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Abstract
When a distributional model is chosen, the analytic relation between its shape 
parameters and the values taken by some kurtosis indexes, especially if they are 
unconventional, is rarely known. In addition, different indexes may provide contrast-
ing evidence about the level of global kurtosis, when the parameters of the model 
are varied. That happens because just few parameters act “plainly” on kurtosis, 
namely so as to produce consistent modifications of the shape of the graph on both 
its sides. Many parameters, instead, affect kurtosis along with a change of the skew-
ness of the distribution, that is by “inflating” a single side of the graph (usually a 
tail) at the expense of the other. Thanks to some relevant examples, this paper tries 
to provide general indications to recognize the two kinds of parameters above and 
to interpret their effect on the classical Pearson’s standardized fourth moment and 
on some lesser known kurtosis indexes. Specifically, it is shown that only a decom-
posed analysis of indexes can help to understand their apparent contradictions, espe-
cially when some of them are too sensitive to changes in the tails. Finally, some 
applications are provided.

Keywords  Kurtosis · Skewness · Shape parameters · Pearson’s stardardized fourth 
moment · Left/right kurtosis measures

1  Introduction

A close look at the literature reveals that it is hard to share a unified vision of kur-
tosis. That is not just a theoretical debate, because it was largely proved that the 
uncritical identification with Pearson’s standardized fourth moment �2 can lead to 
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some controversial interpretation when measuring departure from normality. As an 
example, Kaplansky (1945), Darlington (1970) and Hildebrand (1971) showed that 
�2 is sensitive to aspects that are only partially related to kurtosis, such as bimodal-
ity. The problems arising in the empirical analysis of kurtosis based on samples, in 
addition, were recently highlighted in Borroni and De Capitani (2022), where some 
guidelines to choose from classical and unconventional indexes are also provided. 
In any case, even when the distribution is known, it seems that the most effective 
way to look at kurtosis is to follow Balanda and MacGillivray (1988), who identify 
it as a “location and scale-free movement of probability mass from the shoulders of 
a distribution into its center and tails” (see also Zenga, 2006). Despite the obvious 
vagueness of such a definition, its founding element is that the movement causing 
kurtosis should not alter location and scale or, equivalently, that to compare kur-
tosis of two distributions, one need to assure that they share the same location and 
scale, however they are measured (see also Johnson et al., 1994). That issue is par-
ticularly relevant to analyze the effect of the variation of the parameters of a given 
model on the level of kurtosis. For instance, it is unanimously accepted that kurtosis 
is inversely proportional to the degrees of freedom of a T-Student, so that one is 
often asked to work coherently with such a rule. However, when we jointly plot two 
T-Student curves, say with 3 and 15 degrees of freedom respectively (Fig. 1), we 
soon realize that their main visual difference rests in the tails, as if a decrease in the 
degrees of freedom can only cause a movement of probability mass from the center 
to the tails. Obviously, that wrong conclusion overlooks the different scales of the 
two distributions: when they are properly standardized, indeed, it is clear that the 
movement occurs from the shoulders towards the tails and the center (see the first 
panel of Fig. 2). Interestingly, a clearer picture of the joint role of tails and center is 
obtained when, to sterilize for the scale, the standard deviation is substituted by the 
mean deviation around the median or the mean (as depicted by the second panel of 
Fig. 2).

Beyond such well-accepted examples, the aim of this paper is to get further into 
the relationship between the shape parameters of some known models and the level 
of kurtosis of the underlying distribution. Naturally, our analysis will be conducted 

Fig. 1   Plot of two T-Student 
densities with 3 (solid) and 15 
(dashed) degrees of freedom
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by looking first at the visual effects of parameters on the graph, in the above-dis-
cussed sense, and then by checking for the coherence of these effects with the val-
ues taken by some kurtosis indexes. We will see that, even though it is obvious to 
expect a difference in the sensitivity of every index, sometimes there are contrasting 
effects on their values, despite the variation of parameters shifts the graph in a clear 
direction. Very often, that is due to the presence of a second, thoroughly connected 
aspect of a distribution: its asymmetry (see also Blest, 2003 and Jones et al., 2011). 
Notice that, by definition, skewness is a characteristic which affects differently the 
two “sides” of a distribution, that is the ones obtained by dividing it according to a 
location measure (usually the mean or the median). Following Zenga (1996), then, 
a careful analysis of kurtosis in the presence of skewness can be possibly conducted 
by looking at the shoulders and the tails of the two sides of the distribution sepa-
rately (their “centers" being the parts of the graph lying on the left and on the right 
of the chosen location measure).

Now suppose to concentrate on, say, the left side and to analyze the effect of a 
shape parameter � characterizing the distribution of a random variable X� . One can 
set different values of � and compare their corresponding left curves, i.e. the parts 
of the density obtained when X� ≤ l(X�) , if l(X�) denotes the chosen location meas-
ure. However, to get an unbiased comparison, a certain level of uniformity is to be 
guaranteed. The most obvious problem is that the compared curves are just “por-
tions” of the original densities, i.e. they do not necessarily integrate equally, unless 
l(X�) is the median of X� . Thus, for every compared �, a possible solution is to work 
conditionally to the event X� ≤ l(X�), so that, consistently, the right curve should be 
conditioned to X𝜃 > l(X𝜃). This approach is used, for instance, in the “kurtosis dia-
gram” of Zenga (1996), where the properties of the conditional distributions of the 
two variables

(1)
Sl(X𝜃) ∶= (l(X𝜃) − X𝜃) |X𝜃 ≤ l(X𝜃) and Dl(X𝜃) ∶= (X𝜃 − l(X𝜃)) |X𝜃 > l(X𝜃)
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Fig. 2   Plots of two T-Student densities with 3 (solid) and 15 (dashed) degrees of freedom, sterilized for 
the scale by means of the standard deviation (left) and the mean deviation around the mean (right)
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are considered to get a picture of kurtosis on the left side and on the right side of X� . 
Being that our aim is just to get a decomposed graph of the density of X� , the devia-
tions from l considered in (1) are not relevant. Indeed, in Zenga’s approach, they are 
actually motivated by the need to get non-negative variables, as detailed in the fol-
lowing. In any case, even when just the conditional densities of X� are used, to build 
a faithful graph, they must also share the same support. Obviously, this fact cannot 
be assured if l(X�) varies with �. However, one may take advantage of the invari-
ance of kurtosis to translations or, more generally, to linear transformations. In what 
follows, we will use the conclusions drawn in De Capitani and Polisicchio (2016): 
consider two values �1 and �2 of � and denote X�1

 and X�2
 simply as X1 and X2. Sup-

pose further to compare the left and the right parts of the densities of X1 and of X2, 
denoted as f1 and f2 respectively. One can simply split the graph of f1 according to 
the value of l(X1) and draw, on the same plot, the density of the fictitious variable 
X∗
2
, which is obtained by the following mixture:

In the formula above, fS and fD depend on the distribution of the random variable 
X̃2, which is obtained by linear transformation of X2 as

where bS = E
[
Sl(X1)

]
∕ E

[
Sl(X2)

]
 and bD = E

[
Dl(X1)

]
∕ E

[
Dl(X2)

]
. Specifically, 

fS is the conditional density of X̃2 given that X̃2 ≤ l(X1),

while fD is the conditional density of X̃2 given that X̃2 > l(X1),

Notice that the transformation in (3) is built to retain the relevant characteristics and 
the degree of kurtosis of X2 (for instance, X2 and X∗

2
 have the same kurtosis dia-

gram), while making it directly comparable with X1. First, when transforming X2 
in X̃2 , the location l(X2) is translated to l(X1) so that P

[
X2 ≤ l(X2)

]
= P

[
X̃2 ≤ l(X1)

]
. 

That makes it sensible to split even the graph of the fictitious variable X∗
2
 according 

to l(X1). Indeed, as obtained by the definition of the conditional densities (4) and (5) 
and by the the weights chosen in the mixture (2), one can notice that

The statement above guarantees that, if f1 and f ∗ are plotted in the same graph and 
split according to l(X1), both the side-graphs and the whole graphs of the two com-
pared distributions integrate equally. Actually, when l is the mean, the median or 

(2)f ∗(x) ∶= fS(x)P
[
X1 ≤ l(X1)

]
+ fD(x)P

[
X1 > l(X1)

]
.

(3)X̃2 ∶=

{
bS

(
X2 − l(X2)

)
+ l(X1) if X2 ≤ l(X2)

bD
(
X2 − l(X2)

)
+ l(X1) if X2 > l(X2)

(4)fS(x) ∶=
1

P
[
X2 ≤ l(X2)

] 1

bS
f2

(
1

bS
(x − l(X1)) + l(X2)

)
x ≤ l(X1),

(5)fD(x) ∶=
1

P
[
X2 > l(X2)

] 1

bD
f2

(
1

bD
(x − l(X1)) + l(X2)

)
x > l(X1).

