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Abstract

STARTING from the biggest technology companies, there is a significant and con-
tinuous increase of investments in Artificial Intelligence. The main advantage of
merging Machine Learning to industrial applications is mainly related to their per-

formance and flexibility, also in complex contexts. This convergence sets the basis for the
fourth industrial revolution leading to the Industry 4.0 era and smart manufacturing.

In this dissertation, the focus is on the development of approaches capable to inves-
tigate industrial processes in order to address tasks such as predictive maintenance and
monitoring.

Firstly, spatial analysis is shown to be effective in detecting and representing struc-
tured pattern of defects on integrated circuit fabrication. This issue is crucial to a produc-
tion line since it can cause damages and yield loss. To address this hard-to-solve problem,
the proposed approach is a concatenation of different methods, namely a p-value control
chart, a clustering algorithm based on Mininum Spanning Tree and a graphical tool. The
suggested procedure proves to be extremely fast and effective, allowing its implementation
in-line during the fabrication process.

Secondly, graphical models provide an effective tool to represent conditional indepen-
dences among variables. Especially in manufacturing, heterogeneous data often occurs
(e.g. continuous, categorical) and it is of interest to discover interactions between different
settings or measurements. Therefore, the goal is to define a suitable model able to describe
a joint distribution of mixed type variables. The novelty of the proposed methodology is
the definition of Bayesian graphical model starting from a Conditional Gaussian distribu-
tion suitable both for parameter inference and structure learning. Additionally, an MCMC
scheme is implemented for approximate posterior inference in two alternative parametriza-
tions, and a structure learning algorithm for related undirected graph models. This method
shows outperforming results when compared to alternative state-of-the-art approaches in
a simulation environment.
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CHAPTER1
Introduction 1

1.1 Artificial Intelligence for business

Artificial Intelligence (AI) and all its related fields are in the midst of an
optimism cycle called AI Summer [79]. The term describes the current pe-
riod of increased investment and activity in AI following the AI winter that
happened in the late 1990s. The present AI boom began about in the 10s
with no signs of abating. The use of AI is becoming increasingly popu-
lar among big technology corporations, with Google, Meta, IBM, and Mi-
crosoft among those making significant investments. Manufacturing com-
panies are not lagging behind in AI adoption. According to the research
report by the International Data Corporation (IDC), the worldwide spend-
ing on AI and cognitive services in manufacturing companies is expected
to reach 26.6 billion dollars in 2025. AI is expected to bring about signifi-
cant changes in manufacturing. Some companies are using AI to help with
product design. For example, Autodesk offers a program called Autodesk
Fusion 360 that uses AI to help designers create products. The program
can recommend designs based on what has been designed before, and it
can also suggest changes to a design based on customer feedback. Other
companies are using AI to help with production. A worth noting example
is the MindSphere platform owned by Siemens that enables companies to
use AI to optimize their production processes [70]. Several alternative tasks

1Section 1.1 is extracted from a co-authored chapter in F.P. Appio, D. La Torre, F. Lazzeri, H.
Masri and F. Schiavone (2023).Impact of AI in Business and Society. Routledge
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Chapter 1. Introduction

can be performed using built-in applications or developing new ones. For
example, it is possible to build a recommender system to suggest optimal
settings for production processes based on data collected from machines.
In addition to these projects run by well-established companies, there is
an emerging ecosystem of startups. These companies are developing AI
technologies on par with their larger competitors and are receiving record
amounts of investments. For example, in the car industry, Comma AI aims
to build a full self-driving system like the one provided by Tesla [92]. What
is setting the difference in comparison to the previous AI summers is the
pervasive usage of Deep Learning (DL) techniques. In fact, during this
time period, DL techniques experienced a significant expansion. DL is a
subset of AI that is concerned with algorithms that can learn to represent
and model data through multiple layers of abstraction, resulting in systems
that can learn to perform tasks that are difficult to explicitly program. In
DL, Artificial Neural Networks (ANNs) are an essential component. Origi-
nally ANNs were modeled after the human brain in that they are composed
of a vast number of interconnected nodes, also called neurons. Given this
complex structure, an ANN is capable of recognizing highly nonlinear pat-
terns in the input data [17]. Moreover, ANNs can learn faster than canonical
Expert Based Systems since they require less human intervention. Nowa-
days we know that ANNs are by no means mimicking the inner working of
a biological brain. In fact, ANNs take from the biological brain only two
components: neurons and axons. The first difference resides in how bio-
logical neurons work, which is more similar to the Perceptron as proposed
by Rosenblatt than the current activation functions. Another worth not-
ing difference is the learning process. As surveyed by Lillicrap et al. [71],
there is no scientific evidence that the brain uses a backpropagation algo-
rithm for learning. Regardless of these considerations, there has been an
increase in the number of ANN applications to provide services and pro-
duce goods that we use daily due to the vast amount of data generated daily
and the need to analyze it quickly and accurately. Another critical factor
to consider from a practitioner’s perspective is the democratization of such
technology. ANNs were formerly reserved for specialists only. As new
software is developed, they are becoming more user-friendly, which is en-
couraging. It means that a more significant number of people will be able to
use them and benefit from their features. Furthermore, recent advances in
software have established an environment that allows non-expert program-
mers to design and deploy complicated ANN structures without the need
for specialized knowledge. These software comprehend ANN frameworks
such as Tensorflow [1], Pytorch [85] and Flux [53, 54]. As well as models
and results management tools, such as Weights and Biases, for managing
the distribution and reproducibility of such models as well as their find-
ings [7]. Several companies have started to use artificial neural networks
in their daily operations. Services such as Spotify, which employs an ANN

2



1.2. Digital transformation in manufacturing

to locate tunes that best match users’ preferences, are a good illustration
of this pervasiveness in practice [25]. Another example is Tesla’s Autopi-
lot, which is capable of providing an aided self-driving experience and has
been available in cars since 2015 [27]. The above are only a few examples
of how ANNs are becoming increasingly popular. They are often utilized to
know how to serve the customers and improve their overall experience ef-
fectively. More specifically, ANN usage is becoming increasingly popular
in a wide range of business fields. For example, ANNs are used to assess
credit risk both of consumers and enterprises to predict whether or not a
borrower will default on a loan [16, 67]. This is accomplished by teaching
the network to recognize patterns in historical data pertaining to defaulting
borrowers. Another application of ANN in business is in the prediction of
consumer behavior [60]. Consumers’ potential interests in products, web-
sites they might visit, and types of advertisements they might click on can
all be predicted using DL techniques. Customers’ preferences can be used
to create more targeted advertisements and to improve the overall customer
experience. ANN is also used in business to improve decision-making.
ANN can be used to improve the accuracy of algorithmic predictions, to
improve the accuracy of forecasts, and to improve the accuracy of risk as-
sessments, among other things. When businesses have better data, they
can make better decisions about where to allocate their resources, how to
respond to changing market conditions, and how to reduce the risk of mak-
ing bad decisions [81]. Finally, ANN can be applied to business processes
in order to increase their efficiency. Besides to numerical application of
ANN, they can also be used to improve the accuracy of data entry, transla-
tions, and text recognition, to name a few applications. Businesses can save
time and money by reducing the amount of human error that occurs during
business processes as a result of this information.

1.2 Digital transformation in manufacturing

In the previous section, an introduction of a general-purpose AI and Deep
Learning applications for Business is given. In this section, the focus is on
the industrial framework, especially manufacturing.

As evidenced by a bibliometric analysis by Sahoo [91], data collection
and analysis are crucial in the manufacturing industry. The achievement of
continuous improvement requires a deep understanding about the various
underlying causes of issues. This goal motivates the development of data-
driven approaches. As well as business management research is increas-
ingly moving towards business analytics for strategic decision-making, man-
ufacturers are approaching digital transformation driven by (big) data to
have a deeper knowledge of their production processes.

In the industrial landscape, during the last decades significant transfor-
mations were introduced in the manufacturing environment. The new era,

3



Chapter 1. Introduction

defined as Industry 4.0, is characterized by renovations both in physical
and technological terms (e.g., Cyber-Physical systems, Internet of Things
(IoT), Digital Twins). Regardless of the enabling technology, the main pur-
pose of industrial transformation is to increase the resource efficiency and
productivity to amplify the competitive power of companies, see [98]. Fig-
ure 1.1 shows the shifts of manufacturing paradigms through periods of
time, highlighting the major milestones achieved 2 . The era of Industry
4.0 corresponds to the definition of smart manufacturing [61]. Specifically,
after the subsequent implementation of strategies to optimize the organiza-
tion of a productive system, the fourth industrial revolution is characterized
mainly by the introduction of sensors and computational effort within the
machinery.

Figure 1.1: Main paradigm shifts of manufacturing industry (from [68])

The key for successful solutions for smart manufacturing is to com-
bine and exploit advantages coming from technology and data collection
with models and algorithms adapted to manufacturing processes. Given
this two-fold perspective between industry and research, the general topic
of Industry 4.0 is one of the most popular among industry and academia in
recent years.

Within this research area, it is possible to find topics such as big data
analytics and predictive analytics. An interesting discussion on the topic
for manufacturing IoT is provided by Dai et al. [21]. The Authors pro-
vide a clear explanation of a general framework and lifecycle of analytics
solutions in manufacturing, pointing out necessities and challenges in this
field. Examples of research challenges are mainly related to the presence
of heterogenous data and computational constraints for real time solutions.
Consequently, also analytics applications need to undergo a transforma-
tion to solve new requirements from business. Additionally, there is a drift
also in terms of purpose of analytics solutions: from a descriptive approach

2Figure 1.1 included with permission from the journal
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1.2. Digital transformation in manufacturing

the development aims to reach a prescriptive level, see Figure 1.2. This
means that the focus is now on "what will happen" rather than "what hap-
pened", [95]. An an example, Figure 1.3 shows a classification of some typ-
ical use cases for analytics grouping the examples in terms of approaches
and applications 3.

Figure 1.2: Analytics roadmap (from [21])

Many applications and references of predictive analytics can be found
in [21, 95]. For instance, from descriptive to prescriptive use cases, it is
possible to find respectively the following examples:

• Zuo et al. [110] use RFID data to analyze consumer purchase through
an application of a Bayesian network

• Azadeh et al. [2] perform an analysis of faults in a mechanical com-
ponent with a particular attention to data quality and noise

• Ren et al. [88] propose an automated solution for surface inspection
using Deep Learning techniques

3Figure 1.2 and Figure 1.3 included with permission from the journal
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Figure 1.3: Summary of Analytics applications (adapted from [21])

• Drakaki et al. [28] define a recommender system for the optimal sched-
ule for manufacturing using reinforcement learning

This dissertation merges four scientific products: a book chapter (Chap-
ter 1), a paper published on an internationally recognized statistical journal
(Chapter 2), a post-proceeding and an additional paper to be submitted in
the next weeks (Chapter 3). Although the theoretical approaches differ,
both proposals share common elements. The goal is to develop methodolo-
gies capable of solving typical problems in the industrial world such as pre-
dictive maintenance and monitoring of operations performed by machines
within a process.

In the first work (Chapter 2), a three-steps approach is proposed in order
to monitor when a process of integrated circuits goes out of control. The
overall goal is to detect this drift and consequently analyze the highlighted
defect structures. Specifically, the occurrence of defects on a planar surface
is assumed to be modelled as a spatial stochastic process, and the presence
of a defect pattern is defined when the occurrence of defects deviates from
a completely random situation. So, the first step is used to monitor drift’s
occurrence in the production process, while the second and third steps fi-
nalize the identification of defect clusters with relative approximation of
their shape and structure. This solution is intended to be implemented in-
line with the process so that it could be stopped when a structured quality
issue is occurring. Additionally, it offers also tools to visualize the type
of defects with an indication of an area of risk associated to the cluster’s
locations.

The second work has been extensively developed into two separate pa-
pers (see Summary), merged in Chapter 3. The first paper is a discussion of
a preliminary theoretical definition of the proposed approach. The second

6



1.2. Digital transformation in manufacturing

one presents the complete work including a more detailed description of
the methodology and an evaluation of the proposal in comparison to alter-
natives. The proposed method is general-purpose so that it can be applied
for several contexts and not only related to industry. The focus is on in-
ference and representation of a conditional independence structure within
a set of variables. The novelty introduced by this model is its capability of
simultaneously handling numerical and categorical variables using a joint
distribution in a Bayesian framework. This model also shows flexibility in
its definition offering two alternative parametrizations connected by defined
relations. The choice of the distribution representation can be conveniently
done accordingly to the task to be performed (e.g., parameters estimate
in unconstrained models, structure learning for graph based models). The
implementation of the proposed method shows promising results both in
a simulation environment and within real data applications, outperforming
other alternative methods.
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CHAPTER2
Identification of spatial defects in

semiconductor manufacturing 4

2.1 Introduction

Spatial statistics has long played a fundamental role in environmental, agri-
culture and ecological studies as well as in economics, epidemiology and
other human sciences. Less usual are applications in industry and technol-
ogy where the spatial dimension is often crucial to assess the quality of
production processes.

In this chapter, we investigate the spatial structure of defects occurring
in integrated circuit fabrication. Integrated circuits are built through several
different physical and chemical steps that are performed on thin silicon
slices of a few inches in diameter, called wafers. Thousands of chips can
be obtained from each single wafer and the precision of the manufactured
product is essential [8]. Even though extremely accurate equipment in near
dust-free rooms are typically employed, the presence of defects is almost
unavoidable. Defects occurring on the wafer surface are the main cause of
yield loss in the semiconductor industry. To quickly detect an excess of
defects and their spatial structure is often crucial to the entire fabrication
process.

Defect displacement over the wafer surface can be unstructured or struc-
tured. Unstructured defects tend to occur all over the wafer surface, mostly

4Article published in "Applied Stochastic Models in Business and Industry": https://doi.
org/10.1002/asmb.2615
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Chapter 2. Identification of spatial defects in semiconductor
manufacturing

due to random causes, such as thermal variation or the presence of particles
in the room during some specific process steps. On the contrary, structured
defects tend to occur in clusters and can usually be ascribed to specific
causes of the production process, i.e. human mistakes, drifts or faults in
machinery performance. In this case, defects tend to show small scale pat-
terns and their size, location and shape can convey a lot of information on
their generative mechanism, which is fundamental to root-cause analysis.
A prompt identification of these structures permits the reduction of waste
and the need to rework production items, hence improving the yield.

Visual inspection of defects by human experts is time consuming, costly
and prone to errors. Automated procedures and computer vision methods
have been introduced over the last thirty years to inspect defects and iden-
tify their structure over the wafer surface.

In light of these considerations, this work proposes a methodology to
detect and display spatial defect patterns effectively. The proposed ap-
proach is flexible, not relying on strong parametric assumptions, compu-
tationally convenient and easily implemented, possibly in-line, during the
fabrication process.

More specifically, a control chart for the presence of spatially structured
defects is first introduced to promptly grasp potential patterns on the wafer
area. Then, a clustering procedure is proposed to identify the areas of the
wafer prone to high defect concentration and to display their shape.

