
Vol.:(0123456789)

SN Computer Science (2024) 5:710
https://doi.org/10.1007/s42979-024-03024-8

SN Computer Science

ORIGINAL RESEARCH

Certifying Accuracy, Privacy, and Robustness of ML‑Based Malware
Detection

Nicola Bena1 · Marco Anisetti1 · Gabriele Gianini2 · Claudio A. Ardagna1 

Received: 29 December 2023 / Accepted: 31 May 2024
© The Author(s) 2024

Abstract
Recent advances in artificial intelligence (AI) are radically changing how systems and applications are designed and devel-
oped. In this context, new requirements and regulations emerge, such as the AI Act, placing increasing focus on strict non-
functional requirements, such as privacy and robustness, and how they are verified. Certification is considered the most
suitable solution for non-functional verification of modern distributed systems, and is increasingly pushed forward in the
verification of AI-based applications. In this paper, we present a novel dynamic malware detector driven by the requirements
in the AI Act, which goes beyond standard support for high accuracy, and also considers privacy and robustness. Privacy
aims to limit the need of malware detectors to examine the entire system in depth requiring administrator-level permissions;
robustness refers to the ability to cope with malware mounting evasion attacks to escape detection. We then propose a cer-
tification scheme to evaluate non-functional properties of malware detectors, which is used to comparatively evaluate our
malware detector and two representative deep-learning solutions in literature.

Keywords  Machine learning · Malware detection · Certification · Accuracy · Privacy · Robustness

Introduction

The widespread and pervasive adoption of ICT technolo-
gies is at the basis of today’s digital society where every
aspect of human life builds on digital technologies. This
success attracted (cyber)criminals that increasingly attacked
the digital society and its technologies either for politi-
cal or financial reasons. In this context, cybersecurity has
received a lot of attention, involving academic and industrial
communities in the protection of the digital society from

cyberattacks. Cybersecurity solutions have been influenced
by and took advantage of ICT evolution, with artificial intel-
ligence recently gaining ground in many disparate domains
[4–7, 35, 42].

According to the ENISA Threat Landscape 2022 [18],
malware is one of the most common attack vectors and
represents the main cyberattack, with ransoms rising up to
$50 M and individual malware infections costing up to $1 M
per incident [32]. The fight between security researchers and
professionals, who implement new approaches for detect-
ing malware as quickly as possible, and malware develop-
ers, who create complex malware using evasive strategies
to avoid detection, is increasingly played on a day-to-day
basis and with alternating fates.

Modern malware detection applications (malware detec-
tors in the following) replace and complement traditional
signature-based detection with static analysis techniques
based on machine learning (ML). Static analysis focuses
on features that can be extracted from the malware code
itself, without executing it. These features include the API
(application programming interface)/system calls [22],
assembly instructions [26], control flow graphs [23, 31], as
well as non-traditional representations such as images [36].
Dynamic analysis complements and gradually substitutes

 *	 Nicola Bena
	 nicola.bena@unimi.it

	 Marco Anisetti
	 marco.anisetti@unimi.it

	 Gabriele Gianini
	 gabriele.gianini@unimib.it

	 Claudio A. Ardagna
	 claudio.ardagna@unimi.it

1	 Department of Computer Science, Università degli Studi di
Milano, Via Celoria 18, 20133 Milan, Italy

2	 Dipartimento di Informatica, Sistemistica e Comunicazione
(DISCo), Università degli Studi di Milano-Bicocca, Viale
Sarca 336, 20126 Milan, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-03024-8&domain=pdf
http://orcid.org/0000-0001-7426-4795

	 SN Computer Science (2024) 5:710 710   Page 2 of 17

SN Computer Science

static analysis, starting from the assumption that the mal-
ware run-time behavior cannot be easily changed. In this
case, the malware is executed in a sandbox and its behavior
is observed and analyzed. Features include the sequence of
invoked system calls [39, 43, 47], process- [2], and network
flow-level data [13], to name but a few. Hybrid analysis com-
bines the two approaches.

Existing approaches show excellent performance (e.g.,
accuracy ≥ 0.99 ), though they suffer from two main draw-
backs. On the one hand, the rise of evasion attacks (often
known as adversarial attacks) has demonstrated that existing
malware detectors can be easily bypassed. Even worse, these
attacks are feasible in the real world, meaning that the adver-
sarial perturbation is applicable to the malware source code/
executable file and does not change the malware behavior
(e.g., [17, 44]). Being malware detection an adversarial envi-
ronment, the lack of robustness against these attacks is caus-
ing increasing concerns, questioning the practical usability
of malware detectors in the real world. On the other hand,
granting malware detectors permission to collect the neces-
sary data often requires the company producing the detectors
to have complete control over the monitored system. Users
may be reluctant to grant such permissions to third parties
because they can violate their company’s privacy policies
and increase the risk that such detectors can be used as an
attack vector themselves.1

Furthermore, existing approaches to malware detection
conflict with recent guidelines and regulations on artificial
intelligence, which increasingly point to ethics, privacy,
and robustness. In particular, the European Parliament has
recently approved the Artificial Intelligence Act (referred
to as the AI Act), which emphasizes the departure from AI
solutions where accuracy is the sole concern. [49]. Rather,
the AI Act mandates AI solutions to be ethical, transparent,
robust, secure, and privacy-preserving, and certified to prove
the continuous support of these properties.

In this paper, we extend our previous work in [11] to fill
in the above needs. We first develop an approach to mal-
ware detection that targets properties accuracy, privacy, and
robustness. To this aim, our approach relies on easily acces-
sible system-level performance (CPU, RAM, and I/O usage)
data and requires low-level permissions. It creates an initial
dataset modeling data points as multi-valued time-series. It
augments the dataset and fully exploits the extracted features
using an LSTM (long short-term memory) network, a model
capable of dealing with temporal information, achieving
0.99 accuracy. We then propose a preliminary certification
scheme for evaluating non-functional properties of malware
detectors. The scheme is used to compare the proposed
approach with two representative deep-learning solutions

in literature, a static detector [41] and a hybrid detector [44],
according to the following properties: accuracy, privacy by
collected data and access permissions minimization, and
robustness against evasion attacks.

The remainder of the paper is structured as follows. Sec-
tion “Motivations” discusses the motivations at the basis
of our work. Section “Non-Functional Properties” presents
the three target non-functional properties supported by
our malware detector [11] in Sect. “Lightweight Malware
Detection”. Section “A Certification Scheme for Malware
Detectors” describes the certification scheme used to verify
the three properties. Section “Certification Results” pre-
sents a comparative evaluation of three malware detectors
(including the one in this paper) based on certification. Sec-
tion “Discussion” discusses our findings. Section “Related
Work” presents related work. Finally, Sect. “Conclusions”
draws our conclusions.

Motivations

On March 13th, 2024, the European Parliament approved the
AI Act, the first worldwide law regulating AI systems.2 The
AI Act adopts a risk-based approach, requiring AI systems to
satisfy different (non-functional) requirements according to
the risk the system entails.3 For instance, systems with unac-
ceptable risk contravening EU values are prohibited, while
systems with high risk must be “subject to a conformity
assessment” to demonstrate compliance with requirements
such as “accuracy, cybersecurity, and robustness” [14].
Even minimal-risk AI systems, which would only need to
comply with basic transparency obligations, may voluntar-
ily comply with such requirements [14] and thus increase
their safety, trustworthiness, and market legitimacy [28]. In
addition to the AI Act, many other recommendations are
proliferating, for instance, the NIST’s Artificial Intelligence
Risk Management Framework (NIST AI RMF) [38].

The AI Act represents a paradigm shift in the AI domain,
where demonstrable compliance to non-functional require-
ments is mandated by law.

In this paper, we start from the AI Act and apply its
statements in the domain of malware detection built on
artificial intelligence. Traditionally, malware detectors are
defined to maximize accuracy (achieving remarkable accu-
racy ≥ 0.99 ), while often disregarding other requirements
(e.g., on their robustness and privacy) recently mandated
by the AI Act. In general, ML-based malware detectors can
be classified as static, dynamic, and hybrid. Static detectors

1  https://​www.​cclea​ner.​com/​knowl​edge/​secur​ity-​notif​icati​on-​cclea​
ner-​v5336​162-​cclea​ner-​cloud-​v1073​191.

2  https://​data.​consi​lium.​europa.​eu/​doc/​docum​ent/​ST-​5662-​2024-​
INIT/​en/​pdf.
3  https://​www.​europ​arl.​europa.​eu/​RegDa​ta/​etudes/​BRIE/​2021/​
698792/​EPRS_​BRI(2021)​698792_​EN.​pdf.

https://www.ccleaner.com/knowledge/security-notification-ccleaner-v5336162-ccleaner-cloud-v1073191
https://www.ccleaner.com/knowledge/security-notification-ccleaner-v5336162-ccleaner-cloud-v1073191
https://data.consilium.europa.eu/doc/document/ST-5662-2024-INIT/en/pdf
https://data.consilium.europa.eu/doc/document/ST-5662-2024-INIT/en/pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698792/EPRS_BRI%282021%29698792_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698792/EPRS_BRI%282021%29698792_EN.pdf

SN Computer Science (2024) 5:710 	 Page 3 of 17  710

SN Computer Science

analyze the executable file without executing it. For instance,
they extract features such as API/system calls and assem-
bly instructions [22, 26], control-flow graphs [23, 31], and
even image representation [3, 25, 36, 50]. Dynamic detec-
tors, instead, observe the run-time malware behavior during
its execution. They consider features such as, for instance,
sequence of system calls [39, 43], process-level information
[2], and image representation [15, 47]. Finally, hybrid detec-
tors fuse static and dynamic analysis, including additional
information such as metadata of the executable file [30, 33].

