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Abstract: In this note we establish some connections between the theory of self-similar fractals in the sense
of John E. Hutchinson (cf. [3]), and the theory of boundary quotients of C*-algebras associated to monoids.
Although we must leave several important questions open, we show that the existence of self-similar .-
fractals for a given monoid .#, gives rise to examples of C*-algebras (1.9) generalizing the boundary quotients
ac; (.#) discussed by X. Liin [4, §7, p. 71]. The starting point for our investigations is the observation that the
universal boundary of a finitely 1-generated monoid carries naturally two topologies. The fine topology plays
a prominent role in the construction of these boundary quotients, while the cone topology can be used to
define canonical measures on the attractor of an .#-fractal for a finitely 1-generated monoid ..
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1 Introduction

On a monoid .# (=semigroup with unit 1_,) there is naturally defined a reflexive and transitive relation “<”,
i.e., for w, T € .# one defines w =< 7 if, and only if, there exists o € ./ satisfying w = 7 - 0. In particular, one
may consider (.7, <) as a partially ordered set. Moreover, if .# is Ng-graded, then (.#, <) is a (noetherian)
partially ordered set (see Corollary 3.7). Such a poset has a poset completioni ,: .# — .4 (see § 2.3), and
one defines the universal boundary o.# of .# by

o4 = (A \im(i 4))] =, 11)

where = is the equivalence relation induced by "<" on ./Z \im(i_,) (see § 2.3). For several reasons (cf. Theorem
A, Theorem B, Theorem C) one may consider 0.# as the natural boundary associated to the monoid ..
However, it is less clear what topology one should consider. Apart from the cone topology .7 (.#) there is
another potentially finer topology .7;(.#) which will be called the fine topology on 0. (cf. § 2.6), i.e., the
identity

idy 2 (0.2, Tp(M)) — (0.4, Te(M)) (1.2)

is a continuous map. The monoid .# will be said to be .7 -regular, if (1.2) is a homeomorphism. E.g., finitely
generated free monoids are .7 -regular (cf. Proposition 3.11, § 4.1). ThAe universal boundary 0.# = (0.4, ﬂf(//i )
with the fine topology can be identified with the Laca boundary E(.#) of the monoid .#. This topological
space plays an essential role for defining boundary quotients of C*-algebras associated to monoids (cf. [4,
§ 71, [5]). Indeed one has the following (cf. Theorem 3.10).

Theorem A. The map¥.: (0.4, T;(.#)) —> E(#) defined by (3.21) is a homeomorphism.
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Remark 1.1. (a) By Theorem A, the topological space (9.4, EZ:(//Z ) is totally-disconnected and compact and
thus it has the nicest topological regularity property that one can wish for. On the contrary, in general one can
only show that (0.4, 7:(.#)) is a To-space, which is a low level regularity property. Indeed, if (0.4, F:(.#))
happens to be Hausdorff, then (1.2) is necessarily a homeomorphism and ./ is .7 -regular (cf. Proposition 3.11).
We will now work with the cone topology (7).

(b)Ifp: 2 — .« is a surjective graded homomorphism of finitely 1-generated monoids, then, by construc-
tion, ¢ induces a surjective, continuous and open map

0¢: (02, 7:(2)) — (0.4, Te(MA)) (1.3)

(cf. Proposition 3.2). This property can be used to establish the following.

Theorem B. Let ./ be a finitely 1-generated Ny-graded monoid. Then o.# carries naturally a Borel probability
meausure
Uy Bor(0.4) — R* U {oo} (1.4)

induced by the canonical homomorphism of monoids ¢ _, : F(.#1) — A (cf. (3.4)).

On the other hand the induced mapping ¢ is given by a map
¢z: E(4), — E(2), (1.5)

(cf. Proposition 3.12). Hence for the purpose of constructing Borel measures the fine topology seems to be
inappropriate.

Theorem B can be used to define the C"-algebra
C' (M) = {Bo, Bu | w e ) CBIL*0M,C,1gq)) (1.6)

for every finitely 1-generated Ny-graded monoid .2, where B(w) is the mapping induced by left multiplication
with w (cf. § 4.5). We will show by explicit calculation that for the monoid %y, freely generated by a set of
cardinality n, the C"-algebra C" (%, u ,) coincides with the Cuntz algebra On (cf. Proposition 4.4), while for
the right-angled Artin monoid .# I associated to the finite graph I, C'(.# r M_yr) coincides with the boundary
quotients introduced by Crisp and Laca in [2] (cf. § 4.6). Nevertheless the following more general question
remains unanswered.

Question 1. Let .# be a finitely 1-generated Ny-graded monoid with the left cancellation property. Does
C*(, u_y) coincide with the boundary quotient 0C,(.#) defined by X. Li in [4, Definition 7.9]?

From now on we will assume that the No-graded monoid .# = J; <y, -#4 is finitely 1-generated. In the context
of self-similar fractals in the sense of John E. Hutchinson (cf. [3]) it will turn out to be convenient to endow 0.#
with the cone topology Z:(.#). Let (X, d) be a complete metric space with a left .#-action a: .# — C(X, X)
by continuous maps. Such a presentation will be said to be contracting, if there exists a positive real number
6 < 1 such that

d(a(s)(x), a(s)(y)) < 6 - d(x, ), (1.7)
forallx,y ¢ X, s ¢ .#; (cf. [3, § 2.2]). For such a metric space (X, d) there exists a unique compact subset
K C X such that
) K =Use.q, al6)E),
(2 K=c({{Fix(a(t)) |te.#} CX.
Obviously, by definition every map a(t) € C(X, X) is contracting, and thus has a unique fixed point x; € X. For
short we call K = K(a) C X the attractor of the representation a. One has the following (cf. Proposition 5.4).