Statistical process control (SPC) charts [80] are widely used for mon-
itoring the stability of different processes over time. First introduced in
the manufacturing industries, they are now employed in other fields such
as finance [29] and healthcare [38]. Control charts detect a process distri-
butional shift when the charting statistic is beyond control limits. Devel-
opments in metrology provide the opportunity to improve process moni-
toring by obtaining many measurements on each sampled unit. A greater
number of measurements can increase the sensitivity of control charts to
detect flaws in local regions and extend the statistical process control to
spatial-data monitoring. Scott et. al. [45], for instance, used variogram
parameters to define spatial control charts to monitor the mean over time
whereas Garthoff and Otto [37] focused on the mean and covariance charts
for spatial autoregressive models to signal possible spatial changes via con-
ventional EWMA and CUSUM charts.

The monitoring of defects in semiconductor manufacturing is an impor-
tant issue that has been discussed in the technical literature for at least 3
decades. The book by May ad Spanos [77] reviews many statistical tech-
niques adopted in this field and, in particular, considers control charts for
defects and defect density. Conventional defect control charts assume that
wafer defects follow a Poisson distribution [80]. However, the spatial dis-
placement of defects tends to show higher heterogeneity due to an increas-
ing complexity as the size of wafer increases. In the presence of clustering,

10



2.1. Introduction

the Poisson assumption may be incorrect and standard control carts may
point to sample measurements that fall outside the control limits. Revised
defect control charts based on the Neyman Type-A distribution were sug-
gested [35] to reduce the number of false alarms of conventional charts
based on the Poisson assumption. Although this type of charts adjusts for
clustering when monitoring the overall number of defects occurring in a
wafer, they did not detect specific spatial patterns since the aggregate counts
at the wafer level are considered.

As mentioned above, the spatial distribution of the local defects clus-
ters frequently has assignable causes, hence indicating possible interven-
tions. For instance linear or elongated clusters could often be the result of a
scratch that occurred during material handling and shipping; the edge ring
is typically ascribed to etching malfunctioning or rapid thermal annealing
process; an excess vibration in equipment can possibly liberate particles
and cause defects in nearby subregions; zonal patterns often arise from the
thin film deposition; patterns located around the wafer centre or along the
wafer edge may be caused by non-uniformities of the thin film deposition or
an uneven temperature distribution in the rapid thermal annealing process,
whereas unstructured-located defects are likely due to some contamination
of the clean rooms or equipment. For this reason several techniques have
been developed to detect the presence of spatial clustering of defects over
time. Reviews are provided by Cunningham and MacKinnon [20] and Zhou
et al. [107] amongst others.

Spatial statistics techniques [19] are often employed to detect non-random
patterns. Many papers have tackled defect spatial clustering at chip level
by comparing how many functional chips are around a defective chip and
vice versa using appropriate measures of spatial dependency such as joint
counts statistics [34,47,55]. Another possible approach is to count the num-
ber of defects that occur in every chip of the wafer and model the spatial
correlations in 2D spatial counts. Shang et al. [94] have recently suggested
modelling defect counts by intrinsic Gaussian Markov random fields in a
hierarchical Bayesian framework, using Markov Chain Monte Carlo to esti-
mate model parameters and, based on the estimates, developing monitoring
schemes utilizing the multivariate exponentially weighted moving average
procedure to detect shifts in the trend and spatial correlation. Monitoring
structured defect occurrences on the wafer area by chip-aggregate statistics
is, however, not the only possible way to address the problem. Nowadays
equipment perform in-line inspection during a manufacturing process pro-
ducing a wafer map that includes the number of defects, their size, and their
location on the inspected wafer. Hence, defect monitoring can operate at
the location rather than chip level. Lee-Ing et al. [66] suggested a cluster-
ing index that is calculated at the location level to develop a multivariate
Hotelling T 2 chart for jointly monitoring the local clustering as the number
of defects.
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Given the nature of the defect dataset considered in the case study that
motivated this work, the control chart proposed in this work follows the
latter approach.

However, practitioners would be interested, not only in a decisional rule
in determining wafer quality, but also in assessing how strong the defect
signal is, in order to plan subsequent actions appropriately. For this reason,
control charts based on p-values, hereinafter pv-chart, have been suggested
by several authors (see [44] amongst others). Li et al. [69] thoroughly de-
scribed this approach using the cumulative sum (CUSUM) charts [84] when
mean shifts in Phase II SPC are of interest.

In pv-charts, the in-control distribution of the charting statistic (i.e. un-
der the null hypothesis that the system is working correctly) is preliminary
computed and the p-value of an appropriate significance test is obtained
at any given time point. If the p-value is smaller than a pre-specified sig-
nificance level, the chart points out a process distributional shift. As Li
et al. [69] observed, pv-charts have some benefits if compared to conven-
tional control charts. First, whereas the control limits are different for dif-
ferent types of conventional charts (e.g. one-sided or two-sided charts), a
pv-chart always has a vertical axis in the range [0,1] and a unique con-
trol limit corresponding to the significance level. Secondly, it provides a
measure of how the data suggest a potential out-of-control state even if it
is not detected. Finally, when monitoring structured defect patterns using
intra event spacing, as described below, and differently from many other
situations in SPC, reference values for the charting statistics are not imme-
diate to work out. In addition, for the problem considered in this chapter,
benchmark datasets or long time series for the monitored statistics are not
available to define the thresholds of a control chart. Monitoring the p-value
naturally provides a reference value by the significance level of the asso-
ciated test. Hence, in these circumstances, resorting to p-value charts is
deemed an appropriate and convenient way to proceed.

Analogous to the majority of the papers mentioned in this section, we
assume that the defect process is governed by a spatial point process on
the wafer area and the chart is based on testing whether the observed point
pattern conforms to a completely spatial random process. Complete spatial
randomness [26] is a property that describes a spatial point process where
each point is placed in space independently of any other point. Wafers with
clustered defects are not completely spatially random and an automated
test for the presence of complete spatial randomness is useful to assess a
spatially structured defects pattern [20]. Hence, a p-value control chart for
spatially structured defects can be naturally based on a statistical test for the
complete randomness of the configuration of the event locations where the
p-value is calculated using Monte Carlo simulations. Our approach does
not require the aggregation of defects at the chip, die or wafer level nor
the implementation of any data preprocessing (i.e. data transformation and
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outlier identification) or model estimation, a step that characterises all the
charting procedures mentioned above.

As already said, spatial clustering of defects can be due to a variety of
reasons and the shape and location of the cluster may be informative on
the potential malfunctioning of the production process. For this reason,
a large number of studies on the automatic retrieval of spatial features of
defect clusters in semiconductor manufacturing have been published based
on a large variety of approaches. Model-based clustering algorithms via
Bayesian inference was proposed by Hwang et al. [51] whereas Yuan et
al. [104] suggested a multistep defect analysis where the model-based ap-
proach based on a mixture distribution is implemented in the final step
to reduce computational time. Adjacency-clustering based on the Markov
Random Field model has been suggested to identify the defect patterns and
accurately predict the yield [49]. Traditional clustering algorithms for spa-
tial data such as DBSCAN [32] have been modified and adopted to identify
defect patterns [57]. Many studies tackled the problem of cluster identi-
fication as a classification issue categorising patterns in typical structures
possibly after de-noising the data [83, 100]. Convolutional neural network
methods were also proposed to this end (see, amongst others, Whang and
Chen [101] and Jin et al [56] and references therein).

A large majority of the studies in the field, including almost all the
papers mentioned above, investigates defect clustering moving from the
wafer map i.e. a graphical representation of a silicon wafer at which all the
good and defective dice are represented, hence the clustering is investigated
at the chip level. The clustering algorithm suggested in this work follows a
different route and investigates the defect patterns at the location level. In
particular, the considered procedure is appropriate to identify non-convex
possibly elongated-shaped clusters, such as those produced by scratches.

Scratches across the wafer area are recurrent and particularly detrimen-
tal to the yield. A scratch produces a sequence of defects that tend to be
aligned along the scratch or to be slightly displaced, hence producing clus-
ters of points usually difficult to estimate and display.

The procedure proposed in this chapter consists of two main steps. First,
an agglomerative clustering algorithm based on minimum spanning tree
(MST) is used to identify the main clusters. Then, the scratch shape is esti-
mated using alpha-shapes, hence it is largely non parametric in nature. The
flow chart reported in Figure 2.1 summarises the sequence of the proposed
methodologies.

The chapter is organized as follows. In the next section the case study
that motivated this work in the first place is introduced. In Section 2.3,
a pv-chart for spatially structured defect patterns is proposed. In Section
2.4, the clustering detection algorithm is discussed along with its graphical
representation. In Section 2.5, the procedure is applied to a dataset com-
ing from the considered wafer fabrication process. Discussion of the main
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INPUT
Set of T wafers
(point patterns)

P-value Control Chart
(PROCEDURE 1)

p-value
below

threshold?
Stop

EMST Clustering
(PROCEDURE 2.1)

Cluster α−shapes
(PROCEDURE 2.2)

OUTPUT
Map of clustered defects

yes

no

Figure 2.1: Flow chart of the proposed methodologies. The procedures mentioned
in the chart are described in detail in Section 2.3 and Section 2.4.

results and conclusions in Section 2.6 end the chapter.

2.2 Defect data

One of the major sources of defects during chip fabrication is from dielec-
tric Chemical Mechanical Polishing/Planarization (CMP). CMP is a pro-
cess that removes materials to smooth surfaces. In CMP, a wafer is placed
on a carrier and pressed into contact with a slurry film on a polishing pad.
The planarization and polishing of the wafer is achieved through a mechan-
ical abrasion and chemical etching [9]. One of the critical steps where CMP
is used is when oxide is polished away until silicon nitride is fully exposed
rendering the shape of the circuit desired by engineers. In the CMP process,
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scratches formation originates [93] when the mechanical CMP action pro-
cess is attributed to the polishing pad interactions with a slurry. A defect or
a polishing scratch appears when for example particles of the residual ox-
ide is not fully removed or when, because of the spinning of the wafer (i.e.
high-speed rotation of the wafer), a particle run over the surface imprinting
a trajectory [62]. Not all defects cause failure of a die; it mostly depends
on both where they are located and on the size of the particle. To this
aim, scanning electron microscope (SEM) images are used. After wafers
are inspected using the inspection system, a wafer map that includes the
number of defects, their sizes, and their locations on the inspected wafer, is
produced.

In the dataset considered in this work, defect coordinates refer to the
centre of a wafer having a diameter of approximately 8 inches. Defects
were extremely small in dimension and were virtually identified by their
punctual location. Data were collected from two different machines. 64
wafers from the first machine were sequentially inspected with the number
of defects ranging from 11 to 91, the average number of defects per wafer
being 37.6, whereas 6 wafers were inspected from the second machine with
the number of defects ranging from 2 to 31 and the average defect number
being 12.75. The map associated with the first four wafers inspected from
the two machines are shown in Figure 2.2, where potential structured defect
patterns seems to be present.

Figure 2.2: Defect wafer maps obtained from the first and the second machine,
first and second row of the panel respectively.
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2.3 The p-value charts for spatially structured defect patterns

Hereafter, a defect is represented by a point x = (x1, x2) occurring in a
circular planar surface W representing a wafer. The spatial dynamics of
defects on the wafer area is assumed to be governed by a spatial point pro-
cess [26] occurring over W.

A spatial point process is a collection of random points such that for any
open set B in W , the counting measure N(B), representing the number of
points in B, is finite. A point pattern X = (x1,x2, . . .) is a finite collection
of points in the area of interest and it is typically interpreted as a sample
from (or a realisation of) the point process. In the actual problem consid-
ered here, a set of defects observed in W produces a point pattern. The
lack of interaction among the points of a point pattern is called complete
spatial randomness (CSR) property and it is typical of the Homogeneous
Poisson Process (HPP) [26]. Let N(B) be the random number of events
that occur in a generic bounded region B ⊂ W , a spatial point process is
Homogeneous Poisson or CSR if: i) N(B) follows a Poisson distribution
with expected value λ∣B∣ where ∣B∣ is the size of B and λ > 0 is known as
the intensity rate of the process, ii) for any choice of k disjoint bounded re-
gions of W , the random variables N(B1), . . . ,N(Bk) are independent [52].
Assuming N(B) = n, then the conditional property of CSR states that these
n points are independent and uniformly distributed in B.

Hypothesising that the CSR condition holds true for the defects occur-
ring on the wafer area amounts to the assumption that no spatial structures
are present and defects are somehow a physiological result of the fabrica-
tion process. Instead, structured defects can usually be ascribed to specific
faults of the production process and a prompt identification can convey rel-
evant information on the mechanism that originates the defects.

Testing the CSR condition requires a suitable test statistic that sum-
marises the "distance between the data and the CSR null hypothesis". In
particular, a common test based on the spacings or shortest distance distri-
bution in a point pattern is considered below. More specifically, let R be
the random variable representing the distance of a typical event of a point
pattern to its nearest event in the sample, G(r) the cumulative distribution
function of R expected under the CSR condition and Ĝ(r) = 1

n ∑
n
i=1 I(ri <

r) the empirical cumulative distribution function (ecdf) where ri is the
value of R for the i-th event in the sample. The functional T (G, Ĝ) =

∫R(G(r) − Ĝ(r))
2dr, where R is the support of R, is a measure of the di-

vergence between Ĝ(r) and G(r). For practical calculations this functional
is approximated by

D =D(G, Ĝ) =
m

∑
j=1
[G(rj) − Ĝ(rj)]

2 (2.1)

where the sum is taken over the grid of m values ranging from 0 to M , M
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being an appropriate upper limit of the sample distances. Hence, a large
value of D observed on the data does not support the CSR hypothesis.

The p-value can be obtained by approximating the distribution of D
under the null hypothesis via Monte Carlo simulations. This is obtained
by simulating a large number B of point patterns from the HPP. For the
b-th simulated point pattern the ecdf Ĝ∗b (r) is computed at the m dis-
tances and D∗b is also calculated. Finally, the p-value is obtained by p =
1+∑B

b=1 I(D∗b>Dobs)
B+1 where Dobs = D(G, Ĝobs) and Ĝobs is the ecdf calculated

on the observed point pattern.

To simulate a sample from a CSR process is computationally simple.
A simple algorithm just mirrors the definition of the CSR property given
above. First, a random draw is taken from a Poisson distribution to sim-
ulate the number n of defects occurring on the wafer area. Then, their
coordinates are generated from a bivariate uniform distribution on the pla-
nar support. The intensity rate adopted when simulating a point pattern is
the empirical intensity rate, which is the number of the observed defects
divided by the area of the wafer, i.e. the maximum likelihood estimate of λ
in the case of homogeneous Poisson processes.