The goal of this paper is to define a novel malware detec-
tor following the requirements of the AI Act. In particu-
lar, we design a malware detector targeting the support of a
variety of non-functional properties that go beyond vanilla
accuracy and also embraces privacy and robustness. To this
aim, we define properties accuracy, privacy, and robustness,
(Sect. “Non-Functional Properties”), driving the develop-
ment of our malware detector (Sect. “Lightweight Malware
Detection”). We further introduce the certification scheme
for malware detector certification (Sect. “A Certification
Scheme for Malware Detectors”) and apply it to the detec-
tor in this paper and two additional detectors in literature
(Sect. “Certification Results”).

Non‑Functional Properties

We define the non-functional properties accuracy, privacy,
and robustness driving the definition of a malware detector
following the requirements in the AI Act.

Property accuracy models the need of retrieving accurate
results by malware detectors in operation. It is a standard
property for malware detection, conventionally assumed to
take value in [0 , 1].

Property privacy models the need to minimize the intru-
siveness and the amount of data collected by the detec-
tor (data minimization principle4). The property refers to
the data collected for training and inference, such as data
referred to individual processes (higher intrusiveness) or to
the system as a whole (lower intrusiveness). In turn, data
collection requires a variety of specific permissions to be
granted to the malware detector, which are also important to
minimize (data protection by design and by default5).

Property robustness models the need to protect the mal-
ware detector against malware that actively attempts to
escape ML classification by injecting adversarial perturba-
tions [46]. Robustness can be supported in different con-
figurations and strengths. Figure 1 shows an excerpt of the
hierarchy for property robustness; grey-filled boxes denote

the focus of this paper. In some cases, robustness can be
mathematically proven (e.g., [24, 44, 45]), meaning that it
is possible to compute a bound on prediction correctness
as a function of the extent of the adversarial perturbation
(this is also known as certified robustness). Robustness can
also be empirically proven (the focus of this paper), that
is, evaluated using, for instance, testing procedures (e.g.,
[16, 21, 48]). The latter approach can assume two forms
(corresponding to as many properties): (i) input-dependent:
robustness is guaranteed by the fact that it is extremely dif-
ficult for an attacker to perturb the data points in practice
(this property applies for instance in case access to the entire
system is required before infection can be spread); (ii) input-
independent: the attacker can execute the perturbation in
the real world (e.g., in case the attacker needs to perturb
the malware executable only). Finally, empirically-proven
robustness can be further refined by specific strengthening
techniques (e.g., adversarial training [46]).

Table 1 shows how related work in malware detection
(discussed in detail in Sect. “Related Work”) supports prop-
erties accuracy, privacy, and robustness. ✓ means that the
property is fully supported, ≈ partially supported, ✗ not sup-
ported. ✗ is also used when the property is not discussed/
evaluated. As a matter of fact, all malware detectors target
property accuracy, while just a few consider property robust-
ness. Property privacy instead is typically neglected. To the
best of our knowledge, no malware detectors simultaneously
focus on accuracy, privacy, and robustness: this reduces
their real-world applicability and falls short in providing AI
Act compliance.

Furthermore, we emphasize a common fact for several
published works: simply claiming that a malware detector
supports a given set of properties is insufficient; such claims
must be substantiated. For instance, the AI Act requires
some AI systems to run a “conformity assessment proce-
dure” and, in some cases, be subject to “state-of-the-art tests
and models evaluations” [14]. Similarly, the NIST AI RMF
requires AI systems to be tested regularly [38].

Fig. 1   Hierarchy of property robustness (excerpt). Grey-filled boxes
denote the properties on which the present paper focuses

4  https://​eur-​lex.​europa.​eu/​eli/​reg/​2016/​679/​oj, Art. 5.
5  https://​eur-​lex.​europa.​eu/​eli/​reg/​2016/​679/​oj, Art. 25.

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj

	 SN Computer Science (2024) 5:710 710   Page 4 of 17

SN Computer Science

To address the aforementioned gaps, researchers and
practitioners are clearly pointing to certification [10,
12], as a way to demonstrate (certify) that the given tar-
get (e.g., a malware detector) supports a given property
(e.g., robustness), backed by some evidence (e.g., testing,
mathematical proofs) [12]. The objective of this paper is
therefore twofold:

•	 design and implement an ML-based malware detector
that jointly supports and balance high detection accu-
racy, privacy, and (empirically proven) robustness (last
row in Table 1); and

•	 adopt a certification scheme for AI [10] to demonstrate
the non-functional properties of different malware detec-
tors, including the one in this paper.

Lightweight Malware Detection

Figure 2 shows an overview of our approach to lightweight
malware detection introduced in [11] and driven by the
properties in Sect. “Non-Functional Properties”, which
minimizes the collected data and requires low permis-
sions for execution. First, it creates a sandbox where an
initial dataset of legitimate and malicious software execu-
tions is collected (Sect. “Sandbox Implementation”). The
dataset contains system-level performance metrics in the
form of time-series. Second, it augments the collected
dataset using a generative adversarial network (GAN)
(Sect. “Dataset”) to meet the requirements of modern
deep learning (DL) models. Finally, an LSTM model is
trained to fully exploit the temporal structure of our data-
set (Sect. “LSTM Model”). The LSTM model drives the
behavior of our malware detector.

Sandbox Implementation

Running malware to analyze its behavior is fundamental
to design a malware detector, although it introduces the
risk of self-infection. The use of an isolated environment
where the malware can be safely executed (sandbox) can
mitigate or remove this risk. This approach is not always
feasible, because some malware may be able to under-
stand whether they are running inside a sandbox. When
this happens, they may change their behavior or interrupt
their execution; advanced malware may even escape the
sandbox, causing the infection of the system where the
sandbox is installed.

For this reason, we used a combination of Linux and
Windows machines as shown in Fig. 3. Specifically, we
tested malware and legit software on a Windows 7 virtual
machine (VM) hosted by a Linux machine. The Windows
VM is isolated from the Internet using a host-only con-
nection. This way, the VM does not have access to the
physical network card of the host machine, preventing any
malware connections to the Internet.

Executing malware on a machine that cannot commu-
nicate on the Internet, however, has some limitations; for
instance, some malware need to connect to remote hosts
to carry out their activities (e.g., Wanna-Cry). We then set
up a second Linux VM running iNetSim (https://​www.​inets​
im.​org/), a software to simulate Internet connections. The
malware executed on the Windows VM can send Inter-
net requests and obtain corresponding responses without
reaching the Internet. We note that, to permit an effec-
tive execution of the malware inside the Windows VM,
all protection controls like firewalls, Windows update, and
Windows defender have been disabled and group policies

Table 1   Comparison of malware detectors with respect to properties
accuracy, robustness, and privacy

References Type Accuracy Privacy Robustness

Math. Emp.

 [27] Static ✓ ✗ ✗ ✗
 [36] Static ✓ ✗ ✗ ✗
 [43] Dynamic ✓ ✗ ✗ ✗
 [22] Static ✓ ✗ ✗ ✗
 [33] Hybrid ✓ ✗ ✗ ✗
 [34] Dynamic ✓ ✗ ✗ ✗
 [21] Static ✓ ✗ ✗ ✓
 [25] Static ✓ ✗ ✗ ✗
 [26] Static ✓ ✗ ✗ ✗
 [50] Static ✓ ✗ ✗ ✗
 [2] Dynamic ✓ ✗ ✗ ✗
 [15] Dynamic ✓ ✗ ✗ ≈

 [31] Static ✓ ✗ ✗ ✗
 [39] Dynamic ✓ ✗ ✗ ✓
 [30] Hybrid ✓ ✗ ✗ ✗
 [16] Static ✓ ✗ ✗ ✓
 [13] Dynamic ✓ ✗ ✗ ✗
 [48] Dynamic ✓ ✗ ✗ ✓
 [23] Dynamic ✓ ✗ ✗ ✗
 [47] Dynamic ✓ ✗ ✗ ✗
 [3] Static ✓ ✗ ✗ ✗
 [19] Static ✓ ✗ ✓ ✗
 [24] Static ✓ ✗ ✓ ✗
 [45] Static ✓ ✗ ✓ ✗
This Dynamic ✓ ✓ ✗ ✓

https://www.inetsim.org/
https://www.inetsim.org/

SN Computer Science (2024) 5:710 	 Page 5 of 17  710

SN Computer Science

have been changed to give the malware the capability to
act as an administrator. The need to modify these poli-
cies motivates the use of an old Windows version, namely
Windows 7.

Dataset

We generated the dataset used for training in two phases as
follows. Phase dataset creation (Sect. “Dataset Creation”)
collects an initial dataset of legit and malware executions.
Phase dataset augmentation (Sect. “Dataset Augmentation”)
augments the initial dataset using a GAN.

Dataset Creation

Phase dataset creation starts from the configuration of
the Window 7 VM. It first installs commonly used soft-
ware (e.g., Internet Explorer, Firefox, Mozilla Thunder-
bird, Spotify, WinRAR) on the Windows VM, to make the

environment as realistic as possible. It then retrieves the ≈
5000 malware PE files compatible with Windows 7 from
VirusShare (https://​virus​share.​com).