Theorem C. Let .# = Jycy, #x be a finitely 1-generated No-graded monoid, let (X, d) be a compact metric
space and let a: .# — C(X, X) be a contracting representation of .# . Then for any point x ¢ X, a induces a
continuous map

Kx: 0.4 — K(a).
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Moreover, if # is 7 -regular, then ky is surjective.

Under the general hypothesis of Theorem C we do not know whether the topological space (0.4, Fe(.#)) is
necessarily compact (see Question 3). However, in case that it is compact, we call (0.#, c(.#)) universal
attractor of the finitely 1-generated Ny-graded .7 -regular monoid ./ .

Remark 1.2. Let .# be a finitely 1-generated monoid. Then 0.# carries canonically a probability measure u_,
(cf.§4.5). Thus, by Theorem C, the attractor of the ./-fractal (X, d), a) carries the contact probability measure
Ux = us* for every point x € X, which is given by

ux(B) = u_y (. X(B)), B € Bor(K). (1.8)

By (1), the monoid ./ is acting on K, and thus also on L?(K, C, ux) by bounded linear operators (),
w € # (cf. §5.2) This defines a C"-algebra (cf. § 5.2)

C (A, X, d, px) = (v(w), ¥(w)" | w € .4) C BL*(K, C, ). (1.9)

In case that the equivalence relation < generated by < on 0./ is different from = (cf. (1.1)) the canonical map
j: 0.4 — d.4 ]~ is not the identity.

Question 2. Does there exist a finitely 1-generated T-regular monoid .# for which the map j is not the identity,
and an ./ -fractal (X, d), &) such that C*(.#, X, duy) is not isomorphic to 0C,(.#)?

2 Posets and their boundaries

A poset (or partially ordered set) is a set X together with a reflexive and transitive relation <: X x X — {t, f}
with the property that for all x, y € X satisfying x < y and y < x follows that x = y. By N = {1, 2,...} we
denote the set of positive integers, and by Ny = {0, 1, 2, ...} we denote the set of non-negative integers, i.e.,
Np is a commutative monoid.

2.1 Cones, cocones and intervalls

For a poset (X, <) and 7, w € X the set

Co={xeX|x=2w} (2.9)
will be called the cone defined by w, and

I={yeXly=1} (2.2)
the cocone defined by 7. For 7 < w the set

[T,w]=0:NCy={xecX|T=x=<w} (2.3)

is called the closed intervall from T to w, i.e., [w, w] = {w}. The poset (X, <) is said to be noetherian, if
card(D;) < oo forall T € X.

2.2 Complete posets

For a poset (X, <) let

IN, X, ) ={feFN,X)|vyn,meN: nsm = f(n) = f(m)} (2.4)
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denote the set of decreasing functions which we will - if necessary - identify with the set of decreasing se-
quences. A poset (X, <) is said to be complete, if for all f ¢ 2(N, X, <) there exists an element z € X such
that

(CPy) f(n) = zforalln € N, and

(CP,) ify € X satisfies f(n) = y foralln € N, then z > y.

Note that - if it exists - z € X is the unique element satisfying (i) and (ii) for f ¢ 2(N, X, <). As usually,
z = min(f) is called the minimum of f ¢ 2(N, X, <).

2.3 The poset completion of a poset

Let (X, <) be a poset. For u, v ¢ 2(N, X, <) put
Uu=<v < VvneN3k, € N: ulkn) <v(n, (2.5)

and put
U~ve= [WvAVUV (VuAvV=cn,m=min))], (2.6)

where c; € 2(N, X, <), z € X, is given by cz(n) = zforalln € N.
Let ~ be the equivalence relation generated by ~ and put X = 2(N, X, <)/ ~. Then the following properties
hold for (X, <).

Proposition 2.1. Let (X, <) be a poset.

(a) The relation = defined by (2.5) is reflexive and transitive.

(b) For any strictly increasing functiona: N — Nandu € 2(N, X, <) one hasu = u o a.
(c) Define for [u], [v] € X that [u] < [v] if, and only if, u < v. Then (X, <) is a poset.

(d) (X, <) is complete.

Proof. (a) The relation =< is obviously reflexive. Let u,v,w € 2(N, X, <), u < v,v < w.Thenforalln € N
there exists hn, kn € N such that u(hn) < v(kn) < w(n). Thus, u < w.

(b) Letu € 2(N, X, <) and let a: N — N be a strictly increasing function. Let m < n, m, n € N. Since «a is
strictly increasing, a(m) < a(n). Then there exist mg, ng € N such that mq < a(m) < a(n) < ng. Then one has
u(mg) = u(a(m)) = u(a(n)) = u(ng). Thusu < uoaand u o a < u, proving that u = u o a.

(c) Let [ul, [v] € X, [u] < [v] and [v] < [u]. Then, by definition, u < vand v < u, and thus u = v, i.e., [u] = [v].
(d) Let {ug }xen € 2(N, X, <), i.e., uy € X forall k € N. Then one has u; = u; > ... by definition. Since each
u; € 2(N, X, <), one has uy(n) = uy(m)foralln < m, m,n € N. We define v e 2(N, X, <) by v(n) = un(n),
n € N. Then [v] € X is the minimum of {u; };cn-. This yields the claim. O

Assigning every element x € X the equivalence class containing the constant function cx € 2(N, X, <) yields
a strictly decreasing mapping of posets tx: X — X. From now on (X, <) will be considered as a sub-poset of
(X, <). The poset (X, <) will be called the poset completion of (X, <). The following fact is straightforward.

Fact 2.2. The map iy is a bijection if, and only if, (X, <) is complete.

Example 2.1. Let X = N U {oo} and define n < m if, and only if, n = m, where “>” denotes the natural order
relation. Then the poset (X, <) is complete and X = X.