A p-value control chart for spatially structured defects can be based
on the statistical test for the CSR property described above. Similar to the
CUSUM chart idea, the defects occurring up to a given time t are cumulated
and the ecdf of the observed nearest neighbour distances is calculated on
the cumulated point patterns. The test statistics Dt is calculated and the
p-value, pt, is worked out as described above.

The overall procedure to produce the chart is summarised in Procedure
1.

In order to construct the chart, the pt values are reported on the vertical
axis and the time t at which the p-value is calculated is reported on the
horizontal axis. A horizontal line is also added to the chart at the value of
statistical significance to be considered.

Since p-values are calculated using the distribution of test statistics
which is actually estimated via simulations under the CSR hypothesis, they
are affected by the variability induced by the simulation procedure. In or-
der to control for this variability, we suggest the calculation of a confi-
dence interval of the p-value by bootstrapping the simulated values D∗b ,
b = 1, . . . ,B. The bootstrap percentile confidence interval can also be dis-
played on the chart by a pair of segments corresponding to the upper and
lower limit of the interval. The process is considered out of control when
the confidence interval of the p-value is entirely below the significance level
α adopted for the statistical test. Some examples of this chart are reported
in Section 2.5.
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Procedure 1 p-value chart calculation

Input: X1, . . . ,XT , W ▷ Sequence of point patterns and process window
Output: Calculate a vector of p-values to be plotted in the chart

procedure SUBPROC(X, W ) ▷ p-value simulation
calculate the ecdf Ĝ(r) using the observed point pattern X
calculate D =D(G, Ĝ) in equation (2.1)
for b=1,. . . ,B do

simulate a point pattern X∗b from a HPP
calculate Ĝ∗b (r) using X∗b at m fixed values
calculate D∗b =D(G, Ĝ∗b ) in equation (2.1) and store its value

end for
calculate the p-value p
return p
end procedure

end procedure

Main procedure

set N0 = ∅ and t = 1
while t ≤ T do ▷ T : last inspection time

calculate Nt =Nt−1⋃Xt

apply SUBPROC to Nt to calculate pt
store pt in a T -vector v
replicate SUBPROC for B bootstrap replicates of Nt

store percentile confidence intervals in a two-columns matrix M
t=t+1

end while
return v and M
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2.3.1 A simulation study to explore the pv-chart performance

When exploring defects in manufacture artefacts, a prompt identification
of the defect structure is a crucial point to reduce waste and item rework-
ing, speeding up the fabrication process and reducing costs. Hereafter, a
concise simulation study, which explores the performance of the approach
suggested in the previous section, is reported.

As mentioned in the introduction, any type of structure in spatial de-
fect patterns is somewhat suspicious and a potential symptom of a process
malfunctioning. However, defects often tend to cluster in space and de-
fect clustering is typically the major concern. For this reason, clustering
structures have been considered in the simulation study presented below.

To simulate a clustered process, a clustering operation between point
patterns is performed [52]: every point x of a given point process, named
the parent, is replaced by a cluster Nx of points, named the daughters and
their set-theoretic union is the realization of the clustered point process.

More specifically, to simulate defects, a clustered Neyman-Scott pro-
cess has been adopted. Neyman-Scott processes originate from indepen-
dent clustering operations applied to a stationary Poisson process. The par-
ent points form an HPP with a given intensity and the daughter points are
random in number and scattered independently and with identical distribu-
tion around their parent. Parents are only auxiliary constructs since they
are not observable in reality and do not contribute to the final point pattern,
which consists exclusively of the daughter points. As far as the distribu-
tion of the daughters, the clustered process considered in this section has
a Thomas specification: the locations of the daughters are symmetrically
distributed around their parent according to a Normal distribution with a
scale parameter σ.

Since scratches across the wafer are of particular concern here, in this
simulation study clusters are generated to have elongated non-convex shapes,
which are typical in the presence of scratches. Assuming that the scratch
shape can be adequately approximated piecewise linearly, parents are gen-
erated according to an HPP defined on a network of lines [3], which is kept
fixed across the simulated wafers. The linear network that represents the
support of the parent process is displayed in Figure 2.3.

The simulation design is structured as follows.

i) generate a point pattern using a Neyman-Scott-Thomas linear net-
work clustered process on a circular window of radius 1;

ii) construct the pv-chart described in the previous section and save p-
value and the out-of-control time if an out-of-control event actually
occurs;

iii) repeat steps i) and ii) many times in different scenarios
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Figure 2.3: Piecewise linear network. Shaded areas are the subregions of the
wafer which are less than 3σ apart from the linear network and that represent
the area more prone to defects for different values of σ: σ = 0.01 white area,
σ = 0.05 light grey area and σ = 0.1 grey area.

A maximum of 20 consecutive wafer inspections is considered in the sim-
ulation, assuming that an effective gauge would detect the spatial structure
of defects in a reasonably small number of wafer inspections. For simplic-
ity, we assume that one wafer is processed at a given time point and that
the time points are equally spaced. The p-values are calculated using 250
Monte Carlo replicates for each simulated wafer. In order to investigate the
pv-chart performance, step i) and ii) are repeated 1000 times. Data simula-
tion mirrors the definition of clustered point processes given above. In step
i), an HPP on the linear network is assumed to simulate parent locations.
For each parent x, the number of daughters nx is simulated by a random
draw from a Poisson distribution. Then, their coordinates of daughters are
generated by drawing a random sample of size nx from a bivariate Gaussian
distribution centred at the parent location with a prefixed standard deviation
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σ in both parent coordinates. To simulate the data, we set the expected num-
ber of the parent HPP on the network as big as 3 and the expected number
of daughter points for each parent point also equal to 3. This guarantees a
number of defects in the final simulated point pattern equal to roughly the
average number of defects that we observed in the dataset used in the case
study that will be presented later on in this chapter.

In a clustered pattern, more points occur at short distances than would
be expected if the pattern were CSR and hence, the nearest-neighbour dis-
tance distribution function for a clustered pattern takes larger values than
for homogeneous Poisson patterns, resulting in a bigger value of the test
statistics (2.1) and a smaller p-value. The average out-of-control time and
the average p-value are computed under different scenarios and reported
in table 2.1. More specifically, the procedure has been repeated for dif-
ferent values of σ, namely σ = 0.01, σ = 0.05 and σ = 0.1. Figure 2.3
also shows the subregions of the wafer that are less than 3σ apart from the
linear network for the different values of σ listed above. This area repre-
sents the region of the wafer which is "likely" to be involved by the defect
clustering. When σ = 0.01, this prone-to-defect area is quite narrow (about
5% of the entire wafer area) and spatial clustering is expected to be strong.
When σ = 0.1, the prone-to-defect area is extremely large, about 65% of the
entire wafer area. In this case, clustering is extremely weak and hardly dis-
tinguishable from unstructured defects. For σ = 0.05, we still have a quite
weak clustering scenario, although less extreme than the previous one, with
about 30% of the entire wafer surface influenced by clustering.

A second scenario has been considered where a number of defects, not
structured in space, have been added to the clustered sample in each iter-
ation of the simulation study. More specifically, the noise component is
simulated from a CSR process with an intensity rate equal to one third of
the intensity rate observed in the simulated sample of clustered defects.
This guarantees, on average, 25% of the overall simulated defects made by
spatially unstructured events in each iteration.

σ2 value average time average p-value % of p-values ≤ 0.05
Without noise

0.10 11.2 0.194 0.437
0.05 6.0 0.028 0.947
0.01 1.4 0.015 0.980

With noise
0.10 11.0 0.356 0.206
0.05 11.0 0.116 0.635
0.01 2.0 0.019 0.986

Table 2.1: Average time before out-of-control occurrence and average p-value
obtained in 1000 simulations. Two scenarios are considered with and without
(unstructured) spatial noise.
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Table 2.1 shows the results of the simulation exercise. It clearly ap-
pears that the suggested procedure is extremely efficient in detecting the
clustering when clustering is strong or even moderate. In the case of a
strong clustering (σ = 0.01), the average time before the pv-chart points out
an out-of-control status is roughly 2 (i.e. on average, only two wafers are
processed before the presence of clustering is detected) and a significant
p-value (≤ 0.05) is found before the twentieth wafer in roughly 98% of the
cases. Also, in the case of a moderate clustering, the chart performs well.
In these two scenarios, i.e. strong and moderate clustering, the procedure
is found to work reasonably well, also when CSR events are added to the
simulated point patterns.

As one could expect, the procedure has a less brilliant performance in
the case of a very mild clustering (σ = 0.1). In these circumstances, the
pv-chart is not able to detect the clustering within the first twenty wafers in
roughly 75% of the entire bunch of the performed simulations. The aver-
age p-value is quite high as well as the average time when the out-of-control
status is detected. Indeed, this is an extreme situation and very difficult to
detect with an extremely large area of the wafer, about 65% of the entire
wafer surface, prone to defects (see Figure 2.3). In these circumstances,
spatial clustering, although present, can hardly be distinguished from un-
structured defectivity and, in practical applications, it is presumably not
attributable to any local malfunctioning of the fabrication processes.

2.4 Graphical tools for spatial non-convex cluster detection

Once an out-of-control status is detected, further analyses are necessary to
investigate the spatial structure of the defects over the wafer area. Here-
after, a non-parametric method is presented with this aim. The procedure
consists of two main steps. First, an agglomerative clustering algorithm
based on a minimum spanning tree is proposed to identify the main clus-
ters that are present on the wafer. In the second step, the cluster shape is
estimated using the alpha-shape of each detected cluster of defects. The
procedure is sketched in Procedure 25 and is explained in detail in the next
two sub-sections. All the algorithms presented in this chapter have been
implemented in the R software [87].

2.4.1 Detection of defect clusters: the minimum spanning tree algo-
rithm

In graph theory, a graph is an ordered pair of sets (V,E), where V is a set
of nodes or vertices and E is a set of edges which are binary subsets of V ,
i.e. each edge is identified by a pair of nodes. Two nodes connected by an

5In Procedure 2, ∣V ∣ denotes the usual Lebesgue measure of a segment or a set V i.e. its length
or area respectively.
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edge are called adjacent. The edge can be directed (also called an arrow)
or undirected (a line). The edge connecting two nodes α and β in V is a
directed edge pointing to β if (α,β) ∈ E and (β,α) ∉ E. A sequence of
adjacent nodes identifies a path. A graph is connected if any pair of nodes is
connected by a path. A cycle is a path in which all the vertexes are distinct,
except for the first and the last. A graph is called acyclic if it contains no
cycles. A tree is a non-empty, connected, acyclic and undirected graph.
A tree is called edge-weighted if a number is assigned to each edge, i.e. a
weight function w(α,β) is defined for each edge (α,β) ∈ E. The weight of
the tree is the sum of all the weights associated to its constituent edges. The
Minumum Spanning Tree is a particular tree such that the total edge weight
is the minimum possible amongst all the possible spanning trees of (V,E).
In particular, if the weight function is the distance between α and β, the
tree is called a distance tree. If the adopted distance function is Euclidean,
the tree is also called a Euclidean Minimum Spanning Tree (EMST from
now on).

From the requirement that the sum of the edge weights must be min-
imum, the node pairs defining the edges represent points that tend to be
close together; hence the EMST can be a basis for investigating clustering
in a set V of defects.

This approach constructs the EMST on the set V for which efficient al-
gorithms are known and implemented in many statistical and mathematical
packages. In particular, the R library spatgraphs has been used in the case
study presented in section 2.5.

Each edge in the EMST grown on V is the smallest edge connecting two
partitions A and V −A of V . Thus, points in different clusters of V should
intuitively be connected by the longer edges of the EMST than points in the
same cluster. Hence, the most relevant clusters of points can be obtained
by cutting the longest edges in the EMST. Removing the longest edges of
the EMST produces more homogeneous clusters. The elimination of the
longest edge results in two-group clustering. Removal of the next longest
edge results in three-group clustering and so on. This operation is usually
called separating. The main idea of separating is that unusually long edges
have to be removed from the EMST. The components of the EMST that
remain connected at the end of the procedure identify the clusters. In this
form, the EMST cluster detection contains all the information of a single
linkage cluster analysis in the sense that the clusters formed at any distance
d can be obtained from the EMST by deleting all segments of length greater
than d and the dendrogram can also be derived from the EMST [42]. Given
this, a clustering procedure based on EMST is prone to the same criticism
as single linkage cluster analysis. In particular, it potentially produces, and
it often does produce, elongated clusters so that a pair of points belonging
to different clusters may be closer together than different members of the
same cluster. Being prone to chain groups of objects in elongated struc-
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tures, using isolated objects to link distinct groups, EMST may provide an
advantage in defect clustering studies where scratches, which tend to ex-
pand by filamentary patterns of punctual defects through the wafer area,
are often the main cause of defect patterns.

Cluster identification requires, however, a rule to remove some edges
from the tree, sometimes called inconsistent edges. One of the seminal
papers on clustering detection based on minimum spanning tree [105] sug-
gests cutting those edges whose weights are significantly larger than the
nearby edge weights, for instance k standard deviations larger than the av-
erage edge weights on each size. Zhou et al. [108] suggest to partition a
set of points into a group of clusters by maximally reducing the overall
standard deviation of the edges constructed from this set.

In our case, a reasonable strategy is to remove from the tree all the edges
that are too long when compared to what one could expect under the CSR
condition, hence representing potential bridges between two clusters. More
specifically, each edge’s length is compared to a scenario of an EMST com-
puted on a point pattern originated by a CSR process. Then, an edge is cut if
its length is greater than the percentile of order 0.9 of the expected average
length L̄ distribution of the edges of that EMST. Hence, the distribution of
the average edge length of an EMST grown on a CSR point pattern has been
simulated by repeatedly sampling an HPP. For each point pattern obtained
in the simulation, the EMST is constructed and its average edge length is
also calculated. Then, the length of each edge of the EMST obtained on the
observed point pattern is compared to the 90% percentile of the simulated
distribution. If the observed length is greater than this percentile, the edge
is removed from the tree.

The exogenous selection of the cut-off to identify inconsistent edges is
a somewhat critical point of many agglomerative or disjunctive hierarchical
methods for cluster detection. The proposed procedure bypasses this prob-
lem, resorting to the distribution of the average edge expected assuming
that the CSR property holds true to identify when two points occur too far
apart.

2.4.2 Scratch cartography: α-shapes

As mentioned above, the identification of the scratch shape is one of the
goals of an exploratory tool for spatial defects. The use of α-shapes to this
end is described below.

Alpha-shapes were introduced by Edelsbrunner et al. [30] to provide
a convenient method for delineating shapes in the plane by straight-line
graphs. α-shapes are graphs, possibly disconnected, that generalize the
convex hull of a set of points by weakening the convexity constraint, hence
allowing for grasping elongated and concave shapes of a cluster. To build
the graph, a circle of specified radius is used to link two joined points of
the convex hull of V . The two points are connected by an edge if there are
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no other points inside the circle or removed otherwise.
More specifically the α-shape [75] of a set of points V = {v1, . . . , vn},

denoted hereafter by Aα(V ), is the graph with vertices {v1, . . . , vn} and
edge set

E = {vi, vj ∶ ∃Dα with vi, vj ∈ ∂Dα and V ∩Dα = ∅}

where Dα is a disk of radius α, α > 0, and ∂D denotes the boundary of D.
For α < 0 the disc is required to be of radius −α and V ∩Dα = V . For α = 0
the graph is the empty graph on V , i.e. the graph with no edges connecting
the points in V .