(6)P
[
X∗
2
≤ l(X1)

]
= P

[
X1 ≤ l(X1)

]
.
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any quantile of the distribution, splitting the graph of X∗
2
 according to l(X1) means 

to use its own location, because it is easily shown that l(X1) = l(X∗
2
) . Whatever 

location measure is chosen to split the graph, anyway, X∗
2
 and X1 have always the 

same expectation. Indeed, the slopes in the linear transformation (3) are set to 
guarantee that

and that, consistently,

Thus, by (6), one gets

Another look at X∗
2
 not only shows that it shares the location of X1, but that it has 

also the same scale. By the equalities above, indeed,

which, again by (6), gives

After noticing that l(X1) = l(X∗
2
), eq. (7) shows that that X∗

2
 and X1 has the same 

mean deviation around l. Thus, the comparison is made under a sterilization of both 
location and scale, as required above for symmetric distributions. Actually, the fact 
that X∗

2
 and X1 are forced to have the same expectation, the same location l and, by 

eq. (6), even the same cumulative probability at l guarantees, in a sense, a steriliza-
tion of skewness as well, at least if one is willing to measure such a phenomenon 
by the difference between the mean and the median of a distribution. More specifi-
cally, when l is the median, the equality E

[
X∗
2

]
= E

[
X1

]
 guarantees that X∗

2
 and X1 

share the same difference between the mean and the median. Similarly, when l is the 
mean, (6) guarantees that the same difference between the cumulative probability at 
the mean and at the median is obtained for both distributions.

To appreciate the coherence of the proposed method of comparison with the dis-
cussion above about symmetric distributions, consider the example in Fig.  3. The 

E
[
X∗
2
|X∗

2
≤ l(X1)

]
= E

[
X̃2 | X̃2 ≤ l(X1)

]

= − E
[
Sl(X1)

]
+ l(X1)

= E
[
X1 |X1 ≤ l(X1)

]

E
[
X∗
2
|X∗

2
> l(X1)

]
= E

[
X̃2 | X̃2 > l(X1)

]

= E
[
Dl(X1)

]
+ l(X1)

= E
[
X1 |X1 > l(X1)

]
.

E
[
X∗
2

]
= E

[
X∗
2
|X∗

2
≤ l(X1)

]
P
[
X∗
2
≤ l(X1)

]
+ E

[
X∗
2
|X∗

2
> l(X1)

]
P
[
X∗
2
> l(X1)

]

= E
[
X1 |X1 ≤ l(X1)

]
P
[
X1 ≤ l(X1)

]
+ E

[
X1 |X1 > l(X1)

]
P
[
X1 > l(X1)

]

= E
[
X1

]
.

E
[(
l(X1) − X∗

2

)
|X∗

2
≤ l(X1)

]
= E

[(
l(X1) − X1

)
|X1 ≤ l(X1)

]

E
[(
X∗
2
− l(X1)

)
|X∗

2
> l(X1)

]
= E

[(
X1 − l(X1)

)
|X1 > l(X1)

]
,

(7)E
[ ||X

∗
2
− l(X1)

||
]
= E

[ ||X1 − l(X1)
||
]
.
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first panel of that figure reports the result obtained when comparing two T-student 
distributions (with 3 and 15 df), whose graphs are split according to the mean. 
Clearly, no problems arise here for location, because both distributions are sym-
metric around zero. However, the comparison made through the fictitious density 
(2) introduces the needed sterilization for the different scale. Being that such a task 
is accomplished by the mean deviation around the mean, the same comparison 
reported in Fig. 2 (second panel) is thus obtained, even if the two densities are split 
here around the mean zero. The second panel of Fig. 3, instead, reports a similar 
comparison when the skew-T model is considered (details in the following). Notice 
that the plot of (2) does not always produce a continuous density. Nonetheless, one 
needs to look at the two sides of the graph separately. Moreover, any conclusion 
drawn on a single side of the graph must be referred to that side of kurtosis, without 
being sure that the same holds true for the other side or for the whole distribution.

Even a first look at the second panel of Fig. 3 makes it clear that, when kurto-
sis is entangled with skewness, providing an overall judgment about its level is an 
hard task, because the two sides of the plot are often likely to produce contrasting 
evidence. That problem, of course, reflects on the evaluation given by an overall 
index, unless it can be decomposed as well. Basically, that is the idea under the 
measurement of kurtosis provided by Zenga (1996): by noticing that a movement 
of probability mass from, say, the left shoulder increases the concentration of that 
mass out of the center of S(X�) towards its extremes, the left contribution to kur-
tosis can be measured by the Gini’s concentration ratio. After dropping depend-
ence on the parameter �, one gets, for every random variable X, 

where X′ is an independent copy of X. Notice that the definition in (8) depends on 
the chosen location measure l: the usual choices are the mean and the median, which 

(8)K−
2
(l) ∶=

E
[||Sl(X) − Sl(X

�)||
]

2 E
[
Sl(X)

]
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Fig. 3   Plots of the left/right parts of two symmetric and two skewed distributions. Left panel: two T-Stu-
dent densities with 3 (solid) and 15 (dashed) degrees of freedom. Right panel: two skew-T densities, both 
with skew-parameter 0.5,  with 3 (solid) and 15 (dashed) degrees of freedom
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will be denoted as � and � respectively in the following (see De Capitani and Poli-
sicchio, 2016). Obviously a similar reasoning can be applied to the right side of the 
distribution, to get

so that an overall index is obtained as

Of course, one of the advantages of K2(l) rests in its natural decomposability, even if, 
to agree with the judgment provided by the overall index, one must also agree with 
the weights chosen for the two parts of the distribution, as detailed in the following.

In this paper, we will test the relationship between some shape parameters and 
K2(�) or K2(�). Beyond considering their differences, we will compare them with 
other known indexes. Firstly, we will evaluate other measures based on Zenga’s 
logic, i.e. those obtained by assimilating concentration with relative variability:

where, again, l = � or l = � (see Zenga, 1996). Secondly, we will consider Pearson’s 
standardized fourth moment �2 and, to be compliant with the discussion above, we 
will decompose it as

Notice that the decomposition provided by (12) is far from being natural. In addi-
tion, it forces to split the two sides of a distribution according to the mean. These 
facts depict, in a sense, the drawbacks of �2, which will be outlined in the following. 
Nonetheless, we will also see that there are actually many points of touch between 
�2 and the other considered indexes. For other possible decompositions of �2, and for 
the possible substitution of the mean with the median, the interested reader can refer 
to Fiori (2007).

Each of the following sections from 2 to 5 is focused on a specific model 
which, in our opinion, is relevant both for the applicability to many empirical 
situations and for the general indications that it can provide. Sect. 6 summarizes 
these indications. Finally, Sect.  7 describes some applications and it sketches 
possible lines of future research.

(9)K+
2
(l) ∶=

E
[||Dl(X) − Dl(X

�)||
]

2 E
[
Dl(X)

] ,

(10)K2(l) ∶= K−
2
(l)P[X ≤ l(X)] + K+

2
(l)P[X > l(X)].

(11)

K1(l) ∶=

[
1 −

E2
[
Sl(X)

]

E
[
S2
l
(X)

]

]
P[X ≤ l(X)] +

[
1 −

E2
[
Dl(X)

]

E
[
D2

l
(X)

]

]
P[X > l(X)]

∶= K−
1
(l)P[X ≤ l(X)] + K+

1
(l)P[X > l(X)],

(12)

𝛽2 ∶=
1

𝜎4
E
[
(𝜇 − X)4 |X ≤ 𝜇

]
P[X ≤ 𝜇] +

1

𝜎4
E
[
(X − 𝜇)4 |X > 𝜇

]
P[X > 𝜇] =

∶= 𝛽−
2
P[X ≤ 𝜇] + 𝛽+

2
P[X > 𝜇].
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2 � Gamma distribution

In models possessing a single shape parameter, its variation is likely to result not 
only in a change of kurtosis, but also in simultaneous modifications of other charac-
teristics, markedly of skewness. More interestingly, that variation may induce differ-
ent changes in the left and in the right part of a distribution, as discussed above. A 
relevant example is provided by the Gamma model in its standard form:

where Γ(�) = ∫ ∞

0
u�−1 e−u du denotes the Gamma function. As known, when the 

parameter 𝛼 > 0 increases, the shape of the distribution becomes more and more 
similar to the Normal density. Graphically, that fact can be appreciated, first, by the 
occurrence of a mode when � is as high as 1 (while, when 0 < 𝛼 < 1, the density 
tends to infinity as x tends to zero) and by the appearance of a peak when 𝛼 > 1. 
Moreover, as � increases, the fatness of the right tail tends to even out and the left 
tail shows up (see Fig. 4).

Movements of the parameter � , then, lead to the variation of many characteris-
tics of the distribution but, while the effect of location and scale can be easily steri-
lized by looking at its standardization (see Johnson et al., 1994), the entanglement 
of skewness and kurtosis creates a somewhat confounding effect: without a proper 
sterilization for skewness, when � increases, kurtosis is simultaneously decreased 
due to a movement of the probability mass away from the right tail and increased by 
a similar movement of probability towards the center. As a consequence, even if all 
kurtosis indexes reasonably tend to their values in the case of the Normal distribu-
tion if � gets large, the characteristics of the paths leading to those value may mark-
edly differ.

Figure 5 illustrates such a fact: to improve readability of the graphs, � is left to 
vary just from 0.5 to 5 and the two indexes K2(�) and �2 are plotted against the shape 
parameter, after dividing them by the values taken in the case of the Normal distri-
bution (0.4142 and 3 respectively). One can notice first that the initial evaluation of 

(13)f (x) =
1

Γ(�)
x�−1 e−x x ≥ 0,

Fig. 4   Plots of the density (13) 
when � = 0.5 (solid), � = 2 
(dashed) and � = 3.5 (dotted)
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kurtosis (i.e. the one for � = 0.5 ) is quite different for the two indexes: K2(�) (first 
panel) depicts a distribution with less kurtosis than the Normal, being around 76% 
of the Normal value; on the contrary, �2 (second panel) is five times higher than its 
reference value, which results in a strong level of kurtosis. If we think about the 
shape of the Gamma model when � = 0.5, we can clearly identify two aspects: the 
unboundedness of the density on the left side, which shifts probability around zero, 
and the fatness of the right tail. In the rough effort of explaining the different atti-
tude of the two indexes, then, one can simply think that K2(�) is more sensitive to 
the first phenomenon, which is undoubtedly a symptom of low kurtosis, while �2 
mostly concentrates on the fatness of the right tail, which acts conversely. Such an 
explanation, in effect, would also fit the different paths to the limiting value which 
characterize the two indexes: while the mass moves away from zero and the density 
gets bounded, K2(�) increases; on the contrary, �2 has a simultaneous decrease due 
to the movement of the mass away from the right tail.

