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ABSTRACT
We propose a new algorithm for solving a class of linear-quadratic network games
with strategic complements and bounded strategies. The algorithm is based on the
sequential solution of linear systems of equations and we prove that it finds the
exact Nash equilibrium of the game after a finite number of iterations. The new
algorithm is then applied to a social network model of juvenile delinquency which
has been investigated recently where we also consider random perturbations of some
data. Experimental results show the efficiency of the algorithm in solving large scale
problems.
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1. Introduction

Network games are a class of games put forward to model social and economic in-
teractions among various agents whose connections are described with the help of
graph-theoretical notions (see, e.g., [2, 3, 18]).

In our work we follow the approach by Ballester et al. [1], where agents (players)
are identified with the nodes of a graph and can interact only with their neighbors,
i.e., with the players directly connected through an arc. A characteristic of this kind of
games is that the adjacency matrix of the underlying graph plays a central role in the
utility functions of players. Moreover, its spectral properties are crucial in the analysis
of the model. The authors of [1] find the Nash equilibrium of the game in the case
of an unbounded strategy space and, when solutions are strictly positive, express the
equilibrium using the so called Katz-Bonacich centrality measure [9]. In the last fifteen
years this framework has been applied to describe a great variety of social and economic
models and the interested readers can refer, for instance, to the nice survey [22], to get
an idea of the scope of this approach. It is worth noticing that most of the papers on
network games deal with models where the solution is interior to the feasible region

This paper has been published in Optimization Methods and Software (2023), DOI:
10.1080/10556788.2023.2205644.

CONTACT M. Passacantando. Email: mauro.passacantando@unimib.it



and can be expressed in closed form. Moreover, although the connection between Nash
equilibrium and variational inequalities is a well known fact and dates to the paper [19],
the variational inequality theory has been applied to network games only recently. In
this respect, a relevant paper is [33], where the authors make a thorough investigation
of uniqueness and stability of the Nash equilibrium, with particular emphasis on its
connection with the spectral properties of the adjacency matrix of the graph. Another
extension of the original model has been proposed in [34], where the authors consider
a generalized Nash equilibrium problem on a graph and extend the Katz-Bonacich
formula to the new problem. The variational inequality approach has been further
used in [35] to derive a Katz-Bonacich formula in the case of a bounded strategy space
and to study the price of anarchy related to a class of network games.

In this paper, we consider a class of network games with a bounded strategy space,
where the generic player is influenced by her/his neighbors through a term which pos-
itively influences her/his action (which is called a strategic complement in the related
literature). We specify that our model is based on a slight modification of the linear-
quadratic utility function considered in [1], but the introduction of upper bounds in
the strategy space of players invalidates the possibility of obtaining closed-form solu-
tions thus requiring a numerical approach. Within this framework, several methods
to find Nash equilibria exist in the literature, e.g., the potential-based approach [28],
best-response methods [39, 40], variational inequality-based methods [13], and meth-
ods based on projected dynamical systems [37]. In this paper we propose a new ad-hoc
algorithm for finding Nash equilibria, which is based on the sequential solution of
linear systems of equations. We will show that this algorithm has both good conver-
gence properties (it allows to find the unique Nash equilibrium in a finite number of
iterations) and good computational performance in solving large scale problems.

We then consider an application to a social network model of juvenile delinquency
which was originally proposed in [10] and has been further investigated in the very re-
cent paper [25], where a statistical analysis of experimental data has been performed to
validate the model. Given that not all of the data are accessible to the econometrician,
we also introduce a random perturbation term to take into account this uncertainty.
This application is thus studied within the framework of stochastic variational in-
equalities, a theory that has been developed in the last fifteen years and has been
successfully applied to a variety of equilibrium problems (see, e.g., [16, 23, 36, 41, 42]).
We also perform a key player analysis under random perturbation, to identify the
players who contribute the most to the equilibrium aggregate.

Finally, we perform a series of numerical experiments to show the usefulness and
the advantages of using our solution approach to find stochastic Nash equilibria for the
considered network game model of delinquency. Specifically, we compare our approach
with both the potential-based approach and best-response methods. Numerical results
show that our approach outperforms the other methods especially for solving large
scale problems.

The rest of the paper is organized as follows. The following Section 2 consists of three
subsections: In Section 2.1 we outline the approach in the seminal paper by Rosen [37]
and provide his proof of uniqueness which is not based on the variational inequality
formulation. We also remark that the results by Rosen have been reformulated only
in recent times within the framework of variational inequalities, and point out the
advantages of the new formulation. In Section 2.2, we recall the variational inequality
problem and its connection with Nash equilibrium problems. We also provide some
useful concepts of monotonicity: the strict monotonicity, which is equivalent to Rosen’s
strict diagonal concavity, and the strong monotonicity which is useful in the case of
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unbounded action sets. Section 2.3 is devoted to illustrate the specific model and
also to provide some basic definitions and properties of potential games, because our
problem falls in this class.

Section 3 is devoted to the description and the convergence proof of our algorithm.
In Section 4, we first recall the model investigated in [25] and modify it by introducing
upper bounds on the strategy space and a random perturbation term, then we provide
its stochastic variational inequality formulation. Section 5 is devoted to numerical
experiments. First, we show the convergence of the approximated mean values of the
Nash equilibrium and equilibrium aggregate to find the key player on a small size
network. Next, we show the efficiency and scalability of the numerical approximation
procedure coupled with our algorithm to approximate the stochastic Nash equilibrium
and the stochastic key player on a set of randomly generated instances with medium-
large size.

2. Network games

2.1. Basic notations and game formulation

In network games players are represented by the nodes of a graph (V,E), where V
is the set of nodes and E is the set of arcs formed by pairs of nodes (v, w). Here,
we consider undirected simple graphs, where arcs (v, w) and (w, v) are the same, and
there are neither multiple arcs connecting the same pair of nodes, nor loops. Two
nodes v and w are said to be adjacent if they are connected by an arc, i.e., if (v, w) is
an arc. The information about the adjacency of nodes can be stored in the adjacency
matrix G whose elements gij are equal to 1 if (vi, vj) is an arc, 0 otherwise. G is thus
a symmetric and zero-diagonal matrix. Given a node v, the nodes connected to v with
an arc are called the neighbors of v. In this context, a walk in the graph is a finite
sequence of successive nodes, of the form vi0 , vi1 , . . . , vjk , The length of a walk is the
number of its arcs. Let us remark that it is allowed to visit a node or go through an
arc more than once. The indirect connections between any two nodes in the graph are
described by means of the powers of the adjacency matrix G. Indeed, it can be proved

that the element g
[k]
ij of Gk gives the number of walks of length k between vi and vj

(see, e.g., [4, Theorem 4.1]).
In the sequel, the set of players will be denoted by {1, 2, . . . , n} instead of

{v1, v2, . . . , vn}. We denote with Ai ⊂ Rmi the action space of player i, while
A = A1 × · · · × An is called the space of action profiles. For each a = (a1, . . . , an) ,
a−i = (a1, . . . , ai−1, ai+1, . . . , an) and the notation a = (ai, a−i) will be used when we
want to distinguish the action of player i from the action of all the other players. Each
player i is endowed with a payoff function ui : A → R that she/he wishes to maximize.
The notation ui(a,G) is often utilized when one wants to emphasize that the utility
of player i also depends on the actions taken by her/his neighbors in the graph.