The region identified, however, is sensitive to the value of α and typi-
cally selecting this value is crucial to grow the graph since it may produce
disconnected polygons, polygons including holes with possible islands and
so on. Tuning this parameter manually is not appropriate when this ap-
proach has to be implemented to depict the clusters occurring during a fab-
rication process and methods that automatically select a sensible value of
α are definitely more convenient. Mandal and Murthy [74] suggested the
following formula:

α∗ =

√
ln
n

where n is the number of points in the set and ln is the sum of the weights
of the EMST edges connecting these points. In this work, we consider
a different criterion. Since the α-shape is constructed separately for each
cluster, to identify the influence area of a scratch, the value of α has to
guarantee that the polygon is connected and covers a region close to the
scratch in order to reliably capture the area where defects are likely to occur.

The idea of the procedure is to select α in such a way that the polygon is
of the smallest possible area while still remaining connected. More specif-
ically, a binary search is implemented in the interval [0, d] where d is the
diameter of the set of points, i.e. the maximum distance between a pair of
points of V . Note that α = d produces the convex hull of V whereas α = 0
the empty graph of V . The procedure repeatedly splits the search interval of
the possible values of α trying to minimise the area of the α-shape under the
constraint that the polygon is connected. More specifically, starting from
the interval [0, d], at each step the procedure constructs the α-shape with
the parameter α corresponding to the midpoint, m, of the current search
interval, say [a, b], and checks whether the α-shape is connected. If so, the

search interval is replaced by [a,m], whereas it is replaced by [a+
b −m

2
, b]

otherwise. The procedure keeps going until the relative change in the area
of the α-shape obtained in two successive steps is not below a fixed thresh-

old ϵ, i.e. the algorithm stops at iteration t − 1 if
∣Aαt ∣ − ∣Aαt−1 ∣

∣Aαt−1 ∣
< ϵ where
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Aαt is the alpha-shape of the observed point pattern of defects at iteration
t.

2.5 Assessing defect structures in wafer manufacturing: pv-
chart and cluster identification

In this section, the methodology discussed above is applied retrospectively
to a dataset of defects that occurred in the microchip fabrication process. A
set of wafers, processed by two machines in successive time points, have
been considered. The coordinates of the defects that occurred during the
production process were detected by a laser scan of their surface. The de-
fect coordinates are obtained with respect to the centre of the wafer.

Figure 2.4 shows the CSR pv-charts obtained by adopting the procedure
described in Section 2.3. Wafers were scanned one after the other and the
defects that occurred at each time point were layered on the top of those
previously scanned by the equipment. At each time point the test statis-
tics in equation (2.1) were calculated on the set of cumulated defects and
the p-value was computed using 10,000 simulated replicates drawn assum-
ing that the CSR property holds true. The p-value was bootstrapped 1,000
times in order to obtain a 95% percentile confidence interval to account for
the variability induced by the simulation process. The confidence intervals
were displayed on the chart by a vertical bar drawn around the p-value ob-
tained at each time point. A horizontal line has been also reported in the

(a) (b)

Figure 2.4: P-value chart for the first (a) and the second (b) machine.

graph at each of the typical significance levels adopted in common statisti-
cal tests, namely 0.1, 0.05 and 0.01. Assuming that 0.01 is the significance
level actually considered, Figure 2.4-(b) suggested stopping the fabrication
process and possibly intervening on the equipment after six wafers were
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Procedure 2 Cluster identification and representation

Input: X, W ▷ A point pattern and the process window
Output: α-shapes representing the clusters

procedure SUBPROC1(X, W ) ▷ Simulation of the distribution of L̄
n = N(X)
for b ∶ 1 . . .B do

simulate a point pattern X∗b from a HPP with intensity rate n/∣W ∣
calculate the EMST from X∗b
calculate L̄∗b and store it in a B-vector v
return v

end for
end procedure

end procedure

procedure SUBPROC2(V ,ϵ) ▷ Binary search of smallest connected α-shape
Aα0 = ConvexHull(V ) ▷ V : set of nodes
a = 0 and b = d ▷ d: diameter of V
s = 1

while
∣Aαs ∣ − ∣Aαs−1 ∣

∣Aαs−1 ∣
< ϵ do ▷ Aα: α-shape of V

m = a+b
2

calculate Am

if Am is connected then
set b =m, Aαs = Am and s = s + 1

else if Am is not connected then
set a = a +

b −m

2
end if

end while
return the last (smaller) connected α-shape found
end procedure

end procedure

Main procedure

Step 1 - agglomerative clustering algorithm based on EMST

calculate T , the EMST of X
simulate the distribution of L̄ usig SUBPROC1
for e ∈ E do ▷ E: the set of edges of T

if l ≥ L̄0.9 then ▷ l = ∣e∣
add e in Λ ▷ Λ: list of edges

end if
end for
remove all edges in Λ from T
store all subtrees of T in τ ▷ τ : list of trees

Step 2 - cluster shape via alpha-shapes

for t ∈ τ do
apply SUBPROC2 to Vt ▷ Vt: set of nodes of t
store/plot Aαt

end for
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processed when the p-value and the entire bootstrap confidence interval
lies completely below this value. Had one considered a significance level
as large as 0.05 instead, the process could have been stopped even earlier,
after the third wafer had been processed. The chart also sheds light on the
status of the system even though the significance level had not actually been
reached. In fact, by inspecting the results obtained by the pv-chart in the
first five wafers, it clearly appears that the defect structure of the system is
steadily remaining relevant since the p-value (and its confidence interval)
tends to be remarkably low. A somewhat less defined pattern is shown by
the second dataset that is displayed in Figure 2.4-(a). Here, the p-value
is quite high at the second time point and then falls at the third point. In
this case, it may be safer to monitor the system a few time points ahead to
check whether the p-value stabilizes afterwards as it actually occurred for
the dataset considered here.

In both cases considered above, the CSR property is not compatible
with the data at hand. Hence, the procedure described in Section 2.4 has
been applied in order to identify and represent spatial structures. First, the
EMST was grown on the defects cumulated up to the wafer when the out-of-
control status was detected and then the tree was separated using the Monte
Carlo procedure described in Section 2.4.1. The results obtained for the
two machines are reported in Figure 2.5 where clusters are superimposed
in colour on the EMST grown on the defects detected by the two pieces of
equipment. In both cases, the distribution of the average length of the MST
edges has been estimated using 5,000 simulations.

(a) (b)

Figure 2.5: Clusters of defects identified by the EMST algorithm for the first (a)
and the second (b) machine. Points belonging to different clusters are depicted
using different symbols and connected by continuous edges of the EMST. Dotted
edges are those removed during the separating procedure.
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The skeleton of the sub-trees obtained by the procedure represents, how-
ever, a somewhat crude shape of the scratches that occurred on the wafer
area during the fabrication process.

In addition, a more convenient representation of defect clustering should
identify a region of the wafer area prone to defect. This kind of representa-
tion seems to be more appropriate than the skeleton to represent the area of
influence of a scratch in subsequent wafers where a certain displacement of
defect locations around the scratch is expected. Hence, α-shapes, described
in Section 2.4, are used hereafter to estimate the shape of the clusters.

More specifically, α-shapes are constructed using the procedure de-
scribed in the previous section for each cluster that includes more than ten
defects, labelled "A" to "G" in Figure 2.5, assuming that clusters consisting
of too few defects can be potentially spurious. The result of the procedure
is depicted in the maps reported in Figure 2.6. The maps represent the re-
gions of the wafer that are expected to be more prone to defects in the two
production lines considered here.

(a) (b)

Figure 2.6: α-shapes representing the cluster of defects found relevant in the
first (a) and the second (b) machine. Lines represent the principal curves [48]
estimated for each cluster. Points not included in any of the major clusters are
represented in light grey.

2.6 Discussion and Conclusions

This work proposes a procedure, composed of an ensemble of different
methods, to detect defect patterns in wafer fabrication process control in
the microelectronics industry. The procedure is based on two successive
phases. First, assuming that defects are governed by a spatial point process,
a p-value control chart is constructed to detect any possible spatial structure
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of defect patterns using a test for the CSR property at each time point.
The second phase aims to identify the shape and the location of defects.
Particular attention is paid to the identification of clusters having complex,
possibly non-convex, patterns typically difficult to detect and display. This
phase is based on a minimum spanning tree algorithm coupled with alpha-
shapes that are found to grasp such complex patterns effectively.

The entire procedure is non-parametric in nature since neither the EMST
nor the α-shape algorithm requires any specific assumption on the mech-
anism that generates the data. Similarly, the Monte Carlo test adopted to
implement the p-value control chart does not require any specific assump-
tion on this mechanism and, in principle, can be adapted to different speci-
fications of the latent process that generates the events (non necessarily the
CSR one).

Taking into account the punctual nature of the data at hand, and differ-
ently to most of the literature in the field, we did not inspect defects at the
chip level but felt it more appropriate to investigate the spatial locations of
each single event. To the best of our knowledge, both parts of this proce-
dure are new and have never been discussed in previous works. Although
neither the EMST nor the alpha-shapes employed in the second phase are
new algorithms, their use in this field is nonetheless original as are the pro-
cedures suggested to automatically tune the parameters necessary to prune
the inconsistent edges off the EMST and to select the alpha-shape size.

We remark that the pv-chart considered in this work monitors the pres-
ence of a systematic structure in defect locations. Differently, the usual
control charts used to monitor the defect process aim to identify "an ex-
cess" of defects on the wafer surface, possibly adjusting for the presence
of clustering. These charts typically require a target value that has to be
learnt from phase I studies or benchmark data whereas the procedure pro-
posed here defines the target in terms of a stochastic property (i.e. the CSR
condition) and uses the desired significance level of the test as reference
value.

We also note that other methods of cluster detection and representation
fit in the procedure proposed in this chapter. To exemplify this point, the
DBSCAN algorithm [32] has been applied to our datasets instead of the
EMST procedure described above. This algorithm produces quite similar
results. Using the Rand index to compare the two clustering methods, we
found that 85% of the defects are grouped similarly. However, as could be
expected, DBSCAN tended to form more spherical clusters than the pro-
posed procedure, hence proving to be less sensitive to elongated structures.
Furthermore, the DBSCAN algorithm requires the tuning of an exogenous
threshold to determine the neighbours. This value is usually determined
by inspecting the k-nearest neighbour distances via a plot as we also did
in this comparison. This approach, however, is suitable in off-line analysis
whereas an automatic procedure, as the one suggested in this work, is more
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convenient in in-line monitoring.
As mentioned in previous sections, non-convex elongated shaped clus-

ters of defects are typically due to scratches occurring during the fabrication
process that are often particularly detrimental to the yield. We recognise
that some practitioners may feel unsatisfied with a set estimate of a scratch
and would prefer a curvilinear estimation instead. As mentioned above,
the skeleton of the sub-trees obtained in the second step of the clustering
procedure suggested in this study provides a curvilinear estimate, although
crude, of a scratch. Principal curves [48] can be used to get a smoother
shape of these structures. Principal curves are a generalization of principal
components that do not require an assumption of linearity. They are de-
fined as one-dimensional curves that do not intersect or pass through the
middle of a p dimensional data set, providing a non-linear summary of the
data. Hastie and Stuetzle [48] also provided an algorithm to estimate the
principal curves for a p-dimensional set of points of size n. The idea to
employ principal curves to represent clusters having curvilinear patterns
dates back to [97]. This approach has been more recently reconsidered in
semiconductor defect data analysis by [51].

The use of principal curves also fits in the procedure proposed in this
chapter. To exemplify this point, principal curves have been estimated sep-
arately for each cluster obtained by the algorithm proposed in Section 2.4
and superimposed on the α-shapes in Figure 2.6. It appears that the scratch
shape obtained by principal curves and α-shapes looks similar. However,
although principal curves may suggestively depict the scratch shape, α-
shapes seems a more appropriate way to evaluate the influence area of a
scratch, i.e. the region of the wafer where defects are expected to occur
when processing a sequence of wafers.

The advantage of the procedure discussed in this chapter is twofold.
First, it is reasonably easy to implement and computationally efficient.
To implement the chart and derive the defect cartography only requires

262 seconds for the first piece of equipment considered in Section 2.5 (284
defects detected in the six wafers analysed) and 95 seconds for the second
piece (52 defects detected in the four wafers analysed) using a CPU Intel(R)
CORE (TM) i7 - 6700HQ at 2.60 Ghz with 16Gb of RAM. This makes it
possible to plan in-line implementations of the tool along the fabrication
process that permits prompt intervention if necessary. We notice that en-
hancements of MST-based clustering algorithms to improve the computa-
tional time have been suggested in recent papers (see [58] amongst others)
and could easily be included in the procedure described in this work in the
case of production processes characterised by a larger number of defects.

It also represents a powerful exploratory tool to identify effectively spa-
tial structures in defect patterns that can be followed by more in-depth,
possibly model based, off-line analysis of the clustering.

The procedure, in fact, has proven to be effective in detecting clusters of
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defects. Having used prospectively retrospective off-line data, we were in
the position to cross-validate our methodology using defect data collected
on successive wafers processed by the two pieces of equipment considered
in the previous section.

More specifically, for the first piece, we considered the next five wafers
processed after the wafer in which the out-of-control status was detected
and we calculated the percentage of defects that, in those successive wafers,
lay in the four alpha-shapes depicted in Figure 2.6-(a). The percentage of
defects occurring inside the four polygons ranged from 19.15% to 22%, i.e.
roughly 20% of the defects in new wafers of the same production line is
concentrated in 7% of the entire wafer area, 7% being the area of the wafer
covered by the four alpha-shapes. This value is not far from 31%, which
is the percentage of the defects falling within the four alpha-shapes in the
first six wafers where the procedure was trained.

For the second piece of equipment, we only had two wafers processed
after the out-of-control detection. The number of defects that occurred
within the three alpha-shapes in Figure 2.6-(b) in these two wafers is 91.3%
and 86.4%, respectively. These percentages are even higher than 63%,
which is the percentage of defects falling within the three alpha-shapes in
the first four wafers where the procedure was trained. The proportion of the
wafer area covered by the three polygons is about 10.4%; hence defects are
found extremely concentrated for the second machine.

Secondly, as mentioned above, the pv-chart described in Section 2.3
has proven to be extremely fast in detecting spatial structures, requiring the
processing of only a few wafers. This gives a great advantage in modern
microelectronics fabrication processes where items tend to be highly spe-
cialised, characterised by a short production life cycle and often produced
in small lots. In these circumstances, a quick detection of defect patterns is
often fundamental to avoid expensive yield loss.