2.4 The universal boundary of a poset
For a poset (X, <) the poset 0X = X \ im(ix) will be called the universal boundary of the poset (X, <). From

now on we use the notation x = y as a short form for x = y and x # y. A function f: N — X will be said to be
strictly decreasing, if f(n + 1) < f(n) for all n € N. The following fact will turn out to be useful.
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Fact2.3. Letf € 2(N, X, <) be a decreasing function such that [f] € 0X. Then there exists a strictly decreasing
function h € 2(N, X, <) such that f = h, i.e., [f] = [h].

Proof. By hypothesis, ] = im(f) is an infinite set. In particular, the set Q = {min(f"'({j}) | j € J} isan
infinite and unbounded subset of N. Let e: N — Q be the enumeration function of Q, i.e., e(1) = min(Q), and
recursively one has e(k+1) = min(Q\ {e(1), ..., e(k)}). Then, by construction, h = f o e is strictly decreasing,
and, by Proposition 2.1(b), one has f = h, and hence the claim. O

Fact 2.4. Let (X, <) be a noetherian poset, and let (X, <) be its completion. Then for all T € X one has J+(X) C
X. In particular, D:(X) = 2:(X), where the cocones are taken in the respective posets.

Example 2.2. Let X = A U B, where A, B = Z and define

njm<:>(((n,meAVn,meB)Ansm)v(neA/\meB)), 2.7

where “<” denotes the natural order relation on Z. Then (X, <) is a poset and its completion is given by X =
Z U {00} | |Z U {-oc}.For n € A, one has n(X) # In(X), since —oo € B is in In(X), but not in In(X).

2.5 The cone topology

Let (X, <) be a poset, and let (X, <) denote its completion. For 7, w € X let

S(r,w)={xeX|x<TAX<2wWw}. (2.8)
By transitivity,
C@nC®= J cX. (29)
zeS(r,w)
In particular,
BX) ={{x}xeX}u{CoX)|weX} (2.10)

is a base of a topology .7.(X) - the cone topology - on X. By construction, the subspace X is discrete and open,
and the subspace 90X is closed.

For w € X let #:(w) denote the set of all open neighborhoods of w with respect to the cone-topology,
and put . (w) = ﬂUe%(w) U. Then, by construction, one has .#(w) = {w} for w € X, and .¥(w) = C(X) for
w € 0X. This implies the following.

Proposition 2.5. Let (X, <) be a poset, and let (X, <) denote its completion. Then (X, 7:(X)) is a To-space (or
Kolmogorov space).

Proof. Lett,w € X, T # w. Ifeither T € X or w € X, then either {71} or {w} is an open set. So we may assume
that 7, w € 0X. As . (w) = Cy(X), either there exists U € #:(w), T ¢ U, or T < w. By changing the role of
and 1, either there exists V € 4¢(1), w ¢ V, or w < 7.Since T < w and w =< 7 is impossible, this yields the
claim. O

2.6 The fine topology

For a partially ordered set (X, <) let
7 = {{t}, C:X), C:X)° | Te X} 11)

denote the set of all subsets of X of cardinality 1, all cones and their complements in X. Then .# is a subbasis
of a topology 73(X) on X which we will call the fine topology on X. In particular, the set Q = { X = Nigjer X |
Xi,..., Xy € 7} is abase of the topology Z;(X). By definition, this topology has the following properties.
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Fact 2.6. Let (X, <) be a partially ordered set. Then
(@) (X, 74(X)) is a T,-space (or Hausdorff space).
(b) Z(X) C F(X).

2.7 The ~-boundary

There is another type of boundary for a poset, the ~-boundary, which seems to be relevant for the study of
fractals (see (5.6)). Let (X, <) be a noetherian poset, and let (X, <) denote its completion. Put

Q=AX)u{(e,n) e0Xx0X|e=xn}, (2.12)

where A(X) = { (x, x) | x € X}, and let X denote the equivalence relation on X generated by the relation Q.
Then one has a canonical map
m: X — X, (2.13)

where X = X/2. By construction, 7|y is injective. The set X=X \ 7(X) will be called the ~-boundary of the
poset (X, <). We put
I(~)={(w,T) e XxX|wit} C XxX (2.14)

The set X carries the quotient topology %(X’) with respect to the mapping 7 and the topological space
(X, Z:(X)). In particular, the subspace (X) C X is discrete and open, and 0X C X is closed. For w € X we
put Cy = m(Cy(X)). The space X will be considered merely as topological space. It has the following property.

Proposition 2.7. The topological space (X, %()N()) is a T,-space.

Proof. For w € X one has

S () = () (@) = a([) Cc(X)) = {a(w)}. (215)

_w T~

This yields the claim. O

3 Monoids and their boundaries

A monoid (or semigroup with unit) ./ is a set with an associative multiplication _ - _: .# x .# — .# and a
distinguished element 1 € ./ satisfying 1+ x = x - 1 = x for all x € .#. For a monoid .# we denote by

M ={xeHM|IJyeM:x-y=y-x=1} (3.1)

the maximal subgroup contained in .Z.

3.1 Ny-graded monoids

The set of non-negative integers Ny = {0, 1, 2, ...} together with addition is a monoid. A monoid .# together
with a homomorphism of monoids |_|: .# — Ny is called an Ny-graded monoid. For k € Ny one defines
My = {x € # | x| = k}. The No-graded monoid . is said to be connected, if .#, = {1}. One has the
following straightforward fact.

Fact3.1. For a connected No-graded monoid .4 one has .4 = {1}.

If 2 and .# are Ny-graded monoids, a homomorphism ¢: 2 — .# is a homomorphism of Ny-graded
monoids, if ¢(2;) C . for all k € Ny. The following property is straightforward.
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Proposition 3.2. Let ¢: 2 — .# be a homomorphism of Ny-graded monoids. Then ¢ is monotone, i.e., x,y €
2, x =y implies ¢(x) < ¢(y), and thus induces a monotone map

2¢: 2(N, 2, <) — 2(N, .4, <). (3.2)

Let ¢: 2 — .4 denote the induced map. Let 0¢p: 0.2 — 0.4 be the map induced by ¢. Then d¢ is continuous
with repect to the cone topology.

