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Abstract
Recent advances in artificial intelligence (AI) are radically changing how systems and applications are designed and devel-
oped. In this context, new requirements and regulations emerge, such as the AI Act, placing increasing focus on strict non-
functional requirements, such as privacy and robustness, and how they are verified. Certification is considered the most 
suitable solution for non-functional verification of modern distributed systems, and is increasingly pushed forward in the 
verification of AI-based applications. In this paper, we present a novel dynamic malware detector driven by the requirements 
in the AI Act, which goes beyond standard support for high accuracy, and also considers privacy and robustness. Privacy 
aims to limit the need of malware detectors to examine the entire system in depth requiring administrator-level permissions; 
robustness refers to the ability to cope with malware mounting evasion attacks to escape detection. We then propose a cer-
tification scheme to evaluate non-functional properties of malware detectors, which is used to comparatively evaluate our 
malware detector and two representative deep-learning solutions in literature.
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Introduction

The widespread and pervasive adoption of ICT technolo-
gies is at the basis of today’s digital society where every 
aspect of human life builds on digital technologies. This 
success attracted (cyber)criminals that increasingly attacked 
the digital society and its technologies either for politi-
cal or financial reasons. In this context, cybersecurity has 
received a lot of attention, involving academic and industrial 
communities in the protection of the digital society from 

cyberattacks. Cybersecurity solutions have been influenced 
by and took advantage of ICT evolution, with artificial intel-
ligence recently gaining ground in many disparate domains 
[4–7, 35, 42].

According to the ENISA Threat Landscape 2022 [18], 
malware is one of the most common attack vectors and 
represents the main cyberattack, with ransoms rising up to 
$50 M and individual malware infections costing up to $1 M 
per incident [32]. The fight between security researchers and 
professionals, who implement new approaches for detect-
ing malware as quickly as possible, and malware develop-
ers, who create complex malware using evasive strategies 
to avoid detection, is increasingly played on a day-to-day 
basis and with alternating fates.

Modern malware detection applications (malware detec-
tors in the following) replace and complement traditional 
signature-based detection with static analysis techniques 
based on machine learning (ML). Static analysis focuses 
on features that can be extracted from the malware code 
itself, without executing it. These features include the API 
(application programming interface)/system calls [22], 
assembly instructions [26], control flow graphs [23, 31], as 
well as non-traditional representations such as images [36]. 
Dynamic analysis complements and gradually substitutes 

 *	 Nicola Bena 
	 nicola.bena@unimi.it

	 Marco Anisetti 
	 marco.anisetti@unimi.it

	 Gabriele Gianini 
	 gabriele.gianini@unimib.it

	 Claudio A. Ardagna 
	 claudio.ardagna@unimi.it

1	 Department of Computer Science, Università degli Studi di 
Milano, Via Celoria 18, 20133 Milan, Italy

2	 Dipartimento di Informatica, Sistemistica e Comunicazione 
(DISCo), Università degli Studi di Milano-Bicocca, Viale 
Sarca 336, 20126 Milan, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-03024-8&domain=pdf
http://orcid.org/0000-0001-7426-4795


	 SN Computer Science           (2024) 5:710   710   Page 2 of 17

SN Computer Science

static analysis, starting from the assumption that the mal-
ware run-time behavior cannot be easily changed. In this 
case, the malware is executed in a sandbox and its behavior 
is observed and analyzed. Features include the sequence of 
invoked system calls [39, 43, 47], process- [2], and network 
flow-level data [13], to name but a few. Hybrid analysis com-
bines the two approaches.

Existing approaches show excellent performance (e.g., 
accuracy ≥ 0.99 ), though they suffer from two main draw-
backs. On the one hand, the rise of evasion attacks (often 
known as adversarial attacks) has demonstrated that existing 
malware detectors can be easily bypassed. Even worse, these 
attacks are feasible in the real world, meaning that the adver-
sarial perturbation is applicable to the malware source code/
executable file and does not change the malware behavior 
(e.g., [17, 44]). Being malware detection an adversarial envi-
ronment, the lack of robustness against these attacks is caus-
ing increasing concerns, questioning the practical usability 
of malware detectors in the real world. On the other hand, 
granting malware detectors permission to collect the neces-
sary data often requires the company producing the detectors 
to have complete control over the monitored system. Users 
may be reluctant to grant such permissions to third parties 
because they can violate their company’s privacy policies 
and increase the risk that such detectors can be used as an 
attack vector themselves.1

Furthermore, existing approaches to malware detection 
conflict with recent guidelines and regulations on artificial 
intelligence, which increasingly point to ethics, privacy, 
and robustness. In particular, the European Parliament has 
recently approved the Artificial Intelligence Act (referred 
to as the AI Act), which emphasizes the departure from AI 
solutions where accuracy is the sole concern. [49]. Rather, 
the AI Act mandates AI solutions to be ethical, transparent, 
robust, secure, and privacy-preserving, and certified to prove 
the continuous support of these properties.

In this paper, we extend our previous work in [11] to fill 
in the above needs. We first develop an approach to mal-
ware detection that targets properties accuracy, privacy, and 
robustness. To this aim, our approach relies on easily acces-
sible system-level performance (CPU, RAM, and I/O usage) 
data and requires low-level permissions. It creates an initial 
dataset modeling data points as multi-valued time-series. It 
augments the dataset and fully exploits the extracted features 
using an LSTM (long short-term memory) network, a model 
capable of dealing with temporal information, achieving 
0.99 accuracy. We then propose a preliminary certification 
scheme for evaluating non-functional properties of malware 
detectors. The scheme is used to compare the proposed 
approach with two representative deep-learning solutions 

in literature, a static detector [41] and a hybrid detector [44], 
according to the following properties: accuracy, privacy by 
collected data and access permissions minimization, and 
robustness against evasion attacks.

The remainder of the paper is structured as follows. Sec-
tion “Motivations” discusses the motivations at the basis 
of our work. Section “Non-Functional Properties” presents 
the three target non-functional properties supported by 
our malware detector [11] in Sect. “Lightweight Malware 
Detection”. Section “A Certification Scheme for Malware 
Detectors” describes the certification scheme used to verify 
the three properties. Section “Certification Results” pre-
sents a comparative evaluation of three malware detectors 
(including the one in this paper) based on certification. Sec-
tion “Discussion” discusses our findings. Section “Related 
Work” presents related work. Finally, Sect. “Conclusions” 
draws our conclusions.