Finally, different from other types of control charts, the pv-chart pro-
posed here does not require gold standard data to be implemented since
benchmark data are easily obtained via crude Monte Carlo simulations.
This is another advantage for small lot production that typically does not
permit the collection of charting statistics over time and, hence, to have
benchmark data to set the chart.
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CHAPTER3
Bayesian inference of graph-based

dependencies from mixed-type data 6

3.1 Introduction

Understanding dependence relations between variables is an important task
in several scientific domains, such as social sciences and biology. When
the physical law describing the relationship between two quantities is un-
known, this can be inferred from measurements collected under various
conditions. In addition, when the system of interest entertains several vari-
ables, these can be organized in a graph which encodes a collection of de-
pendence relations. The objective is therefore to estimate the graph struc-
ture, a process known as structure learning. Graphical models [63] provide
a powerful framework to represent conditional dependence structures in
multivariate distributions. This class of models adopt a graph-based repre-
sentation to express the joint distribution of variables. The graphical struc-
ture imposes a set of pairwise conditional independencies between vari-
ables which in the case of parametric families corresponds to constraints
on the parameters of the distribution. Moreover, the set of all conditional
independencies encoded by a graph determines the so-called graph Markov

6A preliminary version of this work has been accepted for publication on "Statistical Models and
Methods for Data Science - 13th Scientific Meeting of the Classification and Data Analysis Group of
the Italian Statistical Society", Springer, Editors: L. Grilli, M. Lupparelli, E. Rocco, C. Rampichini
and M. Vichi.
The full work is under submission.
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property.
Graphical models have been extensively studied in the Gaussian and

categorical (multinomial) settings separately. Several methodologies for
structure learning have been proposed under the two frameworks and fol-
lowing both a frequentist and Bayesian perspective. Among the former,
the PC algorithm [59] and the graphical lasso [78] are the most popu-
lar methods, developed respectively for estimation of directed and undi-
rected graphs. In the Bayesian framework, instead, Bhadra & Mallick [5]
propose a Bayesian hierarchical graphical model for Gaussian variables
on decomposable graphs. Moreover, Castelletti et al. [10] and Castelletti
& Peluso [11] develop methodologies for structure learning of Dyrected
Acyclic Graphs (DAGs) respectively for Gaussian and categorical variables
whose results are applicable also to undirected decomposable graphs.

In many applied problems however, it is common to collect continuous
and categorical measurements simultaneously. One example is medicine,
where patients’ characteristics are expressed as categorical variables, while
clinical examinations are continuous measurements. A further field of ap-
plication is in environmental engineering [96]: hydrocyclones provide a
method for removing solids from liquids, as well as separating two liquids
according to their densities. Unknown dependencies between continuous
input flow rates, discrete and continuous material features, continuous en-
vironmental conditions, and categorical efficiency measures are common
features of this setting. Another instance is nanotechnology, which devel-
ops functional structures designed at the atomic or molecular scale, related
to optoelectronics, luminescent materials, lasing materials and biomedical
imaging [4, 50, 72].

Contributions to graphical modeling for mixed data, namely both con-
tinuous and categorical, are relatively recent and quite narrow especially in
the Bayesian framework.

Lee & Hastie [65] propose a frequentist methodology which jointly
models the two set of variables by means of their conditional distribu-
tions; these corresponds to multiclass logistic and Gaussian linear regres-
sion models. They join a pairwise Markov random field model for cate-
gorical variables with a Gaussian graphical model for continuous variables
and implement an undirected graph estimator that maximizes a sparsity-
constrained likelihood. Similarly, Fellinghauer et al. [33] propose a method
based on fitting separate l1-regularized regressions for each variable.

Moreover, Chen et al. 2015 [13] consider a pairwise graphical model
where the conditional distribution of each node is in the exponential family.
They propose a neighbourhood selection approach to recover the structure
of a mixed graphical model, by maximizing node-by-node penalized con-
ditional likelihoods.

Similarly, Yang et al. [102, 103] introduce a novel class of graphical
models based on generalized linear models, again assuming node-wise con-
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ditional distributions in the exponential family. Much more recently, Zhuang
et al. [109] propose an exponential family-based framework for graphical
models using maximum likelihood estimate and sampling based approxi-
mation technique to infer Undirected Graphs (UG) for continuous and dis-
crete data.

Following a decision-tree framework, Edwards et al. [31] propose a pro-
cedure to estimate a graph structure (either undirected or directed) based on
an AIC and BIC criteria. Their method extends the algorithm of Chow &
Liu [15], originally introduced for tree-based graphs. Specifically, they first
select a minimal AIC or BIC graph having a forest structure by using pe-
nalized mutual information quantities. Next, they analyze separately each
connected component using the method of Chow & Liu [15]. The resulting
algorithm scales efficiently in high-dimensional settings and at the same
time allows for dimension reduction.

Moving to a Bayesian framework, Bhadra et al. [6] propose a methodol-
ogy for model selection of undirected graphs motivated by applications to
cancer genomics. Here in particular, both categorical and continuous vari-
ables, such as the absence/presence of a mutation and protein expressions
respectively, are typically available. Their approach is based on a Gaussian
scale mixture representation of the marginal distributions of the two types
of variables and can manage both continuous data that are not normal as
well as discrete categorical data simultaneously.

Moreover, Zareifard et al. [106] propose a methodology for structure
learning of directed graphs given continuous and categorical data. Their
model assumes that categorical measurements are obtained by discretiza-
tion of latent continuous variables and that the joint distribution of latent
and observed Gaussian variables is multivariate normal. Accordingly, pos-
terior inference on DAGs is conducted by implementing a Gibbs sampling
algorithm based on data augmentation.

More recently, Cheng et al. [14] consider a conditional Gaussian (CG)
model to analyze multivariate mixed data. This is based on the original
work by Lauritzen & Wermuth [64] who define the general form of a con-
ditional Gaussian model for variables whose distribution conditionally on a
given level of categorical data is multivariate normal; the Authors also char-
acterize the connection between the parameters of the CG distribution and
the conditional independencies imposed to the the variables in the model.
Starting from this model representation for mixed data, Cheng et al. [14]
propose a simplified version of the CG model where parameter estimation
is performed by maximizing the conditional log-likelihood of each vari-
able with a lasso-type penalty. The methodology is then applied to high-
dimensional settings to recover a sparse undirected graphical structure.

In this study we propose a Bayesian methodology for structure learn-
ing of undirected graphical models. More specifically, our framework is
based on a CG distribution for the combination of categorical and continu-
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ous data. We set up a Bayesian model by assigning a suitable class of prior
distributions for the parameters of the distribution. Additionally, the model
allows two alternative parameterizations: a moment and a canonical rep-
resentation; the first one enables closed-form results in terms of parameter
posterior distributions as well as marginal likelihood for an unconstrained
(complete) graphical model. The second one instead provides an effective
way to express conditional independence relations in the joint distribution,
and in turn to learn the underlying graphical graphical structure.

Especially for the canonical representation, posterior inference on de-
pendence parameters is carried out by resorting to Markov Chain Monte
Carlo (MCMC) methods, which in turn allows to recover a possibly sparse
graph structure. Our Bayesian methodology with canonical representation
is compared with the alternative state-of-art method of Cheng et al. [14]
with appreciable performances in simulation studies. The rest of the chap-
ter is organized as follows. In Section 3.2 we introduce our model under the
assumption of CG distribution. In Section 3.3 we complete our Bayesian
model formulation by assigning suitable priors to the model parameters
which describe associations/interactions between variables. Posterior in-
ference on parameters and graph structures is also described in Section 3.3.
We evaluate our methodology through simulation studies in Section 3.4 and
apply it to the analysis of two real datasets in Section 3.5. In Section 3.6 the
moment parametrization is introduced followed by some theoretical results.
Finally, Section 3.7 concludes with a discussion.

3.2 Conditional Gaussian model

Accordingly to the approach proposed in the following sections, a general
notation on graph theory is given. Conditional independencies between
variables which characterize the Markov property of an undirected graph
(UG) can be expressed through zero-constraints on the interaction parame-
ters. To this end, let G = (V,E) be an UG, where V is the set of nodes and
E ⊆ V × V the set of (undirected) edges. If (u, v) ∈ E, then also (v, u) ∈ E
and we say that G contains the undirected edge u − v; in such a case u
and v are called neighbors. Moreover, for a given subset A ⊆ V , we let
GA = (A,EA), with EA = {(u, v) ∈ E ∣u ∈ A,v ∈ A}, be the sub-graph of
G induced by A. We say that GA is complete if all its nodes are connected.
The UG G encodes a set of conditional independencies between variables
which determine its Markov property. In particular, the absence of an edge
u − v in G, that is (u, v) ∉ E implies Xu��Xv ∣X ∖ {Xu,Xv}.

3.2.1 Conditional Gaussian distribution

Consider a collection of random variables X = (X1, . . . ,X∣V ∣)⊺ indexed by
the finite set V . We allow X to contain both categorical and continuous
variables that are indexed respectively by ∆ ∪ Γ = V . In what follows,
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we will also refer to the collection of categorical and Gaussian variables as
Z1, . . . , Zp and Y1, . . . , Yq respectively, so that ∣Γ∣ = p, ∣∆∣ = q. For such
a combination of random quantities, Lauritzen and Wermuth [64] define a
general class of probability distributions having the form

f(x) = f(s,y) = exp{g(s) +h(s)⊺y −
1

2
y⊺K(s)y}, (3.1)

where s and y correspond to the multi-dimensional levels assumed by the
categorical and continuous variables respectively, and K(s) is a q × q
symmetric positive definite (s.p.d.) matrix. A probability distribution of
the form (3.1) has a Conditional Gaussian (CG) distribution if and only if
XΓ ∣X∆ = s ∼ N∣Γ∣(K(s)−1h(s),K(s)−1), where XA ∶= (Xi)i∈A for any
A ⊆ V . Therefore, the distribution of the Gaussian variables conditionally
on the configuration s of the categorical is multivariate Normal, and the
marginal distribution of the categorical variables is such that

Pr(X∆ = s) ≡ θ(s) = (2π)
− ∣Γ∣

2 ∣K(s)∣−
1
2 exp{g(s)+

1

2
h(s)⊺K(s)−1h(s)},

(3.2)
for each level s assumed by X∆. In addition, if K(s) =K for each config-
uration s, a CG distribution is called homogeneous (HCG). Representation
(3.1), which is based on the triplet (g,h,K) is named canonical. An alter-
native parameterization is given in terms of moment-characteristics param-
eters, see Section 3.6 for details.

Conditional independencies between variables in a CG distribution rely
on the notion of interaction. Specifically, we can first express the canonical
parameters (g,h,K) through the following expansions

g(s) = ∑
d∶d⊆∆

λd(s), h(s) = ∑
d∶d⊆∆

ηd(s), K(s) = ∑
d∶d⊆∆

Φd(s),(3.3)

where the new collection of parameters λd(s), ηd(s) and Φd(s) are called
interaction terms and d represents any subset (including the null set) of
∆, the index set of the categorical variables. Each term of the expansions
represents a type of interaction between variables. In particular,

• λ∅ is the log normalizing constant; λd (d /= ∅) are pure discrete in-
teractions among variables in d ⊆ ∆. If ∣d∣ = 1 they correspond to the
main effects of the categorical variables;

• η∅’s coordinates are the main effects of the continuous variables; ηd

(d /= ∅) are mixed linear interactions between a continuous variable
and variables in d ⊆∆;

• Φ∅’s elements are pure quadratic interactions; Φd (d /= ∅) are mixed
quadratic interaction matrices between variables in d ⊆ ∆ and pairs
of continuous variables.
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Following this representation, the distribution is homogeneous if and only
if it has an interaction representation with no mixed quadratic interactions,
and thus K(s) =Φ∅.

Interaction terms allow for a more direct characterization of conditional
independencies between variables; accordingly, the Markov property of a
given UG can be expressed through zero-constraints on such parameters.
Let G be an UG; a CG distribution is said to be nearest-neighbour Gibbs
with respect to a graph G (or G-Gibbsian) if it has a representation with
interaction terms satisfying

λd(s) ≡ 0 unless d is complete in G,
ηd(s)γ ≡ 0 unless d ∪ {γ} is complete in G,

Φγδ
d (s) ≡ 0 unless d ∪ {γ, δ} is complete in G.

(3.4)

where ηd(s)γ denotes the γ-th element of ηd(s), corresponding to the con-
tinuous variable Yγ (similarly for ηd(s)δ) and Φγδ

d is the (γ, δ)-element of
Φd(s).

Notice that a Gibbsian probability has an expansion with interactions
terms involving variables that are neighbours only. Moreover, it can be
proved that a CG-distribution is G-Markovian if and only if it is G-Gibbsian;
see Proposition 3.1 in [64]. As a consequence, the joint density factorizes
into a product of local densities that only depends on variables that are
mutual neighbours. In addition, it can be shown that the so-obtained fac-
torization splits up into separate factorizations of the constant, linear and
quadratic terms; see Appendix B in [64].

Given the interpretation of all interaction terms, the model could be sim-
plified in order to include in its specification only the parameters relevant
to characterize the conditional independencies properties of the graph. We
define a more simplified version of the model distribution in comparison
with the assumptions made by Cheng et al. [14]. The idea is to avoid over-
parametrization and information redundancy in representing all the possible
pair-wise interactions in the graph. In what follows, we consider a simpli-
fied and homogeneous model by imposing the following conditions on the
order of interactions:

• ∣d∣ ≤ 2 for λd(s),

• ∣d∣ ≤ 1 for ηd(s),

• d = ∅ for Φd(s) =Φd.

The simplified model omits all interaction terms between the categorical
variables of order higher than two and it defines the canonical mean vector
of the Gaussian variables as a linear function of the categorical variables
instead of an "arbitrary" dependence function. The so-obtained distribution
is also HCG since the precision (inverse-covariance) matrix K = Φ∅ does
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3.2. Conditional Gaussian model

not depend anymore on the observed level s of the categorical variables. Fi-
nally, pair-wise conditional independencies between variables can be read
off according to the following relationships:

Zj��Zk ∣X ∖ {Zj, Zk} ⇐⇒ λjk = 0,

Zj��Yγ ∣X ∖ {Zj, Yγ} ⇐⇒ ηjγ = 0,

Yγ��Yδ ∣X ∖ {Yγ, Yδ} ⇐⇒ Φγδ
∅ = 0.

(3.5)

where Zj, Zk and Yγ, Yδ represent categorical and continuous variables re-
spectively.

3.2.2 Likelihood function

Consider now n i.i.d. observations from the simplified and homogeneous
specification of model (3.1) x1, . . . ,xn, with xi = (zi,1, . . . , zi,p, yi,1, . . . , yi,q)⊺

for i = 1, . . . , n and the (n, p + q) data matrix X obtained as row-binding
of the individual observations. Let also zi = (zi,1, . . . , zi,p)⊺ and yi =

(yi,1, . . . , yi,q)⊺. Categorical measurements in the dataset, corresponding to
variables Z1, . . . , Zp can be equivalently represented through a contingency
table of counts N . In particular, for each configuration s of the categori-
cal variable, we let n(s) = ∑n

i=1 1{zi = s} be the corresponding observed
frequency in N .