Proof. Let T € .# . Then the monotony of 2¢ implies that

¢ (C() = | ¢y(2), 33)
yes#
where . = {q € 9| ¢(q) € Cc(.#)}. Thus ¢ and 0¢ are continuous. O

3.2 1-generated monoids

For any set Y there exists a free monoid % (Y) which is naturally Ny-graded. Moreover, .%#(Y) is connected and
Z(Y), = Y. For an Ny-graded monoid .# there exists a canonical homomorphism of Ny-graded monoids

bu: FlMy) — M (3.4)

satisfying ¢_, 1 = id_, . The Ny-graded monoid .# is said to be 1-generated, if ¢_, is surjective. In particular,
such a monoid is connected. By definition, free monoids are 1-generated. Moreover, .# is said to be finitely
1-generated, if it is 1-generated and . is a finite set. The following important question remains unanswered
in this paper.

Question 3. Does there exist a finitely 1-generated monoid .# satisfying Fc(.#) # Tp(.4)?

3.3 Monoids as posets

Let .# be a monoid. For x € .#, put

Mx={yx|ye.#}; (3:5)

xM={xy|ye.#}. (3.6)
For x,y € .# we define

Xy<=xHCyH, 3.7

i.e., x <X yif, and only if, there exists z € .# such that x = yz.

3.4 Left cancellative monoids

A monoid . is said to be left cancellative if xy = xz implies y = z for all x, y, z € .#; and right cancellative if
yx = zx impliesy = zforall x,y,z € .#.

Proposition 3.3. Let .# be a left-cancellative monoid. For x,y € .# one has .#x = .#y if, and only if, there
exists z € ./ such thaty = xz.

Proof. For z € .#™ one has z.# = .#.Thus for x € .# and y = xz, multiplying by x from the left yields
y.# = x.#.Viceversa, suppose x.# = y.# for x,y in .#. Then there exist z, w € .# such that y = xz and
x = yw.Hencey = ywzand x = xzw. Thus left cancellation implies zw = 1 = wz, showingthatz,w € .#*. O
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Corollary 3.4. Let .# be a left-cancellative monoid. Then (.# | .#*, <) is a poset.

Remark 3.5. If left cancellation is replaced by right cancellation, then one has x.# = y.# if, and only if, there
exists z € .4 such that y = zx.

3.5 1-generated monoids as posets

Proposition 3.6. Let .# be a connected Ny-graded monoid. For x,y € ./# one has x.# = y.# if, and only if,
xX=y.

Proof. Suppose x.# = y.#, for x,y € .#. Then there exist z, w € .# such that x = yzand y = xw, so
|x| = |y| + |z| and |y| = |x| + [w|. Thus |z| = O = |w|. Since .# is connected, this impliesz =1 = w. O

As a consequence one obtains the following.

Corollary 3.7. Let.# be a 1-generated No-graded monoid. Then (.# , <) is a poset. If .# be finitely 1-generated,
then (.# , <) is a noetherian poset.

Remark 3.8. Ihe following example shows that the universal boundary 0./ is in general different from the
~-boundary 0.#. Let .# = (x,y, z | xz = zx ). Consider
fi:N—= M, fi(n) = (x2)",
fZ:N—>M’ fz(n)=xn) (3'8)
f3:N—= M, f3(n) =z".

Then f, = f1 =< f3. Hence n1(fy) = n(f,) = n(f3) € o, and m: OM — 3.4 is not injective.

3.6 Abelian semigroups generated by idempotents

Let E be an abelian semigroup being generated by a set of elements = C E satisfying 0> = o forall o € %, i.e.,
all elements of X are idempotents. Then every element u € E is an idempotent, and one may define a partial
order "<" on E by

u=<v = u-v=v, (3.9)

foru,ve E.Let#Z = {(u,v) € £x X | u < v}. By definition, one has

E={u=0y:---0/]0;€2}. (3.10)
Hence
E ~ 7®(3)/R, (B.11)
where .72 (2) is the free abelian semigroup over the set %, and R is the relation
R={(v,v) | (u,v) € 2} C F°(2) x 72°(3), (3.12)

ie., E=.7%(%)/R™, where R™ is the equivalence relation on .#2°(2) generated by the set R. Let
E-= {x: E — {0, 1} | x a semigroup homomorphism, y(0) =0, y % 0} (3.13)

Then E coincides with the set of characters of the C"-algebra C*(E) generated by E (satisfying e* = e for all
e € E), and hence carries naturally the structure of a compact topological space. By construction, E can be
identified with a subset of F(Z, {0, 1}) - the set of functions from X to {0, 1}. In more detail,

E={¢ecF({0,1}) | Vu,v) € Z: ¢p() = p)- p(v)} (3.14)
Thus identifying .Z(Z, {0, 1}) with {0, 1}*, one obtains that
E={(o)oes € {0, 1} |V(u,v) € Z: 0y = 0y - 0y }. (3.15)
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3.7 The semigroup of idempotents generated by a set of subsets of a set
Let X be a set, and let S C £2(X) be a set of subsets of X. Then S generates an algebra of sets «7(S) C 2(X),
i.e., the sets of <7(S) consist of the finite intersections of sets in S. Then
ES)= (I, | Ae(S))C .F7(X,{0,1}) (3.16)
is an abelian semigroup being generated by the set of idempotents
S={Iy|YeSh (3.17)
Moreover, by (3.14), one has
E©S)={¢ € F(S,{0,1) VU, VeS,VCU: (V) =pU)-p(V)} (3.18)