Motivations

On March 13th, 2024, the European Parliament approved the 
AI Act, the first worldwide law regulating AI systems.2 The 
AI Act adopts a risk-based approach, requiring AI systems to 
satisfy different (non-functional) requirements according to 
the risk the system entails.3 For instance, systems with unac-
ceptable risk contravening EU values are prohibited, while 
systems with high risk must be “subject to a conformity 
assessment” to demonstrate compliance with requirements 
such as “accuracy, cybersecurity, and robustness” [14]. 
Even minimal-risk AI systems, which would only need to 
comply with basic transparency obligations, may voluntar-
ily comply with such requirements [14] and thus increase 
their safety, trustworthiness, and market legitimacy [28]. In 
addition to the AI Act, many other recommendations are 
proliferating, for instance, the NIST’s Artificial Intelligence 
Risk Management Framework (NIST AI RMF) [38].

The AI Act represents a paradigm shift in the AI domain, 
where demonstrable compliance to non-functional require-
ments is mandated by law.

In this paper, we start from the AI Act and apply its 
statements in the domain of malware detection built on 
artificial intelligence. Traditionally, malware detectors are 
defined to maximize accuracy (achieving remarkable accu-
racy ≥ 0.99 ), while often disregarding other requirements 
(e.g., on their robustness and privacy) recently mandated 
by the AI Act. In general, ML-based malware detectors can 
be classified as static, dynamic, and hybrid. Static detectors 

1  https://​www.​cclea​ner.​com/​knowl​edge/​secur​ity-​notif​icati​on-​cclea​
ner-​v5336​162-​cclea​ner-​cloud-​v1073​191.

2  https://​data.​consi​lium.​europa.​eu/​doc/​docum​ent/​ST-​5662-​2024-​
INIT/​en/​pdf.
3  https://​www.​europ​arl.​europa.​eu/​RegDa​ta/​etudes/​BRIE/​2021/​
698792/​EPRS_​BRI(2021)​698792_​EN.​pdf.

https://www.ccleaner.com/knowledge/security-notification-ccleaner-v5336162-ccleaner-cloud-v1073191
https://www.ccleaner.com/knowledge/security-notification-ccleaner-v5336162-ccleaner-cloud-v1073191
https://data.consilium.europa.eu/doc/document/ST-5662-2024-INIT/en/pdf
https://data.consilium.europa.eu/doc/document/ST-5662-2024-INIT/en/pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698792/EPRS_BRI%282021%29698792_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698792/EPRS_BRI%282021%29698792_EN.pdf
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analyze the executable file without executing it. For instance, 
they extract features such as API/system calls and assem-
bly instructions [22, 26], control-flow graphs [23, 31], and 
even image representation [3, 25, 36, 50]. Dynamic detec-
tors, instead, observe the run-time malware behavior during 
its execution. They consider features such as, for instance, 
sequence of system calls [39, 43], process-level information 
[2], and image representation [15, 47]. Finally, hybrid detec-
tors fuse static and dynamic analysis, including additional 
information such as metadata of the executable file [30, 33].

The goal of this paper is to define a novel malware detec-
tor following the requirements of the AI Act. In particu-
lar, we design a malware detector targeting the support of a 
variety of non-functional properties that go beyond vanilla 
accuracy and also embraces privacy and robustness. To this 
aim, we define properties accuracy, privacy, and robustness, 
(Sect. “Non-Functional Properties”), driving the develop-
ment of our malware detector (Sect. “Lightweight Malware 
Detection”). We further introduce the certification scheme 
for malware detector certification (Sect. “A Certification 
Scheme for Malware Detectors”) and apply it to the detec-
tor in this paper and two additional detectors in literature 
(Sect. “Certification Results”).

Non‑Functional Properties

We define the non-functional properties accuracy, privacy, 
and robustness driving the definition of a malware detector 
following the requirements in the AI Act.

Property accuracy models the need of retrieving accurate 
results by malware detectors in operation. It is a standard 
property for malware detection, conventionally assumed to 
take value in [0 , 1].

Property privacy models the need to minimize the intru-
siveness and the amount of data collected by the detec-
tor (data minimization principle4). The property refers to 
the data collected for training and inference, such as data 
referred to individual processes (higher intrusiveness) or to 
the system as a whole (lower intrusiveness). In turn, data 
collection requires a variety of specific permissions to be 
granted to the malware detector, which are also important to 
minimize (data protection by design and by default5).

Property robustness models the need to protect the mal-
ware detector against malware that actively attempts to 
escape ML classification by injecting adversarial perturba-
tions [46]. Robustness can be supported in different con-
figurations and strengths. Figure 1 shows an excerpt of the 
hierarchy for property robustness; grey-filled boxes denote 

the focus of this paper. In some cases, robustness can be 
mathematically proven (e.g., [24, 44, 45]), meaning that it 
is possible to compute a bound on prediction correctness 
as a function of the extent of the adversarial perturbation 
(this is also known as certified robustness). Robustness can 
also be empirically proven (the focus of this paper), that 
is, evaluated using, for instance, testing procedures (e.g., 
[16, 21, 48]). The latter approach can assume two forms 
(corresponding to as many properties): (i) input-dependent: 
robustness is guaranteed by the fact that it is extremely dif-
ficult for an attacker to perturb the data points in practice 
(this property applies for instance in case access to the entire 
system is required before infection can be spread); (ii) input-
independent: the attacker can execute the perturbation in 
the real world (e.g., in case the attacker needs to perturb 
the malware executable only). Finally, empirically-proven 
robustness can be further refined by specific strengthening 
techniques (e.g., adversarial training [46]).

Table 1 shows how related work in malware detection 
(discussed in detail in Sect. “Related Work”) supports prop-
erties accuracy, privacy, and robustness. ✓ means that the 
property is fully supported, ≈ partially supported, ✗ not sup-
ported. ✗ is also used when the property is not discussed/
evaluated. As a matter of fact, all malware detectors target 
property accuracy, while just a few consider property robust-
ness. Property privacy instead is typically neglected. To the 
best of our knowledge, no malware detectors simultaneously 
focus on accuracy, privacy, and robustness: this reduces 
their real-world applicability and falls short in providing AI 
Act compliance.

Furthermore, we emphasize a common fact for several 
published works: simply claiming that a malware detector 
supports a given set of properties is insufficient; such claims 
must be substantiated. For instance, the AI Act requires 
some AI systems to run a “conformity assessment proce-
dure” and, in some cases, be subject to “state-of-the-art tests 
and models evaluations” [14]. Similarly, the NIST AI RMF 
requires AI systems to be tested regularly [38].

Fig. 1   Hierarchy of property robustness (excerpt). Grey-filled boxes 
denote the properties on which the present paper focuses

4  https://​eur-​lex.​europa.​eu/​eli/​reg/​2016/​679/​oj, Art. 5.
5  https://​eur-​lex.​europa.​eu/​eli/​reg/​2016/​679/​oj, Art. 25.

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
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To address the aforementioned gaps, researchers and 
practitioners are clearly pointing to certification [10, 
12], as a way to demonstrate (certify) that the given tar-
get (e.g., a malware detector) supports a given property 
(e.g., robustness), backed by some evidence (e.g., testing, 
mathematical proofs) [12]. The objective of this paper is 
therefore twofold:

•	 design and implement an ML-based malware detector 
that jointly supports and balance high detection accu-
racy, privacy, and (empirically proven) robustness (last 
row in Table 1); and

•	 adopt a certification scheme for AI [10] to demonstrate 
the non-functional properties of different malware detec-
tors, including the one in this paper.