If we let Zj be the set of levels assumed by Zj , for j = 1, . . . , p, then
(Z1, . . . , Zp) takes value in the product space

Z = ×
p
j=1Zj

which coincides with the cells of the contingency table N .
Specifically, the relevant quantities to consider are,

n(j) =
n

∑
i=1

zij =
n

∑
i=1
1{zij = 1},

n(k, j) =
n

∑
i=1

zijzik =
n

∑
i=1
1{zij = 1, zik = 1},

(3.6)

corresponding to the (marginal) number of one values assumed by single
and pairs of variables respectively.

In what follows, we also assume for simplicity all categorical variables
being binary.
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The likelihood function can be written as

f(X ∣θ) =
n

∏
i=1

f(xi ∣θ) (3.7)

∶=
n

∏
i=1

exp{ ∑
∣d∣≤2

λd(s) +
1

2
( ∑
∣d∣≤1

ηd(s))

T

Φ∅ ∑
∣d∣≤1

ηd(s)}

=
n

∏
i=1

exp

⎧⎪⎪
⎨
⎪⎪⎩

[λ0 +

p

∑
j=1

λjzij +∑
j<k

λjkzijzik] + y
⊺
i [η0 +

p

∑
j=1

ηjzij] −
1

2
y⊺i Φ∅yi

⎫⎪⎪
⎬
⎪⎪⎭

= exp

⎧⎪⎪
⎨
⎪⎪⎩

nλ0 +

p

∑
j=1

λjn(j) +∑
k<j

λkjn(k, j) + nη
⊺
0ȳ +

p

∑
j=1

η⊺j t(j) −
1

2
tr(RΦ∅)

⎫⎪⎪
⎬
⎪⎪⎭

,

where f(xi ∣θ) is given in Equation (3.1), now specialized to the sim-
plified homogeneous model, and with the dependence on θ emphasized.
Furthermore, ȳ is vector-sample mean of Y1, . . . , Yq, t(j) represents the in-
teraction vector between the two types of variables and R is the interaction
matrix of continuous variables; more specifically:

ȳ =
1

n

n

∑
i=1

yi ∈ Rq,

t(j) = (
n

∑
i=1

yilzij)
l=1,...,q

∈ Rq,

R =
n

∑
i=1

yiy
⊺
i ∈ Rq×q

(3.8)

Starting from this model specification, it is possible to obtain a closed-
form expression for the log-normalizing constant λ0, simply by integrating
over the domain of the continuous variables Y1, . . . , Yq and summing over
the domain of the categorical variables, Z .

In the case of HCG distribution we obtain

exp(λ0)
−1
= ∑

s∈Z
Pr(X∆ = s) (3.9)

= (2π)−
q
2 det(Φ∅)

1
2 ∑
s∈Z

exp{ ∑
∣d∣≤2

λd(s) +
1

2
( ∑
∣d∣≤1

ηd(s))

T

Φ∅ ∑
∣d∣≤1

ηd(s)},

where Pr(X∆ = s) is the marginal distribution of X∆ obtained after
integration over y.

Therefore, the value of λ0 can be obtained as

λ0 = − log(∑
s∈Z

Pr(X∆ = s)) . (3.10)
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3.3 Bayesian inference

We approximate the posterior distribution of model parameters by resort-
ing to the MCMC strategy provided by the R package MCMCPack [76]
which is based on a random walk Metropolis-Hastings (MH) algorithm;
see [39, 89]. Since we are interested in estimating also the graphical struc-
ture underlying the data, we consider the canonical model representation.
Accordingly, starting from the likelihood function in (3.7), we assign the
following independent prior distributions

λj, λjk ∼ N (0,1), η0,ηj ∼ Np(0, I), Φ∅ ∼Wq(aΩ,U) (3.11)

where aΩ = q and U = Iq.
The Metropolis Hastings (MH) algorithm applies to parameter poste-

rior distributions from which direct sampling is not possible. Accordingly,
the output is a sequence of random samples approximately drawn from the
posterior distribution. At each step the algorithm proceeds by drawing can-
didate values from a proposal distribution (Gaussian in our case) and the
proposed parameter is accepted with a probability given by the MH ratio.
To initialize the algorithm, we first optimize the posterior distribution with
the BFGS (quasi-Netwon) method from R function optim. This algorithm
belongs to the class of quasi-Netwon methods because in each step the Hes-
sian matrix is approximated and updated using information from previous
iteration. This assumption avoids to perform expensive computation at each
iteration. We input the so-obtained optimal values as initial point for the
Metropolis-Hastings and the rescaled Hessian matrix of the loss function
as the covariance matrix of the Gaussian proposal distribution.

This type of representation allows for posterior inference on model
parameters and implicitly to perform structure learning of the underlying
UG according to (3.4). Through the implementation of a suitable MCMC
scheme, it is possible to approximate the posterior distribution of each inter-
action term-parameter, whose posterior mean provides a point estimate of
the corresponding term, unless the corresponding edge is set to zero through
structure learning procedure. Moreover, structure learning is performed
building a credible set on the posterior distribution of each interaction term.
For one-dimensional parameters θ, a credible interval of level α is the sym-
metric interval Iα(θ) which contains a proportion 1 − α of the probability
mass of the posterior distribution. Given that the presence of an edge cor-
responds to a non-zero value of the corresponding parameter, the adjacency
matrix A of graph G can be estimated by excluding edges whenever the as-
sociated credible interval includes the zero value. More in details, through
the MCMC we recover Îα(λjk), Îα(Φ∅,jk) and Îα(ηjk) given by the empir-
ical quantiles. Then for j ∈∆ and k ∈∆, we have Âjk = 1−1 (Îα(λjk) ∋ 0)
for those edges expressing dependencies between discrete variable; for
j ∈ Γ and k ∈ Γ, we have Âjk = 1 − 1 (Îα(Φ∅,jk) ∋ 0) for edges between
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continuous variables, and otherwise Âjk = 1 − 1 (Îα(ηjk) ∋ 0) for mixed
dependencies; compare also with Equation (3.4).

Let the 0-superscript denote a true unknown quantity, for instance θ0

is the true unknown parameter vector θ, λ0
jk is the true unknown value

of λjk. Also, call ωs(θ) the exponential function argument in λ0, so that
λ0 = q log(2π)/2 − log ∣Φ∅∣/2 − log∑s∈Z exp{ωs(θ)}, where, for any con-
figuration s = (s1s2⋯sp) and with s0 ∶= 1, we have defined

ωs(θ) ∶=
p

∑
j=1

λjsj +∑
k<j

λjksjsk +
1

2
(

p

∑
j=0

η⊺jsj)Φ∅ (
p

∑
j=0

ηjsj) ,

and finally ws(θ) ∶= exp{ωs(θ)}/∑s∈Z exp{ωs(θ)}. We next show that
the estimation of all parameters is asymptotically correct, and that therefore
the correct dependency structure will be recovered for samples of size large
enough.

Proposition 3.3.1. Given knowledge of all other parameters and a square
loss function, we have, for the Bayes estimator λ̂jk, j, k ∈∆, that

√
n (λ̂jk − λ

0
jk)

d
→ N (0,

1

γjk(θ0)(1 − γjk(θ0))
) ,

where γjk(θ) = ∑s∈Z ws(θ)sjsk.

Proof. Because of f(X ∣θ) belonging to the exponential family, together
with a prior on λjk which is continuous over R and with finite expectation,
the Bernstein Von-Mises theorem applies; see for instance Theorems 1.4.2
and 1.4.3 of Ghosh & Ramamoorthi [40]. Then λ̂jk ≈ N (λ0

jk,1/In(λ
0
jk)),

where In(λjk) = −E∂2 log f(X ∣θ)/∂λ2
jk. Now, see that

In(λjk) = −nE
∂2

∂λ2
jk

λ∅ = n

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∂2

∂λ2
jk
∑s∈Z exp{ωs(θ)}

∑s∈Z exp{ωs(θ)}
−
⎛

⎝

∂
∂λjk
∑s∈Z exp{ωs(θ)}

∑s∈Z exp{ωs(θ)}

⎞

⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

and since

∂

∂λjk
∑
s∈Z

exp{ωs(θ)} =
∂2

∂λ2
jk

∑
s∈Z

exp{ωs(θ)} = γjk∑
s∈Z

exp{ωs(θ)},

we obtain In(λjk) = nγjk(1 − γjk).

Remark 3.3.1. No further assumptions on the existence and asymptotic
distribution of the maximum likelihood estimator for θ is required, since the
model is in the exponential family. For the same reason, no assumptions are
needed on the asymptotic behaviour of the likelihood ratio; see for instance
Example 7.7 of van der Vaart [99].
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The above result focuses on those Bayesian estimators related to the the
dependencies among discrete components, and show that they are asymp-
totically Gaussian, centered on the correct unknow parameter value, and
with a vanishing variance. We next show an analogous result for those
Bayesian estimators that capture the mixed conditional dependecies, among
continuos and discrete coordinates.

Proposition 3.3.2. Under the same conditions of Proposition 3.3.1, we
have, for the Bayes estimator η̂j , j = 0, . . . , p, that

√
n (η̂j − η

0
j )

d
→ N (0,

1

2
(Φ0
∅)
−1 (γj(θ

0
)I + 2Φ0

∅ (Ψj(θ
0
) −Λj(θ

0
)Λj(θ

0
)
⊺))

−1
) ,

where γj(θ) = ∑s∈Z ws(θ)sj , Λj(θ) = ∑s∈Z ∑
p
k=0ws(θ)sjskηk, and where

Ψj(θ) = ∑s∑k,lws(θ)sjskslηkη
⊺
k .

Proof. We follow the same line of reasoning of Proposition 3.3.1, with
In(ηj) = −n

∂2

∂ηj∂η
⊺
j
λ∅. Note that

∂

∂ηj

exp{ωs(θ)} = 2Φ∅ exp{ωs(θ)}
p

∑
k=0

ηksksj,

where s0 ∶= 1, and that

∂2

∂ηj∂η
⊺
j

exp{ωs(θ)} = 2Φ∅
∂

∂η⊺j

⎡
⎢
⎢
⎢
⎢
⎣

exp{ωs(θ)}∑
k≠j

ηksksj + exp{ωs(θ)}ηjsj

⎤
⎥
⎥
⎥
⎥
⎦

= 2Φ∅ exp{ωs(θ)}

⎡
⎢
⎢
⎢
⎢
⎣

2Φ∅∑
k,l

ηkη
⊺
l skslsj + sjIp

⎤
⎥
⎥
⎥
⎥
⎦

.

Therefore we can write

In(ηj) = n
∂2

∂ηj∂η
⊺
j

log∑
s∈Z

exp{ωs(θ)}

= 2nΦ∅ [γj(θ)Ip + 2Φ∅ (Ψj(θ) −Λj(θ)Λj(θ)
⊺)] .

Remark 3.3.2. The assumption of knowledge of all other parameters is to
simplify the derivations of the asymptotic variances. We can remove this as-
sumption, and compute In(θ) as a function of the whole parameter vector.
Then the parameter subvector of interest, say ηj , will have an asymptotic
covariance matrix equal to (In(θ)−1)ηj

, that is the submatrix of In(θ)−1
with rows and columns corresponding to ηj .

We finally provide a similar result for dependencies among the nodes
representing continuous coordinates y. Since the related parameter Φ is a
symmetric positive matrix, the result is stated in terms of the half vectoriza-
tion of Φ, that stacks in a vector the low-triangular part of Φ, main diagonal
included.
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Proposition 3.3.3. Under the same conditions of Proposition 3.3.1, we
have, for the Bayes estimator ϕ̂ of ϕ0 = vech (Φ0∅), the half-vectorization
of Φ0∅, that

√
n (ϕ̂ −ϕ0)

d
→ N (0,(

1

2
tr (Φ0

∅)
−2

vech (Ip) vech (Ip)
⊺
+Π(θ0

) −Γ(θ0
)Γ(θ0

)
⊺
)

−1
) ,

where Γ(θ) = ∑s∈Z ws(θ)τs(θ) and Π(θ) = ∑s∈Z ws(θ)τs(θ)τs(θ)⊺,
with τs(θ) = vech [(∑p

j=0 sjηj) (∑
p
j=0 sjηj)

⊺
].

Proof. We follow the same reasoning of Proposition 3.3.3, and we compute

In(ϕ) =
∂2

∂ϕj∂ϕ
⊺
j

(n log∑
s∈Z

exp{ωs(θ)} +
n

2
log ∣Φ∅∣ +

1

2
tr (RΦ∅)) ,

where the third term is null, the second term is n
2 tr (Φ

0∅)
−2 vech (Ip)vech (Ip)

⊺,
and the first term is

n

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∂2

∂ϕj∂ϕ
⊺

j
∑s∈Z exp{ωs(θ)}

∑s∈Z exp{ωs(θ)}
−

∂
∂ϕj
∑s∈Z exp{ωs(θ)} ⋅

∂
∂ϕ⊺j
∑s∈Z exp{ωs(θ)}

(∑s∈Z exp{ωs(θ)})
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= n [Π(θ) −Γ(θ)Γ(θ)⊺] .

3.4 Simulation results

We compare the proposed methodology with the approach described in the
work of Cheng et al. [14]. Since both models are based on the CG distribu-
tion, the comparison is convenient to test our extension to a Bayesian frame-
work. Additionally, the Authors showed in the paper a good performance of
their methodology with respect to other state-of-the art approaches. Thus,
we are implicitly assessing our proposal to other alternatives.

In what follows, we name HMGM the method of Cheng et al. [14] and
BGM-MD our proposal.

To compare these two approaches, we define a simulation setting as
follows:

• Total number of variables: {5,10,20} of which the discrete variables
are respectively {2,5,10}

• Total number of observations: {500,1000,2000}

Specifically, we consider all the combination of these two dimensions,
having nine possible scenarios. For each setting the total number of simula-
tions is 40 and each time the true setting (graph and parameters) is different.
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The true adjacency matrix is randomly generated using a probability of in-
clusion equal to 3

2(p+q−1) , instead true parameters and data are generated
using the R package hmgm provided by the authors of [14]. Additionally,
as suggested by the authors, HMGM is replicated 40 times on random sub-
sets of data (90% of total) within each simulation. From each run both the
parameters and graph estimate are kept. The final parameter estimates are
obtained by averaging all the partial results and the graph structure estimate
is done by including edges selected at least 90% of times.