3.8 The Laca-boundary of a monoid

Let .# be a 1-generated monoid. Then one chooses
S={w-M\we.u} (3.19)

to consist of all principal right ideals. For short we call the compact set 6.# = E(S) for S as in (3.19) the Laca
boundary of .# . For an infinite word w = (wy) € 2(N, .#, =) and for T € .# one defines the element y, € E (S)
by xw(T.#) = 11if, and only if, there exists k € N such that wy, € 7.4, i.e., T = wy, and thus T = w. This yields
amap

X-: 2(N, .4, <) — E(S) (3.20)

(cf. [5, § 2.2]). By definition, it has the following property:
Proposition 3.9. Forw = (wy) € 2(N, #, <), T € #,0nehas xu(1.#) = 1if,and only if, T = w. In particular,
one has Xy = Xw if, and only if, n ~ w, and hence x. induces an injective map

X.: 0l — DM (3.21)
Proof. The first part has already been established before. Let = (7). Then by the first part, w > n implies

that for all T € .# one has
Xo(T M) =1= XQ(T///) =1. (3.22)

Thus as im(yw) C {0, 1} one concludes that w = nand w < n implies that o = X». On the other hand
Xn = Xw implies that 1 = Xg(ﬂk/// ) = Xw(ny.#) for all k € N. In particular, n > w. Interchanging the roles of n
and w yields w > n, and thus n ~ w (cf. section 2.3). The last part is a direct consequence of the definition of
oM. O

The following theorem shows that for a 1-generated Ny-graded monoid .# its universal boundary 0.# with
the fine topology is a totally-disconnected compact space.

Theorem 3.10. The map¥.: (0.#, yf((///_ )) — 0.# is a homeomorphism.

Proof. 1t is well known that y is surjective (cf. [5, Lemma 2.3]), and thus y is surjective. By Proposition 3.9, ¥
is injective, and hence y is a bijection. The sets

Us={neE(x) |\ nta)=¢}, 1€, ec{0,1} (3.23)
form a subbasis of the topology of E(#), and
XU = C(A)n o (3.24)

by (3.22). Hence ¥y *(U?) = C:(.#)¢ N d.# and this yields the claim. O
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The proof of Theorem 3.10 has also shown that
X0 —s 0., Te(M)) (3.25)

is a bijective and continuous map. Thus, if (0.#, z(.#)) is Hausdorff, then y ! is a homeomorphism (cf. [1,
§ 9.4, Corollary 2]). This has the following consequence.

Proposition 3.11. Let .# be a 1-generated Ny-graded monoid such that (0.# , Fe(.#)) is Hausdorff. Then .#
is 7 -regular.

In contrast to Proposition 3.2 one has the following property for the Laca boundary of monoids.

Proposition 3.12. Let ¢: 2 — .# be a surjective homomorphism of connected Ny-graded monoids. Then ¢
induces an injective continuous map ¢z: 0.4 — 0.2.

Proof. By Proposition 3.6, ¢ induces a map ¢5: X(2) — X(.#) given by
Ps(w2) = p(w).#. (3.26)

Moreover, for x,y € 2 one has x < y, if and only if, x2 C y2, if and only if there exists z € 2 such
that x = y - z. From the last statement one concludes that ¢5(x.2) C ¢5(z2). Thus, by (3.11), ¢5 induces a
homomorphism of semigroups

¢g: E(2) — E(4), (3.27)

and thus a map
¢%: E(#) U {0} — E(2) U {0}. (3.28)

If ¢ is surjective, then ¢ is surjective, and ¢% restricts to a map

¢5: E(#) — E(2). (3.29)
It is straightforward to verify that ¢ is continuous and injective. O
4 Free monoids and trees
Let %n = Z (X1, ..., xn) be the free monoid on n generators. Let S = {x1, ..., xn} be the set of generators,

and let |_|: #n — Ny be the grading morphisms, i.e., |y| = 1 if and only if y € S. The Cayley graph I'(%», S)
of .7, with respect to S is the graph defined by

V={x|xe} (4.1)
E={(x,xx;) e VxV|xe Fnx€S}. (4.2
The origin and terminus maps o, t: E — V are given by the projection onto the first and second coordinate,

respectively. Then I'(%y, S) is an n-regular tree with root 1 and all edges pointing away from 1. The graph
I'(Zn, S) coincides with an orientation of the n-regular tree T.

4.1 The boundary of the n-regular tree

The boundary 0Ty of Ty is the set of equivalence classes of infinite paths without backtracking under the
relation ~ defined by the shift, i.e.
VoViVas+s ~ ViVaV3... (4.3)
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We denote by [v, w) the unique path starting at v in the class w and define
L={wedTn|vell,w)} (4.4)

the interval of 0Ty starting at v. Then 0T is compact with respect to the topology 97 generated by {I, },cy.
For any [p] € 0Ty there exists a unique ray p = (ep)xen, 0(p) = o(e1) = 1. One can assign to p the
decreasing function w, € 2(N, Fn, <) given by wp(k) = t(ey). The map ¢: 0Tn — 0.%n given by

@([p]) = [wp] (4.5)

is a bijection. Hence one can identify 0 T, with 0.%,.

4.2 The space (%, T(Fy))

Every cone C(%y) defines a rooted subtree T, of Ty satisfying 0T = 0.%, N C<(%n). Thus every covering
Ureu C+(Fn) N 0.7 of the boundary of 0.%, by cones defines a forest F = Urey Tr- Let F = {J;¢; F; be the
decomposition of F in connected components. Then 0T, = oF = | |;; oF;, where U denotes disjoint union.
Hence the compactness of 0T, implies |I| < oo.

As 0F; C 0Ty is closed, and hence compact, a similar argument shows that there exist finitely many
cones Cr;;, 1 < j < rj, such that F; = U1sjsr,- Tr,;. Thus, if | J V is an open covering of .#, by open sets, it can
be refined to a covering | J U, where U consists either of a cone Cr (#n) or of a singleton set {w}, w € Fn. Let
A C Tp be the subtree being generated by the vertices 7; ;. Then A is a finite subtree, and the only vertices
of Tr not being covered by J; ; Cr,, (#n)) are contained in V(A). This shows that (%, (%)) is a compact
space.