Lightweight Malware Detection

Figure 2 shows an overview of our approach to lightweight 
malware detection introduced in [11] and driven by the 
properties in Sect. “Non-Functional Properties”, which 
minimizes the collected data and requires low permis-
sions for execution. First, it creates a sandbox where an 
initial dataset of legitimate and malicious software execu-
tions is collected (Sect. “Sandbox Implementation”). The 
dataset contains system-level performance metrics in the 
form of time-series. Second, it augments the collected 
dataset using a generative adversarial network (GAN) 
(Sect.  “Dataset”) to meet the requirements of modern 
deep learning (DL) models. Finally, an LSTM model is 
trained to fully exploit the temporal structure of our data-
set (Sect. “LSTM Model”). The LSTM model drives the 
behavior of our malware detector.

Sandbox Implementation

Running malware to analyze its behavior is fundamental 
to design a malware detector, although it introduces the 
risk of self-infection. The use of an isolated environment 
where the malware can be safely executed (sandbox) can 
mitigate or remove this risk. This approach is not always 
feasible, because some malware may be able to under-
stand whether they are running inside a sandbox. When 
this happens, they may change their behavior or interrupt 
their execution; advanced malware may even escape the 
sandbox, causing the infection of the system where the 
sandbox is installed.

For this reason, we used a combination of Linux and 
Windows machines as shown in Fig. 3. Specifically, we 
tested malware and legit software on a Windows 7 virtual 
machine (VM) hosted by a Linux machine. The Windows 
VM is isolated from the Internet using a host-only con-
nection. This way, the VM does not have access to the 
physical network card of the host machine, preventing any 
malware connections to the Internet.

Executing malware on a machine that cannot commu-
nicate on the Internet, however, has some limitations; for 
instance, some malware need to connect to remote hosts 
to carry out their activities (e.g., Wanna-Cry). We then set 
up a second Linux VM running iNetSim (https://​www.​inets​
im.​org/), a software to simulate Internet connections. The 
malware executed on the Windows VM can send Inter-
net requests and obtain corresponding responses without 
reaching the Internet. We note that, to permit an effec-
tive execution of the malware inside the Windows VM, 
all protection controls like firewalls, Windows update, and 
Windows defender have been disabled and group policies 

Table 1   Comparison of malware detectors with respect to properties 
accuracy, robustness, and privacy

References Type Accuracy Privacy Robustness

Math. Emp.

 [27] Static ✓ ✗ ✗ ✗
 [36] Static ✓ ✗ ✗ ✗
 [43] Dynamic ✓ ✗ ✗ ✗
 [22] Static ✓ ✗ ✗ ✗
 [33] Hybrid ✓ ✗ ✗ ✗
 [34] Dynamic ✓ ✗ ✗ ✗
 [21] Static ✓ ✗ ✗ ✓
 [25] Static ✓ ✗ ✗ ✗
 [26] Static ✓ ✗ ✗ ✗
 [50] Static ✓ ✗ ✗ ✗
 [2] Dynamic ✓ ✗ ✗ ✗
 [15] Dynamic ✓ ✗ ✗ ≈

 [31] Static ✓ ✗ ✗ ✗
 [39] Dynamic ✓ ✗ ✗ ✓
 [30] Hybrid ✓ ✗ ✗ ✗
 [16] Static ✓ ✗ ✗ ✓
 [13] Dynamic ✓ ✗ ✗ ✗
 [48] Dynamic ✓ ✗ ✗ ✓
 [23] Dynamic ✓ ✗ ✗ ✗
 [47] Dynamic ✓ ✗ ✗ ✗
 [3] Static ✓ ✗ ✗ ✗
 [19] Static ✓ ✗ ✓ ✗
 [24] Static ✓ ✗ ✓ ✗
 [45] Static ✓ ✗ ✓ ✗
This Dynamic ✓ ✓ ✗ ✓

https://www.inetsim.org/
https://www.inetsim.org/
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have been changed to give the malware the capability to 
act as an administrator. The need to modify these poli-
cies motivates the use of an old Windows version, namely 
Windows 7.

Dataset

We generated the dataset used for training in two phases as 
follows. Phase dataset creation (Sect. “Dataset Creation”) 
collects an initial dataset of legit and malware executions. 
Phase dataset augmentation (Sect. “Dataset Augmentation”) 
augments the initial dataset using a GAN.

Dataset Creation

Phase dataset creation starts from the configuration of 
the Window 7 VM. It first installs commonly used soft-
ware (e.g., Internet Explorer, Firefox, Mozilla Thunder-
bird, Spotify, WinRAR) on the Windows VM, to make the 

environment as realistic as possible. It then retrieves the ≈ 
5000 malware PE files compatible with Windows 7 from 
VirusShare (https://​virus​share.​com).

Malware and legit software are executed for a fixed 
amount of time while collecting performance metrics. In 
this paper, we considered a time span of 60 s6 and ran 10,000 
executions varying between malware and legit software. At 
each execution, the Windows VM is restored from a clean 
snapshot (following the state of the art [34]) and the chosen 
software is run for the given time span. During each execu-
tion, we collected the multi-valued time-series consisting 
of 6 features: (i) CPU usage percentage, (ii) RAM usage 
percentage, (iii) bytes written to and (iv) bytes read from 
the disk, (v) bytes received and (vi) sent to the network. The 

Fig. 2   Overview of our 
approach

Fig. 3   The sandbox

6  Experiments have been run on a laptop featuring 8 CPUs Intel 
i7-11800H @ 2.30 GHz, 16 GBs of RAM, operating system Ubuntu 
22.04.1. Virtualization based on VirtualBox.

https://virusshare.com
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collected data are sent back to the Linux host where they 
are saved.

We note that the use of an LSTM model requires all time-
series to have the same length. We then preprocessed the 
collected data normalizing the time series to a fixed length, 
by padding the shorter time series and pruning the longer 
ones. Each resulting time-series contained 10 items each 
associated with the 6 aforementioned features. Having a time 
span of 60 s, the sampling time was of 6 s. Although this 
time is slightly shorter than similar approaches [2], it proved 
to be effective.

Dataset Augmentation

Phase dataset augmentation aims to support the peculiarities 
of DL, requiring a large number of training samples to be 
effective. It augments the dataset created in Sect. “Dataset 
Creation” using synthetic data so that they show the same 
statistical properties of real-world data.