If we look at the problem not just from the point of view of the final value of 
an index, the conclusions above are only partially correct. A way to reconcile the 
results provided by K2(�) and �2, indeed, is to examine the decomposition of the 
distribution and of the indexes, as discussed in the Introduction. Figure  6 shows 
the graphs obtained by setting the two values � = 2 (solid curves), � = 3.5 (dashed 
curves) and by “splitting" the two corresponding Gamma densities as described 
above. When the parameter increases, the probability mass moves from the shoulder 
to the center and to the tail in the left side, while an opposite movement is observed 
in the right part. Consequently, the overall judgment on how � affects kurtosis must 
depend on two factors: the sensitivity used for the tail and the center when evaluat-
ing the shape modification of the left/right part and the weight applied to each part 
when the whole distribution is considered.

Clearly, a choice in the weighting system above is made when a specific index 
is applied. As known, K2(�) measures the concentration of S�(X) and of D�(X) first 
and then it weights results by P[X ≤ �] and P[X > 𝜇] respectively. Notice that the 
chosen concentration measure, Gini’s ratio, is invariant under scale functions, which 
means that transformations like (3), made to get comparable graphs in the two sides 
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of the distribution, cannot affect the value of the index. Similar conclusions hold 
for �2 as decomposed in (12), but while it is clear that K2(�) and �2 apply the same 
weight to the left and to the right part, a difference may be appreciated in the evalu-
ation provided for the tail and for the center in each part. Being built on the fourth 
power of the difference from the mean, for instance, �−

2
 is likely to mostly weight the 

left tail. This means that, when the left part gives room mainly for the center (like 
when � = 2 ), the extent of left kurtosis is under-evaluated; nonetheless, if a move-
ment of probability towards the left tail occurs (like when � is shifted from 2 to 3.5), 
�−
2
 should show an increasing pattern.
The intuition above is confirmed by Fig.  7: the unweighted left/right parts of 

K2(�) and �2 are plotted against increasing values of the shape parameter of the 
Gamma distribution. Looking at the left parts of both indexes (dashed curves), one 
can notice that, coherently with the conclusions for Fig.  6, left kurtosis increases 
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Fig. 6   Comparison of two Gamma densities when � = 2 (solid) and � = 3.5 (dashed), separated into their 
left and right parts
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with �. However, it is clear that such a phenomenon mostly affects K−
2
(�), while �−

2
 

takes (comparatively) low values with just a mildly increasing pattern. Conversely, 
on the right side (dotted curves), K+

2
(�) and �+

2
 share a similar decreasing pattern. 

However, notice that, while the former shows a curve somewhat symmetric to the 
left part, the latter starts from very high values, due to its strong sensitivity to the 
right tail. As for the weight given in each index to the left/right part, one may notice 
that, when � is small, P[X ≤ �] takes values close to one (being, for instance, 0.6827 
when � = 0.5 ) and that it decreases quite slowly with � (being still over the half 
when � = 5 ). As a result, both K2(�) and �2 (solid curves in Fig.  7) weight more 
left kurtosis than the right. However, the values taken by �2 in the left part of the 
distribution, whose support is bounded below by zero, are comparatively markedly 
smaller than the ones in the right part, so that the overall �2 is mostly sensitive to the 
effect of the right tail. Due to the symmetry of the left and the right part, conjugated 
with an unbalanced weighting system, K2(�) is, instead, mostly influenced by the 
thickening of the center of the distribution.

The analysis of decomposed indexes above does not aim at establishing the supe-
riority of one of them, unless the researcher wants deliberately to favor some aspects 
of kurtosis. By contrast, it can provide a useful tool to interpret indexes correctly 
and possibly to reconcile opposite pieces of evidence. That logic can be applied, 
of course, in the comparison of other kurtosis measures. In this sense, Fig. 7 can 
be juxtaposed to Fig. 8 where, in the same settings, the decomposition of Zenga’s 
K2(�) is reported.  Notice that the paths of the left and right kurtosis are very similar 
to the ones reported in the first panel of Fig. 7 for K2(�), despite one would expect 
that the strong skewness can induce distinct results whether the mean or the median 
is chosen as a cutting point for the two parts of the distribution. The real distinction 
between K2(�) and K2(�), indeed, rests in the weight chosen for the two sides, which 
is constantly equal to 1/2 when � is used. As a result, left and right kurtosis almost 
compensate in such a case, so that K2(�) is nearly constant, with a non-monotonic 
pattern, slightly decreasing when � is low and slowly increasing as � grows. That is a 
case where looking just at the overall index can provide misleading information: on 
the basis of the sole K2(�), indeed, one would just conclude that the distribution has 

Fig. 8   Plot of K
2
(�) in the 

Gamma model, when � ranges 
from 0 to 5. The overall index 
(solid) is decomposed into its 
left (dashed) and right (dotted) 
contributions
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a kurtosis similar the Normal model, thus ignoring that its shape is quite different 
and that the observed level is actually the effect of a compensation.

Interestingly, the conclusions drawn for K2(�) and K2(�) can be equally retraced 
for K1(�) and K1(�) respectively. In the usual settings, Fig.  9 illustrates that. One 
is thus tempted to conclude that the K1− indexes do not provide new information 
about kurtosis and that computing the complete sets of Zenga’s indexes is substan-
tially useless. However, the same conclusions do not necessarily holds for models 
other than the Gamma, as shown in the following. Moreover, one cannot forget that, 
when such kurtosis indexes are estimated from sampled data, their performance may 
markedly differ (see Borroni and De Capitani, 2022).

3 � Johnson’s S
U
−system of distributions

The example of the Gamma model shed some light into the entanglement of kurto-
sis to skewness: the main conclusion of our analysis is that, when both phenomena 
coexist, kurtosis is better evaluated by separating the contributions given by the left 
and the right part of the distribution. As for the relationship of kurtosis indexes with 
shape parameters, the same example showed, in addition, that it may be altered by 
their different abilities to interpret movements of mass affecting the tails. Of course, 
no index will ever fully separate kurtosis from skewness, but it is also clear that, 
to compare the ability to accomplish that task, a model possessing a single shape 
parameter might not be particularly useful. Indeed, variations of a unique parameter 
not only will induce concomitant changes in both kurtosis and skewness, but those 
changes are also likely to occur in a fixed proportion.

This fact arises clearly for the Gamma model, as evidenced by Fig. 10 where the 
values of �2 (corresponding to � ranging from 0.05 to 5) are plotted against those 
of �2

1
, the square of the standardized third central moment. As known (see Johnson 

et al, 1994), a linear relation exists so that, for every unit increase of �2
1
, �2 increases 

by 1.5 times. Of course, different conclusions (including non-linearity) might be 
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obtained, even in the same model, when the kurtosis index is changed and/or paired 
with a different skewness measure. Nonetheless, it is clear that a deeper comparative 
analysis among indexes could be carried out only if a family is found where the rela-
tionship between kurtosis and skewness can be altered at convenience. A somewhat 
similar aim led Johnson (1949) to develop the known SU−system of unbounded dis-
tributions, with density

which actually possesses two shape parameter, 𝛿 > 0 and � ∈ ℜ. When the latter 
is 0, the distribution is symmetric and the parameter � is often regarded an inverse 
measure of fatness of the tails (see Brys et al., 2006). Conversely, even if � cannot be 
merely regarded as a parameter of skewness, obliquity increases with |�| ≠ 0 and the 
distribution is negatively (positively) skewed when 𝜉 > 0 ( 𝜉 < 0 ). Thus, the family 
can be conveniently used to model every combination of the levels of kurtosis and 
skewness. Specifically, while Johnson (1949) only showed that the two parameters 
can be fixed to obtain any couple (�2, �1), we will use the model to explore different 
forms of the relationship between kurtosis and skewness, as one parameter is fixed 
and the other moves.

If we start from the simple situation � = 0, all kurtosis indexes are easily 
shown to agree in detecting a high level of kurtosis, decreasing with �, that is 
with the lightening of the tails. There are, of course differences among the evalu-
ations provided by indexes: as an example, Fig. 11 reports the plots of K2(�) (first 
panel) and �2 (second panel) when � = 0 and � ranges from 1 to 3. Similarly to the 
settings of Fig. 5, both indexes were divided by their values in the Normal case. 
Despite no confounding effects by skewness arises here, one can still realize that 
the tail behavior has a huge impact on �2 when � is too low.

Of course the effect of the parameter � on the shape of the distribution is diffi-
cultly interpreted when � ≠ 0. To understand this issue, Fig. 12 reports the graphs 

(14)
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of the density (14) when � = 1 (solid curve) and � = 1.5 (dashed curve), while � 
is set to 1 in both cases. A clear movement of the probability mass towards the 
left tail stands out when � increases. This movement clearly makes the distribu-
tion more skewed but this fact is here accompanied by relevant changes in kurto-
sis as well. In this respect, a careful look shows that, actually, the most effective 
variation occurs in the right part of the distribution. In other words, the increase 
of weight of the left tail is comparatively masked by the fact that this tail was 
already fat, due to a low level of the parameter �. As for the Gamma example 
above, such conclusions can be clarified by building separate graphs for the left 
and the right parts.