As explained in the previous section, we use an MCMC strategy to per-
form inference. For this simulation, we run the algorithm for 50000 iter-
ations, with a burn-in period of 10000 and a thinning parameter equal to
10. The burn-in period allows to discard part of initial samples when the
chains are not stationary, and with a thinning parameter equal to 10 we keep
every 10th value, avoiding auto-correlations in the chains. Before the com-
putation of credible intervals, it is fundamental to check the convergence
of the MCMC chains. This step has been performed using the R pack-
age coda [86] which provides diagnostic functions to test for convergence
(e.g., Geweke’s test), cross-correlations and auto-correlations.

3.4.1 Simulation plots and tables

In this subsection, we report the results of the simulation study through
which we compare HMGM and BGM-MD. Firstly, we evaluate both meth-
ods effectiveness in recovering the true structure of the underlying graph.
The performance is assessed comparing the estimated graph to the corre-
sponding true graph. Figure 3.1 shows the distribution over the simula-
tion replicates of Structural Hamming Distance (SHD) which represents
the number of edge insertions, deletions or flips needed to transform the es-
timated graph into the true one (lower values of SHD correspond to better
performance). We see that BGM-MD outperforms the alternative method-
ology in all settings. Moreover, the difference increases accordingly to the
number of variables considered and it is possible to notice that for BGM-
MD sample size has a positive effect on structure learning. We report in
Tables 3.1-3.3 a summary of the comparison using other performance in-
dicators such as False Positive Rate (FPR), Misspecification Rate (MISR),
specificity (SPE), sensitivity (SEN), precision (PRE) and Matthews corre-
lation coefficient (MCC), defined as

FPR =
FP

TN + FP
, MISR =

FN + FP

∣V ∣(∣V ∣ − 1)
,

SPE =
TN

TN + FP
, SEN =

TP

TP + FN
, PRE =

TP

TP + FP
,

MCC =
TP ⋅ TN − FP ⋅ FN

√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)
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where TP, TN, FP, FN are the numbers of true positives, true negatives,
false positives and false negatives (respectively) and ∣V ∣ is the total number
of variables.

Tables 3.1-3.3 report the mean and standard deviation of each indicator
summarizing over the simulation replicates and scenarios. For all indica-
tors, except for FPR and MISR, higher values correspond to better per-
formance. It appears that BGM-MD generally performs better the task of
structure learning, increasing its effectiveness with larger number of obser-
vations. According to these indicators, it appears that HMGM has always
a significant higher value of FPR with respect to BGM-MD. This means
that our approach estimate more sparse graphs and it is more efficient in
including the right edges.

Secondly, to quantify the error of parameters vector estimate we use
Root Mean Square Error (RMSE) defined as

RMSE =
1

∣θ0∣

∣θ0∣
∑
i=1
(θ̂i − θ

0
i )

2

where θ0 is the vector of true parameters of size ∣θ0∣ and θ̂ is the vector
of estimated parameters accordingly to the description in Section 3.3. Fig-
ure 3.2 shows RMSE distributions for the simulation settings according to
number of variables and observations. It is possible to notice that generally
BGM-MD performs better and the error reduces as n increases, as expected.

In these simulations we set credible sets at 90% in order to compare
with edge selection approach used by Cheng et al. In our approach the
choice of the level α may influence the results of structure learning and
we observe that our performance increases using smaller values of α (e.g.,
0.01). We expect this situation because smaller values of α correspond to
wider intervals. Therefore, posterior distributions that are centered on a
small value are more likely to include the zero in the credible set as the
level decreases. Additional simulated scenarios at different levels of alpha
are currently under investigation.

3.5 Application to real datasets

We now apply our methodology to three real datasets, and in comparison
with HMGM. The idea is to show how structure learning can address dif-
ferent tasks in diverse applications.

For each dataset, specific MCMC parameters (number of iterations,
burn-in period, thinning) are fixed. In particular, the burn-in period al-
lows to discard some initial samples when the chains are not stationary, and
with a thinning parameter equal to w we keep every wth value, discarding
all other values and avoiding auto-correlations in the chains. MCMC tun-
ing is performed according to the results returned by coda [86] R package
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Figure 3.1: Performance results for structure learning: Structural Hamming Dis-
tance (SHD)
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Figure 3.2: Performance results for parameters inference: Root Mean Square
Error (RMSE)
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diagnostic tests for convergence (e.g., Geweke’s test), stationarity, auto-
correlations and cross-correlations. For brevity, only some of these analysis
for the different applications are shown, as an example. All algorithms are
preliminary initialized through an optimization step, using the approach
presented in the previous sections. As in the simulation studies, credible
sets are at 90%, and HMGM selects edges appearing at least 90% of 40
repetitions.

3.5.1 Nanostructure dataset

In the nanotechnology industry, the focus is on functional structures de-
signed at the atomic or molecular scale, related to optoelectronics, lumi-
nescent materials, lasing materials and biomedical imaging [4, 50, 72]. Of
particular interest is the Cadmium Selenide material, found to exhibit one-
dimensional morphologies (nanostructures) of nanowires, nanobelts, and
nanosaws [73], often with the three morphologies closely related. We use
the dataset of [22], where the Authors proposed a generalized linear model
to analyse those experimental nanostructures.

From a statistical perspective, nanostructure data can be represented as
categorical variables, corresponding to the dominant nanostructure type, or
as binary variables, expressing absence/presence of a structure type. But,
the presence of each nanostructure is a function of continuous noisy fea-
tures, themselves random variables. These predictors are the three key pro-
cess variables affecting the morphology of the nanostructures: temperature,
pressure and the distance from the source material of the substrate where
the deposition of nanostructures is collected. Process variables are typically
set on specific (nominal) values, however there are unavoidable fluctua-
tions associated with the synthesis process that allows to consider them as
stochastic. In the data only nominal values are available, therefore we add
some noise. In this setting, our methodology can therefore provide a rigor-
ous framework to analyse the dependence among the three nanostructures,
learn how process variables can affect nanostructure occurrence probabili-
ties, and find the experimental setting leading to maximum probability of a
given morphology.

In the data there are four levels of temperature (630, 700, 750, 800○C)
and nine levels of pressure (4, 100, 200, 300, 400, 500, 600, 700, 800
mbar). For each setting, several substrates were placed near the source,
to observe the deposition of nanostructures, and this distance is measured
from its midpoint to the source. After each experiment, through elec-
tron microscopy, the number of appearance of different nanostructures is
counted. Further details on the experimental design can be found in [73].
In the pre-processing step, a comparatevely small random noise is added
to temperature and pressure using the information about their mean and
variance included in [22]. Then, these variables are Box-Cox transformed
to assure Gaussianity; see, for example, Figure 3.3. Also, nanostructure
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counts are converted into binary variables on the presence/absence of each
specific structure. Since temperature has a key role in the development in
nanostructures, we conduct two separate analyses: (i) we also transform the
temperature into a binary variable, using a threshold of 750○C, or (ii) we
separately analyze the data for each level of temperature. The choice of the
threshold for the temperature is related to some considerations described
in [73]. According to diagnostic test conducted on the output, settings and
MCMC tuning for both applications are summarized in Table 3.4. As an ex-
ample, we report in Figure 3.4 the auto-correlation plots for Case 1: we can
observe that auto-correlations decrease significantly after a small number
of lags.

Figures 3.5 and 3.6 show the estimated graphs in analyses (i) and (ii) re-
spectively, whilst Figure 3.7 shows the credible set at 90% of the interaction
parameters λ and η. From these boxplots, we can notice how mixed inter-
actions change at different level of temperature. In both analyses HMGM
estimates more complex structures, as expected from the simulation re-
sults where FPR is sensibly higher than the Bayesian approach. Especially,
in Case 2 HMGM does not clearly evidence different relations according
to the levels of temperature, as showed by BGM-MD estimates. From
this graphical representation of conditional independencies, it emerges that
nanostructures are intermingled and controlled mainly by the value of pres-
sure, as evidenced in [73]. We recognize it from Figure 3.6 showing that
pressure has a connection with a particular type of nanostructure depend-
ing on the temperature value. Additionally, using parameters estimates it is
possible to compute all the probabilities for nanostructures configurations
finding the optimal process conditions as performed by [22].

3.5.2 Hepatitis dataset

The second study refers to data collected on patients affected by acute
and chronic hepatitis disease, publicly available at https://archive.
ics.uci.edu/. The original dataset contains 155 observations and 19
continuous and binary variables, such as patient information, symptoms
and standard biochemical measurements. The attribute (Class) indicates if
the patient has survived or not the disease. According to particular atten-
tion received in previous works to some variables [12, 24, 90], we selected
a subset of them which are relevant related to Class. Thus, the dataset for
our study includes 11 variables divided into:

• Gaussian: Age, Bilirubin, Albumine, Protime

• Binary: Class, Sex, SpleenPalpable, Spiders, Histology, AscitesVarices,
FatigueMalaise.

Continuous variables are transformed using a Box-Cox transformation
to guarantee Gaussianity; see Figures 3.8 and 3.9, as an example. Within
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Figure 3.3: Box-Cox transformation of Distance variable in nanostructure dataset
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Figure 3.7: Credible sets at 90% of estimated interaction parameters (λ and η) in
Case 2 (see Table 3.4).

the set of binary variables, AscitesVarices and FatigueMalaise were orig-
inally four separate variables Ascites, Varices, Fatigue and Malaise. We
encoded them into these new paired variables assigning 1 when both symp-
toms are present and 0 otherwise. Given this simultaneous presence in pa-
tients of pairs of symptoms, this strategy helps to avoid multicollinearity in
the variables and reduce the number of parameters eliminating redundancy
in the information.

Our framework will provide insights about the dependence structure
among symptoms and biochemical measures, learning which variables af-
fect the probability of survival, for a patient with a diagnosis of acute hep-
atitis. In this analysis, the MCMC algorithm is set with 100000 iterations,
with a burn in period of 30000 and a thinning parameter equal to 100. In
Table 3.5 we report some diagnostic results, especially for the mixed in-
teractions. The first two columns show the estimate of each parameter and
the corresponding standard error. Additionally, Geweke’s test for stationary
distributions shows results of convergence with small values of the statistic
test. Then, values of auto-correlations at different lags are reported in the
last three columns. The results show a convergence of the algorithm with
good mixing behavior, as displayed in the cross-correlation plot in Figure
3.10. In Figure 3.11 we report the resulting graph of the BGM-MD, com-
pared to the outcome of HMGM method. It is possible to notice that graph
estimated by HMGM has a large number of edges, especially the outcome
variable Class is connected to all other variables. Instead, BGM-MD esti-
mates a more sparse graph highlighting a smaller set of depedencies. From
the results, it appears that the probability of survival is mainly related to the
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Figure 3.8: Box-Cox transformation of Age variable in hepatitis dataset
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Figure 3.9: Box-Cox transformation of Bilirubin variable in hepatitis dataset
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measurements of Bilirubin and Albumine together with the symptoms of
AscitesVarices and FatigueMalaise. Additionally, it is possible to consider
some indirect factors of influence such as Age and Histology.

3.5.3 Heart-disease patients dataset

The third analysis consists of an application of the proposed methodology
to a dataset relative to heart-disease patients collected from the Cleveland
Clinic Foundation and publicly available at https://archive.ics.
uci.edu/. The original dataset contains n = 303 observations and 76
variables. We include in our study 12 variables, which also received par-
ticular attention in several previous analyses (see dataset information). To
ease the implementation of our methodology, categorical variables with a
number of levels larger than two were also converted into binary variables.
Moreover, within the categories of possible symptoms, the majority of ob-
servations concentrate in one specific type. Thus, each of the so-obtained
binary categorical variables indicates the absence/presence of a symptom
(e.g., “chest pain type"), patient’s characteristic (e.g., “fasting blood sugar")
or disease (e.g., “diagnosis of heart disease"). Variables included in the
analysis are then divided into:

• Gaussian: age, resting blood pressure (trestbps), serum cholesterol
(chol), maximum heart rate achieved (thalach);

• Binary: sex, fasting blood sugar (fbs), exercise induced angina (exang),
chest pain type (cp), diagnosis of heart disease (num), resting electro-
cardiograph results (restecg), slope of the peak exercise ST segment
(slope), type of test (thal).

We run the MCMC algorithm for 50000 iterations, with a burn-in period
of 10000 and a thinning parameter equal to 10.

We first report in Figure 3.12a the resulting graph estimate. As de-
scribed in Section 3.3, our method for structure learning is based on the
computation of a credible interval (here at the 90% level) for each of the
model parameters. Figure 3.12b summarizes the credible intervals and
quantiles of parameters involving variables that were estimated to be con-
nected with "diagnosis of heart disease" (num). All of them do not include
the zero value in their 90% credible sets, and accordingly the corresponding
edges are included in the graph estimate of Figure 3.12a. Similar results,
that we do not include for brevity, were obtained for the other parameters.

3.6 Moment representation of CG distribution

As mentioned in Section 3.2.1, it is possible to use an alternative parametriza-
tion for the CG distribution. This representation is more suitable for poste-
rior inference on parameters instead of a task of structure learning. In this
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3.6. Moment representation of CG distribution

Figure 3.11: Estimated graph structure. On the left HMGM, on the right BGM-
MD (see Table 3.5.2)

Section, this re-parametrization of the mixed model is introduced and some
results of its Bayesian extension are shown.

Let (Z1, . . . , Zp) be p categorical variables, (Y1, . . . , Yq) q continuous
variables. Let also I be the space of all possible configurations of the p cat-
egorical variables and θ = {θ(s), s ∈ I}) where θ(s) = Pr(Z1 = s1, . . . Zp =

sp) is the probability to observe configuration s = (s1, . . . , sp).
Under the HCG assumption we can write for each s ∈ I

Y1(s), . . . , Yq(s) ∣ µ(s),Ω ∼ Nq(µ(s),Ω
−1). (3.12)

In particular, the relation between the canonical representation and the mo-
ments of the Gaussian model can be expressed through the re-parameterization
µ(s) =K−1h(s) and Ω =K−1.

Consider now a collection of n i.i.d. observations zi = (zi,1, . . . , zi,p)T ,
yi = (yi,1, . . . , yi,q)T , i = 1, . . . , n from (3.2) and (3.12). Categorical data
{zi, i = 1, . . . , n}, can be equivalently represented as a contingency table of
counts N with elements n(s) ∈N such that

n(s) =
n

∑
i=1

1(zi = s),

where 1(⋅) is the indicator function and ∑s∈I n(s) = n. Following [36], the
likelihood function can be written as

f(N ,y1, . . . ,yn ∣θ,{µ(s)}s∈I ,Ω) =∏
s∈I

θ(s)n(s)∏
s∈I
∏

i∈ν(s)
ϕ(yi ∣µ(s),Ω

−1
)

∝∏
s∈I

θ(s)n(s)∏
s∈I
∏

i∈ν(s)
∣Ω∣

1
2 exp{−

1

2
(yi −µ(s))

TΩ(yi −µ(s))} , (3.13)

where ν(s) is the set of observations among {1, . . . , n} with observed con-
figuration s and ϕ denotes the Gaussian density. We complete our Bayesian
model formulation by assigning the following prior distributions

θ ∼ Dirichlet(B), µ(s) ∣Ω ∼ Nq(m(s), (aµΩ)
−1
), Ω ∼Wq(aΩ,U), (3.14)
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Figure 3.12: Heart disease data analysis: Results.
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where, in particular, B = {b(s) ∈ I} and Wq(aΩ,U) denotes a Wishart
distribution having expectation aΩU−1, with aΩ > q − 1 and U a s.p.d.
matrix.