Malware and legit software are executed for a fixed
amount of time while collecting performance metrics. In
this paper, we considered a time span of 60 s6 and ran 10,000
executions varying between malware and legit software. At
each execution, the Windows VM is restored from a clean
snapshot (following the state of the art [34]) and the chosen
software is run for the given time span. During each execu-
tion, we collected the multi-valued time-series consisting
of 6 features: (i) CPU usage percentage, (ii) RAM usage
percentage, (iii) bytes written to and (iv) bytes read from
the disk, (v) bytes received and (vi) sent to the network. The

Fig. 2   Overview of our
approach

Fig. 3   The sandbox

6  Experiments have been run on a laptop featuring 8 CPUs Intel
i7-11800H @ 2.30 GHz, 16 GBs of RAM, operating system Ubuntu
22.04.1. Virtualization based on VirtualBox.

https://virusshare.com

	 SN Computer Science (2024) 5:710 710   Page 6 of 17

SN Computer Science

collected data are sent back to the Linux host where they
are saved.

We note that the use of an LSTM model requires all time-
series to have the same length. We then preprocessed the
collected data normalizing the time series to a fixed length,
by padding the shorter time series and pruning the longer
ones. Each resulting time-series contained 10 items each
associated with the 6 aforementioned features. Having a time
span of 60 s, the sampling time was of 6 s. Although this
time is slightly shorter than similar approaches [2], it proved
to be effective.

Dataset Augmentation

Phase dataset augmentation aims to support the peculiarities
of DL, requiring a large number of training samples to be
effective. It augments the dataset created in Sect. “Dataset
Creation” using synthetic data so that they show the same
statistical properties of real-world data.

Our dataset of ≈ 10,000 samples was augmented using
TimeGAN (https://​pypi.​org/​proje​ct/​ydata-​synth​etic/) [51],
a GAN specifically designed to generate time-series data.
It extends the traditional GAN architecture, and includes
(i) a generator implemented as a recurrent network, (ii) a

discriminator implemented as a bidirectional recurrent net-
work with a final feedforward layer, (iii) two additional
components called embedding and recovery functions, and
(iv) two specific loss functions.

Embedding and recovery functions are implemented
as recurrent and feedforward networks, respectively, and
map the time-series features to a low-dimensional space
where the generator and discriminator operate. Finally,
loss functions jointly ensure that the generator learns real-
istic sequences with accurate temporal patterns.

We first fed the dataset created in Sect. “Dataset Crea-
tion” to the GAN so that the model could learn its statisti-
cal characteristics and replicate them in the synthetic data.
To this aim, (i) we separated the real dataset into malware
and legit software, and sent each individual dataset to a
separate instance of TimeGAN; (ii) we generated two syn-
thetic datasets of 50,000 samples each, later merged in a
single dataset of 100,000 samples (tenfold increase).

We then validated the quality of the synthetic dataset
according to several comparisons as follows.

•	 Visual feature comparison: we randomly drew sam-
ples from real and synthetic datasets. For each feature
and extracted sample, we plotted their value to visually

Fig. 4   Comparison of features value of real and synthetic malware samples

https://pypi.org/project/ydata-synthetic/

SN Computer Science (2024) 5:710 	 Page 7 of 17  710

SN Computer Science

compare the differences between the real and synthetic
samples. Figures 4 and 5 show the similarity of two
random samples of malware and legit software, respec-
tively.

•	 Comparison with reduced dimensionality (PCA): we
performed PCA reduction to a 2-dimensional space in
real and synthetic datasets (limited to 500 samples), and
plotted the results for visual comparisons.

•	 Comparison with reduced dimensionality (t-SNE): we
performed t-SNE reduction to a 2-dimensional space on
real and synthetic datasets (limited to 500 samples). Com-
pared to PCA, t-SNE performs a non-linear transforma-
tion. We plotted and visually compared the results.

For brevity, we do not report the visual comparison using
PCA and t-SNE here, and we refer the interested readers to
our original paper in [11].

We finally created the overall dataset by merging the real
and the synthetic datasets.

LSTM Model

Table 2(a) describes the structure of the LSTM model we
trained on the overall dataset. It is composed of 4 layers (3

LSTM layers and 1 dense layer) interleaved with 3 batch
normalization layers.

Table 2(b) describes the parameters of the training pro-
cess. We used 64,871 samples for the training set and 21,624
samples for the validation and test sets in 200 epochs with
optimizer Adam, loss function binary cross-entropy, and ini-
tial learning rate of 0.05. Model training is based on early
stopping (if loss function value retrieved from the validation
set does not improve in 30 epochs) and on dynamic decrease
of the initial learning rate (by a factor of 0.5 if loss function
value retrieved from the validation set does not improve in
one epoch). Further details can be found in our public code
available at https://​doi.​org/​10.​13130/​RD_​UNIMI/​LJ6Z8V.

A Certification Scheme for Malware
Detectors

Recalling Sect. “Motivations” and the AI Act, AI-based
applications should exhibit verifiable behavior in terms of
non-functional properties. Here, we adopt certification [12]
as a suitable technique for verifying the behavior of malware
detectors. In the following, we describe how a generic certi-
fication scheme for AI-based applications works (Sect. “Cer-
tification in a Nutshell”), and instantiate it to certify our

Fig. 5   Comparison of features value of real and synthetic legit software samples

https://doi.org/10.13130/RD_UNIMI/LJ6Z8V

	 SN Computer Science (2024) 5:710 710   Page 8 of 17

SN Computer Science

malware detector in Sect. “Lightweight Malware Detection”
and two malware detectors in literature against properties
accuracy, privacy, and robustness (Sect. “Certification
Models”).

Certification in a Nutshell

A certification scheme implements a certification process
proving that a non-functional property p (e.g., empirically-
proven, input-dependent robustness in Fig. 1) is supported
by a given target of certification ToC (e.g., a malware detec-
tor) by collecting evidence ev according to an evidence col-
lection model E . p , ToC , and E define a certification model
M . An evaluation function F completes M , determining
whether a certificate C can be awarded for ToC on the basis
of collected evidence ev (Fig. 6) [12]. M is prepared by a
trusted third party (e.g., a certification authority—CA) and
executed by an accredited lab on its behalf. We note that a
certificate contains a reference to the corresponding certi-
fication model M and evidence ev supporting its release.

ML-based application certification (ML certification in
the following) is based on a multi-dimensional evaluation,
where different facets (dimensions) of the corresponding ML
model are independently evaluated according to their pecu-
liar life cycle. Each dimension d has a specific certification
model Md [9, 10] containing all the information needed to

evaluate the application based on ML in the given dimension
d . According to our previous work [10], ML certification
must consider three dimensions: (i) data ( dd ) related to the
data used to train and test the ML model, (ii) process ( dp )
related to the process used to train, test, and deploy the ML
model, (iii) model ( dm ) related to the ML model in operation.

Differently from traditional certification, in multi-dimen-
sional ML certification, (i) the certification model Md in
each dimension d defines an evaluation function Md.F
indicating whether evidence ev is successfully collected in
the given dimension d ; (ii) a global evaluation function F′
aggregates the result of Md.F in each dimension, finally
resulting in a certificate award iff F′ =✓.

We note that F′ is defined by the CA according to the
specific scenario. In our scenario, F′ = Mdd

.F ∨ Mdp
.F ∨

Mdm
.F  , meaning that a certificate is awarded when the evi-

dence is successfully collected in at least one dimension. We
note that an independent certificate can also be awarded for
each dimension according to F  , depending on the
scenario.

Certification Models

We define one certification model for each property of inter-
est: (i) accuracy (Sect. “Property Accuracy”), (ii) privacy
(Sect. “Property Privacy”), and (iii) robustness (Sect. “Prop-
erty Robustness”).

Table 2   Details of the LSTM training process

(a) LSTM model structure

Layer type Output shape # Params

LSTM (None, 10, 8) 480
Batch normalization (None, 10, 8) 32
LSTM (None, 10, 8) 544
Batch normalization (None, 10, 8) 32
LSTM (None, 8) 544
Batch normalization (None, 8) 32
Dense (None, 1) 9

(b) Training parameters

Parameter Value

Epochs 200
Batch size 32
Optimizer Adam
Learning rate 0.05, halved if loss

does not improve
in 1 epoch, down
to 1 ⋅10−8

Early stopping Loss does not
improve in 30
epochs

Loss function Binary crossen-
tropy

Fig. 6   Certification process [12]

SN Computer Science (2024) 5:710 	 Page 9 of 17  710

SN Computer Science

Each certification model considers different dimensions
according to the property.

Property Accuracy

Malware detectors must exhibit a high detection accuracy.
We define a certification model Mdm

 = ⟨ p, ToC, E, F ⟩ con-
sidering dimension model ( dm ) (Table 3(a)). Property accu-
racy is defined as high detection accuracy. The target of
certification M.ToC is the trained malware detector.

Evidence collection model Mdm
.E analyzes the required

data to retrieve the corresponding metrics.
Formally, let ACCj ( AUCj , resp.) be the accuracy (area

under curve–AUC, resp.) retrieved from the j-th malware
detector on a held-out test set. Evaluation function Mdm

.F
defines that M.p is supported by the j-th detector iff

In our case, tacc = 0.96 . We note that other quality metrics
(e.g., recall) can be considered depending on the scenario.

Property Privacy

Malware detectors must examine the system in depth, from
reading the content of all files to observing the behavior of
all processes. Granting these permissions may be undesired
(e.g., for internal policies or to reduce the attack surface).
Thus, a detector must minimizes the data it collects and the
permissions it requires. Property privacy models this need.

We define a certification model Mdd
 = ⟨ p, ToC, E, F⟩

considering dimension data ( dd ) (Table 3(b)). Property pri-
vacy Mdd

.p is defined as the minimization of the collected
data and the access permissions necessary for their collec-
tion. The target of certification Mdd

.ToC represents the input
data used for training/inference and the permissions needed
for their collection.