Our dataset of ≈ 10,000 samples was augmented using 
TimeGAN (https://​pypi.​org/​proje​ct/​ydata-​synth​etic/) [51], 
a GAN specifically designed to generate time-series data. 
It extends the traditional GAN architecture, and includes 
(i) a generator implemented as a recurrent network, (ii) a 

discriminator implemented as a bidirectional recurrent net-
work with a final feedforward layer, (iii) two additional 
components called embedding and recovery functions, and  
(iv) two specific loss functions.

Embedding and recovery functions are implemented 
as recurrent and feedforward networks, respectively, and 
map the time-series features to a low-dimensional space 
where the generator and discriminator operate. Finally, 
loss functions jointly ensure that the generator learns real-
istic sequences with accurate temporal patterns.

We first fed the dataset created in Sect. “Dataset Crea-
tion” to the GAN so that the model could learn its statisti-
cal characteristics and replicate them in the synthetic data. 
To this aim, (i) we separated the real dataset into malware 
and legit software, and sent each individual dataset to a 
separate instance of TimeGAN; (ii) we generated two syn-
thetic datasets of 50,000 samples each, later merged in a 
single dataset of 100,000 samples (tenfold increase).

We then validated the quality of the synthetic dataset 
according to several comparisons as follows.

•	 Visual feature comparison: we randomly drew sam-
ples from real and synthetic datasets. For each feature 
and extracted sample, we plotted their value to visually 

Fig. 4   Comparison of features value of real and synthetic malware samples

https://pypi.org/project/ydata-synthetic/
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compare the differences between the real and synthetic 
samples. Figures 4 and 5 show the similarity of two 
random samples of malware and legit software, respec-
tively.

•	 Comparison with reduced dimensionality (PCA): we 
performed PCA reduction to a 2-dimensional space in 
real and synthetic datasets (limited to 500 samples), and 
plotted the results for visual comparisons.

•	 Comparison with reduced dimensionality (t-SNE): we 
performed t-SNE reduction to a 2-dimensional space on 
real and synthetic datasets (limited to 500 samples). Com-
pared to PCA, t-SNE performs a non-linear transforma-
tion. We plotted and visually compared the results.

For brevity, we do not report the visual comparison using 
PCA and t-SNE here, and we refer the interested readers to 
our original paper in [11].

We finally created the overall dataset by merging the real 
and the synthetic datasets.

LSTM Model

Table 2(a) describes the structure of the LSTM model we 
trained on the overall dataset. It is composed of 4 layers (3 

LSTM layers and 1 dense layer) interleaved with 3 batch 
normalization layers.

Table 2(b) describes the parameters of the training pro-
cess. We used 64,871 samples for the training set and 21,624 
samples for the validation and test sets in 200 epochs with 
optimizer Adam, loss function binary cross-entropy, and ini-
tial learning rate of 0.05. Model training is based on early 
stopping (if loss function value retrieved from the validation 
set does not improve in 30 epochs) and on dynamic decrease 
of the initial learning rate (by a factor of 0.5 if loss function 
value retrieved from the validation set does not improve in 
one epoch). Further details can be found in our public code 
available at https://​doi.​org/​10.​13130/​RD_​UNIMI/​LJ6Z8V.

A Certification Scheme for Malware 
Detectors

Recalling Sect. “Motivations” and the AI Act, AI-based 
applications should exhibit verifiable behavior in terms of 
non-functional properties. Here, we adopt certification [12] 
as a suitable technique for verifying the behavior of malware 
detectors. In the following, we describe how a generic certi-
fication scheme for AI-based applications works (Sect. “Cer-
tification in a Nutshell”), and instantiate it to certify our 

Fig. 5   Comparison of features value of real and synthetic legit software samples

https://doi.org/10.13130/RD_UNIMI/LJ6Z8V
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malware detector in Sect. “Lightweight Malware Detection” 
and two malware detectors in literature against properties 
accuracy, privacy, and robustness (Sect.  “Certification 
Models”).

Certification in a Nutshell

A certification scheme implements a certification process 
proving that a non-functional property p (e.g., empirically-
proven, input-dependent robustness in Fig. 1) is supported 
by a given target of certification ToC (e.g., a malware detec-
tor) by collecting evidence ev according to an evidence col-
lection model E . p , ToC , and E define a certification model 
M . An evaluation function F  completes M , determining 
whether a certificate C can be awarded for ToC on the basis 
of collected evidence ev (Fig. 6) [12]. M is prepared by a 
trusted third party (e.g., a certification authority—CA) and 
executed by an accredited lab on its behalf. We note that a 
certificate contains a reference to the corresponding certi-
fication model M and evidence ev supporting its release.

ML-based application certification (ML certification in 
the following) is based on a multi-dimensional evaluation, 
where different facets (dimensions) of the corresponding ML 
model are independently evaluated according to their pecu-
liar life cycle. Each dimension d has a specific certification 
model Md [9, 10] containing all the information needed to 

evaluate the application based on ML in the given dimension 
d . According to our previous work [10], ML certification 
must consider three dimensions: (i) data ( dd ) related to the 
data used to train and test the ML model, (ii) process ( dp ) 
related to the process used to train, test, and deploy the ML 
model, (iii) model ( dm ) related to the ML model in operation.

Differently from traditional certification, in multi-dimen-
sional ML certification, (i) the certification model Md in 
each dimension d defines an evaluation function Md.F  
indicating whether evidence ev is successfully collected in 
the given dimension d ; (ii) a global evaluation function F′ 
aggregates the result of Md.F  in each dimension, finally 
resulting in a certificate award iff F′ =✓.

We note that F′ is defined by the CA according to the 
specific scenario. In our scenario, F′ = Mdd

.F  ∨ Mdp
.F  ∨ 

Mdm
.F  , meaning that a certificate is awarded when the evi-

dence is successfully collected in at least one dimension. We 
note that an independent certificate can also be awarded for 
each dimension according to F  , depending on the 
scenario.

Certification Models

We define one certification model for each property of inter-
est: (i) accuracy (Sect. “Property Accuracy”), (ii) privacy 
(Sect. “Property Privacy”), and (iii) robustness (Sect. “Prop-
erty Robustness”).

Table 2   Details of the LSTM training process

(a) LSTM model structure

Layer type Output shape # Params

LSTM (None, 10, 8) 480
Batch normalization (None, 10, 8) 32
LSTM (None, 10, 8) 544
Batch normalization (None, 10, 8) 32
LSTM (None, 8) 544
Batch normalization (None, 8) 32
Dense (None, 1) 9

(b) Training parameters

Parameter Value

Epochs 200
Batch size 32
Optimizer Adam
Learning rate 0.05, halved if loss 

does not improve 
in 1 epoch, down 
to 1 ⋅10−8

Early stopping Loss does not 
improve in 30 
epochs

Loss function Binary crossen-
tropy

Fig. 6   Certification process [12]
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Each certification model considers different dimensions 
according to the property.