The solution concept that we consider here is the Nash equilibrium of the game,
that is, we seek an element a∗ ∈ A such that for each i ∈ {1, . . . , n}:

ui(a
∗
i , a

∗
−i) ≥ ui(ai, a

∗
−i), ∀ ai ∈ Ai. (1)

A standard set of hypotheses which guarantee the existence of a Nash equilibrium
(and which apply to our specific problem) are:

• ui : A → R is continuous, for any i ∈ {1, . . . , n};
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• ui(·, a−i) is concave in the variable ai, for each a−i ∈ A−i and i ∈ {1, . . . , n};
• Ai is compact and convex, for each i ∈ {1, . . . , n}.

For the uniqueness of a Nash equilibrium we report here a theorem due to Rosen [37].
In his seminal paper Rosen also considered the more general case where the con-
straints of the different players are coupled, which goes beyond the framework of
our work. However, for the sake of generality, and for possible further extensions, we
keep the general notation of [37] for the individual constraints of players. Thus, let
Ai ⊂ Rmi , m1+. . .+mn = m. Specifically, each set Ai is described by a vector function
hi : Rmi → Rki such that its components hij : Rmi → R, j = 1, . . . , ki, are concave
functions of ai. We thus have:

Ai = {ai ∈ Rmi : hij(ai) ≥ 0, j = 1, . . . , ki} i = 1, . . . , n.

In order to apply the KKT conditions to the maximum problems defined in (1), we will
further assume that, for each i = 1, . . . , n, hi ∈ C1(Rmi) and ui has continuous partial
derivatives with respect to the components of ai. Moreover, for any scalar function
φ : Rm1 × · · · × Rmn → R, the symbol ∇iφ(a) will denote the partial gradient of φ
with respect to ai ∈ Rmi . Moreover, we will assume that some constraint qualification
holds (see Theorem 2.2 below).

Let us now define, for each r ∈ Rn
+, the weighted sum of the utility functions:

σ(a, r) =

n∑
i=1

riui(a),

and consider, for r fixed, the map g(a, r) : Rm → Rm given by:

g(a, r) = [r1∇1u1(a)
⊤, r2∇2u2(a)

⊤, . . . , rn∇nun(a)
⊤]⊤, (2)

which is called the pseudogradient of σ (or also the pseudogradient of the game).

Definition 2.1. For a fixed r ≥ 0, the function σ(a, r) is called diagonally strictly
concave on A if, for each a0, a1 ∈ A with a0 ̸= a1, we have:

(a1 − a0)⊤g(a0, r) + (a0 − a1)⊤g(a1, r) > 0.

Remark 1. The above inequality can also be written as

(a1 − a0)⊤[−g(a1, r)− (−g(a0, r))] > 0,

which in the language of monotone operator theory expresses the strict monotonicity of
−g (see Section 2.2 on variational inequalities below). Moreover, it is well known that
the strict monotonicity of −g holds if the matrix Jag(a, r) + Jag(a, r)

⊤ is negative
definite in A, where Jag(a, r) is the Jacobian matrix of g with respect to a (see,
e.g., [30]).

We now provide the uniqueness theorem of the Nash equilibrium (Theorem 2 of [37]).
We point out that this classical result, along with the other results in Rosen’s paper,
have been reformulated in recent times in the framework of variational inequality
theory (see, e.g., [14, 17, 29]) and monotone operator theory. This new approach
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allows for a more concise and elegant formulation and, above all, gives access to a
large number of numerical algorithms.

Theorem 2.2. Let ui and hi satisfy the differentiability and concavity assumptions
above and let σ(r, a) be diagonally strictly concave for some r̄ > 0. Moreover, as-
sume that the following constraint qualification holds: for each i ∈ {1, . . . , n} it exists
x̄i ∈ Rmi such that hij(x̄i) > 0 for any j = 1, . . . , ki. Then, there is a unique Nash
equilibrium which solves (1).

2.2. Variational inequality formulation

Given a closed and convex set K ⊂ Rn and a map F : K → Rn, the variational
inequality problem V I(F,K) consists of looking for an element x∗ ∈ K such that

F (x∗)⊤(x− x∗) ≥ 0, ∀ x ∈ K.

The inequality above can also be written as:

F (x∗)⊤x∗ ≤ F (x∗)⊤x, ∀ x ∈ K,

which can be thought of as a minimum problem for the linear function F (x∗)⊤x.
Although this minimum problem assumes the a priori knowledge of x∗, when the set
K is described by inequality and/or equality constraints, it allows to associate with
the variational inequality suitable KKT conditions. Specifically, if

K = {x ∈ Rn : h(x) ≤ 0},

where h : Rn → Rl and each hj , j = 1, . . . , l, is continuously differentiable and convex
and some constraint qualification holds, the variational inequality is equivalent to the
following KKT conditions (see Proposition 1.3.4 in [13] for more details):

h(x∗) ≤ 0, (3)

∀ j = 1, . . . , l ∃ µj ≥ 0 : µjhj(x
∗) = 0, (4)

F (x∗) +

l∑
j=1

µj∇hj(x
∗) = 0. (5)

For the subsequent development it is important to recall that if the ui are continuously
differentiable functions on A, and each u(·, a−i) is concave in the variable ai for each
a−i, the Nash equilibrium problem is equivalent to the variational inequality V I(F,A):
find a∗ ∈ A such that

F (a∗)⊤(a− a∗) ≥ 0, ∀ a ∈ A, (6)

where

[F (a)]⊤ := − [∇1u1(a), . . . ,∇nun(a)] (7)

is the opposite of the pseudogradient of the game, obtained for r = (1, . . . , 1). For an
account of variational inequalities the interested reader can refer to [13, 24, 30]. We
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recall here some useful monotonicity properties.

Definition 2.3. A map T : Rn → Rn is said to be monotone on A iff:

[T (x)− T (y)]⊤(x− y) ≥ 0, ∀ x, y ∈ A.

T is said to be strictly monotone on A if the equality holds only when x = y.
T is said to be β-strongly monotone on A iff there exists β > 0 such that

[T (x)− T (y)]⊤(x− y) ≥ β∥x− y∥2, ∀ x, y ∈ A.

For affine operators on Rn the two concepts of strict and strong monotonicity co-
incide and are equivalent to the positive definiteness of the corresponding jacobian
matrix.

Conditions that ensure the unique solvability of a variational inequality problem
are given by the following theorem (see, e.g., [30]).