We model the data collected in terms of the input space I
where malware can operate. I is composed of (i) execut-
able-file denoting the executable file, (ii) process-
performance denoting process-level performance metrics,
(iii) system-performance denoting system-level per-
formance metrics, and (iv) syscall denoting the observed
system calls of each process. We note that additional data in
I are omitted for brevity.

Let us denote with Ij the input space required by the j-
th malware detector, and Inv the function taking as input a
component input∈ I of input space I and returning as
output a qualitative score as follows. The qualitative score is
1 when input refers to system-level data, 2 to process-level
data; it is increased by 1 if the detector needs administrator-
level permissions to collect input.

(1)ACCj ≥ tacc ∨ AUCj ≥ tacc

Evidence collection model Mdd
.E analyzes the required

data to retrieve the corresponding scores.
Evaluation function Mdd

.F defines that Mdd
.p is sup-

ported by the j-th detector iff

In other words, property privacy is supported if the sum of
the qualitative scores is below threshold tpr . In our case, tpr
=2.

Property Robustness

Malware detectors must identify malware that actively
attempts to escape classification by exploiting the vulnera-
bilities of the detectors, possibly caused by the peculiarities
of ML [46]. We consider empirically proven robustness
(Sect. “Non-Functional Properties”) and focus on ML-spe-
cific evasion attacks, perturbing a data point at inference
time by adding an imperceptible perturbation such that the
predicted label changes from “malware” to “benign”. We
define two certification models Mdp

 and Mdm
 for dimensions

process ( dp ) and model ( dm ), respectively, as follows.
Dimension process dp defines a certification model Mdp

= ⟨ p, ToC, E, F ⟩ (Table 3(c)). Property robustness Mdp

.p is
defined as input-dependent or input-independent robustness
with strengthening technique adversarial training in Fig. 1.
Adversarial training adds evasion data points with the cor-
rect label to the training set, such that the trained ML model
learns how to spot the imperceptible perturbations of an eva-
sion attack [46]. The target of certification Mdp

.ToC repre-
sents the training process.

Evidence collection model Mdp
.E collects evidence from

the training process ( Mdp
.ToC).

Evaluation function Mdp
.F defines that Mdp

.p is sup-
ported iff at least 0.01% of adversarial training-created data
points with label “malware” are added to the training set. We
note that the percentage of adversarial training/created data
points is taken from Grosse et al. [21].

Dimension model dm defines a certification model Mdm

= ⟨ p, ToC, E, F ⟩ (Table 3(d)). The target of certification
Mdm

.ToC represents the ML model. Depending on the detec-
tor, property robustness can be supported at different levels
in the hierarchy in Fig. 1, varying also Mdm

.E and Mdm
.F .

Input-dependent detector. Property robustness Mdm
.p is

defined as empirical, input-dependent robustness in
Fig. 1. It refers to the need to control the entire system
and its processes to execute an effective perturbation. Evi-
dence collection model Mdm

.E analyzes the ML model

(2)
∑

�����i∈Ij

Inv(�����i) ≤ tpr

	 SN Computer Science (2024) 5:710 710   Page 10 of 17

SN Computer Science

(e.g., software artifacts) retrieving the type of data the
ML model receives as input. Evaluation function Mdm

.F
defines that Mdp

.p is supported iff the only way to suc-
cessfully perturb a data point is to have complete access
to the victim system. We note that this scenario is unre-
alistic. Let us assume that a malware can obtain control
of the victim system and then execute the perturbation
allowing itself to evade classification. A malware detector
would be able to catch the malware before the latter can
hide itself with the perturbation.
Input-independent detector. Property robustness Mdm

.p
is defined as empirical, input-independent robustness in
Fig. 1. Formally, let (i) {pi} be a sequence of data points
labeled as “malware”; (ii) A be a function crafting eva-
sion data points, which takes as input the sequence {pi}
of data points and returns as output a sequence {p̃i} of
perturbed data points; y(pi) be the predicted label for data
point pi . Evidence collection model Mdm

.E exercises the
ML model, sending evasion data points according to A
and retrieving the predicted label. Evaluation function
Mdm

.F defines that Mdm
.p is supported if

 In other words, property robustness is supported if the
number of evasion data points that evade the classifier is
below the threshold tr . In our case, tr = 0.1 , which means
that at most 10% of the evasion data points can evade clas-
sification. We note that a tighter threshold can be fixed
according to the scenario.

Certification Results

Additional Malware Detectors

We present the two detectors in literature, which have been
certified in our experimental evaluation according to the cer-
tification models in Sect. “A Certification Scheme for Mal-
ware Detectors”. Together with ours in Sect. “Lightweight
Malware Detection”, these three detectors are a good approx-
imation of the entire domain of malware detection.

Static Malware Detector

Static detector DS considers MalConv, a convolutional neu-
ral network presented in 2017 by Raff et al. [41]. It is the
first approach to fully exploit the power of deep learning,
as it takes as input the executable file as is, without any

(3)
|{p̃i ∣ y(p̃i) = “benign”}|

|{p̃i}|
≤ tr

preprocessing. We refer to the implementation by Anderson
et al. [8] which is publicly available.

Input. Each data point is the executable file to analyze.
The file size is fixed to 1 MB. Larger files are truncated, and
smaller files are padded with a special value.

ML model. DS implements a convolutional neural net-
work structured as follows. The first layer is an embedding
layer mapping each byte to a 8-dimensional vector. The next
two layers implement a convolution followed by a pooling
layer. The last layer is a fully connected layer.

Training. DS is trained on the executable files at the basis
of dataset EMBER, a dataset containing features of more
than 1 million of benign and malign software [8].

Hybrid Malware Detector

Hybrid detector (DH) considers the solution presented by
Rosenberg et al. [44]. It works with both dynamic (i.e.,
n-grams of observed system calls) and static (i.e., strings
found in the executable file) features.

Input. Each data point contains: (i) a one-hot encoded
vector where each i-th feature represents the presence of
a system call (formally, Windows API call) in a fixed-size
sequence of system calls; (ii) a one-hot encoded vector
where each i-th feature represents the presence or absence
in the executable file of the i-th string among the top-20,000
most frequent strings.

ML model. DH implements a custom, two-branch archi-
tecture. The first branch consists of an LSTM layer taking
as input the sequence of system calls. The second branch
consists of two fully connected layers, taking as input the
strings. The output of the two branches is flattened and taken
as input by the last fully connected layer.

Training. DH is trained on a dataset of 54,000 data points
generated by executing different benign and malign soft-
ware. Each software is run in a sandbox for 2 min and the
corresponding system calls are retrieved. The system calls
are divided into sliding windows (step 1), each including a
n-gram with n=140 and the top-20,000 most frequent strings
extracted from executable files. Each data point includes a
sliding window and a label “benign”/“malign” for the soft-
ware retrieved using the online service VirusTotal (https://​
www.​virus​total.​com/).

Results

We present the results of the execution of the certifica-
tion models in Sect. “A Certification Scheme for Mal-
ware Detectors” against malware detectors in this article.
We note that evidence on the behavior of DS [8, 41] and

https://www.virustotal.com/
https://www.virustotal.com/

SN Computer Science (2024) 5:710 	 Page 11 of 17  710

SN Computer Science

Ta
bl

e 
3  

C
er

tifi
ca

tio
n

m
od

el
s

(a
) P

ro
pe

rty
 a

cc
ur

ac
y—

di
m

en
si

on
 d

m

A
pp

l.
Pr

op
er

ty
 p

Ta
rg

et
 T
o
C

Ev
id

. c
ol

l.
E

Ev
al

. f
un

c.
 F

D
S

[8
, 4

1]
H

ig
h

de
te

ct
io

n
ac

cu
ra

cy
M

al
C

on
v

m
od

el
 in

 [8
]

Re
tri

ev
e

m
et

ric
s f

ro
m

 te
st

se
t

A
cc

ur
ac

y
or

 A
U

C
 a

re
 b

ou
nd

ed
 b

y
ta
cc

 (E
q.

 (1
))

D
D

 [1
1]

H
ig

h
de

te
ct

io
n

ac
cu

ra
cy

LS
TM

 m
od

el
 in

 [1
1]

Re
tri

ev
e

m
et

ric
s f

ro
m

 te
st

se
t

A
cc

ur
ac

y
or

 A
U

C
 a

re
 b

ou
nd

ed
 b

y
ta
cc

 (E
q.

 (1
))

D
H

 [4
4]

H
ig

h
de

te
ct

io
n

ac
cu

ra
cy

Tw
o-

br
an

ch
 m

od
el

 in
 [4

4]
Re

tri
ev

e
m

et
ric

s f
ro

m
 te

st
se

t
A

cc
ur

ac
y

or
 A

U
C

 a
re

 b
ou

nd
ed

 b
y
ta
cc

 (E
q.