Property Accuracy

Malware detectors must exhibit a high detection accuracy. 
We define a certification model Mdm

 = ⟨ p, ToC, E, F  ⟩ con-
sidering dimension model ( dm ) (Table 3(a)). Property accu-
racy is defined as high detection accuracy. The target of 
certification M.ToC is the trained malware detector.

Evidence collection model Mdm
.E analyzes the required 

data to retrieve the corresponding metrics.
Formally, let ACCj ( AUCj , resp.) be the accuracy (area 

under curve–AUC, resp.) retrieved from the j-th malware 
detector on a held-out test set. Evaluation function Mdm

.F  
defines that M.p is supported by the j-th detector iff

In our case, tacc = 0.96 . We note that other quality metrics 
(e.g., recall) can be considered depending on the scenario.

Property Privacy

Malware detectors must examine the system in depth, from 
reading the content of all files to observing the behavior of 
all processes. Granting these permissions may be undesired 
(e.g., for internal policies or to reduce the attack surface). 
Thus, a detector must minimizes the data it collects and the 
permissions it requires. Property privacy models this need.

We define a certification model Mdd
 = ⟨ p,  ToC,  E,  F⟩ 

considering dimension data ( dd ) (Table 3(b)). Property pri-
vacy Mdd

.p is defined as the minimization of the collected 
data and the access permissions necessary for their collec-
tion. The target of certification Mdd

.ToC represents the input 
data used for training/inference and the permissions needed 
for their collection.

We model the data collected in terms of the input space I  
where malware can operate. I  is composed of (i) execut-
able-file denoting the executable file, (ii) process-
performance denoting process-level performance metrics, 
(iii) system-performance denoting system-level per-
formance metrics, and (iv) syscall denoting the observed 
system calls of each process. We note that additional data in 
I  are omitted for brevity.

Let us denote with Ij the input space required by the j-
th malware detector, and Inv the function taking as input a 
component input∈ I  of input space I  and returning as 
output a qualitative score as follows. The qualitative score is 
1 when input refers to system-level data, 2 to process-level 
data; it is increased by 1 if the detector needs administrator-
level permissions to collect input.

(1)ACCj ≥ tacc ∨ AUCj ≥ tacc

Evidence collection model Mdd
.E analyzes the required 

data to retrieve the corresponding scores.
Evaluation function Mdd

.F  defines that Mdd
.p is sup-

ported by the j-th detector iff

In other words, property privacy is supported if the sum of 
the qualitative scores is below threshold tpr . In our case, tpr 
=2.

Property Robustness

Malware detectors must identify malware that actively 
attempts to escape classification by exploiting the vulnera-
bilities of the detectors, possibly caused by the peculiarities 
of ML [46]. We consider empirically proven robustness 
(Sect. “Non-Functional Properties”) and focus on ML-spe-
cific evasion attacks, perturbing a data point at inference 
time by adding an imperceptible perturbation such that the 
predicted label changes from “malware” to “benign”. We 
define two certification models Mdp

 and Mdm
 for dimensions 

process ( dp ) and model ( dm ), respectively, as follows.
Dimension process  dp defines a certification model Mdp

 
= ⟨ p, ToC, E, F  ⟩ (Table 3(c)). Property robustness Mdp

.p is 
defined as input-dependent or input-independent robustness 
with strengthening technique adversarial training in Fig. 1. 
Adversarial training adds evasion data points with the cor-
rect label to the training set, such that the trained ML model 
learns how to spot the imperceptible perturbations of an eva-
sion attack [46]. The target of certification Mdp

.ToC repre-
sents the training process.

Evidence collection model Mdp
.E collects evidence from 

the training process ( Mdp
.ToC).

Evaluation function Mdp
.F  defines that Mdp

.p is sup-
ported iff at least 0.01% of adversarial training-created data 
points with label “malware” are added to the training set. We 
note that the percentage of adversarial training/created data 
points is taken from Grosse et al. [21].

Dimension model  dm defines a certification model Mdm
 

= ⟨ p, ToC, E, F  ⟩ (Table 3(d)). The target of certification 
Mdm

.ToC represents the ML model. Depending on the detec-
tor, property robustness can be supported at different levels 
in the hierarchy in Fig. 1, varying also Mdm

.E and Mdm
.F .

Input-dependent detector. Property robustness Mdm
.p is 

defined as empirical, input-dependent robustness in 
Fig. 1. It refers to the need to control the entire system 
and its processes to execute an effective perturbation. Evi-
dence collection model Mdm

.E analyzes the ML model 

(2)
∑

�����i∈Ij

Inv(�����i) ≤ tpr
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(e.g., software artifacts) retrieving the type of data the 
ML model receives as input. Evaluation function Mdm

.F  
defines that Mdp

.p is supported iff the only way to suc-
cessfully perturb a data point is to have complete access 
to the victim system. We note that this scenario is unre-
alistic. Let us assume that a malware can obtain control 
of the victim system and then execute the perturbation 
allowing itself to evade classification. A malware detector 
would be able to catch the malware before the latter can 
hide itself with the perturbation.
Input-independent detector. Property robustness Mdm

.p 
is defined as empirical, input-independent robustness in 
Fig. 1. Formally, let (i) {pi} be a sequence of data points 
labeled as “malware”; (ii) A be a function crafting eva-
sion data points, which takes as input the sequence {pi} 
of data points and returns as output a sequence {p̃i} of 
perturbed data points; y(pi) be the predicted label for data 
point pi . Evidence collection model Mdm

.E exercises the 
ML model, sending evasion data points according to A 
and retrieving the predicted label. Evaluation function 
Mdm

.F  defines that Mdm
.p is supported if

 In other words, property robustness is supported if the 
number of evasion data points that evade the classifier is 
below the threshold tr . In our case, tr = 0.1 , which means 
that at most 10% of the evasion data points can evade clas-
sification. We note that a tighter threshold can be fixed 
according to the scenario.

Certification Results

Additional Malware Detectors

We present the two detectors in literature, which have been 
certified in our experimental evaluation according to the cer-
tification models in Sect. “A Certification Scheme for Mal-
ware Detectors”. Together with ours in Sect. “Lightweight 
Malware Detection”, these three detectors are a good approx-
imation of the entire domain of malware detection.

Static Malware Detector

Static detector DS considers MalConv, a convolutional neu-
ral network presented in 2017 by Raff et al. [41]. It is the 
first approach to fully exploit the power of deep learning, 
as it takes as input the executable file as is, without any 

(3)
|{p̃i ∣ y(p̃i) = “benign”}|

|{p̃i}|
≤ tr

preprocessing. We refer to the implementation by Anderson 
et al. [8] which is publicly available.

Input. Each data point is the executable file to analyze. 
The file size is fixed to 1 MB. Larger files are truncated, and 
smaller files are padded with a special value.

ML model. DS implements a convolutional neural net-
work structured as follows. The first layer is an embedding 
layer mapping each byte to a 8-dimensional vector. The next 
two layers implement a convolution followed by a pooling 
layer. The last layer is a fully connected layer.