The first panel of Fig.  13 shows that, despite a certain increase of kurtosis 
when � = 1.5, the left parts of the two distributions do not markedly differ. Con-
versely, in the comparison of their right parts (second panel), one can distinctly 
notice a movement of the probability mass from the tail and the center toward the 
shoulder of the distribution, i.e. a decreasing effect on kurtosis as � increases.
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Interestingly, when � is set to 4, even if the shift of � from 1 to 1.5 still leads 
to a similar path (increase of left-kurtosis and decrease of right-kurtosis), the two 
changes are now almost balanced (see Fig. 14). One can thus expect that, in this 
situation, the overall kurtosis is less affected by variations of the parameter � than 
what happens if � is low and the tails are fat. This shows clearly that the value set 
for � can modify the kind of relationship between kurtosis and skewness in the 
considered model. If an exercise similar to the one depicted in Fig. 10 is repeated 
for the SU−system, for instance, just a nearly linear relationship between �2 and 
�2
1
 exists. Moreover, its slope equals approximately 2.05 when � = 1 and lowers to 

1.35 when � = 4.

Turning back to indexes, as above outlined, one should expect that their values 
is clearly affected by variations of � only when � is set to a low level. In this regard, 
Fig.  15 show a nearly constant path of K2(�) (first panel) and �2 (second panel), 
when � = 4, despite � ranges from 0 to 4. Actually �2 reports a slightly increasing 
effect of �, while the opposite is true for K2(�). That difference is possibly due to 
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the residual sensitivity of �2 to the burdening of the left tail, despite the mild effect 
on kurtosis. Notice that, when the indexes are decomposed, the path of their left and 
right branches is quite similar, with variations of mild intensity.

A pretty different thing is observed in Fig. 16, when � is set to a value as low 
as 1. The clear effect of the variation of � on the overall kurtosis leads to mark-
edly different behaviors of the indexes. In the first panel, K2(�) is seen to decrease 
with �, which means that the index is mostly sensitive to the changes occurring 
in the right part of the distribution (see the second panel of Fig. 13). Such a con-
clusion is supported by the path of the right (dotted) branch in the decomposi-
tion of K2(�) : a situation substantially opposite to the one depicted by Fig. 7 for 
the Gamma model is observed. Coherently, as � moves from 0 to 4, �2 (second 
panel of Fig.  14) concentrates on the burdening of the left tail, so that its left 
(dashed) branch shows a fast increase which predominates in the overall index. 
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Both indexes tend to even out when � is high, but their final assessment of kurto-
sis is quite different.

Differently from the Gamma model, the weighting of the left/right part seems 
to affect just mildly the paths of Zenga’s overall indexes, as observed when the 
cutting point is changed from the mean to the median. The first panel of Fig. 17 
supports such a conclusion: along with its side branches, the overall K2(�) behave 
quite similarly to what depicted in the first panel of Fig. 16 for K2(�). As a fur-
ther term of comparison, the second panel of Fig. 17 reports the plots related to 
K1(�) : despite the slightly different values shown (recall that K1(�) = 0.3634 in 
the Normal model), it is clear that K1(�) leads to the same conclusions of the K2− 
indexes for the relationship between kurtosis and the parameter �. This fact is true 
in general, regardless of the value taken by �, and it holds for K1(�) as well (the 
related plots are not reported for the sake of brevity).

4 � Skew‑T distribution

Due to its flexibility, the SU−system of unbounded distributions provided us with 
a good example to understand the sensitivity of kurtosis measures to the shifts of 
shape parameters. The presence of the parameter �, mainly controlling skewness, let 
us understand that this phenomenon can, in a sense, contrast kurtosis, at least when 
the latter has some initial high levels. Before getting further into that conclusion, 
however, it has to be emphasized that the second parameter � of Johnson’s system 
regulates mainly the fatness of the tails: especially when there is a certain level of 
skewness, then, one is not sure that movements of � are necessarily connected with 
modifications of the tails and of the center as well. Thus, some further insight need 
to be searched in models where a first parameter is supposed to act simultaneously 
on the tails and the center, while a second parameter introduces different levels of 
skewness. This section evaluates the skew-T model (see Azzalini and Capitanio, 
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2014), where the usual role of the degrees of freedom � in the T-distribution is con-
jugated with a skew-parameter �. The resulting density is

(where Φ denotes the cumulative distribution function of the standard Normal dis-
tribution). When � = 0, (15) reduces to the T-distribution and it gets more right-
skewed as � takes positive increasing values; moreover, when � → ∞, (15) gives the 
skew-Normal model (see Azzalini and Capitanio, 2014).

Despite the suspected difference regarding the center, the skew-T model gives 
conclusions very similar to the one in the previous section: when the initial kurtosis 
is high (which means, in these settings, that � takes a low value), even a small level 
of skewness can reduce it. Conversely, when there are many degrees of freedom and 
� is raised, kurtosis is almost unaffected, at least for ordinary levels of skewness. 
To get into details, one may look at the first panel of Fig. 18, where the value taken 
by K2(�) (divided by 0.4142) is plotted against � ranging from 0 to 10. Two curves 
are built, by fixing � to 5 (dashed) and to 50 (solid) respectively: for mild shifts of � 
from 0, the steep pattern of the former clearly juxtaposes to the flatness of the latter. 
In addition, like in the Johnson’s model above, the cause of the contrasting effect of 
skewness on kurtosis can be traced back not just in the tail which gets fatter, but in 
the modification of other part of the distribution, where relevant movements of mass 
occur from the tail and the center toward the shoulder (recall Fig. 13). That intuition 
is supported by the decomposition of K2(�), which is reported in the first panel of 
Fig. 19 for the case � = 5. Indeed, notice that the increase in the right-kurtosis, as 
measured by K+

2
(�), tends to even out when � gets over some ordinary levels but 

that, conversely, the left part of K2(�) has a constantly decreasing pattern. Finally, 
the second panel of the same Fig. 19 indicates that such conclusions hold for K1(�) 
as well (and actually also for all Zenga’s indexes, even if the related plots are not 
reported for the sake of brevity).
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When the interest shifts from the parameter �, which mainly regulates skewness, 
to a more “pure” parameter of kurtosis like �, the two branches of a decomposed 
index show compliant patterns, as one would expect. In Fig.  20, a mild level of 
skewness is fixed by setting � = 1.5 and the decomposition of two Zenga’s indexes, 
K2(�) (first panel) and K1(�) (second panel), is reported when � moves from 5 to 20. 
Notice that both sides of the indexes show a decreasing pattern, even if the effect of 
� fades out from a certain level on. In addition, the decrease of the right branches 
seems to be strengthened by the presence of a certain level of skewness.

Turning to �2, one could claim that the conclusions drawn for Zenga’s indexes 
are not met. The second panel of Fig. 18, indeed, reports an increasing pattern of �2 
when � = 5 (dashed curve) and � is raised from 0 to 10,  so that a contrasting effect 
of skewness on kurtosis seems not to be detected here. Even when � is raised to 50 
(solid curve), skewness still causes increasing values of �2, although around very 
low levels. The apparent contradiction between the evaluation provided by Zenga’s 
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indexes and �2, however, is just the consequence of a somewhat overwhelming effect 
of the right tail. Being quite sensitive to it, indeed, �2 raises indefinitely when (posi-
tive) skewness burdens the right tail, while the modifications occurred in the left 
part of the distribution are masked in the overall index. This fact is clearly shown 
in the first panel of Fig. 21: when � is fixed to 5 and skewness is raised by mov-
ing � from 0 to 10,   the left and the right branches of �2 have patterns similar to 
those observed for K2(�) above (first panel of Fig. 19). Despite that, the compara-
tively huge value of �+

2
 and the unbalanced weighting system for the two sides tend 

to favor the evaluation provided for the right part. A decomposed analysis, then, 
reveals coherence among all considered indexes. That is also true when the effect 
of a parameter regulating mainly kurtosis, like �, is considered. Indeed, the second 
panel of Fig. 21, which is built by setting � = 1.5 and by moving � from 5 to 20,  is 
consistent with what observed for K2(�) and K1(�) in Fig. 20 although, again, the 
predominant role of the side with a fat tail is observed.

5 � Zenga’s income distribution

The discussion in the two previous section highlighted that kurtosis is the sum of 
many aspects of the shape of a distribution, which may show fat and pronounced 
tails (so called tailedness), high values of the density around a single point (so 
called peakedness) or an inflated side at the expense of the other (so called skew-
ness). As a consequence, kurtosis is difficultly measured by such indexes, like 
�2, which concentrate on a single aspect, without wondering if they possibly bal-
ance. To understand that issue, then, one can look at distributions which are quite 
flexible in terms of the shape, while maintaining almost constant levels of global 
kurtosis. Mainly as a model for income distributions, Zenga (2010) introduced a 
family which, under some limitations, has that property.
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Under some restrictions on parameters, suitable for our analysis, the density 
can be defined as

where B (a, b) = ∫ 1

0
ua−1 (1 − u)b−1 du and IB (z;a, b) = ∫ z

0
ua−1 (1 − u)b−1 du 

denote the Beta function and the incomplete Beta function respectively ( a > 0; 
b > 0; 0 < z ≤ 1 ). In the settings of (16), the first moment is constantly equal to unity, 
while the two shape parameters are such that 𝛼 > 0 and 𝜃 > 1 (see Zenga, 2010) and 
De Capitani and Zini, 2013) for a general definition of the density). The density has 
a Paretian right tail, which lightens with �; as a consequence, it possesses the r− th 
moment just for 𝛼 > r − 1. For our purposes, in order to guarantee a fair comparison 
of all kurtosis indexes including �2, we will then be limited to the case 𝛼 > 3. More-
over, many application of the model to real income data show that � is often as high 
as 2.5 − 3, which also guarantees that the curve has a “mild” peak.