 (1
))

(b
) P

ro
pe

rty
 p

riv
ac

y—
di

m
en

si
on

 d
d

 A
pp

l.
Pr

op
er

ty
 p

Ta
rg

et
 T
o
C

Ev
id

. c
ol

l.
E

Ev
al

. f
un

c.
 F

D
S

[8
, 4

1]
M

in
im

iz
at

io
n

of
 th

e
co

lle
ct

ed
 d

at
a

an
d

ac
ce

ss

pe
rm

is
si

on
s f

or
 th

ei
r c

ol
le

ct
io

n
D

at
as

et
 E

M
B

ER
 [8

] o
f m

al
w

ar
e/

be
ni

gn

ex
ec

ut
ab

le
 fi

le
s

D
at

as
et

 st
ru

ct
ur

e
an

al
ys

is
Po

rti
on

 o
f e

nt
ire

 in
pu

t s
pa

ce
 c

ov
er

ed
 b

y
th

e
us

ed
 d

at
a

is
 b

ou
nd

ed
 b

y
tp
r (

Eq
. (

2)
)

D
D

 [1
1]

M
in

im
iz

at
io

n
of

 th
e

co
lle

ct
ed

 d
at

a
an

d
ac

ce
ss

pe

rm
is

si
on

s f
or

 th
ei

r c
ol

le
ct

io
n

Re
al

 a
nd

 sy
nt

he
tic

 d
at

as
et

 o
f s

ys
te

m
-le

ve
l

pe
rfo

rm
an

ce
 m

et
ric

s [
11

]
D

at
as

et
 st

ru
ct

ur
e

an
al

ys
is

Po
rti

on
 o

f e
nt

ire
 in

pu
t s

pa
ce

 c
ov

er
ed

 b
y

th
e

us
ed

 d
at

a
is

 b
ou

nd
ed

 b
y
tp
r (

Eq
. (

2)
)

D
H

 [4
4]

M
in

im
iz

at
io

n
of

 th
e

co
lle

ct
ed

 d
at

a
an

d
ac

ce
ss

pe

rm
is

si
on

s f
or

 th
ei

r c
ol

le
ct

io
n

D
at

as
et

 o
f m

al
w

ar
e/

be
ni

gn
 e

xe
cu

ta
bl

e
fil

es

an
d

ob
se

rv
ed

 sy
ste

m
 c

al
ls

 a
s n

-g
ra

m
s [

44
]

D
at

as
et

 st
ru

ct
ur

e
an

al
ys

is
Po

rti
on

 o
f e

nt
ire

 in
pu

t s
pa

ce
 c

ov
er

ed
 b

y
th

e
us

ed
 d

at
a

is
 b

ou
nd

ed
 b

y
tp
r (

Eq
. (

2)
)

(c
) P

ro
pe

rty
 ro

bu
stn

es
s—

di
m

en
si

on
 d

p

 A
pp

l.
Pr

op
er

ty
 p

Ta
rg

et
 T
o
C

Ev
id

. c
ol

l.
E

Ev
al

. f
un

c.
 F

D
S

[8
, 4

1]
Em

pi
ric

al
, i

np
ut

-in
de

pe
nd

en
t r

ob
us

tn
es

s w
ith

str

en
gt

he
ni

ng
 te

ch
ni

qu
e

ad
ve

rs
ar

ia
l t

ra
in

in
g

Tr
ai

ni
ng

 p
ro

ce
ss

 in
 [8

]
In

sp
ec

t c
on

fig
ur

at
io

n
of

 th
e

tra
in

in
g

pr
oc

es
s

U
sa

ge
 o

f a
dv

er
sa

ria
l t

ra
in

in
g

w
ith

 a
t l

ea
st

0.
01

%
 e

va
si

on
 d

at
a

po
in

ts
 w

ith
 a

 g
iv

en
 �

D
D

 [1
1]

Em
pi

ric
al

, i
np

ut
-d

ep
en

de
nt

 ro
bu

stn
es

s w
ith

str

en
gt

he
ni

ng
 te

ch
ni

qu
e

ad
ve

rs
ar

ia
l t

ra
in

in
g

Tr
ai

ni
ng

 p
ro

ce
ss

 in
 [1

1]
In

sp
ec

t c
on

fig
ur

at
io

n
of

 th
e

tra
in

in
g

pr
oc

es
s

A
dv

er
sa

ria
l t

ra
in

in
g

w
ith

 a
t l

ea
st

0.
01

%
 e

va
si

on

da
ta

 p
oi

nt
s w

ith
 a

 g
iv

en
 �

 ∈
 [0
.0
5
]

D
H

 [4
4]

Em
pi

ric
al

, i
np

ut
-in

de
pe

nd
en

t r
ob

us
tn

es
s w

ith

str
en

gt
he

ni
ng

 te
ch

ni
qu

e
ad

ve
rs

ar
ia

l t
ra

in
in

g
Tr

ai
ni

ng
 p

ro
ce

ss
 in

 [4
4]

In
sp

ec
t c

on
fig

ur
at

io
n

of
 th

e
tra

in
in

g
pr

oc
es

s
A

dv
er

sa
ria

l t
ra

in
in

g
w

ith
 a

t l
ea

st
0.

01
%

 e
va

si
on

da

ta
 p

oi
nt

s w
ith

 �
 ∈

 [0
.0
0
0
5
, 0

.0
04

9]

(d
) P

ro
pe

rty
 ro

bu
stn

es
s—

di
m

en
si

on
 d

m

 A
pp

l.
Pr

op
er

ty
 p

Ta
rg

et
 T
o
C

Ev
id

. c
ol

l.
E

Ev
al

. f
un

c.
 F

D
S

[8
, 4

1]
Em

pi
ric

al
, i

np
ut

-in
de

pe
nd

en
t r

ob
us

tn
es

s w
ith

str

en
gt

he
ni

ng
 te

ch
ni

qu
e

ad
ve

rs
ar

ia
l t

ra
in

in
g

M
al

C
on

v
m

od
el

 in
 [8

]
Pe

rtu
rb

 th
e

D
O

S
he

ad
er

 o
f 6

0
m

al
w

ar
e

ac
co

rd
in

g
to

 A
 in

 a
 fu

nc
tio

na
lit

y-
pr

es
er

vi
ng

m

an
ne

r

Th
e

nu
m

be
r o

f m
is

cl
as

si
fie

d
da

ta
 p

oi
nt

s c
ra

fte
d

ac
co

rd
in

g
to

 A
 is

 b
ou

nd
ed

 b
y
tr

 (E
q.

 (3
))

D
D

 [1
1]

Em
pi

ric
al

, i
np

ut
-d

ep
en

de
nt

 ro
bu

stn
es

s w
ith

str

en
gt

he
ni

ng
 te

ch
ni

qu
e

ad
ve

rs
ar

ia
l t

ra
in

in
g

LS
TM

 m
od

el
 in

 [1
1]

A
na

ly
si

s o
f t

he
 M

L
m

od
el

Th
e

on
ly

 w
ay

 to
 su

cc
es

sf
ul

ly
 p

er
tu

rb
 a

 d
at

a
po

in
t i

s t
o

ha
ve

 c
om

pl
et

e
ac

ce
ss

 to
 th

e
vi

ct
im

sy

ste
m

D
H

 [4
4]

Em
pi

ric
al

, i
np

ut
-in

de
pe

nd
en

t r
ob

us
tn

es
s w

ith

str
en

gt
he

ni
ng

 te
ch

ni
qu

e
ad

ve
rs

ar
ia

l t
ra

in
in

g
Tw

o-
br

an
ch

 m
od

el
 in

 [4
4]

Pe
rtu

rb
 th

e
te

st
se

t o
f 3

6,
00

0
da

ta
 p

oi
nt

s
ac

co
rd

in
g

to
 A

 , a
dd

in
g

sy
ste

m
 c

al
ls

 (w
ith

�
 ∈

 [0
.0
0
0
5
, 0

.0
04

9]
) a

nd
 st

rin
gs

 in
 a

fu

nc
tio

na
lit

y-
pr

es
er

vi
ng

 m
an

ne
r

Th
e

nu
m

be
r o

f m
is

cl
as

si
fie

d
da

ta
 p

oi
nt

s c
ra

fte
d

ac
co

rd
in

g
to

 A
 is

 b
ou

nd
ed

 b
y
tr

 (E
q.

 (3
))

	 SN Computer Science (2024) 5:710 710   Page 12 of 17

SN Computer Science

DH [44] refers to data and results provided in the corre-
sponding publications. The evidence on the behavior of
our malware detector DD in Sect. “Lightweight Malware
Detection” refers to data collected from the detector in
operation. We executed detector DD on an Apple Mac-
Book Pro with 10 CPUs Apple M1 Pro, 32 GBs of RAM,
operating system macOS Ventura, Python v3.11.6, and ML
libraries Keras v2.13.0, scikit-learn v1.1.3 [40], Tensor-
flow v2.15.0, Tensorflow-Metal v1.1.0, and Adversarial
Robustness Toolbox v1.16.0 [37]. All artifacts are avail-
able at https://​doi.​org/​10.​13130/​RD_​UNIMI/​5VTJCC.

Section "Accuracy Evaluation" and Table 5(a) present
our results for property accuracy; Sect. “Privacy Evalua-
tion” and Table 5(b) present our results for property pri-
vacy; Sect. "Robustness Evaluation" and Table 5(c)–(d)
present our results for property robustness.

Accuracy Evaluation

All detectors support Mdm
.p in the dimension model ( dm).

DS and DD achieved the best results in terms of
AUC: 0.9981 and 0.9975, respectively. DD also reported
ACC = 0.9975. DH achieved slightly lower values in terms
of ACC: 0.9694. We note that ACC is slightly higher than
ACC retrieved when only dynamic (0.9248) or static features
(0.9619) are considered. Table 4 reports additional classi-
fication metrics for DD. In particular, precision = 0.9977,
that is, DD identifies a malware in almost all cases; recall
= 0.9973, that is, virtually all malware are detected by DD;
specificity = 0.9976, that is, DD identifies a benign software
in almost all cases.

Therefore, the output of the evaluation function Mdm
.F

is ✓ for the three detectors.
Finally, F′ aggregates the output of Mdm

.F (✓ for DS,
DD, and DH). According to F′ = Mdd

.F ∨ Mdp
.F ∨

Mdm
.F in Sect. “Certification in a Nutshell”, the output is

✓ for all detectors. Certificates CDS , CDD , and CDH are
awarded to DS, DD, and DH, respectively. Each certificate
is defined as ⟨ Mdm

, {AUC, ACC​} ⟩ , where Mdm
 is the

certification model defined for each detector and {AUC,
ACC​} is the collected evidence.