Training. DS is trained on the executable files at the basis 
of dataset EMBER, a dataset containing features of more 
than 1 million of benign and malign software [8].

Hybrid Malware Detector

Hybrid detector (DH) considers the solution presented by 
Rosenberg et al. [44]. It works with both dynamic (i.e., 
n-grams of observed system calls) and static (i.e., strings 
found in the executable file) features.

Input. Each data point contains: (i) a one-hot encoded 
vector where each i-th feature represents the presence of 
a system call (formally, Windows API call) in a fixed-size 
sequence of system calls; (ii) a one-hot encoded vector 
where each i-th feature represents the presence or absence 
in the executable file of the i-th string among the top-20,000 
most frequent strings.

ML model. DH implements a custom, two-branch archi-
tecture. The first branch consists of an LSTM layer taking 
as input the sequence of system calls. The second branch 
consists of two fully connected layers, taking as input the 
strings. The output of the two branches is flattened and taken 
as input by the last fully connected layer.

Training. DH is trained on a dataset of 54,000 data points 
generated by executing different benign and malign soft-
ware. Each software is run in a sandbox for 2 min and the 
corresponding system calls are retrieved. The system calls 
are divided into sliding windows (step 1), each including a 
n-gram with n=140 and the top-20,000 most frequent strings 
extracted from executable files. Each data point includes a 
sliding window and a label “benign”/“malign” for the soft-
ware retrieved using the online service VirusTotal (https://​
www.​virus​total.​com/).

Results

We present the results of the execution of the certifica-
tion models in Sect. “A Certification Scheme for Mal-
ware Detectors” against malware detectors in this article. 
We note that evidence on the behavior of DS [8, 41] and 

https://www.virustotal.com/
https://www.virustotal.com/
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DH [44] refers to data and results provided in the corre-
sponding publications. The evidence on the behavior of 
our malware detector DD in Sect. “Lightweight Malware 
Detection” refers to data collected from the detector in 
operation. We executed detector DD on an Apple Mac-
Book Pro with 10 CPUs Apple M1 Pro, 32 GBs of RAM, 
operating system macOS Ventura, Python v3.11.6, and ML 
libraries Keras v2.13.0, scikit-learn v1.1.3 [40], Tensor-
flow v2.15.0, Tensorflow-Metal v1.1.0, and Adversarial 
Robustness Toolbox v1.16.0 [37]. All artifacts are avail-
able at https://​doi.​org/​10.​13130/​RD_​UNIMI/​5VTJCC.

Section "Accuracy Evaluation" and Table 5(a) present 
our results for property accuracy; Sect. “Privacy Evalua-
tion” and Table 5(b) present our results for property pri-
vacy; Sect. "Robustness Evaluation" and Table 5(c)–(d) 
present our results for property robustness.

Accuracy Evaluation

All detectors support Mdm
.p in the dimension model ( dm).

DS and DD achieved the best results in terms of 
AUC: 0.9981 and 0.9975, respectively. DD also reported 
ACC = 0.9975. DH achieved slightly lower values in terms 
of ACC: 0.9694. We note that ACC is slightly higher than 
ACC retrieved when only dynamic (0.9248) or static features 
(0.9619) are considered. Table 4 reports additional classi-
fication metrics for DD. In particular, precision = 0.9977, 
that is, DD identifies a malware in almost all cases; recall 
= 0.9973, that is, virtually all malware are detected by DD; 
specificity = 0.9976, that is, DD identifies a benign software 
in almost all cases.

Therefore, the output of the evaluation function Mdm
.F  

is ✓ for the three detectors.
Finally, F′ aggregates the output of Mdm

.F  (✓ for DS, 
DD, and DH). According to F′ = Mdd

.F  ∨ Mdp
.F  ∨ 

Mdm
.F  in Sect. “Certification in a Nutshell”, the output is 

✓ for all detectors. Certificates CDS , CDD , and CDH are 
awarded to DS, DD, and DH, respectively. Each certificate 
is defined as ⟨ Mdm

, {AUC,  ACC​} ⟩ , where Mdm
 is the 

certification model defined for each detector and {AUC,  
ACC​} is the collected evidence.

Privacy Evaluation

Detectors DS and DD support Mdd
.p in the dimension data 

( dd ). They analyze the executable file (executable-
file with score= 1 ) and system-level performance metrics 
(system-performance with score= 1 ), respectively. 
Evidence collection was successfull: both scores equal 1, 
hence below the threshold tpr in Mdd

.F  . The output of evalu-
ation function Mdd

.F  is ✓ for the two detectors.

Detector DH does not support Mdd
.p . DH needs to (i) 

monitor running processes to collect the system call n-grams 
(syscall with score= 2 ), which requires administrator-
level permissions (score increased by 1); and (ii) analyze 
executable files (executable-file with score= 1)

Evidence collection was unsuccessfull: the sum of the 
scores is 4, hence above tpr . The output of evaluation func-
tion Mdd

.F  is ✗.

Finally, F′ aggregates the output of Mdd
.F  (✓ for DS and 

DD, ✗ for DH). According to F′ = Mdd
.F  ∨ Mdp

.F  ∨ 
Mdm

.F  in Sect. “Certification in a Nutshell”, the output is 
✓ for the first two detectors, ✗ for the last one. Certificates 
CDS , CDD are awarded to DS and DD  respectively. Each cer-
tificate is defined as ⟨ Mdd

, {score= 1 } ⟩ , where Mdd
 is the 

certification model defined for each detector and {score= 1 } 
is the evidence collected.

Robustness Evaluation

All detectors DS, DD, and DH do not support Mdp
.p in the 

dimension process ( dp ). They do not use adversarial training 
or any other strengthening techniques. The evidence collec-
tion was unsuccessful, and the result of the evaluation func-
tion Mdp

.F  is ✗ for all detectors.
Detectors DS and DH do not support Mdm

.p in the dimen-
sion model ( dm ). For what concerns DS, the evasion attack 
implemented in A perturbs the section DOS header of the 
malware executable files [17]. The attack preserves the mal-
ware functionality, because the target section is ignored by 
the operating system but strongly influences classification. 
Evidence collection was unsuccessful: the ratio of misclas-
sified malware data points was 52∕60 = 0.87 [17], hence 
above the threshold tr in Mdm

.F  . For what concerns DH, the 
evasion attack implemented in A perturbs both static (strings 
in the executable file) and dynamic (observed system calls 
as n-gram) features. The first feature is perturbed by add-
ing new strings without changing the functionalities of the 
executable file [21, 44]. The second feature is perturbed 
similarly, adding system calls to the executable file without 
changing the overall functionality [44]. Evidence collection 
was unsuccessful: the ratio of misclassified malware data 
points was 0.82 [44], therefore above tr . Finally, DD sup-
ports Mdm

.p in the dimension model ( dm ), since collected 
evidence (see Sect. “Lightweight Malware Detection”) sup-
ports the claim that Mdm

.p is input-dependent.
Our experiments also collected evidence mounting an 

evasion attack against post-processed data points used in 
DD. The attack implemented in A perturbs the extracted 
features (i.e., system-level performance metrics) using fast 
gradient sign method (FGSM) [20]. According to FGSM, 
features are perturbed maximizing the ML model loss; � 

https://doi.org/10.13130/RD_UNIMI/5VTJCC
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bounds the largest perturbation applicable to a feature. For 
example, � = 0.7 means that the value of any features changes 
of ± 0.7 at most. Recalling that the feature values range in 
our case in [0,  1], � varies in {0.01, 0.1} step 0.01 and {0.2, 
0.9} step 0.1, to maximize diversity. Figure 7 shows the ratio 
of misclassified data points varying � . We can observe that 
the ratio of misclassified malware data points in the worst 
case of � ∈ {0.09, 0.1,  0.2} was 1.