As a first example, Fig.  22 reports two graphs of the density (16), where 
� = 3 and � = 3.5 (solid) or � = 5 (dashed). One can notice that the increase of 
� reduces the fatness of both tails, but also that a simultaneous effect of peak-
edness is observed. Specifically, a movement of mass from the tails of the dis-
tribution towards its shoulders seems to coexist with an opposite effect towards 
the center. Differently from what observed for other models (see, for instance, 
the Gamma density above), however, this double movement of probability mass 
affects, almost in the same way, both the right and the left side. As a result, one 
can expect that the increase of � can shift neither the kurtosis level of any side 
neither that of the overall distribution.

To test such a conclusion, Fig. 23 reports the usual separate comparison of the 
right and the left parts of the two densities: when � is raised from 3.5 to 5, just 
a slight variation of the kurtosis level is seen, both because the solid and dashed 
curves do not markedly differ and because an opposite, possibly compensating, 
effect is observed in the left and the right part.
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Fig. 22   Graphs of the density 
(16), when � = 3 and � = 3.5 
(solid) or � = 5 (dashed)
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Turning to indexes, then, it is clear that Zenga’s distribution can be useful to 
test their ability to measure the overall effect of parameters on kurtosis, without 
being influenced by movements of single aspects of the shape.

Figure 24 confirms that ability for K2(�) (first panel) and K1(�) (second panel): 
while their side components follow a path which essentially reflects a tendency to 
symmetry as � increases, the overall indexes recognize a compensation of the two 
sides and remain substantially constant. Notice that both indexes agree on a level 
of kurtosis slightly over the Normal model. In addition, despite the graphical effect 
in Fig. 24, one can notice that even the values of the side components are quite sta-
ble with � , more clearly for K2(�) where the left and the right kurtosis show levels 
very close to the overall index. No substantial changes can be appreciated when the 
cutting point is set to the median instead of the mean: Fig. 25, indeed, reports the 
results of a similar exercise for K2(�) and K1(�) and leads to similar conclusions, 
especially if � is as high as 4.
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Fig. 23   Comparison of the densities in Fig. 22, separated into their left and right parts
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overall indexes (solid) are decomposed into their left (dashed) and right (dotted) contributions
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When the interest is shifted to indexes based on high-order moments, as for �2, 
despite Zenga’s model suggests a constant level of global kurtosis, one would expect 
a prevalent influence of the effect of the tails. A confirmation is provided by the first 
panel of Fig. 26, where �2 and its side components are plotted against � with a fixed 
� = 3 : one can notice the excessive level of the right kurtosis, its definite influence 
on the overall index and, above all, the non-constant path as � increases.

In a sense, the distorting effect of tailedness on the evaluation provided by �2 
seems to be more severe here than what happens in other models where a parameter 
regulates the heaviness of a single tail. Looking at the Gamma and at the Zenga’s 
models together, indeed, one can notice that, in both cases, decreasing values of the 
parameter � creates a pronounced right tail which results in skewness and kurtosis, 
as measured by �1 and �2 respectively. However, the effect on the latter seems to be 
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Fig. 25   Plots of K
2
(�) and K

1
(�) in the Zenga’s distribution, when � = 3 and � ranges from 3.5 to 7. Both 

overall indexes (solid) are decomposed into their left (dashed) and right (dotted) contributions
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prevalent in the Zenga’s model, at least if one compares the relationship between �2 
and �2

1
 depicted above in Fig. 10 (Gamma) with a similar plot reported in the right 

panel of Fig. 26 (Zenga’s): while the increase of �2 is just proportional to that of �2
1
 

in the first case, a quadratic pattern is distinctively observed in the second situation. 
That could be even considered as a distinctive characteristic of Zenga’s distribution 
over similar models with Paretian tail.

Some interesting features arise also when a varying � is considered. In the ranges 
established for our analysis, Fig. 27 reports the plots of K2(�)∕0.4142 (first panel) 
and �2∕3 (second panel) when � is fixed to 5 and � moves from 3 to 7. While an 
almost constant, slightly decreasing pattern is observed for the former index, the 
classical �2 has an unexpected parabolic trend, which appears as the consequence of 
a weakening balance effect.

To help the interpretation of the different paths above, Fig. 28, compares three 
Zenga’s densities, all with � = 5 and with increasing values of � (3 = solid; 4 = 
dashed; 7 = dotted). One can distinguish two kinds of modification of the shape: 
on the right side, the tail thickens, mildly in the beginning; on the left side, a clear 
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movement of mass from the tail and the center toward the shoulder is observed. 
Obviously, this fact is likely to produce different patterns in the two side-compo-
nents of each index, but the final evaluation will depend both on the magnitude of 
such components and on their weight. Despite it usually concentrates on the fatness 
of tails, �2 turns out to be initially more influenced by the decreasing kurtosis in the 
left side of the distribution. However, from values of � as high as 5, the role of the 
heavy right tail starts to be relevant. Conversely, it seems that K2(�) can always bal-
ance the two contrasting effects on the shape, with a certain propensity for what hap-
pens to the left side. As the distribution is quite skewed, one may think that the high 
weight given to K−

2
(�) can be the ultimate reason of that. However, the first panel of 

Fig. 29, providing the detailed decomposition, shows that even the magnitude of the 
left component of K2(�) is crucial for the final evaluation. That can be further dem-
onstrated by looking at the decomposition of the related K2(�) in the second panel 
of Fig. 29: even if the weight given to the left and the right component is constantly 
equal to 1/2 here, the pattern of the overall index is quite similar to the one just 
commented.

6 � General remarks

Researchers often use data both to estimate suitable models and to understand spe-
cific characteristics of the underlying distribution, which range from the obvious 
side of location and scale to more cumbersome aspects reflecting departure from 
normality. This paper concentrated on kurtosis. Excepts than in a limited number 
of models, however, quite rarely kurtosis is purely regulated by a single parameter. 
More often, to give a realistic description of the phenomenon under study, not only 
one needs to use multiple shape parameters, but kurtosis is also differently linked to 
each of them and to other aspects of non-normality, like skewness. When an index 
of kurtosis is evaluated on data, then, assessing the extent of its sampling error 
becomes problematic. Even if the efficiency of the estimators used for parameters 
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can be easily evaluated, indeed, getting similar information about the estimator used 
for kurtosis is made difficult due to the absence of an analytic relation between the 
two items. As a consequence, when a dataset provides, for instance, a large level of 
kurtosis, one is not sure whether that estimated value is caused by outliers or if it 
is just the consequence of the underlying distribution. More dangerously, in other 
cases, the model may even prevent the existence of some kurtosis measures as func-
tions of parameters and that may be the unknown cause of sample values which are 
indefinitely large (see Borroni and De Capitani, 2022). Notice that a certain knowl-
edge about the relationship between shape parameters and kurtosis measures is also 
needed when the interest shifts from estimation to testing. Indeed, researchers are 
likely to use inferential tests to know if kurtosis exceeds a given level or to compare 
kurtosis in different distributions and in different sides of a single distribution. But, 
as a consequence, they also need to assess the power of the test under use, as a func-
tion of parameters.

Of course, once a model is chosen and it is paired with some kurtosis measures, 
one can go further into their specific relationship. However, we think that some gen-
eral guidelines can be given to be aware about the pitfalls and the remedies which 
characterize every analysis. To this purpose, this paper concentrated on some exam-
ples which are relevant, in our opinion. In the following, we will try to list some 
general conclusions provided by the considered models.

First of all, the researcher should be aware that the relationship between param-
eters and kurtosis can not be simply examined by looking at the modifications in the 
graph of the density. Beyond the (simply identified) confounding role of the scale, 
indeed, the most tangled situations are observed when kurtosis is accompanied by 
skewness. More specifically, even if sometimes there are parameters whose variation 
induces a shift of kurtosis in a clear direction, characterizing both sides of the distri-
bution (like when the probability mass moves towards both tails), more often param-
eters act differently on kurtosis and skewness in the two sides. But, while skewness 
measures, in a sense, just the dissimilarity of the left and the right side, kurtosis has 
to provide an overall judgment about both sides and, in addition, it must account 
for modifications both of the tails and the center of the distribution. One might then 
often face situations where a single tail is fat (due to an increase of skewness in that 
direction), the other tail is light (or even absent) and the center of the distribution 
is difficultly interpreted (sometimes without a clear peak). Our suggestion is that 
the graph need to be decomposed into two sides, after making them comparable as 
detailed in the Introduction. That decomposition is likely to reveal two aspects: what 
is the side where kurtosis mostly varies upon parameters and what is the direction of 
such variations in both sides. The examples in this paper showed a somewhat gen-
eral rule: a variation of skewness in a given direction (left or right) has a contrasting 
effect on kurtosis in the opposite side of the distribution and a compliant effect in 
the same side; however, despite what one would expect, the first effect is often more 
intense than the second one. In addition, relevant effects on global kurtosis due to 
variations of skewness are only observed when its initial level is low.