4.3 The space (A, T.(.A))

Let .# be a .7 -regular finitely 1-generated monoid. Then, by definition, (0.#, Z:(.#)) is a Hausdorff space,
and hence (.7, 7:(.#)) is a Hausdorff space. By Proposition 3.2, the canonical mapping ¢ _,: .# — .# (cf.
(3.4)) induces a continuous surjective map ¢ _, : .% — .. This shows the following.

Proposition 4.1. Let./# be afinitely 1-generated No-graded 7 -regular monoid. Then (A , 7:(.#)) is a compact
space.

4.4 The canonical probability measure on the boundary of a regular tree

By Carathéodory’s extension theorem the assignment
ul) =nM (4.6)

defines a unique probability measure p: Bor(0T») — R{. Hence the corresponding probability measure
u: Bor(0.7n) — R satisfies

U(Q.Fn N Cr(Fn)) = n1™ for T € F. (4.7)
Definition. Let _ - _: %, x 0.7, — 0.%, be the map given by
x -+ [w] = [xw], (4.8)

where xw: N — %, is given by (xw)(n) = xw(n)

Note that this action is well defined, since w ~ w’ implies that xw ~ xw’.
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Definition. Let _ - _: L?(0.%n, C, u) x Zn — L%(0.%n, C, u) be the map given by
fx="f, (49)
where
CAH(w) = f([xw). (4.10)
Note that for f € L%(0.%n, C, u) one has *f € L?(0.%n, C, y), since
I3 = [ 171 dn (@.11)
T,
- [ irian (412)
x0T,
< / If|% du (4.13)
T,
= [If1I3, (4.14)

where (4.13) follows since x0.%, C 0.%n.

Definition. For z € .%, we define the map T : L?(0.%n, C, ) — L?(0.%n, C, u) by
T:(f) = *f. (4.15)

Fact 4.2. .7y actsvia T. on L?(0.%n, C, u) by bounded linear operators.

Proof. Letz € Zn.For f, g € L*(0.%n, C, y), [w] € 0.%n, one has

(T=(f + 8))([w]) = (T=(N) ((w]) + (T=(8)) ([w])

by definition. Thus T is linear. It is also bounded, since

I Tzllee = HSUP IT-(F)ll2 < sup [f]l2 < 1. (4.16)

[2=1 lIfll2=1

O

Hence T, € B (Lz(aﬁ‘n, C, p)) forall z € .%#,. As B (Lz(aﬁ‘n, C, p)) isa C"-algebra, T, has an adjoint operator
T, which is the bounded operator satisfying

<Tzf,g> = <f’ T;g>x (417)
forall f, g € L?(0.%n, C, y).

Fact 4.3. The bounded operator Ty, for z € Fn, is given by

N 0 iflw] ¢ z0.Fn
(TAA)w]) = (4.18)
v {f([w’]) if ] = 2l
Proof. Note that T,f € L?(0.%n, C, u), since
1313 = / T3 du (4.19)
0.7,
- [ (420)
20.%n
s/|f|2d],t. (4.21)
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Let f, g € L?(0.%n, C, y). Then one has

(f, Tz8) = /f(@) du (4.22)

oT,
- [ i@y (4.23)

20Ty
- [ gy (4.24)

zoTy
< / (T-Ng du (4.25)

oT,
=(T:f,8). (4.26)

where equality (4.24) holds by

f(zw']) T;g([zw']) = (Tof)([w']) g([w']). (4.27)
O

Proposition 4.4. The following identities hold for all x,y € S C Fn
TxTy = 6xy; (4.28)
n
> TyTy = 1. (4.29)
i=1
In particular, the C"-algebra C*(%n, u) C B(L?(0.%n, C, u)) generated by .Fn is isomorphic to the Cuntz algebra
On.
Proof. Letx,y € S C Zpandlet f € L?(0.%n, C, y). For any [w] € 0.%, one has
Ty Ty(F)([w]) = 8xf(w]) (4.30)

by Fact 4.3. This proves identity (4.28).
Let [w] € 0.7n. Then there exists x; € S such that [w] € x;0.7n. Hence one has

Tw, Txf (@]) = 85f (w]) (4.31)

for any f € L2(0.%n, C, p). This yields the identity (4.29). O

4.5 Finitely 1-generated monoids

Let .# be a finitely 1-generated Ny-graded monoid. Then one has a canonical surjective graded homomor-
phism ¢ _, : F — .#, where .Z is a finitely generated free monoid (cf. (3.4)), which induces a continuous
map 0¢: 0. — 9./ (cf. Proposition 3.2). In particular,

Uy : Bor(0.#) — R} (4.32)

given by u_, (A) = u(0¢_,) *(A)) is a Borel probability measure on 9. .
For s € ./, define the map 8s: 0.# — o.# by

Bs(IfD = [sf], [fl€ o, (4.33)
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where (sf)(n) =s-f(n)foralln € N, f € (N, .#, <). Then, as s is mapping cones to cones, f8s is continuous.
Hence one has a representation

B: .t — CQM,0.4). (4.34)
Fors e .4, let Bss: L*(0.#,C, u) — L?(0.#, C, u) be the map defined by
B-s(@) D) = gBs(fD) = g(sfD), geL*04,p), [fleox. (4.35)
Then one has
1B-5@E = [ |g(B)[* dps (4.36)
ot
= / g (Isf1)|* du. (4.37)
o
- / g (I1)|* d.a (4.38)
so.#
< / 2(Uf)|? dus (4.39)
ot
= |lgll3, (4.40)
forall g € L?(0.#,C, u), s € .#. Thus,
|B«sll = sup [|B«s(g)ll2<1 (4.41)
llgll2=1

foralls € .#,i.e., B+ s is abounded operator on L?(d.#,C, #). By an argument similar to the one used in the
proof of Fact 4.2 one can show that it is also linear. In particular, there exists a representation

