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MSC: We carry out a stability and convergence analysis for the fully discrete scheme obtained by
35K20 combining a finite or virtual element spatial discretization with the upwind-discontinuous
65M12 Galerkin time-stepping applied to the time-dependent advection—diffusion equation. A space—
65M15

time streamline-upwind Petrov—Galerkin term is used to stabilize the method. More precisely,
we show that the method is inf-sup stable with constant independent of the diffusion coefficient,
Reywords: which ensures the robustness of the method in the convection- and diffusion-dominated regimes.
Fl,mte element method Moreover, we prove optimal convergence rates in both regimes for the error in the energy norm.
Virtual element method . s . 2 2
Upwind-discontinuous Galerkin An important feature of the presented analysis is the control in the full L?(0,T; L?(£2)) norm
without the need of introducing an artificial reaction term in the model. We finally present

Streamline-upwind Petrov-Galerkin ; . . . . . .
Inf-sup stability some numerical experiments in (3 + 1)-dimensions that validate our theoretical results.

65M60

Advection—diffusion equation

1. Introduction

The present contribution focuses on the classical time-dependent advection—diffusion equations, also thought as a first step
towards more complex nonlinear fluid dynamic problems. More specifically, let the space-time cylinder Oy = 2x(0,T), where 2 C
R? (d = 2,3) is an open, bounded polytopic domain with Lipschitz boundary 02, and let T > 0 represent the final time. Then,
for given strictly positive diffusion coefficient v, transport solenoidal field g, source term f, and initial datum u,, we consider the
following advection—diffusion IBVP:

ou—vAu+p-Vu=f in Qr,
u=20 on Ip, (1.1)

U= ugy on X,

where the surfaces X, := 2 x {0}, 2, :=Q2x{T}, and Iy :=92x(0,T).

In the numerical analysis literature, problem (1.1), in addition to its specific interest, has often represented an important
step towards the study of more complex models, such as those describing incompressible fluid flows at high Reynolds numbers.
This concurs in motivating the very large amount of articles dealing with the so called advection-dominated case, that is in the
development and analysis of numerical methods able to deliver accurate and reliable solutions also when |B| > v. Indeed, many
stabilization techniques have been designed to address the well-known issue of spurious oscillations or instabilities of conforming
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finite element (FE) discretizations of model (1.1) in the advection-dominated regime. Such techniques include space-time least
squares [1], streamline-upwind Petrov—Galerkin (SUPG) and variants [2-6], local projection stabilization (LPS) [7,8], and other
symmetric stabilization terms [9]; see also the analysis, in an abstract framework, for spatial discretizations based on symmetric
stabilization terms with discontinuous Galerkin time stepping in [10].

Some simplifications are commonly found in the literature, such as omitting the effect of the time discretizations [11],
restricting to low-order time stepping schemes [5,9,12-14], and requiring a sufficiently strong reaction term ou such that (see,
e.g., [7,12,15,16])

. 1 ..
nf ( o3 divp )z o0 > 0. (1.2)
Note that the latter condition is relevant to higher order schemes in time, where the standard discrete energy argument only leads
to control in L2(2) at discrete time instants (plus the sum of the time-jumps at the time-mesh nodes) but not in L?(0,T; L%(£2)) and
even less so in L®(0, T; L2(R2)). Condition (1.2) is typically justified by the fact that the problem for the variable w = e 1/Ty satisfies
such an assumption (at least when ¢ — %div B > 0). Although this is surely acceptable, we prefer to tackle the more complex (from
the theoretical standpoint) case in which such transformation is not assumed so that no data modification is needed in the method,
see Remark 3.8. This choice is also motivated by the possible extension to nonlinear problems, where the above transformation
would induce the introduction of time-dependent factors also in front of the nonlinear terms. Similar observations hold for the more
recent Virtual Element (VE) technology [17], its literature being clearly less rich than the FE one; some articles dealing with the
above issue are [18-21].