Theorem 2.4. If K ⊂ Rn is a compact convex set and T : Rn → Rn is continuous
on K, then the variational inequality problem V I(T,K) admits at least one solution.
In the case that K is unbounded, the existence of a solution may be established under
the following coercivity condition:

lim
∥x∥→+∞

[T (x)− T (x0)]
⊤(x− x0)

∥x− x0∥
= +∞, (8)

for x ∈ K and some x0 ∈ K. Furthermore, if T is strictly monotone on K the solution
is unique.

Remark 2. A sufficient condition for the coercivity condition (8) is the strong mono-
tonicity of T . Hence, in the case of an unbounded set and of a nonlinear operator the
continuity and strong monotonicity of T ensure solvability of V I(T,K).

In the following subsection, we describe in detail a specific class of games to which
our algorithm applies.

2.3. The linear-quadratic model with strategic complements and bounded
strategies

In the following, we consider a network game where the action space Ai = [0, Li] for
any i ∈ {1, . . . , n}, hence A = [0, L1]× · · · × [0, Ln], and the payoff function of player
i is given by:

ui(a,G) = −1

2
a2i + αiai + ϕ

n∑
j=1

gijaiaj , αi, ϕ > 0. (9)

We now remark that with the utility functions defined above, our game has the prop-
erty of strategic complements, according to the following definition.
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Definition 2.5. The network game has the property of strategic complements if

∂2ui
∂aj∂ai

(a) > 0, ∀(i, j) : gij = 1, ∀ a ∈ A.

Let us observe that when any two players i and j are directly connected by an arc
(i.e., gij = 1), we get ∂2ui

∂aj∂ai
(a) = ϕ > 0, hence our game has the property of strategic

complements according to Definition 2.5. In mathematical economics this property
has been formalized in the paper [6] in the framework of an oligopolistic market, and
further developed in [27] and [43]. The linear-quadratic model above specifically takes
into account the network structure of relationships. Thus, the marginal utility ∂ui

∂ai
of

player i increases when the actions of her neighbors increases. In network games the
linear-quadratic model with strategic complements, after the seminal paper [1], has
been applied by different authors to describe various socio-economics relationships. For
instance, in [11] the influence of peers on educational networks was studied extensively,
while in [21] the linear-quadratic model was used to investigate the interaction between
the social space (i.e., the network) and the geographic space (i.e., the city). The linear-
quadratic model has been further investigated in [7], with a particular focus on the
relationship between the centrality of players in the networks and the intensity of their
actions at equilibrium.

Moreover, we remark that this class of linear-quadratic network games is a specific
case of the 2-groups partitionable Cournot oligopoly models defined and analyzed
in [39, 40].

The opposite of the pseudogradient of this game is easily computed and give

Fi(a) = ai − αi − ϕ

n∑
j=1

gijaj , i = 1, . . . , n,

which can be written in compact form as

F (a) = (I − ϕG)a− α,

where α = (α1, . . . , αn)
⊤ ∈ Rn

+. We will seek Nash equilibrium points by solving the
variational inequality

F (a∗)⊤(a− a∗) ≥ 0, ∀ a ∈ A. (10)

To ensure uniqueness of the equilibrium we require F to be strictly monotone, a
condition that is ensured by the following lemma.

Lemma 2.6 (see, e.g., [22]). The matrix I − ϕG is positive definite iff ϕρ(G) < 1,
where ρ(G) is the spectral radius of G.

The following result guarantees the uniqueness of the Nash equilibrium.

Theorem 2.7. If ϕρ(G) < 1, then a unique Nash equilibrium exists.

Proof. Lemma 2.6 guarantees that the matrix (I − ϕG) is positive definite, thus the
mapping F (a) = (I−ϕG)a−α is strongly monotone and there exists a unique solution
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of the variational inequality (10) (see, e.g., [13]), which is the unique Nash equilibrium
of the game.

We remark that the class of linear-quadratic games with strategic complements is a
particular kind of potential games. The use of potential functions for games in strategic
form was introduced by Rosenthal [38] and developed by Monderer and Shapley in
their seminal paper [28]. Further generalizations can be found in [12, 15, 32]. We recall
here some basic facts about potential games (see, e.g., [28]).

Definition 2.8. A game in strategic form is called a potential game if it exists a
function P : A → R such that, for each i ∈ {1, . . . , n}, for all a−i ∈ A−i and for all
z ∈ Ai:

ui(ai, a−i)− ui(zi, a−i) = P (ai, a−i)− P (zi, a−i).

Lemma 2.9. Consider a potential game in strategic form. If the utility functions are
continuous and the strategy sets are compact, then there exists a Nash equilibrium of
the game.

Since we deal with differentiable games (and the strategy sets are intervals of real
numbers), the following characterization of a potential is very useful.

Lemma 2.10. Assume that ui(·, a−i) are continuously differentiable, for each
a−i ∈ A−i, and let P : A → R. Then P is a potential if and only if P is contin-
uously differentiable and

∂ui
∂ai

=
∂P

∂ai
, ∀ i ∈ {1, . . . , n}.

A very useful theorem is the following.

Theorem 2.11. Consider a game where the strategy sets are intervals of real numbers
and assume that the utility functions are twice continuously differentiable. Then the
game is a potential game if and only if:

∂2ui
∂ai∂aj

=
∂2uj
∂ai∂aj

, ∀ i, j ∈ {1, . . . , n}.

In this case, if z is an arbitrarily fixed strategy profile in A, then a potential is given
by:

P (a) =

n∑
i=1

∫ 1

0

∂ui
∂ai

(x(t)) (xi)′(t)dt

where x : [0, 1] → A is a piecewise continuously differentiable path in A that connects
z to a (i.e., x(0) = z, x(1) = a).

In our game, a potential function is given by

P (a,G, ϕ) =

n∑
i=1

ui(a,G)− ϕ

2

n∑
i=1

n∑
j=1

gijaiaj ,
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thus the pseudogradient of the game coincides with the gradient of the potential.
Monderer and Shapley have proved that, in general, the solutions of the optimization
problem

max
a∈A

P (a,G, ϕ) (11)

form a subset of the Nash equilibria. Because under the condition ϕρ(G) < 1 both
problems have a unique solution, it follows that the two problems share the same
solution.

3. A new solution algorithm with finite convergence

In the class of network games described in Section 2.3, the presence of upper bounds
in the strategy space of players implies that a closed-form Nash equilibrium can be
obtained only in the case of an interior solution. In general, Nash equilibria can have
some boundary components which cannot be analytically derived as in [1]. On the
other hand, there are several approaches in the literature to find Nash equilibria of
this class of games. Since we are dealing with potential games, a number of optimiza-
tion algorithms can be applied to solve the maximization problem (11). Moreover, since
the considered class of games is a specific case of the 2-groups partitionable Cournot
oligopoly models analyzed in [39, 40], the best-response method proposed in [40] is
guaranteed to be convergent in a finite number of iterations to an ε-approximate Nash
equilibrium. Then, if we exploit the variational inequality reformulation of the game,
then a number of algorithms can be used to solve the variational inequality (10) (see,
e.g., [13]). Finally, solution approaches based on projected dynamical systems can be
applied as well. In particular, the strict monotonicity assumption on the pseudogra-
dient of the game guarantees that the trajectories of suitable projected dynamical
systems converge to the Nash equilibrium (see, e.g., [31, 37]).