Bzt — B(L*(0.4,C, ). (4.42)

4.6 Right-angled Artin monoids

Let I' = (V, E) be a finite undirected graph, i.e. |V| = n < co and E C %,(V), where &%,(V) denotes the set of
subsets of cardinality 2 of V. The right-angled Artin monoid associated to I is the monoid .#! defined by

T = (xeV|xy=yxif{x,y} € E)*. (4.43)

Clearly, .# T is Nyp-graded and finitely 1-generated. By Luis Paris theorem (cf. [6]), .# T embeds into the right-
angled Artin group Gr. Thus .#" has the left-cancellation property as well as the right-cancellation property.
The canonical homomorphism ¢r: .Z (V) —s .#" is surjetcive and induces a continuous surjective map

Opr: 0.7 (V) —s o.4". (4.44)

(cf. Proposition 3.2). We denote by yr: Bor(d.#") — R{, the Borel probability measure induced by 0¢r, i.e.,
for A € Bor(d.#") one has
ur(A) = u(0gr' (4)), (4.45)

where y is the measure defined on 0.7 (V) by (4.7).

Definition. LetI' = (V, E) be a graph, and let I'; = (Vy, E1) and I', = (V3, E,) be subgraphs of I'. We say that
T is bipartitly decomposed by I'y and I';, if V = V; U V; and

E=E1|_|E2|J{{V1,V2}|V1€V1,V2€V2}. (446)

In this case we will write I' = I'y Vv I';. If no such decomposition exists, I" will be called coconnected.
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Any graph I' can be decomposed into connected components I';, i.e. I' = Ujc;I;. In a similar fashion one may
define a decomposition in coconnected components.

Definition. Let I' = (V, E) be a graph and let I'" = | |;_; A; be the decomposition of I'°" in its connected
components. We will call
I=\; AP, (4.47)

the decomposition of I' in coconnected components.
One has the following property.

Fact4.5. Let I' = (V, E) be an undirected graph. Then I is coconnected if, and only if, I'°P is connected. In
particular, if TP = | |;; A; is the decomposition of I'°? in its connected components, then one has

I=Vie AP, (4.48)
where AP are coconnected subgraphs of T.

Proof. Obviously, the graph I' = I'y v I, is bipartitly decomposed if, and only if, " = I'!* U I'}® is not
connected. This yields to the claim. O
Note that the decomposition in coconnected components implies that ant two vertices in different compo-

nents must be connected by an edge. From this property one concludes the following straightforward fact.

Fact 4.6. Let I = (V, E) be a finite graph with unoriented edges, and let I = \/, ;. I'; be its decomposition in
coconnected components, I'; = (V;, E;).Then

M =" <o oat, (4.49)
where .#" = (v € V;). In particular, 0.#" = x1,0.#" and
L*@.#",C,ur) = L*@.4",Coup) &+ --&L* .4, C, ur). (4.50)
In [2], J. Crisp and M.Laca has shown the following.

Theorem 4.7 ([2], Theorem 6.7). Let I' = (V, E) be a finite unoriented graph such that I'°® has no isolated
vertices, and let I = \/_, I'; be the decomposition of T in coconnected components, I'; = (V;, E;). Then the
universal C"-algebra with generators {Sx | x € V} subject to the relations

(i) SySx=1foreachx e V;

(ii) SxSy = SySx and SxSy = Sy Sy if x and y are adjacent in T’;

(iii) SySy = 0 if x and y are distinct and not adjacent in I'’;

() [Txey,(1 - SxSy) =0 foreachic {1,...,1};

is canonically isomorphic to the boundary quotient 0C;(.#") for .#" and it is a simple C"-algebra.
Hence, one has the following proposition.

Proposition 4.8. The C"-algebra C*(.#", ur) (cf. (1.6)) of a right-angled Artin monoid .#" is isomorphic to the
boundary quotient 0 C,(.# T) of Theorem 4.7.

Proof. Let I' = (V, E) be a finite unoriented graph such that |V| = nand let I' = \/;:1 TI'; be its decomposition
in coconnected components. It is straightforward to verify (i)-(iii) for the set of operators { Tx | x € V }, where
the operator Ty € B(L*(0.#", C, ur)), ur as in (4.45), is defined by

Tx(A)([w]) = f(xw]), (4.51)
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and the adjoint operators are given by

. 0 if [u] ¢ xo.#"
(T)([u]) = (4.52)
) {f([u’]) if [u] = x[u'],
where f € L2(0.#", C, ur). It remains to prove that it also satisfies (iv). Let
e = [[(- 1. (4.53)
xeV;

In order to show that e;(f) = 0 forall f € L(3.#", C, ur) it suffices to show that e;(f) = 0for f = f; ® - -+ & fr,
fi € L> (.41, C, pr,) (cf. (4.50)). Note that

(1- TeTH) ()l - {j?([u]) ftg‘e]rfm’:” E (4.54)

Let [u] = [u1]-- - [ur], [uj] € 0.#"7. Then there exists y € V; such that [u;] € yo.#"". Hence, by (4.54)
(1-TyTy)(A([u)) = 0. (4.55)
Hence e;(f) = 0 and this yields the claim. O

5 Fractals

Let . be a finitely 1-generated monoid. By an .#-fractal we will understand a compact metric space (X, d)
with a contracting left .#-action a: .# — C(X, X), i.e., there exists a real number § < 1 such that for all
x,y € Xandallw € .# \ {1} one has

d(a(w)(x), a(w)(y)) < 6 - d(x, y). (5.1)

The real number § will be called the contraction constant. To the authors knowledge the following important
question has not been discussed in the literature yet.