Therefore, the output of the evaluation function Mdm
.F  

is ✗ for DS and DH is ✗, ✓ for DD.
Finally, F′ aggregates the output of Mdp

.F  (✗) and 
Mdm

.F  (✗ for DS and DH, ✓for DD). According to F′ = 
Mdd

.F  ∨ Mdp
.F  ∨ Mdm

.F  in Sect. “Certification in a Nut-
shell”, the output is ✗ for DS and DH and a certificate cannot 
be released. On the contrary, the output is ✓ for DD and a 
certificate is released. The certificate is defined as ⟨ { Mdp

, 
Mdm

 }, inspection results⟩ , where { Mdp
, Mdm

 } are the cer-
tification models defined for DD and inspection results is the 
collected evidence.

Discussion

Four main findings emerge from the analysis in this paper. 

F1	� Data representation can positively influence detec-
tion quality. Our results show that the high detection 
performance achieved by DS, DD, and DH, can lie in 
the way data are represented and features extracted. 
Static detector DS was a pioneer in deep learning-
based malware detection, showing that a high AUC 
(0.9981, the highest among the approaches considered 
in this paper) can be achieved without manual feature 
extraction. However, Anderson et al. [8] showed that 
shallow learning can be better: a LightGBM model 
achieved AUC​= 0.9991 , with no fine-tuning but care-
fully extracted features on the same dataset of DS. Our 
dynamic approach (DD) sets a new bar for dynamic, 
lightweight malware detection (ACC​= 0.9975 ). Other 
approaches achieved lower results with simpler ML 
models and data representations. For instance, Milo-
sevic et al. [34] considered a larger set of process-level 
features related to the behavior of individual Android 
apps (e.g., total CPU usage, number of page faults), 
modeled as individual samples rather than as time-
series. A logistic regression achieved ACC = 0.86 in 
the best case. Abdelsalam et al. [2] considered set of 
features similar to the ones in DD, but retrieved at 
process-level and in individual samples. A Convolu-
tional Neural Network (CNN) achieved ACC ≈ 0.97 in 
the base case. Virtually the same set of features was 

considered in [1] for anomaly detection, achieving 
accuracy ≥ 0.9 using k-means-based clustering. Finally, 
when considering hybrid malware detection, the high-
est accuracy (0.9694) was achieved when static and 
dynamic features were jointly considered, as discussed 
in Sect. “Accuracy Evaluation”.

F2	� Data preparation increases detection quality more than 
in-depth data collection. DS and DD, both relying on 
easily accessible data and thus supporting property pri-
vacy, achieved the highest detection quality. By con-
trast, DH requires more data and higher permissions 
for data collection, not supporting property privacy. 
This result suggests that malware can be detected with 
high quality by favoring data preparation over in-depth 
data collection.

F3	� Malware detectors do not support real-world adver-
sarial environments. The lack of support of property 
robustness means that the considered detectors can-
not safely operate in an adversarial environment. For 
what concerns DS, an attacker can purposefully mod-
ify a legacy portion of the executable file that does 
not affect the functionality of the malware to mislead 
DS. This scenario also applies to DH, since both sys-
tem calls and strings are perturbed in a functional-
ity-preserving manner. Instead, attacks against DD 
can either perturb (i) collected data points or (ii) the 
malware executable file. While attack (i) assumes 
full control of the system and is then inapplicable, 
attack (ii) is challenging, because the attacker should 
modify the malware executable file to affect system-
wide performance metrics and escape classification. 
Recalling Sect. “Property Robustness”, both these 
scenarios introduce input-dependent robustness (i.e., 
“by design”). The survey by Ling et al. [29] discusses 
the issue of real-world evasion attacks in malware 
detection.

F4	� Certification models give precise information on the 
conditions under which the properties have been eval-
uated. Understanding the precise conditions under 

Table 4   Additional metrics for 
DD

Metric Value

AUC​ 0.9975
Accuracy 0.9975
Recall 0.9973
Precision 0.9977
F1 0.9975
Specificity 0.9976
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which the properties have been evaluated is funda-
mental for sound decision-making. According to the 
retrieved certification results, users may opt for a math-
ematically proven robust malware detector (e.g., [24, 

44, 45]). Following F3, users can choose DD knowing 
that evasion attacks against it might be difficult in prac-
tice. Finally, users willing to give full access to their 
system might also choose DH.

Fig. 7   Ratio of malware data points classified as benign in DD, out of 100 perturbed malware data points, with � 0.9 (a) and � ≥ 0.9 (b)

Table 5   Certification results

- means that such data are not available; numbers between brackets in Table 5(b) indicate the privacy score according to Sect. “Property Privacy”

(a) Property accuracy—dimension dm

Appl. Collected evidence Result

DS[8, 41] AUC = 0.99821, ACC =- ✓
DD[11] AUC = 0.9975, ACC = 0.9975 ✓
DH[44] AUC​= -, ACC = 0.9694 ✓

(b) Property privacy—dimension dd

 Appl. Collected evidence Result

DS[8, 41] Input space= { executable-file (1)} ✓
DD[11] Input space= { system-performance (1)} ✓
DH[44] Input space= { executable-file (1), syscall (2+requires admin)} ✗

(c) Property robustness—dimension dp

 Appl. Collected evidence Result

DS[8, 41] Adv. training not used ✗
DD[11] Adv. training not used ✓
DH[44] Adv. training not used ✗

(d) Property robustness—dimension dm

 Appl. Collected evidence Result

DS[8, 41] 87% perturbed malware misclassified ✗
DD[11] The ML model requires data whose perturbation necessitates complete control of 

the victim system
✗

DH[44] 82% perturbed malware misclassified ✗
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From the above findings, we conclude that in an adver-
sarial environment, using simpler ML models with carefully 
selected features can lead to better results in malware detec-
tion performance and privacy. The latter can also facilitate 
the usage of robustness techniques due to the simplicity of 
both the training process and the model (e.g., low training 
time). We finally conclude that certification is fundamental 
to reliably evaluate and distribute ML-based applications 
following AI Act prescriptions.