In this section, we propose a new ad-hoc algorithm to find the Nash equilibrium of
the considered network game that is different from the solution approaches mentioned
above. The algorithm, inspired by the approach for general VIs proposed in [26], is
based on the sequential solution of linear systems of equations. We will show in the
following that this algorithm has both good theoretical properties of convergence and
very good numerical performance. In fact, it allows to find the exact Nash equilibrium
after a finite number of iterations (see Theorem 3.1), it needs to solve a generally very
small number of linear systems and it is computationally efficient to solve large scale
problems, as the numerical results in Section 5.2 show.

We now describe the proposed method in detail (see Algorithm 1). At the first
iteration, the linear system providing the Nash equilibrium ā in the case of unbounded
strategy sets is solved (line 1). If the solution ā satisfies all the upper bound constraints
on the strategies, then the algorithm stops since ā is the Nash equilibrium of the game
(lines 2–3). Otherwise, the set of players is partitioned into two subsets: C0 = {i : āi >
Li} and U0 = {i : āi ≤ Li} (line 5). Then, a new linear system is solved, where the
variables ai with i ∈ U0 are free, while the variables ai with i ∈ C0 are set to ai = Li

(lines 8–9). Next, the sign of a suitable vector µ (that is part of the KKT multipliers
vector associated to the Nash equilibrium) is checked (line 10): if it is nonnegative,
the algorithm stops (line 12), otherwise the variables ai with i ∈ C0 corresponding
to negative components of µ becomes free in the next iteration (lines 14–17), and so
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on. Under the uniqueness condition of Lemma 2.6, we will prove that the algorithm
converges to the exact Nash equilibrium after a finite number of iterations.

In the following, we denote L = (L1, . . . , Ln)
⊤. Moreover, given any vector v ∈ Rn,

any matrix M ∈ Rn×n and two sets of indices S, T ⊆ {1, . . . , n}, we denote the
subvector vS = (vi)i∈S and the submatrix MST = (Mij)i∈S, j∈T .

Algorithm 1: Sequential resolution of linear systems

1 Solve the linear system (I − ϕG) ā = α
2 if āi ≤ Li for any i = 1, . . . , n then
3 STOP (ā is the Nash equilibrium)
4 else
5 set C0 := {i : āi > Li}, U0 := {i : āi ≤ Li} and k := 0
6 end
7 while true do
8 Solve the linear system (IUkUk

− ϕGUkUk
) zk = αUk

+ ϕGUkCk
LCk

9 Set aki :=

{
Li if i ∈ Ck

zki if i ∈ Uk
for any i = 1, . . . , n

10 Set µk := αCk
− (ICkCk

− ϕGCkCk
)LCk

+ ϕGCkUk
zk

11 if µk ≥ 0 then
12 STOP (ak is the Nash equilibrium)
13 else
14 set Nk := {i ∈ Ck : µk

i < 0}
15 set Ck+1 := Ck \Nk

16 set Uk+1 := Nk ∪ Uk

17 set k := k + 1

18 end

19 end

Theorem 3.1. If ϕρ(G) < 1, then Algorithm 1 finds the Nash equilibrium after a
finite number of iterations.

Proof. The assumption guarantees that there exists a unique Nash equilibrium a∗,
which is also the unique solution of the following KKT system:

(I − ϕG)a∗ − α+ λ− ν = 0, (12)

λi ≥ 0, a∗i ≤ Li, λi(a
∗
i − Li) = 0, i = 1, . . . , n, (13)

νi ≥ 0, a∗i ≥ 0, νia
∗
i = 0, i = 1, . . . , n, (14)

where λ and ν are the KKT multipliers related to a∗.
Since (I − ϕG) is a positive definite matrix, the linear system at line 1 admits a

unique solution ā.
Notice that the inverse matrix of (I − ϕG) is nonnegative since ϕ > 0, G ≥ 0 and

(I − ϕG)−1 =

∞∑
p=0

ϕpGp ≥ 0,
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hence ā = (I − ϕG)−1α ≥ 0. Hence, if ā ≤ L holds, then ā satisfies the KKT sys-
tem (12)–(14) with multipliers λ = ν = 0, that is ā is the Nash equilibrium. Therefore,
the stopping criterion at line 2 is correct.

Since G is nonnegative and GUkUk
is a principal submatrix of G, we have

ρ(GUkUk
) ≤ ρ(G) holds for any k ≥ 0 (see, e.g., [8, Corollary 2.1.6]). Hence, the

assumption ϕρ(G) < 1 also implies that the matrix (IUkUk
− ϕGUkUk

) is nonsingular,
and its inverse matrix is nonnegative since

(IUkUk
− ϕGUkUk

)−1 =

∞∑
p=0

ϕp(GUkUk
)p ≥ 0.

Therefore, the linear system at line 8 admits a unique solution.
We now prove by induction that the sequence {ak} generated by Algorithm 1 is

feasible.
Base case. Since the vector αUk

+ ϕGUkCk
LCk

and the matrix (IUkUk
− ϕGUkUk

)−1

are nonnegative, we get

zk = (IUkUk
− ϕGUkUk

)−1(αUk
+ ϕGUkCk

LCk
) ≥ 0,

thus ak ≥ 0 holds for any k ≥ 0. Moreover, the linear system (I − ϕG)ā = α can be
written as follows:(

IC0C0
− ϕGC0C0

−ϕGC0U0

−ϕGU0C0
IU0U0

− ϕGU0U0

)(
āC0

āU0

)
=

(
αC0

αU0

)
,

and LC0
< āC0

by definition, thus we have the following chain of equalities and in-
equalities:

a0U0
= z0 = (IU0U0

− ϕGU0U0
)−1(αU0

+ ϕGU0C0
LC0

)

≤ (IU0U0
− ϕGU0U0

)−1(αU0
+ ϕGU0C0

āC0
)

= āU0

≤ LU0
.

Since a0C0
= LC0

by definition, we get a0 ≤ L, thus a0 is feasible.

Induction step. Given any k ≥ 0, let us assume that ak is feasible and prove that
ak+1 is feasible as well. By definition of Nk we have µk

Nk
< 0. On the other hand, by

definition of µk, we have

µk
Nk

= αNk
− (INkCk

− ϕGNkCk
)LCk

+ ϕGNkUk
zk.

