rcut = 1%) and without linPCs is off 
by about 1%. Notably, this difference at rcut = 1% is removed by 
including the linPCs. In all cases the extrapolated results are fully 
compatible with that of the CS calculation at the permille level and 
within the respective uncertainties.

At NNLO QCD we can appreciate the much better convergence 
in rcut when linPCs are included. In the first ratio panel, which 
shows the curves without linPCs, the rcut = 0.15% (rcut = 1%) result 
is about 0.5% (more than 1%) from the extrapolated result. By con-
trast, the curves including the linPCs in the second ratio panel all 
agree within a few permille up to statistical fluctuations. Therefore, 
the much higher rcut value of 1% would be sufficient to obtain a re-
liable prediction, which requires substantially less computing time 
4

Fig. 3. Dependence of the NNLO QCD Drell–Yan coefficient on rcut for different par-
tonic channels with (orange) and without (green) linPCs, normalized to the NNLOjet 
result (purple). The horizontal lines show the respective rcut → 0 extrapolations. Er-
rors indicated as in Fig. 1.

than pushing rcut down to very low values to perform a proper ex-
trapolation. We also observe that the extrapolated predictions with 
and without linPCs agree at the level of a few permille, fully cov-
ered by the respective uncertainty bands.

We have considered various observables of the leptonic final 
states in Drell–Yan production, and the y
+ distribution turned 
out to exhibit the largest effects, while similar conclusions can 
be drawn for all others. One exception marks, however, the mZ /2
threshold in the transverse-momentum distribution of each lep-
ton (pT ,
), as shown in Fig. 5, which is perturbatively not well-
behaved [56]. Due to the uncancelled large logarithmic contribu-
tion in the region pT ,
 ∼ mZ /2 the presence of the cutoff rcut
causes a discrepancy with a calculation using a local subtraction, 
which cannot be recovered by applying a recoil prescription, as ob-
served in Ref. [21] for charged-current Drell–Yan production. Since 
this threshold region can be appropriately described only by a re-
summed calculation and not at fixed order, we do not consider 
this a drawback of our approach. We note that the numerical ex-
trapolation rcut → 0 exhibits a reasonable convergence to a local 
fixed-order calculation also in that region.

As discussed above, applying asymmetric cuts on the trans-
verse momenta of leading and subleading leptons does not cure 
the issue of linPCs. We recall that this is a more fundamental prob-
lem than just a technical complication for slicing approaches, since 
the linear dependence in qT ultimately leads to a factorial growth 
of the coefficients in the perturbative series [22]. Only when us-
ing staggered cuts, i.e. different transverse-momentum thresholds 
for each individual lepton identified by its charge, these problems 
are avoided entirely. In Fig. 6 we demonstrate this by showing 
the NNLO QCD cross sections as functions of rcut for both asym-
metric and staggered cuts, normalized to the respective rcut → 0
results with linPCs. In either case we have kept the same setup as 
described above, but lowered the transverse-momentum thresh-
old for the softer (negatively charged) lepton to 25 GeV in the 
asymmetric-cuts (staggered-cuts) scenario.
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Fig. 4. Distribution in the rapidity of the anti-lepton for rcut = 1% (dotted), rcut = 0.15% (dashed), and rcut → 0 (solid with bands), with linPCs (orange) and without (green) 
at NLO QCD (left) and NNLO QCD (right). For reference, the CS result is shown at NLO QCD (blue) and normalized to in the ratio, while at NNLO QCD the first panel is 
normalized to the rcut → 0 result without linPCs and the second to the rcut → 0 result with linPCs.

Fig. 5. Same as Fig. 4 (left), but for the transverse momentum of the positively 
charged lepton.

We observe the same pattern for asymmetric as for symmetric 
cuts, with a similarly large and linear rcut dependence (but with 
opposite sign) without linPCs and a significant reduction when 
linPCs are included. On the contrary, the rcut dependence for stag-
gered cuts is completely flat, as already pointed out in Ref. [4]. 
In fact, the inclusion of the contribution in Eq. (2) has practically 
no impact due to the absence of recoil-driven linPCs for staggered 
cuts.