Question 4. For which finitely 1-generated monoids .# does there exist an .# -fractal (X, d, a)?

Example5.1. Letsq,s,: 1 — I,1=10, 1], be defined by s1(x) = %x, sa(x) = % +51(x). Then (s1, s2) C C(I, I)
is isomorphic to the free monoid .%, on 2 generators. The .%,-fractal (I, d, a), where d is the standard metric
and a is the action described above, has as attractor the Cantor set (see [3], Ex. 3.3).

5.1 The action of the universal boundary on an .7 -fractal

Let .# be a finitely 1-generated monoid with grading |_|: .# — Nj. For a strictly decreasing sequence f €
2N, #, <) and for n, m € Nog, m > n, there exists Tm,n € .# \ {1} such that f(m) = f(n) - Tm,n. By induction,
one concludes that |[f(n)| = n. If [f] € 0.#, then f can be represented by a strictly decreasing sequence (cf.
Fact 2.3).

As a is contracting, one concludes that (a(f (n))(x)) is a Cauchy sequence for every strictly decreasing
sequence f € 2(N, .#, <) and thus has a limit point a(f)(x) = limp—c (a(f(n))(x)). In more detail, if « has
contracting constant § < 1, one has for n, m € N, m > n, that

d(a(f(m)(), a(f(M)() < 81 - d(a(Tm,n)(x), x) < 6/ - diam(X), (.2)
where diam(X) = max{ d(y, z) | v, z € X }. Thus one has a map
9N, M, <)xX — X (5.3)

given by [f] - x = a(f)(x). This map has the following property.
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Remark 5.1. (a) Let (X, d) be a compact metric space. For A, B C X the Hausdorff metrico: Z(X)x2(X) — R,
where £(X) denotes the set of subsets of X, is given by

9(4, B) =sup{d(a,B),d(b,A)|lac A,b e B},

where d(a, B) = inf{ d(a, b) | b € B} (cf. [3, (2.4)]).
(b) Let .# be a finitely 1-generated monoid, and let ((X, d), @) be an .#-fractal with attractor K C X. For
S P(X) — P(X) given by

A= | alo)A),

oe M

it is well known that (.”%(A))xcy, where .7%(A) = .7 (#*"1(A)), converges to K in the Hausdorff metric (cf. [3,
Statement (1)]).

Proposition 5.2. Let .# be a finitely 1-generated monoid, and let (X, d), ) be an .#-fractal with attractor
K C X. Then the map (5.3) is continuous and [f] - x € K for all f € 2(N, .#, <) and x € X.

Proof. Let f € 2(N, .#, <) be a strictly decreasing function. For A = {x}, and . as above, the sequence
(7k (A))ren converges to K in the Hausdorff metric. Thus for all € > O there exists N(¢) € N such that for all
n > N(e) one has 9(."(4), K) < €. Hence d(a(f(n))(x), K) < € for all n > N(g), and a(f)(x) is a clusterpoint of
K. As K is closed this implies a(f)(x) € K.
The map (5.3) is obviously continuous in the second argument. Moreover, letf, h €¢ 2(N, .#, <),f,h < T,
T € .#.Then
d(a()(x)), a(h)(x)) < 2 - 67! - diam(X). (5.4)

Thus (5.3) is continuous. O

Proposition 5.3. Let f,h ¢ 2(N, .#, <) satisfying f < h. Then, a(f)(x) = a(h)(x).

Proof. We may assume that f(n) < h(n) for all n € N, i.e., there exists y, € .# such that f(n) = h(n) - yn.
Then, by the same argument which was used for (5.2), one concludes that

d(a(f()(x), a(h(n)(x)) < 8" diam(X) < 6"diam(X). (5.5)

This yields the claim. O

From Proposition 5.3 one concludes that the map (5.3) induces a map
o xX—X (5.6)

given by 71([f]) - x = a(f)(x) (cf. (2.13)), and thus an action of o4 onX.

The following property suggest to think of (5/// , J¢) as the universal attractor of an .#-fractal.

Proposition 5.4. Let x € X, and let K C X be the attractor of the .# -fractal (X, d), a). Then the induced map
Kx: 0. — K (5.7)
given by kx([f]) = a(f)(x) is surjective.

Proof. Letz € K, and A = {x}. By (cf. [3, (2.4)]), for all € > O there exists N(¢) € N such that for all n > N(g)
one has 2(¥""(4), z) < &, i.e., there exists a sequence (fn)nen, fn € #n, fre1 € Uge/ﬂl{o - fn}, such that
d(a(fn)(x),2) < €.

If .# is 7 -regular, then (.#, Fc(.#)) is compact (cf. Proposition 4.1). Hence (fn)nen has a cluster point
f € #.As|fn| = n,onehasf ¢ .# and thus f € d.#. 1t is straightforward to verify that [f] - x = z, showing
that ky is surjective. O
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5.2 The C'-algebra associated to an ./ -fractals for a finitely 1-generated monoid .#

Let ./ be a finitely 1-generated monoid, and let (X, d), a) be an .#-fractal with attractor K. For x € X there
exists a continuous mapping kx: 0.# — K (cf. Theorem C). Let pyx: Bor(K) — R{, be the probability measure
given by (1.8). Then . acts on K, and thus also on L?(K, C, ).

Fort € .4 let vz L*(K, C, px) — L*(K, C, pix) be given by

7 (8)(x) = gla(x) (5.8)

where g € L?(K, C, jix). Hence the monoid .# acts on the Hilbert space L*(K, C, pix) by bounded linear oper-
ators.

(@) = / (€ @)I? dpix = / (a2 du < 8113
K K

(cf. § 4.1). One defines the C"-algebra generated by the .#-fractal ((X, d), a) by

C'(M,X,d,yux) = (v, v | t €.t) C BLA(K, C, ux)). (5.9)
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