Since the set Ck is partitioned into the two subsets Nk and Ck+1, we can decompose
the vector LCk

as follows:

LCk
=

(
LNk

LCk+1

)
.

11



Since Nk and Ck+1 are disjoint subsets, the submatrix INkCk+1
is null, thus

(INkCk
− ϕGNkCk

)LCk
= (INkNk

− ϕGNkNk
)LNk

+ (INkCk+1
− ϕGNkCk+1

)LCk+1

= (INkNk
− ϕGNkNk

)LNk
− ϕGNkCk+1

LCk+1
.

Hence, we get

0 > µk
Nk

= αNk
− (INkCk

− ϕGNkCk
)LCk

+ ϕGNkUk
zk

= αNk
− (INkNk

− ϕGNkNk
)LNk

+ ϕGNkCk+1
LCk+1

+ ϕGNkUk
zk.

Since the set Uk+1 is partitioned into the two subsets Nk and Uk, we have

(IUk+1Uk+1
− ϕGUk+1Uk+1

)

(
LNk

zk

)
=

(
INkNk

− ϕGNkNk
−ϕGNkUk

−ϕGUkNk
IUkUk

− ϕGUkUk

)(
LNk

zk

)
=

(
αNk

αUk

)
+

(
ϕGNkCk+1

ϕGUkCk+1

)
LCk+1

−
(

µk
Nk

0

)
≥

(
αNk

αUk

)
+

(
ϕGNkCk+1

ϕGUkCk+1

)
LCk+1

= αUk+1
+ ϕGUk+1Ck+1

LCk+1
.

Since the matrix (IUk+1Uk+1
− ϕGUk+1Uk+1

)−1 is nonnegative, we get(
LNk

zk

)
≥ (IUk+1Uk+1

− ϕGUk+1Uk+1
)−1

[
αUk+1

+ ϕGUk+1Ck+1
LCk+1

]
= zk+1.

Since ak is feasible by induction hypothesis, we have

ak+1
Uk+1

= zk+1 ≤
(

LNk

zk

)
=

(
LNk

akUk

)
≤

(
LNk

LUk

)
= LUk+1

,

hence ak+1 ≤ L, i.e., ak+1 is feasible. Since the cardinality of the set Ck is decreasing
at each iteration, the condition µk ≥ 0 at line 11 has to be satisfied after a finite
number of iterations, before the set Ck becomes empty. In fact, if Ck+1 = ∅, then
Uk+1 = {1, . . . , n} and the feasible solution zk+1 should coincide with the unfeasible
vector ā, which is impossible.

When µk ≥ 0 holds, the vector ak is the Nash equilibrium since it solves the KKT
system (12)–(14) with multipliers λ and ν defined as follows:

λi =

{
µk
i if i ∈ Ck,

0 if i ∈ Uk,
ν = 0.

12



In fact, we have:

(I − ϕG)ak =

(
ICkCk

− ϕGCkCk
−ϕGCkUk

−ϕGUkCk
IUkUk

− ϕGUkUk

)(
LCk

zk

)
=

(
αCk

− µk

αUk

)
= α− λ+ ν,

hence equation (12) holds. Moreover, ak is feasible, λ ≥ 0 and λ⊤(ak −L) = 0 hold by
definition, thus conditions (13)–(14) hold as well. This concludes the proof.

4. A network-game model of delinquency

We now present a model which has been used recently to describe a network of juvenile
delinquency in the United States. This model is inspired to the quantitative economic
approach to crime introduced in [5] and, along the same lines as in [10], introduces
network effects in the utility function assigned to each player (which represents a young
person involved in criminal activities). It has been used in the very recent paper [25]
as the microeconomic starting point for a statistical analysis of survey collected data
on the social environment of students in grades 7-12 from 130 schools in the United
States. The form of the utility functions in [25] belongs to the class (9) considered in
Section 2.3 for which our algorithm is designed and we also introduce an upper bound
on the actions of the players, to be more realistic. We remark that the introduction of
upper bounds on the actions makes it impossible to find the Nash equilibrium in closed
form. It is thus of paramount importance to use an efficient algorithm to numerically
solve the problem under consideration. This is particularly true in our model because
we also consider random perturbations which, due to discretization of the random
variables involved, will yield to a large number of subproblems.

Moreover, the authors of [25] also perform a key player analysis aimed at identifying
the criminal that mostly contribute to raise the aggregate level of delinquency in the
network. More precisely, the key player of a network game where each action space
Ai ⊂ R is defined as follows.

Definition 4.1. Let a∗(G\{i}) be the Nash equilibrium of the game where player i is
removed from the network and Si :=

∑
j ̸=i a

∗
j (G \ {i}) the corresponding equilibrium

aggregate. A key player of the game is a player k such that

Sk = min
i=1,...,n

Si,

that is, after its removal from the network, the new equilibrium aggregate is the
minimum possible with respect to all possible removals of one player.

Some comments are in order. In general, a key player is not necessarily one whose
action at equilibrium is maximum with respect to the other players’ actions. Indeed,
the contribution of a given player to the aggregate can also be indirect so that a
“weaker” player can contribute more than others to increase the equilibrium actions
of her/his neighbors (see Example 5.1 below). Moreover, the use of the centrality
measure based on the Katz-Bonacich vector pioneered in [1] can be exploited to find
the key player only in the case of an interior solution. As for the network game model
of juvenile delinquents, targeting and isolating a key player corresponds to the best
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possible reduction of the overall criminal activity of the network. As already pointed
out in [10], this is a policy which will be effective until the network has reorganized,
i.e., until players have established new connections among themselves.

Given a network of n players, we assume the action ai ∈ [0, Li] of each player i
represents her/his effort in delinquent activities. The utility function of each player
which was proposed in [25] is:

ui(a) =

πi + ϕ

n∑
j=1

gijaj

 ai −
(
pai +

1

2
a2i

)
. (15)

The term πi represents the specific ability of player i in criminal activities and can be
partially estimated with the help of statistical analysis of data. To take into account
the contributions which are not observable to the econometrician, we model πi as the
sum of a deterministic term βi and a random perturbation γir, where γi is a fixed
number and r is a random variable following a given distribution:

πi = βi + γir. (16)

The term ϕ
∑n

j=1 gijaj in the marginal payoff of the utility function has the following

interpretation: an agent can improve her/his utility directly if her/his neighbors are
acting with her/him in the same delinquent activity. She/he can also have indirect
benefits acquiring knowledge or useful skills from her/his neighbors, even if they are
not engaged in the same criminal activity. The cost part of (15) consists of two terms:
the cost pai of being caught, which is assumed to be increasing with the action level
ai, and the direct cost of criminal activity, given by 1

2a
2
i . The utility function can then

be re-written as:

ui(r, a) = −1

2
ai

2 + (βi + γir − p)ai + ϕ

n∑
j=1

gijajai. (17)