Clearly, one cannot simply talk about variations of kurtosis without measuring 
them. A second conclusion of this study, then, is that decomposed graphs should be 
accompanied by decomposed indexes. Obviously, selecting a specific index implies 
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to privilege some of the multiple aspects of kurtosis. As a consequence, different 
indexes are likely to provide different, sometimes contrasting, evidence. However, 
a decomposed analysis can reveal the mechanism leading to a final measurement 
and thus it can help to understand that some contradictions among indexes are often 
only apparent. To get into details, when a researcher decides, for instance, to use the 
classical Pearson’s �2, she/he is probably aware that it will be mostly sensitive to the 
tails of the distributions. Nonetheless, she/he must be also aware that, if a parameter 
causes a movement of skewness in a given direction, �2 will usually concentrate on 
the modification of shape in this single side of the distribution or that, equivalently, 
the index will neglect the contrasting effect of skewness on kurtosis in the opposite 
side. The decomposition of �2, however, can explain the matter by revealing that, 
even if the contrasting effect of skewness is correctly accounted for by the corre-
sponding side-index, the latter takes values too low to compensate for those on the 
other side, where the tail gets fat. When the interest of the researcher is shifted to 
Zenga’s indexes, she/he will not probably face any contradictions with �2, provided 
that a decomposed analysis is conducted. Indeed, Zenga’s side-indexes are likely to 
be coherent both with the modifications of the two sides of the density and with 
the decomposed parts of �2, even if their magnitude will be rarely inflated by the 
burdening of a single tail. Depending on the extent of modification of the two sides 
of the graph and on the weighting system which bases the index, then, the overall 
judgment will privilege a certain side of the distribution, possibly with some minor 
differences among Zenga’s indexes.

As a final remark, we want to underline that, when a specific model is chosen for 
the statistical analysis, the researcher should make the prior effort of classifying, 
even roughly, its shape parameters. Our examples showed that, even if they are rare, 
some parameters regulate “purely” kurtosis, which basically means that they can 
induce similar modifications of both sides of the distribution and that relevant differ-
ences among indexes are not observed. In addition to them, other parameters influ-
ence kurtosis and skewness at the same time, which implies that usually a single 
side (often a single tail) is amplified at the expense of the other. This second class of 
parameters is likely to provide different patterns of modification of the two sides of 
the graph and, consequently, different (possibly contrasting) evidence among kurto-
sis indexes. Finally, notice that sometimes kurtosis is modified by the joint action of 
the two kinds of parameters above: while a decomposed analysis is still a solution, 
then, the researcher must be aware that indexes like �2, which are hugely sensitive 
to the tails can produce unexpected results, possibly masking some compensating 
effects on the global level of kurtosis.

7 � Some applications

Measuring kurtosis in the presence of a distributional model is a common task in 
several statistical procedures. Thus, we think that the indications provided in Sect. 6 
could prove to be useful in many fields of application. Following the suggestions of 
two anonymous referees, however, we want now to concentrate on two areas which 
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are likely to benefit from our conclusions. Specifically, we will try to emphasize that 
a careful measurement of kurtosis, based on a decomposed analysis and on the use 
of alternative indexes, could result in some advantages in projection pursuit and in 
the treatment of financial data. This fact introduces also new lines of research, as 
detailed in the following subsections.

7.1 � Projection pursuit

Despite kurtosis is often regarded as a univariate characteristic, its relevance in the 
analysis of multivariate data has been recently recognized as an important tool in 
the field of projection pursuit (Huber, 1985). Since Gnanadesikan and Kettenring 
(1972), the need to project a set of multivariate points onto a lower dimensional 
space (often the real line) to locate outliers or, somewhat equivalently, to find clus-
ters with possibly different sizes has struggled against the computational effort to 
work with infinitely many directions for such projections. The works by Peña & Pri-
eto (2000, 2001a, b), however, pointed out that some “interesting” directions can 
be found by minimizing or maximizing the kurtosis of the projected data. Roughly 
speaking, that is justified by the fact that, when properly projected, a set of points 
which are well separated from the bulk of data (even though concentrated in a given 
region) is likely to cause the burdening of a single tail or the occurrence of a second 
peak in the resulting distribution. Interestingly, these are exactly the kinds of modi-
fications of the shape accounted for by kurtosis, which concentrates on the charac-
teristics of the tails and of the center. To prove the efficacy of that reasoning, many 
Authors reverted to specific models of contamination, sometimes as simple as just 
mixtures of univariate distributions (see Peña and Prieto, 2001a and the related dis-
cussion). In the following we will do the same to discuss the conclusions drawn in 
the sections above.

Figure  30 reports the shapes of the densities obtained by mixturing a standard 
Normal with a second Normal whose mean and standard deviation are � and 0.5 
respectively. A weight � is applied to the second element of the mixture, to accounts 
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Fig. 30   Plots of the mixtures of a standard Normal with a Normal density with mean � and standard 
deviation 0.5, when a weight 0.05 (solid curves) or 0.4 (dashed curves) is applied. Left panel: � is set to 
2. Right panel: � is set to 5.
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for the possible levels of contamination suffered from a set of data and it is set to 
0.05 (solid curve) or to 0.4 (dashed curve). It is clear that when � is low and the 
mean of the contaminating distribution is not too large ( � = 2 in the first panel), 
a burdening of the right tail is observed. When � is high, however, contamination 
results in the occurrence of a second mode. In addition, the second panel of Fig. 30 
shows that, when � is raised to 5, bimodality gets clear still from a mild level of �, 
even if the resulting secondary low peak can be somehow confused with the main 
tail. In any case, both panels seem to point out that a positive contamination can 
be primarily appreciated by the modification of the right tail of the resulting dis-
tribution. However, the decomposed graphical analysis developed in this paper 
can be usefully applied, to show that even the left part of the final density is to be 
considered.

At this aim, Fig. 31 reports the decomposed graphs of two mixtures obtained with 
the same level � = 0.05 and two different means for the contaminating distribution 
( � = 2 for the solid curve and � = 3 for the dashed curve). The first panel of Fig. 31 
compares the left sides of the two mixtures: it can be noticed that, even in the pres-
ence of a mild contamination, a positive shift of � decreases left-kurtosis, due to a 
movement of mass from the tail and the center to the left shoulder. Conversely, the 
second panel of Fig.  31, which is obviously referred to the right parts of the two 
mixtures, shows that this side of kurtosis increases with the level of �.

Unfortunately, on the same right side, the picture of kurtosis gets rather con-
fused when, in the same settings, the level of contamination is raised to � = 0.4 
(see the second panel of Fig.  32). Despite a clear lightening of the right tails, 
indeed, the effect on the center is now difficultly interpreted due to the occur-
rence of an “intermediate” peak. Overall, one may argue that the right-kurtosis 
decreases with � in the figure, but it can be equivalently suspected that this is not 
a general rule and that it may change with a slightly different tuning of param-
eters. In effect, that is a first reflection of a mostly serious problem of the rela-
tionship between (positive) contamination and the shape of the resulting distribu-
tion, specifically of its right part: under some circumstances, a monotone relation 
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Fig. 31   Decomposed plots (left and right parts) of the mixtures of a standard Normal with a Normal 
density with standard deviation 0.5 and mean 2 (solid curves) or 3 (dashed curves), when the latter is 
weighted by 0.05.
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between the direction of contamination and the resulting level of kurtosis does 
not seem to exist. One may be convinced about that by looking at the second 
panel of Fig. 33 which, in the same settings as above, is built with � = 0.2 : the 
opposite effects of an increased � on the right tail and on the center seem to be 
nearly compensated here. However, if we look now at the first panels of both 
Figs. 32 and 33, we realize that the decomposed analysis provides a clear addi-
tion: the left parts of the graphs show that the decreasing patterns of left-kurtosis 
is preserved for all considered levels of contamination and also that such a decay 
is strengthened by the level of �.

The existing literature developed many tools to take advantage of the above-
discussed link between kurtosis and outliers/clusters identification. However, it 
mainly concentrated on the use of the standardized fourth moment as a pursuit 
index and on the possible simplification of the related computations (see Loper-
fido, 2021 and the references therein). On the side of the measures to be chosen 
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Fig. 32   Decomposed plots (left and right parts) of the mixtures of a standard Normal with a Normal 
density with standard deviation 0.5 and mean 2 (solid curves) or 3 (dashed curves), when the latter is 
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for kurtosis, we think that some further help could be given by indexes which are 
decomposable, as long as by indexes which have a balanced sensitivity for both 
the tails and the center of the distribution. That will be an element for a future 
research. Here, we will be limited to some considerations regarding the contami-
nation model above and two kurtosis indexes, �2 and K2(�).