Privacy Evaluation

Detectors DS and DD support Mdd
.p in the dimension data

( dd ). They analyze the executable file (executable-
file with score= 1 ) and system-level performance metrics
(system-performance with score= 1 ), respectively.
Evidence collection was successfull: both scores equal 1,
hence below the threshold tpr in Mdd

.F  . The output of evalu-
ation function Mdd

.F is ✓ for the two detectors.

Detector DH does not support Mdd
.p . DH needs to (i)

monitor running processes to collect the system call n-grams
(syscall with score= 2 ), which requires administrator-
level permissions (score increased by 1); and (ii) analyze
executable files (executable-file with score= 1)

Evidence collection was unsuccessfull: the sum of the
scores is 4, hence above tpr . The output of evaluation func-
tion Mdd

.F is ✗.

Finally, F′ aggregates the output of Mdd
.F (✓ for DS and

DD, ✗ for DH). According to F′ = Mdd
.F ∨ Mdp

.F ∨
Mdm

.F in Sect. “Certification in a Nutshell”, the output is
✓ for the first two detectors, ✗ for the last one. Certificates
CDS , CDD are awarded to DS and DD respectively. Each cer-
tificate is defined as ⟨ Mdd

, {score= 1 } ⟩ , where Mdd
 is the

certification model defined for each detector and {score= 1 }
is the evidence collected.

Robustness Evaluation

All detectors DS, DD, and DH do not support Mdp
.p in the

dimension process ( dp ). They do not use adversarial training
or any other strengthening techniques. The evidence collec-
tion was unsuccessful, and the result of the evaluation func-
tion Mdp

.F is ✗ for all detectors.
Detectors DS and DH do not support Mdm

.p in the dimen-
sion model ( dm ). For what concerns DS, the evasion attack
implemented in A perturbs the section DOS header of the
malware executable files [17]. The attack preserves the mal-
ware functionality, because the target section is ignored by
the operating system but strongly influences classification.
Evidence collection was unsuccessful: the ratio of misclas-
sified malware data points was 52∕60 = 0.87 [17], hence
above the threshold tr in Mdm

.F  . For what concerns DH, the
evasion attack implemented in A perturbs both static (strings
in the executable file) and dynamic (observed system calls
as n-gram) features. The first feature is perturbed by add-
ing new strings without changing the functionalities of the
executable file [21, 44]. The second feature is perturbed
similarly, adding system calls to the executable file without
changing the overall functionality [44]. Evidence collection
was unsuccessful: the ratio of misclassified malware data
points was 0.82 [44], therefore above tr . Finally, DD sup-
ports Mdm

.p in the dimension model ( dm ), since collected
evidence (see Sect. “Lightweight Malware Detection”) sup-
ports the claim that Mdm

.p is input-dependent.
Our experiments also collected evidence mounting an

evasion attack against post-processed data points used in
DD. The attack implemented in A perturbs the extracted
features (i.e., system-level performance metrics) using fast
gradient sign method (FGSM) [20]. According to FGSM,
features are perturbed maximizing the ML model loss; �

https://doi.org/10.13130/RD_UNIMI/5VTJCC

SN Computer Science (2024) 5:710 	 Page 13 of 17  710

SN Computer Science

bounds the largest perturbation applicable to a feature. For
example, � = 0.7 means that the value of any features changes
of ± 0.7 at most. Recalling that the feature values range in
our case in [0, 1], � varies in {0.01, 0.1} step 0.01 and {0.2,
0.9} step 0.1, to maximize diversity. Figure 7 shows the ratio
of misclassified data points varying � . We can observe that
the ratio of misclassified malware data points in the worst
case of � ∈ {0.09, 0.1, 0.2} was 1.

Therefore, the output of the evaluation function Mdm
.F

is ✗ for DS and DH is ✗, ✓ for DD.
Finally, F′ aggregates the output of Mdp

.F (✗) and
Mdm

.F (✗ for DS and DH, ✓for DD). According to F′ =
Mdd

.F ∨ Mdp
.F ∨ Mdm

.F in Sect. “Certification in a Nut-
shell”, the output is ✗ for DS and DH and a certificate cannot
be released. On the contrary, the output is ✓ for DD and a
certificate is released. The certificate is defined as ⟨ { Mdp

,
Mdm

 }, inspection results⟩ , where { Mdp
, Mdm

 } are the cer-
tification models defined for DD and inspection results is the
collected evidence.

Discussion

Four main findings emerge from the analysis in this paper.

F1	� Data representation can positively influence detec-
tion quality. Our results show that the high detection
performance achieved by DS, DD, and DH, can lie in
the way data are represented and features extracted.
Static detector DS was a pioneer in deep learning-
based malware detection, showing that a high AUC
(0.9981, the highest among the approaches considered
in this paper) can be achieved without manual feature
extraction. However, Anderson et al. [8] showed that
shallow learning can be better: a LightGBM model
achieved AUC​= 0.9991 , with no fine-tuning but care-
fully extracted features on the same dataset of DS. Our
dynamic approach (DD) sets a new bar for dynamic,
lightweight malware detection (ACC​= 0.9975 ). Other
approaches achieved lower results with simpler ML
models and data representations. For instance, Milo-
sevic et al. [34] considered a larger set of process-level
features related to the behavior of individual Android
apps (e.g., total CPU usage, number of page faults),
modeled as individual samples rather than as time-
series. A logistic regression achieved ACC = 0.86 in
the best case. Abdelsalam et al. [2] considered set of
features similar to the ones in DD, but retrieved at
process-level and in individual samples. A Convolu-
tional Neural Network (CNN) achieved ACC ≈ 0.97 in
the base case. Virtually the same set of features was

considered in [1] for anomaly detection, achieving
accuracy ≥ 0.9 using k-means-based clustering. Finally,
when considering hybrid malware detection, the high-
est accuracy (0.9694) was achieved when static and
dynamic features were jointly considered, as discussed
in Sect. “Accuracy Evaluation”.

F2	� Data preparation increases detection quality more than
in-depth data collection. DS and DD, both relying on
easily accessible data and thus supporting property pri-
vacy, achieved the highest detection quality. By con-
trast, DH requires more data and higher permissions
for data collection, not supporting property privacy.
This result suggests that malware can be detected with
high quality by favoring data preparation over in-depth
data collection.

F3	� Malware detectors do not support real-world adver-
sarial environments. The lack of support of property
robustness means that the considered detectors can-
not safely operate in an adversarial environment. For
what concerns DS, an attacker can purposefully mod-
ify a legacy portion of the executable file that does
not affect the functionality of the malware to mislead
DS. This scenario also applies to DH, since both sys-
tem calls and strings are perturbed in a functional-
ity-preserving manner. Instead, attacks against DD
can either perturb (i) collected data points or (ii) the
malware executable file. While attack (i) assumes
full control of the system and is then inapplicable,
attack (ii) is challenging, because the attacker should
modify the malware executable file to affect system-
wide performance metrics and escape classification.
Recalling Sect. “Property Robustness”, both these
scenarios introduce input-dependent robustness (i.e.,
“by design”). The survey by Ling et al. [29] discusses
the issue of real-world evasion attacks in malware
detection.

F4	� Certification models give precise information on the
conditions under which the properties have been eval-
uated. Understanding the precise conditions under

Table 4   Additional metrics for
DD

Metric Value

AUC​ 0.9975
Accuracy 0.9975
Recall 0.9973
Precision 0.9977
F1 0.9975
Specificity 0.9976

	 SN Computer Science (2024) 5:710 710   Page 14 of 17

SN Computer Science

which the properties have been evaluated is funda-
mental for sound decision-making. According to the
retrieved certification results, users may opt for a math-
ematically proven robust malware detector (e.g., [24,

44, 45]). Following F3, users can choose DD knowing
that evasion attacks against it might be difficult in prac-
tice. Finally, users willing to give full access to their
system might also choose DH.

Fig. 7   Ratio of malware data points classified as benign in DD, out of 100 perturbed malware data points, with � 0.9 (a) and � ≥ 0.9 (b)

Table 5   Certification results

- means that such data are not available; numbers between brackets in Table 5(b) indicate the privacy score according to Sect. “Property Privacy”

(a) Property accuracy—dimension dm

Appl. Collected evidence Result

DS[8, 41] AUC = 0.99821, ACC =- ✓
DD[11] AUC = 0.9975, ACC = 0.9975 ✓
DH[44] AUC​= -, ACC = 0.9694 ✓

(b) Property privacy—dimension dd

 Appl. Collected evidence Result

DS[8, 41] Input space= { executable-file (1)} ✓
DD[11] Input space= { system-performance (1)} ✓
DH[44] Input space= { executable-file (1), syscall (2+requires admin)} ✗

(c) Property robustness—dimension dp

 Appl. Collected evidence Result

DS[8, 41] Adv. training not used ✗
DD[11] Adv. training not used ✓
DH[44] Adv. training not used ✗

(d) Property robustness—dimension dm

 Appl. Collected evidence Result

DS[8, 41] 87% perturbed malware misclassified ✗
DD[11] The ML model requires data whose perturbation necessitates complete control of

the victim system
✗

DH[44] 82% perturbed malware misclassified ✗

SN Computer Science (2024) 5:710 	 Page 15 of 17  710

SN Computer Science

From the above findings, we conclude that in an adver-
sarial environment, using simpler ML models with carefully
selected features can lead to better results in malware detec-
tion performance and privacy. The latter can also facilitate
the usage of robustness techniques due to the simplicity of
both the training process and the model (e.g., low training
time). We finally conclude that certification is fundamental
to reliably evaluate and distribute ML-based applications
following AI Act prescriptions.