Due to the presence of the random variable r, we now look for a Nash equilibrium
random vector a∗ : r 7→ a∗(r) ∈ Rn such that, for each i ∈ {1, . . . , n}, a∗i (r) ∈ [0, Li]
and

ui(r, a
∗
i (r), a

∗
−i(r)) ≥ ui(r, ai, a

∗
−i(r)), ∀ ai ∈ Ai. (18)

In the above formula, it is enough to require the inequality to be satisfied up to
a negligible set, with respect to the probability measure P according to which r is
distributed, that is P -almost surely, in the language of Probability. As a consequence,
the opposite of the pseudogradient of the game is the map F : (r, a) 7→ F (r, a) ∈ Rn

given by:

Fi(r, a) = ai − βi − γir + p− ϕ

n∑
j=1

gijaj . (19)

The Nash equilibrium can then be computed by solving the variational inequality
corresponding to the operator above and to the set A = [0, L1]× · · · × [0, Ln]: for each

14



r ∈ R, find a∗(r) ∈ A such that for each a ∈ A we have:

n∑
i=1

[a∗i (r)− ϕ

n∑
j=1

gija
∗
j (r)] [ai − a∗i (r)] ≥

n∑
i=1

[βi + γir − p] [ai − a∗i (r)]. (20)

The above variational inequality is known in the literature as a stochastic (or also
random) variational inequality. Several methodologies and solution concepts have been
proposed in the last fifteen years and the interested reader can refer to the references
given in the introduction and to the recent monograph [20] for a comprehensive
treatment of the subject. Here, we only mention that to compute the expected value
of the Nash equilibrium a∗(r) with respect to the probability measure P , we follow
the so-called L2 approach which consists of considering an integral version of (20). To
this end, we introduce the space L2(R, P,Rn) of the vector-valued functions, defined
on R, which possess finite first and second moments with respect to the probability
measure P . It is thus well-posed the following problem:

Find a∗ ∈ L2(R, P,Rn) such that for all the functions a ∈ L2(R, P,Rn) with
0 ≤ ai(r) ≤ Li, P -almost surely:∫ +∞

−∞

n∑
i=1

[a∗i (r)− ϕ

n∑
j=1

gija
∗
j (r)] [ai(r)− a∗i (r)]dP

≥
∫ +∞

−∞

n∑
i=1

[βi + γir − p] [ai(r)− a∗i (r)]dP.

(21)

The quantity we are interested in is the expectation of the unique solution a∗(r):

EP [a
∗(r)] =

∫ +∞

−∞
a∗(r)dP, (22)

for which we construct a converging approximation. The detailed approximation pro-
cedure used to solve (21), which also yields a sequence converging to EP [a

∗(r)], can be
found in the previously given references. Here, for the reader’s convenience, we outline
the steps of our procedure. We start with a discretization of the support of the prob-
ability measure P (which we assume compact) in N subintervals. We then introduce
the L2

N space of step functions on the partition thus obtained and solve (21) in L2
N

to get the step function a∗N (r). Letting N → ∞ yields a sequence of step functions
which is proved to be norm-convergent to a∗(r). From the implementation point of
view, we remark that variational inequality (21), when restricted to the space L2

N , is
split in N finite-dimensional variational inequalities on Rn, of the same kind as (10).
Moreover, the approximated mean values EP [a

∗
N (r)] form a sequence which converges

to the exact mean value EP [a
∗(r)].

5. Numerical experiments

In this section, we report some numerical experiments for the stochastic network game
model described in Section 4. The approximation procedure was implemented in MAT-
LAB R2022a and tested on an Apple M1 Max system with 64 GB of RAM running
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under macOS 13.1. For any given discretization of the support of the probability mea-
sure P , a deterministic network game equivalent to (10) was solved for any subinterval
of the discretization. The linear systems within Algorithm 1 were solved by exploiting
the MATLAB functions \ if n ≤ 100 or pcg if n > 100.

In the following, Section 5.1 shows the convergence of the approximated mean values
of the Nash equilibrium and equilibrium aggregate to find the key player of the net-
work on a small size example. Moreover, the impact of different probability densities
of the random variable r is reported. Section 5.2 shows the computational efficiency of
the numerical approximation procedure coupled with Algorithm 1 to solve instances
of increasing size up to 10,000 players. In particular, we compare our solution ap-
proach with both the potential-based approach (where three different optimization
solvers were exploited to maximize the potential function) and two variants of the
best-response method introduced in [40]. Numerical results show that our approach is
faster than all other methods especially for large scale problems.

5.1. Convergence of approximated mean values of Nash equilibria

Example 5.1. We consider the network shown in Fig. 1 (see also [1]) with 11 nodes
(players). The spectral radius of the adjacency matrix is ρ(G) ≃ 4.4040. We set pa-
rameter ϕ = 0.2 to guarantee the matrix I − ϕG is positive definite. Moreover, we set
parameters β = (10, . . . , 10), γ = (1, . . . , 1) and p = 1. The upper bounds on the player
strategies are set to L = (100, . . . , 100). We assume that the random variable r varies
in the interval [−5, 5] with either uniform distribution or truncated normal distribu-
tion with mean 0 and standard deviation 1. The approximation procedure considers a
uniform partition of the interval [−5, 5] into N subintervals and solves a deterministic
network game for any subinterval by exploiting Algorithm 1.

Tables 1 and 2 show the convergence of the approximate mean values of the Nash
equilibrium for different values of N , when the random variable r varies in the interval
[−5, 5] with uniform distribution (Table 1) or with truncated normal distribution with
mean 0 and standard deviation 1 (Table 2). We note that, due to the network sym-
metry, players 2, 6, 7 and 11 have equal approximated values, and the same fact holds
for players 3, 4, 5, 8, 9 and 10. Moreover, the mean values of the Nash equilibrium
increase by about 3-5% from uniform to truncated normal distribution.

Tables 3 and 4 show the convergence of the approximate mean values of the equi-
librium aggregate for different values of N , when r varies in the interval [−5, 5] with

1

2

3

4

5

6

7

8

9

10

11

Figure 1. Network topology of Example 5.1.
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Table 1. The convergence of the approximated mean
values of the Nash equilibrium for r ∼ U(−5, 5).

Nash N

equilibrium 100 1,000 10,000 100,000

a∗1 71.193 71.467 71.494 71.497
a∗2 77.804 78.090 78.118 78.121
a∗3 66.786 67.051 67.078 67.081
a∗4 66.786 67.051 67.078 67.081
a∗5 66.786 67.051 67.078 67.081
a∗6 77.804 78.090 78.118 78.121
a∗7 77.804 78.090 78.118 78.121
a∗8 66.786 67.051 67.078 67.081
a∗9 66.786 67.051 67.078 67.081
a∗10 66.786 67.051 67.078 67.081
a∗11 77.804 78.090 78.118 78.121

Table 2. The convergence of the approximated mean

values of the Nash equilibrium for r ∼ N (0, 1) on
[−5, 5].