Figure 34 (first panel) reports the plots obtained for � = 0.05 , when Pearson’s 
�2 is decomposed into its parts and the mean � is raised from 1 to 10. As known 
(Peña & Prieto, 2001a), the overall index has an increasing pattern in the case of 
a mild contamination, which justify the search for directions which maximize it. 
We point out that this piece of evidence depends strongly on the right-index �+

2
, 

which reaches very high values due to the overwhelming effect of the right tail. 
Conversely, the left part �−

2
 shows a decreasing pattern, even if with compara-

tively small levels. Despite the weight given on the left of the mean is high (due 
to the the kind of contamination considered), the overall �2 reflects mainly the 
attitude of the right part. Notice that such a conclusion is taken at the expense 
of a non perfectly monotonic patterns of �2, which may result in an unsuccessful 
search sometimes. Thus, we think that, under similar circumstances, the maximi-
zation of the sole right part of Pearson’s �2 or, somewhat less effectively, the min-
imization of �−

2
 could be advised. If we look at K2(�) in the same settings (second 

panel of Fig. 34), we get similar conclusions: the right part K+
2
(�) provides the 

best guidance for interesting projections, because of its definite increasing pat-
tern. The minimization of the left-index K−

2
(�) can be possibly advised as well, 

but a search based on the overall index is likely to be ineffective.
It is also known that, when the level of contamination is raised to � = 0.4, 

Pearson’s �2 has a decreasing pattern with �. That is highlighted in the first panel 
of Fig. 35, which shows, however, that the strength of its decay is not comparable 
to that of the increase shown for mild contamination levels. �−

2
 is likely to be the 

most effective indicator here: its decrease is the leading element of the overall 
index, both because of the weighting of the two parts and of the magnitude of 
�+
2
. With respect to the case � = 0.05, indeed, �+

2
 takes low (though increasing) 

values, which are fully compensated by those taken by �−
2

 in the determination 
of the overall �2. In other words, one could claim that, differently from the case 
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� = 0.05, when the level of contamination is as high as � = 0.4 the decreasing 
pattern of the left part cannot be masked by the burdening of the right tail. This 
fact can be better appreciated when the decomposed plot of K2(�) for the case 
� = 0.4 is considered in the second panel of Fig. 35: a clear decreasing pattern 
is observed for both side-components of the index, a symptom that the index can 
properly temper the effect of the right tail.

The above-outlined ability of K2(�) can be possibly best appreciated in the most com-
plicated case: a mean level of contamination. Figure 36 (first panel) reports the decom-
posed analysis for �2 in the usual mixture model with � = 0.2 and it exemplifies what 
first noticed by Hubert (2001): the overall �2 has a non-monotone (almost constant) pat-
tern here, a fact which leaves its maximization/minimization unjustified (see also Alash-
wali and Kent, 2016 for a related discussion using two-group multivariate Normal mix-
tures). Looking at the decomposed plot of �2, however, one may notice that its constancy 
is an inconvenience of averaging, because the left part �−

2
 has still a clear decreasing pat-

tern, while the right part �+
2
 reflects the usual confounding effect of the tail. Notice that 

the same conclusions do not hold for K2(�), whose right part is ultimately decreasing, 
like for the left part and for the overall index (second panel of Fig. 36).
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To conclude, due to the need to account for both tail burdening and bimodality 
of the projected distribution, we claim that the use of decompositions of kurtosis 
indexes could be a good addition for pursuit purposes. Clearly, this conjecture is 
to be proved by a careful research, which needs to consider a wider set of mod-
els, including, for instance, mixtures of multivariate distributions or symmetrically 
contaminated models. Nonetheless, we hope that our limited analysis can stimulate 
the interest on this topic. As a matter of fact, the literature did not concentrate on 
the location of the best direction for projection, but in the search for a whole set of 
directions which could be as wide as possible to guarantee success in the following 
task of classification (see, for instance Peña and Prieto, 2007). Clearly, enlarging the 
set of pursuit indexes means to burden the process of optimization, too. Incidentally, 
one may notice, then, that kurtosis-based projection methods took advantage over 
the pursuit effort by looking also at some generalizations of kurtosis itself in a mul-
tivariate framework. Peña et al. (2010), for instance, showed that interesting direc-
tions can be revealed by the spectral decomposition of the so-called kurtosis matrix, 
independently introduced by Cardoso (1989) and Mòri et al. (1993). Such a gener-
alization proved to be of a major use in some related fields of multivariate analysis 
as well, like for invariant coordinate selection (Tyler et  al., 2009). As a matter of 
fact, there is currently an increasing interest in generalized matrices of kurtosis (see 
also Loperfido, 2017 and Kollo, 2008), which let us wonder if the tools analyzed in 
this paper can be similarly extended to the multivariate setting. We think that this is 
an important theme and that it deserves a future research.

7.2 � Financial data

Kurtosis-based projection pursuit has many applications in the analysis of financial 
data, even on the side of portfolio selection and on that of the identification of out-
liers in time-dependent financial series (see the recent contribution by Loperfido, 
2020). In this paper, we will not enter into details of these kinds of applications. 
Nonetheless, we will try to outline the usefulness of some conclusions drawn in the 
previous sections when the shape of returns distribution is studied. This applica-
tion was chosen since, in empirical finance, the occurrence of high kurtosis levels 
in stock returns distributions is so ubiquitous that it received the status of a stylized 
fact.

When analyzing the behavior of stock returns, the investor is typically interested 
in the simultaneous evaluation of profitability and riskiness. These two character-
istics are usually measured by simple indicators. For the measurement of the for-
mer, expected returns are universally adopted. To the contrary, a plethora of indica-
tors were proposed in order to evaluate riskiness. Starting from the seminal work 
of Markowitz (1952), variability indexes such as standard deviation and mean 
absolute deviation were firstly used at this end but, over the years, the adoption of 
such indicators has been also widely criticized. The main problem is that the cited 
measures do not evaluate only the “risky” component of variability (i.e. that below 
the expected return), but also the “profitable” one (i.e. that above). To overcome 
this drawback, the concept of downside deviation was later introduced (see Sortino 
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and Van der Meer, 1991; Sortino and Price, 1994). After denoting by X the random 
returns of an asset, in analogy with what reported in (10), (11) and (12), the variance 
�2 of X can be decomposed as follows:

The quantity �2−P[X ≤ �] in (17) is usually defined as the downside deviation of X. 
Of course, �2− can be used and interpreted similarly. Thus, in agreement with the 
decompositions of kurtosis indexes above, we will analyze it in place of the classical 
downside deviation. A similar decomposition can be applied to the mean absolute 
deviation �� of X:

The quantity �−
�
 measures riskiness as well, since it is sensitive only to the “risky” 

component of variability. Obviously, the residual �2+ and �+
�
 quantify the “profit-

able” component.
When kurtosis is interpreted from the financial point of view, arguments similar 

to those for variability can be followed: a fat left tail in the distribution of X is to be 
regarded as a risky feature, while a fat right tail is not. In this light, the decomposed 
approach to kurtosis proposed above can be used to perform a separate analysis of 
risky and non-risky tails. Specifically, the left-kurtosis components K−

2
(�) , K−

1
(�) , 

and �−
2
 in formulas (10), (11) and (12) represent the “risky” component of kurtosis, 

while K+
2
(�) , K+

1
(�) , and �+

2
 represent the “profitable” side.

To exemplify the use of a decomposed approach, the daily returns of five assets 
quoted on NYSE were analyzed: Johnson Controls International (JCI), Banco San-
tander (SAN), Medifast Inc (MED), Shell plc (SHEL) and Medtronic plc (MDT). 
The considered time period ranges from 2019 to 2021, but data were analyzed sepa-
rately for the three years, in order to evaluate the different behavior of returns before 
(year 2019), during (year 2020), and after (year 2021) the COVID19 pandemic. For 
the sake of brevity, just the results for two kurtosis indexes are reported here: Table 1 
refers to K2(�), while Table 2 is for �2 . Both tables show the (decomposed) values of 
the related measures of variability as well, along with the estimated weights F(�) of 
the left components of all indexes.

Concerning the variability of the considered assets, a huge increase of �� and �2 is 
observed in 2020 with respect to 2019. The greatest increase regards SHEL ( +285% 
for �2 and +251% for �� ), the lowest is for MED ( +34% for �2 and +28% for �� ). In 
the remaining cases the percentage increase from 2019 to 2020 ranges from +137% 

(17)

𝜎2 = E
[
(X − 𝜇)2

]

= E
[
S2
𝜇
(X)

]
P[X ≤ 𝜇] + E

[
D2

𝜇
(X)

]
P[X > 𝜇]

= E
[
(X − 𝜇)2 |X ≤ 𝜇

]
P[X ≤ 𝜇] + E

[
(X − 𝜇)2 |X > 𝜇

]
P[X > 𝜇]

= 𝜎2− P[X ≤ 𝜇] + 𝜎2+ P[X > 𝜇] .

𝛿𝜇 = E [|X − 𝜇|]
= E

[
S𝜇(X)

]
P[X ≤ 𝜇] + E

[
D𝜇(X)

]
P[X > 𝜇]

= E [|X − 𝜇| | X ≤ 𝜇]P[X ≤ 𝜇] + E [|X − 𝜇| | X > 𝜇]P[X > 𝜇]

= 𝛿−
𝜇
P[X ≤ 𝜇] + 𝛿+

𝜇
P[X > 𝜇] .
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Table 1   Analysis of daily returns distribution of JCI, MED, SHEL, SAN, and MDT in the period 2019–
2021

 The profitability of each asset is measured by the mean return ( � ), while their volatility is measured by 
the mean absolute deviation �� and their kurtosis by K

2
(�) . Variability and kurtosis indexes are decom-

posed into their left and right components. The quantity F(�) measures the weight of the left component 

Asset Year � �� �−
�

�+
�

F(�) K
2
(�) K

−
2
(�) K

+
2
(�)

JCI 2019 0.0013 0.0085 0.0091 0.0079 0.4661 0.4675 0.4746 0.4604
2020 0.0006 0.0190 0.0198 0.0183 0.4802 0.4937 0.5300 0.4573
2021 0.0023 0.0104 0.0117 0.0095 0.4480 0.4550 0.4675 0.4425

MED 2019 0.0008 0.0196 0.0208 0.0186 0.4720 0.4673 0.4866 0.4480
2020 0.0024 0.0250 0.0258 0.0242 0.4841 0.5114 0.5124 0.5105
2021 0.0005 0.0204 0.0202 0.0206 0.5040 0.4631 0.4433 0.4830