We stress that the cutoff dependence in qT subtraction due to 
missing power corrections is expected to be quadratic in general 
for QCD corrections to colour singlet production processes [13–16], 
unless there are specific fiducial cuts rendering them linear, like 
for instance symmetric/asymmetric cuts in two-body final states 
or smooth-cone isolation [58] in photon production processes. This 
observation is in line with the findings for single-boson and di-
boson processes in Ref. [4]. In conclusion, we observe that a dif-
ference δpT of 2 GeV between electron and positron transverse-
momentum thresholds is sufficient to eliminate the linear depen-
dence. This is in line with an explicit calculation of power cor-
rections in the fiducial acceptance, which shows that, in most of 
the phase space, linear power corrections are absent as long as 
qT < δpT [7,22]. Due to the aforementioned instabilities related to 
the presence of a linear dependence in qT , staggered cuts con-
stitute a feasible option for future analyses, alongside alternative 
cuts [22] that we did not consider here.

Next, we would like to add few comments on the results shown 
in Ref. [7] about the intrinsic uncertainties of non-local subtraction 
methods for the computation of higher-order corrections in Drell–
Yan production. Given the particularly high precision of Drell–Yan 
measurements and the resulting demand for very accurate theory 
predictions, full control on the systematic uncertainties associated 
to qT subtraction is highly desirable. This is crucial not only in 

the context of NNLO QCD corrections, but also for recent develop-
5
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Fig. 6. Dependence of the NNLO QCD Drell–Yan cross section on rcut with (orange) and without (green) linPCs, normalized to the rcut → 0 result with linPCs, for asymmetric 
cuts (left) and for staggered cuts (right). The horizontal lines show the respective rcut → 0 extrapolations. Errors indicated as in Fig. 1.
ments of computing next-to-NNLO (N3LO) cross sections using qT

subtraction [24,59–61].
While Matrix results (at fixed rcut) are within about 1% of 

those obtained with FEWZ [62], for most neutral-current Drell–
Yan production distributions shown in Ref. [7] they deviate from
FEWZ by a few-percent in the first two bins of the dilepton ra-
pidity (y

) distribution in a very specific setup, shown in the 
rightmost plot of Fig. 6 of that paper. In this setup, the harder lep-
ton is in the central rapidity region (|y
1 | < 2.5), while the softer 
is forward in rapidity (2.5 < |y
2 | < 4.9), in addition to the stan-
dard requirements pT ,
 > 20 GeV and 66 GeV < m

 < 116 GeV. In 
Fig. 7 we repeat the comparison done in Ref. [7] using the same 
setup, namely 

√
s = 7 TeV and ABMP16_5_nnlo [63] PDFs with 

αs(mZ ) = 0.1147. We include the following predictions: Matrix at 
fixed rcut = 0.15% (green, dash-double-dotted), the corresponding 
rcut → 0 extrapolation (red, dash-dotted), our novel Matrix pre-
dictions with rcut = 0.15% including linPCs (orange, dashed), and, 
as a reference, the prediction obtained with FEWZ (blue. solid) as 
well as 7 TeV ATLAS data (black, with error bars).3 In the first ratio 
panel all results of the main frame are shown normalized to FEWZ. 
In the lower panel corresponding ratios for rcut = 0.5% with (pur-
ple, dashed) and without (brown, dash-double-dotted) linPCs can 
be appreciated.

Using a fixed value of rcut = 0.15% without linPCs results in dif-
ferences up to ∼ 5% with respect to the FEWZ prediction in the 
first two bins, as already shown in Ref. [7]. Indeed, those may 
be considered too large for current precision studies of the Drell–
Yan process, although the 7 TeV ATLAS errors cannot resolve these 
differences. The inclusion of the linPCs is sufficient to obtain agree-
ment with FEWZ within 1% at an rcut = 0.15%. Increasing to a 
fixed rcut value of 0.5% makes the comparison even more strik-
ing, as shown in the lower ratio panel: The discrepancy to the 
FEWZ results in the first bins is further increased without linPCs, 
whereas the agreement is excellent throughout as soon as they are 
included.

From the first ratio panel in Fig. 7 we observe that the rcut → 0
extrapolation is sufficient for the Matrix prediction to become 
compatible with that of FEWZ within 1%, which is covered by the 
quoted error band that includes both statistical and extrapolation 
uncertainties. One has to bear in mind, however, that the rcut → 0
extrapolation before version 2.1 of Matrix could be obtained only 

3 We would like to thank the authors of Ref. [7] for providing us with the FEWZ

results of Figure 6 in Ref. [7].
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Fig. 7. Distribution in the rapidity of the lepton pair for rcut = 0.15% without linPCs
(green, dash-double-dotted) and its extrapolation rcut → 0 (red, dash-dotted) as well 
as with linPCs for rcut = 0.15% (orange, dashed) in the setup presented in Ref. [7]. 
For reference, we compare against an rcut-independent result by FEWZ (blue, solid) 
and against ATLAS 7 TeV data [57] (black data points). The first ratio panel shows 
all results in the main frame normalized to FEWZ, while in the second we show 
the same ratios, but for results with rcut = 0.5% with (purple, dashed) and without 
(brown, dash-double-dotted) linPCs.