Nash N

equilibrium 100 1,000 10,000 100,000

a∗1 74.514 74.880 74.917 74.920
a∗2 81.955 82.356 82.397 82.401
a∗3 69.553 69.896 69.930 69.934
a∗4 69.553 69.896 69.930 69.934
a∗5 69.553 69.896 69.930 69.934
a∗6 81.955 82.356 82.397 82.401
a∗7 81.955 82.356 82.397 82.401
a∗8 69.553 69.896 69.930 69.934
a∗9 69.553 69.896 69.930 69.934
a∗10 69.553 69.896 69.930 69.934
a∗11 81.955 82.356 82.397 82.401
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uniform distribution and ϕ = 0.1 (Table 3) or ϕ = 0.2 (Table 4). The key players
with the minimum value of the approximated equilibrium aggregate are highlighted in
bold. Notice that for ϕ = 0.1 the key players are 2, 6, 7 and 11 (i.e., the nodes most
connected to the others), while for ϕ = 0.2 the unique key player is 1 (i.e., the bridge
connecting the two complete subgraphs). Moreover, we remark that, when ϕ = 0.2, the
key player’s action at equilibrium is not maximum with respect to the other players’
actions.

Table 3. The convergence of the approximated mean val-
ues of the equilibrium aggregate for r ∼ U(−5, 5) and

ϕ = 0.1.

Equilibrium N

aggregate 100 1,000 10,000 100,000

S1 149.167 149.917 149.992 149.999
S2 145.929 146.663 146.736 146.744
S3 150.360 151.116 151.192 151.199
S4 150.360 151.116 151.192 151.199
S5 150.360 151.116 151.192 151.199
S6 145.929 146.663 146.736 146.744
S7 145.929 146.663 146.736 146.744
S8 150.360 151.116 151.192 151.199
S9 150.360 151.116 151.192 151.199
S10 150.360 151.116 151.192 151.199
S11 145.929 146.663 146.736 146.744

Table 4. The convergence of the approximated mean val-
ues of the equilibrium aggregate for r ∼ U(−5, 5) and

ϕ = 0.2.

Equilibrium N

aggregate 100 1,000 10,000 100,000

S1 447.500 449.750 449.975 449.998
S2 459.267 461.525 461.750 461.773
S3 523.915 526.304 526.543 526.567
S4 523.915 526.304 526.543 526.567
S5 523.915 526.304 526.543 526.567
S6 459.267 461.525 461.750 461.773
S7 459.267 461.525 461.750 461.773
S8 523.915 526.304 526.543 526.567
S9 523.915 526.304 526.543 526.567
S10 523.915 526.304 526.543 526.567
S11 459.267 461.525 461.750 461.773

5.2. Scalability of Algorithm 1 and comparison with other solution
approaches

We now show the performance of the numerical approximation procedure coupled with
Algorithm 1 to solve instances of increasing size, where the number of players varies
from 10 to 10,000. Instances are produced exploiting the generator of uniformly dis-
tributed pseudo-random numbers of MATLAB. The adjacency matrix of any random
network is generated according to the following code:
G = rand(n);

G = floor((G+G’)/2 + δ);
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G = G - diag(diag(G));

so that G is an n × n zero-diagonal binary symmetric matrix and the parameter
δ ∈ (0, 1) represents the density of the network, e.g., δ = 0 corresponds to an empty
network, while δ = 1 to a complete network. We set parameters β = (4, . . . , 4),
γ = (1, . . . , 1) and p = 1. We assume that the random variable r varies in the in-
terval [−1, 1] with uniform distribution and the approximation procedure considers a
uniform partition of the interval [−1, 1] into N = 100 subintervals. The upper bounds
on the player strategies are set in such a way the approximated Nash equilibrium
computed for any subinterval does not generally belong to the interior of the feasible
region. Specifically, first we find the “unconstrained” Nash equilibrium ā by solving
the linear system (I−ϕG)ā = α, where αi = βi−p for any i = 1, . . . , n. Then, for any
i = 1, . . . , n, the upper bound Li is chosen equal to a uniform pseudo-random number
in the interval [

1

2
min

1≤j≤n
{āj}, 2 max

1≤j≤n
{āj}

]
.

Table 5 shows the average number of linear systems solved by Algorithm 1 for different
values of parameters n (from 10 to 10,000), ϕ (from 0.1/ρ(G) to 0.9/ρ(G)) and δ (equal
to 0.2 or 0.5). The figures reported are the average values obtained on a set of five
random instances.

Table 5. The average number of linear systems solved by Algorithm 1 for different values of n,

ϕ and δ.

n
δ = 0.2 δ = 0.5

ϕ =
0.1

ρ(G)
ϕ =

0.5

ρ(G)
ϕ =

0.9

ρ(G)
ϕ =

0.1

ρ(G)
ϕ =

0.5

ρ(G)
ϕ =

0.9

ρ(G)

10 1.94 2.18 2.38 2.05 2.26 2.54
20 2.05 2.20 2.94 2.12 2.42 2.97
50 2.16 2.73 3.15 2.30 2.78 3.43

100 2.37 2.90 3.77 2.49 2.99 3.83
200 2.59 3.07 4.05 2.64 3.09 4.04
500 2.85 3.21 4.21 2.83 3.30 4.31

1,000 2.94 3.45 4.46 2.94 3.42 4.54
2,000 2.97 3.59 4.64 2.99 3.63 4.68
5,000 3.02 3.77 4.82 3.02 3.78 4.82

10,000 3.03 3.86 4.89 3.03 3.88 4.89

The results suggest that the average number of linear systems solved by Algorithm
1 is very low and quite stable since it varies from 2 to 5 for any choice of parameters. In
particular, it seems to be lightly increasing with respect to n and ϕ, while the density
parameter δ does not seem to have a major impact.

In order to show the usefulness and the advantages of using our solution ap-
proach, we now compare the performance of Algorithm 1 with the performances of the
potential-based approach and the best-response method developed in [40]. Specifically,
in the potential-based approach we consider three different quadratic programming
solvers to solve problem (11): Gurobi (with default options), the MATLAB quadprog

function with the ’interior-point-convex’ algorithm, and the quadprog function
with the ’trust-region-reflective’ algorithm. As for the best-response method
introduced in [40], we consider the Jacobi variant and the Gauss-Seidel variant (in
which the order of play is 1, 2, . . . , n), both with starting point equal to the upper
bound vector L = (L1, . . . , Ln)

⊤.
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We consider a set of random instances, generated as described above, where the
number n of players varies from 100 to 10,000 and ϕ = 0.8/ρ(G).

Tables 6 and 7 report the average CPU times (in seconds) of our approach based
on Algorithm 1, of the three variants of the potential-based approach, and of the two
variants of the best-response method developed in [40], when δ = 0.2 (Table 6) or
δ = 0.5 (Table 7). For problems of larger size (when n varies from 2,000 to 10,000),
we compare our approach only with the best variant of the potential-based approach
and the best variant of the best-response method. The figures reported are the average
values obtained on a set of five random instances.