SHEL 2019 0.0002 0.0075 0.0080 0.0071 0.4701 0.4646 0.4931 0.4358
2020 −0.0019 0.0264 0.0262 0.0266 0.5040 0.5256 0.5466 0.5046
2021 0.0009 0.0147 0.0144 0.0149 0.5080 0.4478 0.4421 0.4536

SAN 2019 −0.0001 0.0119 0.0133 0.0108 0.4462 0.4399 0.4797 0.3985
2020 −0.0014 0.0277 0.0284 0.0271 0.4881 0.4818 0.5152 0.4421
2021 0.0003 0.0150 0.0142 0.0159 0.5280 0.4407 0.4660 0.4124

MDT 2019 0.0011 0.0073 0.0079 0.0069 0.4661 0.4666 0.5102 0.4227
2020 0.0002 0.0173 0.0172 0.0174 0.5040 0.5255 0.5315 0.5195
2021 −0.0003 0.0097 0.0103 0.0092 0.4720 0.4701 0.4864 0.4538

Table 2   Analysis of daily returns distribution of JCI, MED, SHEL, SAN, and MDT in the period 2019–
2021

 The profitability of each asset is measured by the mean return ( � ), while their volatility is measured by 
the variance �2 and their kurtosis by �

2
 . Variability and kurtosis indexes are decomposed into their left 

and right components. The quantity F(�) measures the weight of the left component 

Asset Year � �2 �2− �2+ F(�) �
2

�−
2

�+
2

JCI 2019 0.0013 0.0114 0.0001 0.0001 0.4661 4.8361 5.6377 4.1361
2020 0.0006 0.0271 0.0009 0.0006 0.4802 7.1293 12.1109 2.5280
2021 0.0023 0.0137 0.0002 0.0002 0.4480 3.8095 5.2873 2.6101

MED 2019 0.0008 0.0272 0.0009 0.0006 0.4720 7.6774 12.4334 3.4258
2020 0.0024 0.0365 0.0014 0.0012 0.4841 7.3916 8.5112 6.3410
2021 0.0005 0.0277 0.0007 0.0008 0.5040 4.9378 3.9176 5.9744

SHEL 2019 0.0002 0.0105 0.0001 0.0001 0.4701 9.9060 18.5544 2.2329
2020 −0.0019 0.0406 0.0018 0.0015 0.5040 8.9639 12.1673 5.7093
2021 0.0009 0.0192 0.0004 0.0004 0.5080 3.5867 3.4139 3.7652

SAN 2019 −0.0001 0.0155 0.0003 0.0002 0.4462 3.7141 4.9492 2.7188
2020 −0.0014 0.0393 0.0017 0.0014 0.4881 7.6424 11.6109 3.8585
2021 0.0003 0.0193 0.0003 0.0004 0.5280 3.4500 2.9789 3.9771

MDT 2019 0.0011 0.0104 0.0001 0.0001 0.4661 10.0345 18.8828 2.3086
2020 0.0002 0.0261 0.0007 0.0007 0.5040 7.9969 9.8802 6.0836
2021 −0.0003 0.0133 0.0002 0.0001 0.4720 5.8841 9.9238 2.2729



616	 Journal of the Korean Statistical Society (2023) 52:581–620

1 3

to +153% for �2 and from +124% to +136% for �� . In 2021, variability significantly 
decreases with respect to 2020. For all the considered assets, that decrease does not 
completely compensate the increase observed in the previous year. This fact is particu-
larly clear for SHEL: the 2021 variability is about twice that for 2019 ( +82% for �2 
and +95% for �� ). To the contrary, MED is the only asset for which in 2021 the vari-
ability substantially comes back to the 2019 level ( +2% for �2 and +4% for �� ). Look-
ing at the left and right components of �2 and �� , one may notice two main scenarios:

•	 for JCI and MDT, the left and the right variations are almost balanced;
•	 for SAN, MED and SHEL, the right component of variability (as measured by 

�2+ and �+
�
 ) increases more than the left ( �2− and �−

�
 ) from 2019 to 2020, but 

it has a slower decrease from 2020 to 2021 with respect to the opposite side. 
As a result, the greater variability observed in 2021 with respect to 2019 is 
mainly ascribable to the increase of the right component. This is particularly 
clear for MED where, on the whole period from 2019 to 2021, a decrease of 
left variability ( −18% for �2− and −3% for �−

�
 ) is accompanied by an increase 

of the right side ( +32% for �2+ and +11% for �+
�
).

On the side of kurtosis, each asset follows a peculiar pattern and a disagreement 
between the evaluations provided by �2 and K2(�) arises. For all considered assets, 
K2(�) outlines a similar temporal dynamic: global kurtosis significantly increases 
from 2019 to 2020 and decreases from 2020 to 2021. The decrease observed in 2021 
is sufficient to bring kurtosis below the 2019 level for JCI, MED and SHEL; for 
SAN and MDT, it leads to a level which is substantially equal in 2021 and in 2019. 
The kurtosis pattern depicted by �2 is qualitatively similar to the one reported for 
K2(�) just when JCI and SAN are considered. Differently, for MED, SHELL and 
MDT, global yearly kurtosis decreases still from 2019 to 2020. By performing a 
decomposed analysis on left and right kurtosis, the temporal dynamics provided by 
K2(�) and �2, along with their differences, can be better understood. Specifically:

•	 for all assets but JCI, the right-kurtosis index K+
2
(�) increases more than K−

2
(�) 

from 2019 to 2020. From 2020 to 2021 both K+
2
(�) and K−

2
(�) decrease but, 

while the decay of K−
2
(�) brings left kurtosis even below its 2019 level, that 

of K+
2
(�) is not sufficient to do the same for the right side. This fact is particu-

larly evident for MED where the global K2(�) has substantially the same level 
in 2019 and 2021, but the contribution of K−

2
(�) and K+

2
(�) is interchanged: in 

2019 left kurtosis is greater than the right, while in 2021 the opposite relation 
holds. Concerning JCI, the only difference with the above-described pattern 
stems from the fact that the right kurtosis steady reduces from 2019 to 2021.

•	 high values of �−
2
 in 2019 for assets MED, SHEL, and MDT are observed. These 

assets are exactly the same exhibiting a difference between the dynamics of 
global kurtosis as measured by K2(�) and by �2. By looking at their return series 
in 2019, a single highly-negative return (about –15%) is easily found in all cases 
(see, for example, Fig. 37, where the series of MED is represented). Those single 
values have a huge impact, causing high values for �−

2
 and probably explaining 
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the different dynamic reported for the global �2. In spite of that, the decomposed 
analysis still suggests that, from 2019 to 2021, the contribution to global kurtosis 
of the right part has increased for all assets, with the exception of JCI.

To exemplify further the usefulness of the decomposed analysis of the paper, the 
distributions of MED returns over the three considered years were also graphically 
analyzed with the method introduced in Sect. 1. The related densities were obtained 
via kernel density estimation (KDE) using a Gaussian kernel. A certain amount of 
over-smoothing was applied in KDE, to obtain sufficiently regular densities and 
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Fig. 37   Time series of MED daily returns distribution in 2019
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Fig. 38   Comparison of MED daily returns distribution in 2019 and 2020 (left panel) and in 2020 and 
2021 (right panel). All the densities are estimated via KDE with Gaussian kernel and bandwidth equal to 
0.0137. The bandwidth is obtained by multiplying the one obtained with the Scott (1992) method by the 
factor 1.5 in order to produce sufficiently smooth and easy-to-compare densities
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meaningful plots. The adopted bandwidth is reported in each figure caption. MED 
was chosen among the considered datasets, since it exhibits a peculiar pattern of 
kurtosis indexes, as above described. Specifically, recall that this asset has the same 
value of K2(�) in 2019 and 2021, but its composition is reversed on the whole 
period: even if the pattern is firstly increasing and finally decreasing for both com-
ponents, indeed, in 2019 K−

2
(�) is greater than K+

2
(�), while the opposite holds for 

2021.
In Fig.  38 (first panel), the 2019 and 2020 densities are compared. The plot 

clearly shows, on both its sides, that the density for 2020 can be obtained from the 
one for 2019 (after a proper standardization), by moving a certain amount of prob-
ability mass from the shoulders to the center and the tails, thus producing a dis-
tribution with higher kurtosis. A similar (though oppositely directed) interpretation 
can be given to the second panel of Fig. 38, where the reported densities depict the 
passage from 2020 to 2021: kurtosis decreases on both its sides. In Fig. 39 the years 
2019 and 2021 are compared: the first panel, reporting the decomposed densities, 
shows a significant difference around the center. To the contrary, the behavior on the 
shoulders and on the tails seems quite similar and the densities intersects more than 
two times on each side (differently to what usually happens when a relevant change 
in kurtosis is observed). That is not surprising, since the two compared distribu-
tions have substantially the same global kurtosis. In order to get to the bottom of the 
behavior of the single tails, the second panel of Fig. 39 represents the two densities 
on a logarithmic scale. By matching the two panels of the figure, one can observe 
a different change in kurtosis at the two sides of the distributions: on the left, the 
graph for 2019 shows more probability mass near the center and on the tail (that is, 
the left kurtosis is higher in 2019 than in 2021); on the right, such a phenomenon is 
true for 2021 (thus, the right kurtosis is higher in 2021 than in 2019). Finally, even 
if one may appreciate relevant graphical differences in the two estimated densities 
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(especially for their left parts), in our opinion, they are too minor to justify the 
relative variation of -68% observed for �−

2
 from 2019 to 2021. The corresponding 

relative variation of K−
2
(�) is −8.9%, which appears to be more consistent with the 

results in Fig. 39.
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