Related Work

We extend the discussion in Sect. “Motivations”, providing 
a complete overview of ML-based malware detectors clas-
sified according to the type of analysis (i.e., static, dynamic, 
and hybrid) and the considered features.

Static analysis. Static analysis approaches consider fea-
tures extracted from executable files. Frequently, API/system 
calls and assembly instructions are considered. For example, 
Hardy et al. [22] focused on Windows API calls. Each data 
point represents an executable file, whose features are the 
one-hot encoded API calls found in the file. The accuracy 
recovered according to a stacked Autoencoder is ≈ 0.97 . Kan 
et al. [26] considered the instructions found in the assembly 
code recovered from the executable file. Similar instructions 
are grouped to reduce the dimensionality of the input space. 
The accuracy retrieved according to a CNN (convolutional 
neural network) is ≈ 0.99 at most.

Control-flow graphs can also be extracted from the exe-
cutable file. For example, Ma et al. [31] focused on Android 
malware. Three sets of features are extracted from the con-
trol-flow of each app. The first set is the invoked Android 
API calls, fed to a decision tree; the second set is the number 
of times each API is invoked, fed to a deep neural network 
(DNN); the third set is the ordered sequence of invoked 
APIs, fed to an LSTM model. The output of the three clas-
sifiers is combined by using soft voting, achieving F1-score 
≈ 0.99 . Herath et al. [23] fully exploited control-flow graphs. 
Nodes in the graph represent individual code blocks, edges 
the execution flow, and attributes data on the block opera-
tions. The graph is fed to a graph-native ML model (Deep 
Graph CNN), achieving recall 1 at most.

Non-traditional features have also been proposed. For 
instance, Kolter et al. [27] converted executable files into a 
hexadecimal representation and retrieved sequences of four-
bytes n-grams. The top-500 most informative n-grams are 
selected for training and fed to different shallow learning 
models. The AUC recovered (area under curve) is ≈ 0.99 at 
most, according to the AdaBoost decision tree.

Based on the seminal work of Nataraj et al. [36], image 
representations have been used. Each data point represents 
the bytes of the executable files as pixels in a gray-scale 

image. Texture-based features are then extracted and clas-
sified using k-nearest neighbors (kNN). The retrieved accu-
racy in distinguishing between malware families is ≈ 0.99 . 
Kalash et al. [25] and Ahmed et al. [3] fed this gray-scale 
representation to a CNN, achieving accuracy ≥ 0.97 in the 
aforementioned task. Yan et al. [50] used three sets of static 
features retrieved from executable files. The first set is a 
gray-scale image representation, fed to a CNN; the second 
are the assembly instructions sequences, fed to an LSTM 
model; the third are the characteristics of the executable file 
itself. The output of two classifiers and the third feature set 
is stacked on a logistic regression model, achieving accuracy 
≈ 0.99 . Darwaish et al. [16] represented static features as 
an RGB image, using a specific pre-processing that sepa-
rates benign and suspicious features into different channels. 
Images are fed to CNN achieving accuracy ≈ 0.99 . The pro-
posed approach also exhibits high empirical robustness.

Dynamic analysis. Dynamic analysis approaches con-
sider features extracted from the system and its processes. 
Rieck et al. [43] introduced q-grams. They are a compact 
representation of observed system calls and their param-
eters, retrieved over q-sized sliding windows. q-grams are 
then one-hot encoded, and their dimensionality is reduced 
to facilitate (incremental) comparison. The retrieved (modi-
fied) F1-score is ≈ 0.99 using a custom distance-based classi-
fier. Zemmari et al. [39] focused on Android malware. Each 
data point is a vector of the most discriminant system calls 
of an app. Each system call is represented according to its 
frequency. The AUC retrieved according to shallow learn-
ing models such as random and rotation forests is 1 at most. 
Dai et al. [15] considered three features sets referred to each 
process. The first set contains the sequence of observed sys-
tem calls, preprocessed using natural language processing 
techniques, the second set contains the values of hardware 
performance counters. These two features sets are fed to a 
gated recurrent unit (GRU) network. The third set contains 
the gray-scale image representation of the process memory 
dump. The output of the two classifiers is combined using 
soft voting, achieving accuracy ≈ 0.97 . Abdelsalam et al. [2] 
focused on process-level information to detect an infected 
VM in the cloud. Each data point corresponds to a VM at a 
given time instant, and is represented as a two-dimensional 
matrix. Each row refers to a process, each column to process 
data such as percentage of CPU usage, number of context 
switches, number of opened file descriptors. The accuracy 
retrieved according to a CNN is ≈ 0.97 at most.

Finally, there are other features and representations. For 
example, Fang et al. [47] proposed a peculiar black-white 
image representation of the observed system calls. Each data 
point refers to the observed system calls of Android apps, 
transformed into images. A CNN achieved F1-score ≈ 0.98 
at most. Busch et al. [13] focused on network traffic, repre-
sented using a graph. It encodes network flow data, from 
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endpoints to packet-level data. Graphs are fed into a Graph 
NN, achieving recall ≈ 0.99.

Hybrid analysis. Hybrid analysis approaches consider 
both static and dynamic analyses. For example, Lu et al. [30] 
focused on Android malware. Static features refer to app 
data such as file entropy, permissions, and intents, fed into a 
deep belief network. Dynamic features refer to the sequence 
of invoked Android API calls fed into a GRU network. The 
output of the two classifiers is stacked on a NN, achiev-
ing precision ≈ 0.97 . Miller et al. [33] considered Windows 
malware. Static features refer to the content (e.g., imports, 
packer, etc.) and metadata (e.g., operating system version) 
of the executable file. Dynamic features refer to the n-grams 
of Windows API calls, paths of accessed files, requested IP 
addresses, to name but a few. The training dataset is labeled 
according to existing anti-malware tools and, upon dubious 
match, human experts. The detection rate retrieved accord-
ing to logistic regression is 0.89.

Conclusions

Real-world malware detection is an urgent need that has 
been investigated by the research community over the last 
decades. The approach in this paper started from the require-
ments in the AI Act and defined a lightweight malware 
detector that supports non-functional properties beyond 
vanilla accuracy, including privacy and robustness. Our 
detector relies on a limited amount of data that can be easily 
collected with low permissions without affecting the ability 
to distinguish legitimate behavior from malware. We dis-
cussed the importance of advancing detector verification to 
the next step, and introduced an ML certification scheme 
supporting the verification of the detector behavior accord-
ing to a large set of non-functional properties. Finally, we 
certified and compared the proposed approach with two mal-
ware detectors in the state of the art, showing that privacy 
and robustness can be supported with low impact on detector 
accuracy.
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