Table 6. Comparison between the approach based on Algorithm 1, three variants of the potential-

based approach, and two variants of the best-response method [40] to find the approximated stochastic
Nash equilibrium, when δ = 0.2 (CPU times in seconds).

n Algorithm 1

Potential-based approach Best-response method

Gurobi quadprog quadprog Jacobi Gauss-Seidel
interior-point trust-region

100 0.025 0.966 0.103 0.529 0.047 0.027
200 0.268 2.707 0.807 0.560 0.154 0.089
300 0.430 4.613 2.223 0.851 0.322 0.183
400 0.602 10.686 4.301 1.060 0.510 0.299
500 0.701 13.383 8.233 1.273 0.766 0.447
600 0.813 17.230 14.838 1.513 1.617 0.948
700 1.406 22.793 30.908 1.778 2.349 1.370
800 1.291 27.865 28.714 2.138 3.880 2.256
900 1.355 34.323 38.835 2.587 3.936 2.341

1,000 1.527 37.187 50.834 2.922 4.989 2.911

2,000 2.916 10.913 13.366
3,000 6.181 23.372 49.398
4,000 9.950 36.831 68.642
5,000 14.256 54.906 368.093
6,000 19.233 74.899 465.769
7,000 25.112 101.163 783.910
8,000 31.950 128.381 959.708
9,000 39.738 161.549 1,075.657

10,000 59.745 199.125 1,102.629

The results show that the performance of the potential-based approach strongly
depends on which optimization solver is used to maximize the potential function. The
quadprog function with the ’trust-region-reflective’ algorithm seems to be the
best solver among those tested (especially when δ = 0.2). Moreover, the Gauss-Seidel
variant of the best-response method results to be always more efficient than the Jacobi
variant. When n varies from 100 to 700, our approach is comparable with the best
variant of the potential-based approach and the best-response method. However, for
large scale problems, results clearly show that our approach outperforms both the
potential-based approach and the best-response method by 4 to 20 times in terms of
CPU time.

Finally, in Tables 8 and 9 we compare our approach, the three variants of the
potential-based approach, and the two variants of the best-response method to find
the approximated stochastic key player, when n varies from 10 to 1,000 and δ = 0.2
(Table 8) or δ = 0.5 (Table 9). Also in this case, for problems of larger size (with n from
400 to 1,000), we compare our approach only with the best variant of the potential-
based approach and the best variant of the best-response method. The results confirm
that our approach outperforms the other methods also with regard to the search for
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Table 7. Comparison between the approach based on Algorithm 1, three variants of the potential-

based approach, and two variants of the best-response method [40] to find the approximated stochastic

Nash equilibrium, when δ = 0.5 (CPU times in seconds).

n Algorithm 1

Potential-based approach Best-response method

Gurobi quadprog quadprog Jacobi Gauss-Seidel
interior-point trust-region

100 0.031 1.018 0.100 0.574 0.045 0.027
200 0.162 3.168 0.899 0.879 0.140 0.082
300 0.316 5.609 2.189 1.485 0.290 0.170
400 0.472 11.615 4.235 2.228 0.474 0.281
500 0.561 14.638 9.232 3.102 0.706 0.421
600 0.682 18.530 15.711 4.389 1.552 0.900
700 0.933 23.384 22.033 5.864 2.065 1.195
800 1.102 28.769 30.683 7.767 3.105 1.814
900 1.139 35.450 40.387 9.538 3.398 2.006

1,000 1.319 42.587 47.510 11.332 4.786 2.816

2,000 3.052 39.689 12.917
3,000 6.163 79.893 46.715
4,000 10.069 135.675 68.777
5,000 14.298 218.514 453.096
6,000 19.006 311.270 575.458
7,000 24.688 405.576 758.007
8,000 31.279 534.597 710.733
9,000 38.238 933.030 941.853

10,000 56.980 1,163.213 1,119.356

Table 8. Comparison between the approach based on Algorithm 1, three variants of the potential-

based approach, and two variants of the best-response method [40] to find the approximated stochastic
key player, when δ = 0.2 (CPU times in seconds).

n Algorithm 1

Potential-based approach Best-response method

Gurobi quadprog quadprog Jacobi Gauss-Seidel
interior-point trust-region

10 0.018 5.578 0.501 2.920 0.023 0.012
20 0.051 11.559 0.631 7.382 0.114 0.064
30 0.125 17.945 1.035 11.880 0.255 0.144
40 0.231 25.029 1.492 17.483 0.499 0.279
50 0.373 32.653 2.021 21.759 0.809 0.454
60 0.588 41.113 2.700 27.101 1.370 0.767
70 0.863 50.718 3.718 32.936 1.810 1.017
80 1.202 60.931 4.780 38.656 2.639 1.507
90 1.682 72.882 6.133 44.656 3.433 1.971

100 2.303 86.363 7.714 50.396 5.096 2.630
200 41.005 536.232 153.362 124.031 28.949 16.657
300 113.084 1,362.593 562.649 266.226 96.002 55.025

400 199.194 399.094 115.136
500 318.320 605.750 219.864
600 465.053 879.512 476.712
700 733.321 1,221.094 937.606
800 1,027.401 1,670.024 1,403.227
900 1,198.161 2,204.351 1,956.338

1,000 1,423.880 2,804.093 2,354.519
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the key player in large scale problems.

Table 9. Comparison between the approach based on Algorithm 1, three variants of the potential-

based approach, and two variants of the best-response method [40] to find the approximated stochastic
key player, when δ = 0.5 (CPU times in seconds).

n Algorithm 1

Potential-based approach Best-response method

Gurobi quadprog quadprog Jacobi Gauss-Seidel
interior-point trust-region

10 0.021 5.882 0.307 3.484 0.025 0.013
20 0.062 11.924 0.654 7.611 0.118 0.059
30 0.138 18.634 1.088 12.481 0.256 0.134
40 0.251 25.993 1.580 17.471 0.445 0.241
50 0.399 34.005 2.143 21.991 0.857 0.472
60 0.624 43.515 2.951 27.570 1.233 0.674
70 0.952 54.180 4.121 33.312 1.773 0.956
80 1.432 66.265 5.376 39.578 2.643 1.456
90 2.021 80.751 6.987 46.149 3.459 1.945

100 2.883 97.537 10.277 54.596 4.372 2.426
200 29.644 630.424 169.477 173.197 27.461 15.983
300 91.677 1,637.397 621.744 445.772 91.666 51.738

400 192.747 827.213 111.295
500 257.223 1,478.674 209.505
600 381.021 2,718.983 478.374
700 629.128 3,989.585 888.171
800 736.379 6,032.577 1,397.354
900 960.393 8,565.410 1,796.690

1,000 1,243.579 11,498.981 2,064.835
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