by performing separate runs for each bin in a distribution. The sup-
port for a bin-wise extrapolation is available from version 2.1 of
Matrix. The previous observations manifest the clear advantage of 
the approach presented in this letter for configurations dominated 
by a recoil-driven linear cutoff dependence: The inclusion of linPCs
allows one to perform the extrapolation procedure at higher val-
ues of rcut, without spoiling the accuracy of the calculation. This 
avoids evaluating and storing results down to very small rcut values 
in all bins of differential distributions in order to perform mean-
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Fig. 8. Dependence of the NNLO QCD cross section on rcut with (orange) and without (green) linPCs, normalized to the rcut → 0 result with linPCs, for Z Z production (left) 
and for γ γ production (right). The horizontal lines show the respective rcut → 0 extrapolations. Errors indicated as in Fig. 1. For γ γ production μR = μF =

√
m2

γ γ + p2
T ,γ γ

is used.
ingful rcut → 0 extrapolations. Therefore, the numerical computa-
tion becomes substantially less demanding, reducing considerably 
the computing time. We note that the very good agreement be-
tween the results obtained with the recoil prescription and those 
obtained using a rcut → 0 extrapolation constitute a consistency 
check that the extrapolation is robust in this case. This is an in-
dication of the reliability of the extrapolation procedure, which is 
the only viable strategy for cases in which the linear power cor-
rections have a different origin.

Finally, we have also considered other processes with two-
particle final states, in particular on-shell Z Z and γ γ production. 
For Z Z production it has already been shown that power correc-
tions in the inclusive case or in a usual fiducial setup with cuts on 
the four-lepton final state in off-shell Z Z production are relatively 
flat and have the expected quadratic dependence on rcut [4]. There-
fore, we have chosen a non-standard set of fiducial cuts that im-
pose symmetric cuts on the two on-shell Z bosons. This provides 
an interesting sample case since on-shell Z Z production proceeds 
through t-channel diagrams at Born level and the formal proof [21]
for the resummation of linPCs in Drell–Yan production does not di-
rectly generalise to the Z Z process. Thus, we study here whether 
linPCs for the Z Z process with symmetric Z -boson cuts exist and 
can be described by suitably accounting for the recoil in qT sub-
traction through Eq. (2). By contrast, for γ γ production it is well 
known [4,6,37] that, as for any process with identified photons in 
the final state, power corrections are linear due to the requirement 
of consistently defining isolated photons through smooth-cone iso-
lation. The possibility to single out the linear power corrections 
due to the presence of symmetric cuts and those induced by the 
isolation requirements allows us to investigate whether there is 
any hierarchy between the size of the linear power corrections 
of different origin in a realistic setup. In particular, here we shall 
study whether including recoil effects through Eq. (2) yields any 
improvements in the diphoton case.

Fig. 8 shows the NNLO QCD cross section as a function of rcut

normalized to the rcut → 0 result with linPCs for both Z Z and γ γ

production. The symmetric cuts are inspired by the lepton cuts we 
applied in the case of Drell–Yan production, i.e. we have imposed 
a transverse-momentum cut of pT ,V > 27 GeV and a rapidity re-
quirement of |yV | < 2.5 on each vector boson V ∈ {Z , γ }. Indeed, 
we observe a linear dependence on rcut also for Z Z production 
with symmetric cuts, and the linPCs are completely included by 
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the contribution of Eq. (2), which properly accounts for recoil ef-
fects, also in this case.

For diphoton production, on the other hand, the situation is 
very different. The observed power corrections are extremely large 
for the given setup, even larger than for the setup considered in 
Ref. [4]. It is worth noting that the recoil-driven linPCs are inde-
pendent of those due to photon isolation. In fact, with symmetric 
cuts the inclusion of recoil-driven linPCs does actually even slightly 
increase the rcut dependence, whereas the opposite behaviour is 
found when considering asymmetric cuts on leading and sublead-
ing photon (not shown here). This shows that a recoil prescrip-
tion is not suitable to account for the dominant rcut dependence 
in processes with isolated photons, which was also observed in 
Ref. [37] in the context of transverse-momentum resummation of 
the diphoton pair in a different fiducial region.