Related Work

We extend the discussion in Sect. “Motivations”, providing
a complete overview of ML-based malware detectors clas-
sified according to the type of analysis (i.e., static, dynamic,
and hybrid) and the considered features.

Static analysis. Static analysis approaches consider fea-
tures extracted from executable files. Frequently, API/system
calls and assembly instructions are considered. For example,
Hardy et al. [22] focused on Windows API calls. Each data
point represents an executable file, whose features are the
one-hot encoded API calls found in the file. The accuracy
recovered according to a stacked Autoencoder is ≈ 0.97 . Kan
et al. [26] considered the instructions found in the assembly
code recovered from the executable file. Similar instructions
are grouped to reduce the dimensionality of the input space.
The accuracy retrieved according to a CNN (convolutional
neural network) is ≈ 0.99 at most.

Control-flow graphs can also be extracted from the exe-
cutable file. For example, Ma et al. [31] focused on Android
malware. Three sets of features are extracted from the con-
trol-flow of each app. The first set is the invoked Android
API calls, fed to a decision tree; the second set is the number
of times each API is invoked, fed to a deep neural network
(DNN); the third set is the ordered sequence of invoked
APIs, fed to an LSTM model. The output of the three clas-
sifiers is combined by using soft voting, achieving F1-score
≈ 0.99 . Herath et al. [23] fully exploited control-flow graphs.
Nodes in the graph represent individual code blocks, edges
the execution flow, and attributes data on the block opera-
tions. The graph is fed to a graph-native ML model (Deep
Graph CNN), achieving recall 1 at most.

Non-traditional features have also been proposed. For
instance, Kolter et al. [27] converted executable files into a
hexadecimal representation and retrieved sequences of four-
bytes n-grams. The top-500 most informative n-grams are
selected for training and fed to different shallow learning
models. The AUC recovered (area under curve) is ≈ 0.99 at
most, according to the AdaBoost decision tree.

Based on the seminal work of Nataraj et al. [36], image
representations have been used. Each data point represents
the bytes of the executable files as pixels in a gray-scale

image. Texture-based features are then extracted and clas-
sified using k-nearest neighbors (kNN). The retrieved accu-
racy in distinguishing between malware families is ≈ 0.99 .
Kalash et al. [25] and Ahmed et al. [3] fed this gray-scale
representation to a CNN, achieving accuracy ≥ 0.97 in the
aforementioned task. Yan et al. [50] used three sets of static
features retrieved from executable files. The first set is a
gray-scale image representation, fed to a CNN; the second
are the assembly instructions sequences, fed to an LSTM
model; the third are the characteristics of the executable file
itself. The output of two classifiers and the third feature set
is stacked on a logistic regression model, achieving accuracy
≈ 0.99 . Darwaish et al. [16] represented static features as
an RGB image, using a specific pre-processing that sepa-
rates benign and suspicious features into different channels.
Images are fed to CNN achieving accuracy ≈ 0.99 . The pro-
posed approach also exhibits high empirical robustness.

Dynamic analysis. Dynamic analysis approaches con-
sider features extracted from the system and its processes.
Rieck et al. [43] introduced q-grams. They are a compact
representation of observed system calls and their param-
eters, retrieved over q-sized sliding windows. q-grams are
then one-hot encoded, and their dimensionality is reduced
to facilitate (incremental) comparison. The retrieved (modi-
fied) F1-score is ≈ 0.99 using a custom distance-based classi-
fier. Zemmari et al. [39] focused on Android malware. Each
data point is a vector of the most discriminant system calls
of an app. Each system call is represented according to its
frequency. The AUC retrieved according to shallow learn-
ing models such as random and rotation forests is 1 at most.
Dai et al. [15] considered three features sets referred to each
process. The first set contains the sequence of observed sys-
tem calls, preprocessed using natural language processing
techniques, the second set contains the values of hardware
performance counters. These two features sets are fed to a
gated recurrent unit (GRU) network. The third set contains
the gray-scale image representation of the process memory
dump. The output of the two classifiers is combined using
soft voting, achieving accuracy ≈ 0.97 . Abdelsalam et al. [2]
focused on process-level information to detect an infected
VM in the cloud. Each data point corresponds to a VM at a
given time instant, and is represented as a two-dimensional
matrix. Each row refers to a process, each column to process
data such as percentage of CPU usage, number of context
switches, number of opened file descriptors. The accuracy
retrieved according to a CNN is ≈ 0.97 at most.

Finally, there are other features and representations. For
example, Fang et al. [47] proposed a peculiar black-white
image representation of the observed system calls. Each data
point refers to the observed system calls of Android apps,
transformed into images. A CNN achieved F1-score ≈ 0.98
at most. Busch et al. [13] focused on network traffic, repre-
sented using a graph. It encodes network flow data, from

	 SN Computer Science (2024) 5:710 710   Page 16 of 17

SN Computer Science

endpoints to packet-level data. Graphs are fed into a Graph
NN, achieving recall ≈ 0.99.

Hybrid analysis. Hybrid analysis approaches consider
both static and dynamic analyses. For example, Lu et al. [30]
focused on Android malware. Static features refer to app
data such as file entropy, permissions, and intents, fed into a
deep belief network. Dynamic features refer to the sequence
of invoked Android API calls fed into a GRU network. The
output of the two classifiers is stacked on a NN, achiev-
ing precision ≈ 0.97 . Miller et al. [33] considered Windows
malware. Static features refer to the content (e.g., imports,
packer, etc.) and metadata (e.g., operating system version)
of the executable file. Dynamic features refer to the n-grams
of Windows API calls, paths of accessed files, requested IP
addresses, to name but a few. The training dataset is labeled
according to existing anti-malware tools and, upon dubious
match, human experts. The detection rate retrieved accord-
ing to logistic regression is 0.89.

Conclusions

Real-world malware detection is an urgent need that has
been investigated by the research community over the last
decades. The approach in this paper started from the require-
ments in the AI Act and defined a lightweight malware
detector that supports non-functional properties beyond
vanilla accuracy, including privacy and robustness. Our
detector relies on a limited amount of data that can be easily
collected with low permissions without affecting the ability
to distinguish legitimate behavior from malware. We dis-
cussed the importance of advancing detector verification to
the next step, and introduced an ML certification scheme
supporting the verification of the detector behavior accord-
ing to a large set of non-functional properties. Finally, we
certified and compared the proposed approach with two mal-
ware detectors in the state of the art, showing that privacy
and robustness can be supported with low impact on detector
accuracy.

Funding  Open access funding provided by Università degli Studi di
Milano within the CRUI-CARE Agreement. The work was partially
supported by project “BA-PHERD—Big Data Analytics Pipeline for
the Identification of Heterogeneous Extracellular non-coding RNA as
a Disease Biomarkers”, funded by the European Union—NextGen-
erationEU, under the National Recovery and Resilience Plan (NRRP)
Mission 4 Component 2 Investment Line 1.1: “Fondo Bando PRIN
2022” (CUP G53D23002910006); project MUSA—Multilayered
Urban Sustainability Action-project, funded by the European Union—
NextGenerationEU, under the National Recovery and Resilience Plan
(NRRP) Mission 4 Component 2 Investment Line 1.5: Strengthening
of research structures and creation of R&D “innovation ecosystems”,
set up of “territorial leaders in R&D” (CUP G43C22001370007,
Code ECS00000037); project SERICS (PE00000014) under the

NRRP MUR program funded by the EU-NextGenerationEU; program
“piano sostegno alla ricerca” PSR and the PSR–GSA–Linea 6; project
ReGAInS, funded by the Italian University and Research Ministry,
within the Excellence Departments program (law 232/2016). Views
and opinions expressed are however those of the authors only and do
not necessarily reflect those of the European Union or the Italian MUR.
Neither the European Union nor the Italian MUR can be held respon-
sible for them.

Declarations 

Conflict of Interest  The authors declare that they have no conflict of
interest.

Code Availability  All artifacts are available at https://​doi.​org/​10.​13130/​
RD_​UNIMI/​5VTJCC.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Abdelsalam M, Krishnan R, Sandhu R. Clustering-based IaaS
cloud monitoring. In: Proc. of IEEE CLOUD 2017, Honololu.
2017.

	 2.	 Abdelsalam M, Krishnan R, Sandhu R. Online malware detection
in cloud auto-scaling systems using shallow convolutional neural
networks. In: Proc. of DBSec 2019, Charleston. 2019.

	 3.	 Ahmed I, Anisetti M, Ahmad A, et al. A multilayer deep learning
approach for malware classification in 5g-enabled iiot. IEEE TII.
2023;19:2.

	 4.	 Alhashmi N, Almoosa N, Gianini G. Path asymmetry recon-
struction via deep learning. In: Proc. of IEEE MELECON 2022,
Palermo. 2022.

	 5.	 Almazrouei E, Gianini G, Mio C, et al. Using autoencoders for
radio signal denoising. In: Proc. of ACM Q2SWinet 2019, Miami
Beach. 2019.

	 6.	 Almazrouei E, Gianini G, Almoosa N, et al. What can machine
learning do for radio spectrum management? In: Proc. of ACM
Q2SWinet 2020, Alicante. 2020.

	 7.	 Almazrouei E, Gianini G, Almoosa N, et al. Robust computation-
ally-efficient wireless emitter classification using autoencoders
and convolutional neural networks. Sensors. 2021;21(7):2414.

	 8.	 Anderson HS, Roth P. EMBER: an open dataset for training static
PE malware machine learning models (2018). arXiv:​1804.​04637.

	 9.	 Anisetti M, Ardagna CA, Bena N. Multi-dimensional cer-
tification of modern distributed systems. IEEE TSC.
2023;16(3):1999–2012.