It is advisable to set hyperparameters to values leading to proper prior
distributions. A standard way to proceed, whenever no substantial prior
information is available, is to choose hyperparameters leading to weakly
informative priors. In particular, B may be set equal to a vector with all
equal (e.g., unit) components (each associated to one level of the categorical
variables). With regard to the Normal priors, we can fix a zero mean, while
aµ = 1. Finally, the hyperparameters of the Wishart distribution can be fixed
as aΩ = q, U = Iq, the (q, q) identity matrix.

Under prior parameter independence, the posterior distribution can be
written after standard calculations as

p(θ,{µ(s)}s∈I ,Ω ∣N ,y1, . . . ,yn) ∝ ∏
s∈I

θ(s)b(s)+n(s)−1

⋅∏
s∈I
{∣Ω∣

1
2 ∣ exp{−

1

2
(n(s) + aµ)(µ(s) − m̄(s))

TΩ(µ(s) − m̄(s))}

⋅ ∣Ω∣
aΩ+n−q−1

2 exp{−
1

2
tr[(U +R +R0)Ω]} ,(3.15)

with R = ∑s∈I SSD(s),

m̄(s) =
aµ

aµ + n(s)
m(s) +

n(s)

aµ + n(s)
ȳ(s),

R0 = ∑
s∈I

aµn(s)

aµ + n(s)
(m(s) − ȳ(s))(m(s) − ȳ(s))T ,

where SSD(s) = ∑i∈ν(s) eieT
i , ei = (yi− ȳ(s)) and ȳ(s) is the (q,1) vector

with sample means of (Y1, . . . , Yq) relative to observations i ∈ ν(s). Note
that the independence is assumed also among the configuration s for the
whole set of µ in order to have prior independence between µ(s)’s. From
Equation (3.15) it follows that

θ ∣N ∼ Dirichlet(B +N)
µ(s) ∣N ,Y ,Ω ∼ Nq(m̄(s), [(aµ + n(s))Ω)]

−1) (3.16)
Ω ∣ Y ∼ Wq(aΩ + n,U +R +R0),

where Y denotes the (n, q) data matrix, row-binding of the yi’s; see also
[23] for details on multivariate Normal models with Normal-Wishart priors
and posterior calculations.

In addition, because of conjugacy, the marginal data distribution

m(Y ,N) = ∫ f(N ,Y ∣θ,{µ(s)}s∈I ,Ω)p(θ)∏
s∈I

p(µ(s))p(Ω)dθ ∏
s∈I

dµ(s)dΩ,

(3.17)
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can be computed from the ratio of prior and posterior normalizing con-
stants. Specifically, the formula in 3.17 can be written also as

m(Y ,N) =m(N)m(Y ∣N) (3.18)

because of prior independence between parameters indexing the categorical
and Gaussian components of the model.

The marginal data distribution of N can be obtained from the ratio of
prior and posterior normalizing constant of Dirichlet distributions in (3.14)
and (3.16), respectively. Specifically:

m(N) =
Γ(∑s∈I b(s))

Γ(∑s∈I(b(s) + n(s))
∏
s∈I

Γ(∑s∈I(b(s) + n(s))
Γ(∑s∈I b(s))

(3.19)

The marginal distribution relative to the continuous data can be derived
from standard results on Matrix-Normal (MN) distributions with Normal-
Wishart priors. According to Definition 2.2.1 in [46], the MN distribution
arises when sampling from multivariate Normal distribution. Specifically,
X ∼MN n×p(Ξ,Σ,Ψ) if and only if vec(X) is distributed asNnp(vec(Ξ),
Σ⊗Ψ)

In our case, we have a collection of multivariate normal priors on the
mean vectors µ(s), s ∈ I ,

[µ1(s), . . . ,µq(s)] ∼ Nq(m(s), (aµΩ)
−1) (3.20)

that are conditionally independent given Ω.
Let D be a diagonal matrix of dimension ∣I ∣ with elements equal to aµ.

Then, using the Kronecker product D−1 ⊗Ω−1 we obtain a block-diagonal
matrix whose elements correspond to the covariance matrix in (3.20):

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
aµ

0
⋱

0 1
aµ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⊗Ω−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
aµ
Ω−1 0
⋱

0 1
aµ
Ω−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3.21)

Therefore, we obtain a Matrix-Normal distribution as

⎛
⎜
⎜
⎜
⎝

µ1(s1), . . . ,µq(s1)
µ1(s2), . . . ,µq(s2)

⋮ ⋮

µ1(s∣I∣), . . . ,µq(s∣I∣)

⎞
⎟
⎟
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
E

∼MN ∣I∣×q

⎛
⎜
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎣

mT (s1),
⋮

mT (s∣I∣)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M

, D−1, Ω−1
⎞
⎟
⎟
⎟
⎟
⎠

(3.22)

because

vec(E) ∼ Nq∣I∣(vec(M),D−1 ⊗Ω−1) (3.23)
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Consequently, the joint prior on the collection of mean-vector and the
precision matrix Ω is a Matrix-Normal-Wishart (MNW). Thus, following
the results from [18] , the normalizing constant of the MNW distribution is

κprior(D,U , aΩ) =
(2π)

q∣I∣
2 ⋅ 2

qaΩ
2 ⋅ Γq(

aΩ
2 )

∣D∣
q
2 ∣U ∣

aΩ
2

(3.24)

Using the conjugacy results from (3.16), we can use the same results to
compute the normalizing constant of the posterior MNW distribution as a
function of the updated parameters

κpost(D
∗,U∗, aΩ + n) (3.25)

where D∗ is a diagonal matrix of elements [aµ + n(s1), . . . , aµ + n(s∣I∣)]
and U∗ is equal to U +R +R0. Finally, the marginal data distribution for
the continuous part is

m(Y ∣N) = (2π)−
nq
2 ⋅

κpost

κprior

(3.26)

The result in (3.16) enables posterior inference on the parameters of an
unconstrained (complete) graphical model. Specifically, by implementing
a Monte Carlo sampler it is possible to infer the parameters of the marginal
distribution of discrete variables and the parameters of the conditional dis-
tribution of continuous (Gaussian) variables.

3.7 Conclusion and next steps

In this work we discussed a new Bayesian methodology which allows to
jointly model conditional independencies among mixed variables and per-
form structure learning of related undirected graphs. The novelty of our
work is the adoption of the Conditional Gaussian (CG) setting of [64] to
provide an extension of existing Bayesian methodologies which deal with
Gaussian and categorical data separately [10, 11], to parameter inference
and structure learning of mixed data. Along the lines of these works, we
will develop an MCMC algorithm for parameter estimation and structure
learning for DAG for the mixed case.

Relative to the literature, we avoid the reliance on composite likelihood
approximations and we provide full posterior uncertainty quantification of
the parameter space, at the price of the computational cost for the evaluation
of the likelihood normalizing constant, a quantity so far neglected in the
literature. Our methodology shows better in-simulation performances than
state-of-the-art alternative methods, particularly in the structure learning
task with improvements as the sample size increases. We further provide
three applications in nanotechnology and medicine, showing the versatility
of the method.
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As future direction, trans-dimensional reversible jump samplers [43]
can handle model uncertainty and then can in principle provide a joint
answer to structure learning and parameter inference, but we expect that
more elaborated algorithms will be needed for an efficient exploration of a
huge model space. A relevant example in this direction is the algorithm of
Godsill [41], which exploits the partial analytical structures of the model:
through distinct moves dedicated separately to model-related and model-
unrelated parameters, we expect it to ameliorate the efficiency of the statis-
tical analysis.

Another direction of investigation can provide, in a new context of de-
pendency learning, a solution typically adopted in the random network lit-
erature. Random network statistical models can easily become doubly in-
tractable problems. This means that the statistical analysis is complicated
by two normalizing constants that cannot be evaluated: the one of the poste-
rior distribution and the one of the likelihood. The first problem is automat-
ically solved by an appropriately built MCMC algorithm. The second one is
related to a likelihood normalizing constant possibly dependent on the pa-
rameters: an adaptation of the exchange algorithm of Murray et al. [82] can
provide a computationally feasible method of structure learning for mixed
data.
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Performance results for structure learning: summary

n=500 n=1000 n=2000

Measure HMGM BGM-MD HMGM BGM-MD HMGM BGM-MD

FPR 0.59 (0.21) 0.27 (0.22) 0.63 (0.21) 0.28 (0.19) 0.6 (0.23) 0.27 (0.23)
MISR 44.75 (11.98) 30 (15.19) 47.5 (11.49) 29 (13.92) 45.5 (12.8) 26.5 (16.1)
SPE 41.25 (21.26) 73.42 (21.82) 36.53 (20.83) 71.76 (18.72) 39.68 (22.87) 72.6 (22.57)
SEN 70.33 (21.97) 65.6 (20.1) 69.07 (19.95) 69.01 (16.02) 69.07 (20.39) 72.62 (16.5)
PRE 54.85 (17.05) 73.08 (21.86) 52.46 (17.14) 71.77 (18.44) 54.09 (18.09) 74.39 (19.63)
MCC 12.14 (27.09) 39.32 (31.44) 5.74 (26.68) 40.88 (27.99) 9.05 (29.23) 45.53 (32.92)

Table 3.1: Scenario with 5 variables of which 2 are categorical (values in bold
correspond to better performance)

n=500 n=1000 n=2000

Measure HMGM BGM-MD HMGM BGM-MD HMGM BGM-MD

FPR 0.57 (0.05) 0.12 (0.06) 0.56 (0.04) 0.11 (0.05) 0.57 (0.05) 0.12 (0.06)
MISR 51.61 (6.36) 14.78 (6.3) 51.11 (6.37) 12.11 (5.8) 51.28 (6.29) 11.78 (5.79)
SPE 43.23 (5.41) 88.4 (6.28) 43.64 (4.45) 89.01 (5.09) 43.15 (4.81) 88.1 (5.6)
SEN 73.45 (19.46) 74.2 (20.25) 73.84 (19.3) 85.19 (17.08) 75.07 (20.13) 90.22 (12.54)
PRE 22.06 (8.21) 59.26 (16.27) 22.3 (8.25) 63.83 (13.51) 22.39 (8.19) 63.3 (14.65)
MCC 12.94 (16.12) 56.86 (16.92) 13.41 (16.67) 66.15 (14.77) 14.05 (16.99) 68.48 (13.96)

Table 3.2: Scenario with 10 variables of which 5 are categorical (values in bold
correspond to better performance)

n=500 n=1000 n=2000

Measure HMGM BGM-MD HMGM BGM-MD HMGM BGM-MD

FPR 0.52 (0.03) 0.17 (0.07) 0.51 (0.03) 0.2 (0.08) 0.5 (0.03) 0.11 (0.05)
MISR 49.08 (4.2) 26.36 (6.99) 48.13 (3.74) 27.86 (8.32) 47.87 (3.87) 12.78 (4.31)
SPE 48.45 (3.18) 83.25 (7.11) 49.42 (2.74) 80.34 (7.77) 49.71 (2.63) 88.82 (5.11)
SEN 63.48 (12.91) 25.82 (20.02) 64.27 (12.34) 31.32 (23.25) 64.51 (12.75) 80.42 (14.07)
PRE 19.73 (5.55) 23.66 (19.22) 20.22 (5.4) 24 (17.85) 20.35 (5.53) 59.46 (12.51)
MCC 8.88 (10.82) 8.73 (21.12) 10.17 (10.09) 10.43 (23.66) 10.53 (10.55) 61.48 (11.52)

Table 3.3: Scenario with 20 variables of which 10 are categorical (values in bold
correspond to better performance)

Case Variables Iterations Burn-in Thinning

Case 1 Nanostructures (4), Temperature, Pressure, Distance 60000 30000 50
Case 2 Nanostructures (4), Temperature, Pressure, Distance 50000 10000 10

Table 3.4: Settings for nanostructure analysis. Discrete variables are in italic.
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Chapter 3. Bayesian inference of graph-based dependencies from
mixed-type data

Estimate SE Geweke’s statistic Lag 100 Lag 500 Lag 1000
var34 -0.52710 0.00027 -0.42000 0.78711 0.28345 -0.00507
var35 0.83660 0.00029 0.01000 0.78373 0.30401 0.09679
var36 0.42690 0.00028 0.01000 0.80463 0.35637 0.11954
var37 0.10660 0.00025 0.55000 0.77482 0.28175 0.08456
var38 -0.19680 0.00029 -0.51000 0.76785 0.26243 0.16439
var39 -0.09170 0.00029 0.22000 0.77813 0.33216 0.11172
var40 -0.08770 0.00025 -0.39000 0.75453 0.27309 0.06242
var41 0.12890 0.00023 3.77000 0.78767 0.29852 0.00255
var42 -0.25330 0.00026 1.50000 0.80113 0.33408 0.11072
var43 0.25180 0.00024 1.09000 0.76334 0.20294 -0.01645
var44 -0.01620 0.00024 1.16000 0.78450 0.16507 -0.09884
var45 -0.17080 0.00022 3.13000 0.79478 0.38069 0.20531
var46 -0.19390 0.00023 1.01000 0.80070 0.30059 0.04753
var47 0.11030 0.00024 -0.29000 0.80095 0.32396 0.09674
var48 0.13330 0.00023 0.79000 0.81126 0.38814 0.08443
var49 0.10480 0.00019 0.67000 0.78748 0.34008 0.22020
var50 0.15190 0.00020 1.15000 0.77963 0.27524 0.11180
var51 -0.38830 0.00020 0.45000 0.77493 0.26070 0.11587
var52 -0.26710 0.00018 -0.10000 0.76880 0.19316 0.00504
var53 0.44120 0.00035 -2.06000 0.77264 0.25270 -0.06733
var54 -0.23600 0.00033 -0.31000 0.75479 0.24324 0.04424
var55 0.61010 0.00037 -4.43000 0.77852 0.28128 0.09642
var56 0.19930 0.00040 1.40000 0.82274 0.36918 0.05563
var57 -0.00930 0.00019 -1.24000 0.77888 0.29438 0.11316
var58 -0.28820 0.00021 1.54000 0.77980 0.22593 0.00526
var59 0.30810 0.00020 1.18000 0.76474 0.29183 0.06786
var60 0.17640 0.00021 -0.85000 0.80539 0.28827 0.09216
var61 1.25230 0.00014 -1.21000 0.81042 0.34842 0.10872

Table 3.5: Diagnostic test from coda output for hepatitis dataset. Posterior es-
timate for the parameters corresponding to mixed interactions are shown to-
gether with Geweke’s test for stationary distributions and auto-correlations at
different lags.
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