Nevertheless, it is interesting to notice that the observed be-
haviour for γ γ production depends on the partonic channel under 
consideration. In the qq̄ channel, including recoil effects through 
Eq. (2) is sufficient to account for the linPCs, as shown in Fig. 9, 
which is true both at NLO QCD and NNLO QCD. For all other par-
tonic channels this is not the case and the qualitative behaviour is 
similar to that observed for their sum in Fig. 8 (right). The fact that 
the recoil prescription is sufficient to include the linPCs for the qq̄
channel at NLO can be understood as follows: Problematic con-
figurations in the photon smooth-cone isolation are those where 
a light quark is close to a photon, as collinear photon emissions 
from quarks lead to QED singularities. Such effects do not appear 
in the qq̄ channel up to NLO QCD. On the other hand, at NNLO QCD 
the only configurations that lead to QED singularities and con-
tribute at small qT are double-real corrections in which both extra 
emissions become collinear to the emitted photons balancing each 
other. A possible explanation for the absence of linear power cor-
rections at NNLO when including the recoil can be related to the 
fact that these configurations are however particularly symmetric. 
The interplay between the recoil procedure and the isolation re-
quirements is therefore intrinsically different in this channel with 
respect to the others. Moreover, those configurations could simply 
be sufficiently suppressed by phase space, and, in fact, such config-
urations are removed below rcut in a qT -subtraction computation 
for any process. A rigorous explanation of this interesting feature 
characterising the qq̄ channel requires further studies, which we 
leave to future work.
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Fig. 9. Dependence of the NNLO QCD coefficient for γ γ production on rcut for 
each partonic channel with (orange) and without (green) linPCs, normalized to the 
rcut → 0 result with linPCs. The horizontal lines show the respective rcut → 0 ex-
trapolations. Errors indicated as in Fig. 1.

In this letter, we have presented a relatively simple approach 
to include linear power corrections in fixed-order calculations ob-
tained with slicing methods. This is the first time such corrections 
are included in qT subtraction for general colour-singlet processes. 
Our approach is applicable whenever the linear power correc-
tions are of kinematical origin and can thus be captured through 
an appropriate recoil prescription. This is the case if a common 
transverse-momentum requirement is applied on each particle of 
a process with (effective) two-body kinematics, or if different 
transverse-momentum requirements are applied, but on the undis-
tinguished particles ordered in transverse momentum. We have 
shown for the case of neutral-current Drell–Yan production that 
such symmetric or asymmetric cuts applied on the leptons lead to 
a linear dependence on the qT -slicing cutoff, and that by following 
the approach suggested in this letter those linear power correc-
tions are accounted for, both at the level of fiducial cross sections 
and differential distributions.

We have also addressed the concerns raised in Ref. [7] about 
the intrinsic uncertainties of differential Drell–Yan predictions in 
qT subtraction. Given the enormous precision of Drell–Yan studies 
at the LHC, these concerns are justified when predictions with only 
a fixed qT -slicing cut are used. Our suggested approach to include 
the linear power corrections alleviates these issues even when a 
fixed value of the cutoff is used. We also observed that it is suffi-
cient to perform a suitable extrapolation of the qT -slicing cutoff to 
zero with Matrix. The latter, however, requires considerably more 
computing resources to reach an analogous numerical precision.

Finally, we have considered both Z Z and γ γ production with 
symmetric transverse-momentum thresholds on the vector bosons 
8

and showed that for Z Z production the resulting linear power cor-
rections are fully captured by our approach. On the contrary, for 
γ γ production such procedure is insufficient, since the need for 
isolating the photons yields an additional source of linear power 
corrections, which can not be captured through recoil effects.

We have implemented the approach presented here within the
Matrix framework. The additional contribution that includes the 
linear power corrections induced by recoil effects can be turned 
on separately in the input files of all Matrix processes. This feature 
is included in the public Matrix framework from version 2.1. We 
consider it a useful feature especially for experimentalists that are 
interested in obtaining predictions for Drell–Yan production with
Matrix, which provides both NNLO QCD and NLO EW corrections, 
as well as mixed QCD–EW corrections to be included in a future 
release. However, while in particular for legacy Drell–Yan analy-
ses the inclusion of the relevant power corrections is crucial, we 
recommend to avoid the issues related to the enhanced sensitivity 
to low momentum scales by imposing different sets of cuts in fu-
ture analyses. As we have shown, for staggered cuts a difference of 
O(GeV) between the transverse momentum thresholds of the in-
dividual leptons identified by their charges is already sufficient to 
avoid a linear dependence in qT in the relevant rcut range for the 
computation of higher-order corrections.

Note added

An equivalent method to include linear fiducial power correc-
tions in the qT -subtraction formalism has been contemporarily 
presented in Ref. [64].
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