	10.	 Anisetti M, Ardagna CA, Bena N, et al. Rethinking certification
for trustworthy machine-learning-based applications. IEEE Inter-
net Comput. 2023;27(6).

https://doi.org/10.13130/RD_UNIMI/5VTJCC
https://doi.org/10.13130/RD_UNIMI/5VTJCC
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1804.04637

SN Computer Science (2024) 5:710 	 Page 17 of 17  710

SN Computer Science

	11.	 Anisetti M, Ardagna CA, Bena N, et al. Lightweight behavior-
based malware detection. In: Proc. of MEDES 2023, Heraklion.
2023.

	12.	 Ardagna CA, Bena N. Non-functional certification of modern
distributed systems: a research manifesto. In: Proc. of IEEE SSE
2023, Chicago. 2023.

	13.	 Busch J, Kocheturov A, Tresp V, et al. NF-GNN: network flow
graph neural networks for malware detection and classification.
In: Proc. of ACM SSDBM 2021, Tampa. 2021.

	14.	 Commission E. Artificial intelligence—questions and answers∗ .
Tech. rep., European Commission. 2023. https://​ec.​europa.​eu/​
commi​ssion/​press​corner/​api/​files/​docum​ent/​print/​en/​qanda_​21_​
1683/​QANDA_​21_​1683_​EN.​pdf

	15.	 Dai Y, Li H, Qian Y, et al. SMASH: a malware detection method
based on multi-feature ensemble learning. IEEE Access. 2019;7:
112588.

	16.	 Darwaish A, Naït-Abdesselam F, Titouna C, et al. Robustness of
Image-based android malware detection under adversarial attacks.
In: Proc. of IEEE ICC 2021, Montreal. 2021.

	17.	 Demetrio L, Biggio B, Lagorio G, et al. Explaining vulnerabili-
ties of deep learning to adversarial malware binaries. In: Proc. of
ITASEC 2019, Pisa. 2019.

	18.	 European Union Agency for Cybersecurity. ENISA Threat Land-
scape 2022. Tech. rep. European Union Agency for Cybersecurity.
2022.

	19.	 Gibert D, Zizzo G, Le Q. Certified robustness of static deep learn-
ing-based malware detectors against patch and append attacks. In:
Proc. of ACM AISec 2023, Copenhagen. 2023.

	20.	 Goodfellow IJ, Shlens J, Szegedy C. Explaining and harnessing
adversarial examples. In: Proc. of ICLR 2015, San Diego. 2015.

	21.	 Grosse K, Papernot N, Manoharan P, et al. Adversarial examples
for malware detection. In: Proc. of ESORICS 2017, Oslo. 2017.

	22.	 Hardy W, Chen L, Hou S, et al. DL4MD: a deep learning frame-
work for intelligent malware detection. In: Proc. of DMIN 2016,
Las Nevas. 2016.

	23.	 Herath JD, Wakodikar PP, Yang P, et al. CFGExplainer: explain-
ing graph neural network-based malware classification from con-
trol flow graphs. In: Proc. of 2022 IEEE/IFIP DSN, Baltimore.
2022.

	24.	 Huang Z, Marchant NG, Lucas K, et al. Rs-del: edit distance
robustness certificates for sequence classifiers via randomized
deletion. In: Proc. of NeurIPS 2023, New Orleans. 2023.

	25.	 Kalash M, Rochan M, Mohammed N, et al. Malware classification
with deep convolutional neural networks. In: Proc. of IFIP NfTMS
2018, Paris. 2018.

	26.	 Kan Z, Wang H, Xu G, et al. Towards light-weight deep learning
based malware detection. In: Proc. of IEEE COMPSAC 2018,
Tokyo. 2018.

	27.	 Kolter JZ, Maloof MA. Learning to detect and classify malicious
executables in the wild. JMLR 2006;7(12)

	28.	 Lansing J, Benlian A, Sunyaev A. “Unblackboxing” Decision
Makers’ interpretations of IS certifications in the context of cloud
service certifications. JAIS. 2018;19.

	29.	 Ling X, Wu L, Zhang J, et al. Adversarial attacks against Windows
PE malware detection: a survey of the state-of-the-art. In: COSE.
2023. p. 128.

	30.	 Lu T, Du Y, Ouyang L, et al. Android malware detection based on
a hybrid deep learning model. In: SCN 2020. 2020.

	31.	 Ma Z, Ge H, Liu Y, et al. A combination method for android mal-
ware detection based on control flow graphs and machine learning
algorithms. IEEE Access. 2019;7:21235–45.

	32.	 Malwarebytes. 2023 state of malware. Malwarebytes: Tech. rep.
2023.

	33.	 Miller B, Kantchelian A, Tschantz MC, et al. Reviewer integration
and performance measurement for malware detection. In: Proc. of
DIMVA 2016, San Sebastiàn. 2016.

	34.	 Milosevic J, Malek M, Ferrante A, et al. A friend or a foe?
Detecting malware using memory and CPU features. In: Proc. of
SECRYPT 2016, Lisbon. 2016.

	35.	 Mio C, Gianini G. Signal reconstruction by means of embedding,
clustering and AutoEncoder ensembles. In: Proc. of IEEE ISCC
2019, Barcelona. 2019.

	36.	 Nataraj L, Karthikeyan S, Jacob G, et al. Malware images: visu-
alization and automatic classification. In: Proc. of VizSec 2011,
Pittsburgh. 2011.

	37.	 Nicolae MI, Sinn M, Tran MN, et al. Adversarial robustness tool-
box v1.2.0. 2018. arXiv:​1807.​01069.

	38.	 NIST. Artificial intelligence risk management framework (ai rmf
1.0). Tech. rep., NIST. 2023.

	39.	 Vinod P, Zemmari A, Conti M. A machine learning based
approach to detect malicious android apps using discriminant
system calls. In: FGCS 2019. p. 94.

	40.	 Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn:
machine learning in Python. In: JMLR 2011. p. 12.

	41.	 Raff E, Barker J, Sylvester J, et al. Malware detection by eating a
whole EXE (2017). arXiv:​1710.​09435.

	42.	 Ramos IFF, Gianini G, Damiani E. Neuro-symbolic AI for sensor-
based human performance prediction: system architectures and
applications. In: Proc. of ESREL 2022, Dublin. 2022.

	43.	 Rieck K, Trinius P, Willems C, et al. Automatic analysis of mal-
ware behavior using machine learning. JCS. 2011;19(4):639–68.

	44.	 Rosenberg I, Shabtai A, Rokach L, et al. Generic black-box end-
to-end attack against state of the art API call based malware clas-
sifiers. In: Proc. of RAID 2018, Heraklion. 2018.

	45.	 Saha S, Wang W, Kaya Y, et al. DRSM: de-randomized smoothing
on malware classifier providing certified robustness. In: Proc. of
ICLR 2024, Vienna. 2024.

	46.	 Szegedy C, Zaremba W, Sutskever I, et al. Intriguing properties
of neural networks. In: Proc. of ICLR 2014, Banff. 2014.

	47.	 Wang F, Al Hamadi H, Damiani E. A visualized malware detec-
tion framework with CNN and conditional GAN. In: Proc. of
IEEE Big Data 2022, Osaka. 2022.

	48.	 Wang J, Chang X, Wang Y, et al. Lsgan-at: enhancing malware
detector robustness against adversarial examples. Cybersecurity.
2021;4(1):1–15.

	49.	 Yakimova Y, Ojamo J. Artificial intelligence act: Meps adopt
landmark law. 2024. https://​www.​europ​arl.​europa.​eu/​news/​en/​
press-​room/​20240​308IP​R19015/​artif​icial-​intel​ligen​ce-​act-​meps-​
adopt-​landm​ark-​law.

	50.	 Yan J, Qi Y, Rao Q. Detecting malware with an ensemble method
based on deep neural network. In: SCN 2018. 2018.

	51.	 Yoon J, Jarrett D, van der Schaar M. Time-series generative adver-
sarial networks. In: Proc. of NeurIPS 2019, Vancouver. 2019.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://ec.europa.eu/commission/presscorner/api/files/document/print/en/qanda_21_1683/QANDA_21_1683_EN.pdf
https://ec.europa.eu/commission/presscorner/api/files/document/print/en/qanda_21_1683/QANDA_21_1683_EN.pdf
https://ec.europa.eu/commission/presscorner/api/files/document/print/en/qanda_21_1683/QANDA_21_1683_EN.pdf
http://arxiv.org/abs/1807.01069
http://arxiv.org/abs/1710.09435
https://www.europarl.europa.eu/news/en/press-room/20240308IPR19015/artificial-intelligence-act-meps-adopt-landmark-law
https://www.europarl.europa.eu/news/en/press-room/20240308IPR19015/artificial-intelligence-act-meps-adopt-landmark-law
https://www.europarl.europa.eu/news/en/press-room/20240308IPR19015/artificial-intelligence-act-meps-adopt-landmark-law

	Certifying Accuracy, Privacy, and Robustness of ML-Based Malware Detection
	Abstract
	Introduction
	Motivations
	Non-Functional Properties
	Lightweight Malware Detection
	Sandbox Implementation
	Dataset
	Dataset Creation
	Dataset Augmentation

	LSTM Model

	A Certification Scheme for Malware Detectors
	Certification in a Nutshell
	Certification Models
	Property Accuracy
	Property Privacy
	Property Robustness

	Certification Results
	Additional Malware Detectors
	Static Malware Detector
	Hybrid Malware Detector

	Results
	Accuracy Evaluation
	Privacy Evaluation
	Robustness Evaluation

	Discussion
	Related Work
	Conclusions
	References