The present work concerns the design and analysis of an SUPG-stabilized version of the fully discrete scheme obtained by
combining a conforming FE or VE spatial discretization with an upwind-DG time stepping; in particular, we focus on the robustness
analysis of the method in the advection-dominated regime (i.e., when 0 < v < 1). Our main contributions are the following:

» We carry out the first stability and error analysis of a high-order-in-time SUPG-stabilized scheme for the time-dependent
advection—diffusion IBVP (1.1), which does not require the transformation of the original problem, and does not rely on the
presence of a positive reaction term. Although stability and optimal convergence of the upwind-discontinuous Galerkin (DG)
SUPG-stabilized finite element method (FEM) have been hypothesized [22, §3.3], a thorough analysis was missing in the
literature even for FEM (and less so for VEM, for which the proposed methodology is novel).

We address, in a unified framework, conforming FE and VE spatial discretizations. Our analysis focuses on VE spaces; however,
the same ideas apply to conforming FE spaces with some simplifications (as detailed in Section 3.4).

We show an inf-sup estimate with stability constant independent of the meshsize, the time step, and the diffusion coefficient v.
Such an estimate is used to prove that, in a certain energy norm, the fully discrete solution satisfies: i) a continuous dependence
on the data of the problem uniformly in v, and ii) some a priori error bounds, which do not degenerate when the diffusion
coefficient v is small, and depend only on the interpolation and the nonconsistency errors.

At the end of the article we evaluate the practical performance of the proposed scheme through a set of numerical tests
in (3 + 1)-dimensions, for different orders of approximation in time and space.

The manuscript is organized as follows. In Section 2, we present some basic notation, the variational form of the continuous
problem and a well-known stability result. In Section 3, we present the proposed VEM, discuss the particular case of FEM and the
extension to Serendipity VEM, and present our main theoretical results. Section 4 is devoted to the proof of the well-posedness and
stability of the scheme. In Section 5, we develop the convergence analysis, first addressing the general case of changing meshes
(that is, when the spatial mesh can change form one time-slab to the next one) and then particularizing to the more favourable case
with fixed spatial mesh. Finally, we present some numerical tests in Section 6 and make some concluding remarks in Section 7.

2. Basic notation and weak formulation of the problem.

We start by reviewing some basic notation we will use through the article. We denote the first-order time derivative operator
by 9,, and the spatial gradient and Laplacian operators by V and 4, respectively. We will use standard notation for Sobolev spaces,
seminorms, and norms [23]. For instance, given an open, bounded domain ¥ ¢ R? (d € N), and scalars p € [2, ] and s € R, we
denote by W*?(Y') the standard Sobolev space, and its associated seminorm and norm by | - |y spy) and || - [l sp(y), T€spectively. In
particular, for p = 2, we use the notation H*(Y) = W*2(Y'), and denote its associated seminorm and norm by | - | wsay and |-l gser)s
respectively. Moreover, the space L>(Y) = H(Y) denotes the space of Lebesgue square integrable functions over Y with its
corresponding inner product (-, ')y, and H(} (Y) denotes the space of functions in H'!(Y) with zero trace on dY. A superscript d
is used to represent the seminorms and norms of vector fields with d-components. In addition, given a Banach space (X, || - || x), a
time interval (a, b), and a scalar s € R, we denote the Bochner-Sobolev space by H*(a, b; X). Finally, we use the following notation
for the algebraic tensor product of two spaces, say V and W:

VW :=span{vw : veV and we W}

Given k € N, we denote the space of polynomials of degree at most k defined on Y by P,(Y).
For the time being, we assume the following data regularity. The transport advective field g € W (0, T; L®(£2)) with div = 0,
the source term f € L*(Qy), and the initial datum uy € L*(£2). Then, denoting by a : H}(2)xH}(2) —» Rand b : H)(2)xH}(2) > R
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the following bilinear forms:
a(u,v) = / Vu-Vvdx and b(u,v) = / vB - Vudx, 2.1)
Q Q
the continuous week formulation of the IBVP (1.1) reads (see [24, §7.1.1]): find u € L2(0,T;Hé(.(2)) n HYO,T; H-1(Q)) c
C([0,TT; L*(£2)) such that u = u, on X, and for almost all ¢ € (0,T), it holds
(0u,v) + va(u,v) + bu,v) = (f,v)g Vv € H}(Q), (2.2)

where (-,-) denotes the duality between H~!(£2) and Hé (9).
For any 7 € (0,T], integrating in time equation (2.2) over (0,7) and using the skew symmetry of the bilinear form b(-,-)
(i.e., b(u, v) = —b(v,u)), and the Holder and the Young inequalities, we obtain the following bound:

1 2 2 1 2 2 o2
Ellu(ut)lle(Q) + VIIMIILZ(O‘;;HI(Q)) < Elluolle(g) + IIfIILl(Oj;Lz(Q)) + ZIIMIILQG(OJ;LZ(Q))A 2.3)
Since u € C([0,T]; L3(R2)), we can take the maximum over [0,77] in (2.3) and deduce the following stability estimate:

2 1 2 2
TVl i@y < Ml F I 0@

2
L®(0,T;L2(2))

Tl
The above inequality shows a uniform-in-v continuous dependence of the solution to (2.2) on the data of the problem. Such a
property is clearly desirable to be reproduced at the discrete level.

3. Description of the method and main results

In this section, we describe the proposed SUPG-stabilized time-DG VEM for the discretization of model (1.1) and present the
major theoretical results. Some notation for tensor-product-in-time meshes is introduced in Section 3.1. In Section 3.2, we recall
the definition of the local enhanced VE spaces in two and three dimensions, their corresponding degrees of freedom, and some
computable polynomial projections. In Section 3.3, global discrete spaces are defined as the tensor product of the space of piecewise
polynomials in time and H(} (£2)-conforming VE spaces, and we present the discrete bilinear forms in the definition of the SUPG-
stabilized time-DG VEM in Section 3.5. Finally the main theoretical results, asserting the well posedness of the discrete problem and
its convergence properties, are presented in Section 3.6.

3.1. Space-time mesh notation and assumptions

Let {£2;,},-0 be a family of polytopic partitions of the spatial domain 2 c RY with d = 2,3 (see Remark 3.4 regarding the case
with variable spatial meshes). For each K € {Q,},., and each facet F of K, we denote by hg and hj the diameters of K and F,
respectively. We make the following assumption on the family {£2,} 0.

Assumption 3.1 (Mesh Regularity). There exists a strictly positive constant ¢ such that the following conditions hold for any
element K € {£2,},.0:

(A1) K is star-shaped with respect to a ball By of radius larger than or equal to ¢hg;

(A2) (if d = 2) each facet F has length larger than or equal to ohg;

(A3) (if d = 3) each facet F is star-shaped with respect to a disk B of radius larger than or equal to phg, and each edge e of the
(polygonal) facet F has length larger than or equal to oh.

In particular, Assumptions (A1)-(A3) imply the existence of a uniform maximum number of facets for each element K of {£,} ..

Let 7, be a partition of the time interval (0,T) given by 0 := t, < t; < - < ty = T. For n = 1,...,N, we define
the time interval I, := (t,_,,t,), the surface 2, := Q x {1,}, and the time step z, := 1, — 1,_;. We further define the spatial
meshsize h := maxgeg, hg, the minimum element diameter A, := mingeg, hg, and the maximum time step 7 := max,_; _y 7.

Finally, for each K € 2, and n=1,..., N, we define the space-time prism K, := K X I,.

Remark 3.2 (Relaxation of the Mesh Assumptions). The above regularity assumptions on the mesh could be partially relaxed, see for
instance [25, §2.3], [26, §2 and §5.1], and [27, §3] for some results in this direction. n

3.2. Local virtual element spaces and projections

Let k and r be integer numbers such that k¥ > 1 and r > 0, which denote the “degrees of approximation” in space and time,
respectively.

Let D c R be an open (d — j)-polytope for some j € {0,...,d — 1}. We denote by x;, the centroid of D, and introduce the
following scaled and shifted monomial basis for the space P, (D):

X —Xxp
hg

k
M(D) 1= | M, (D) with M,(D) := {m,x = (

a X 3
et ) : a e N with |a|_f},
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In the VE context, the use of these bases is particularly convenient for implementation.

We denote by HE’K : LX(K) — P.(K) and II%K : LX(K)? — P(K)? the L*(K)-orthogonal projection operators in P, (K)
and P, (K)“, respectively. Moreover, we denote by IT kv K HY(K) - P,(K) the H'(K)-orthogonal projection operator, defined
for any v € H'(K) as the solution to the following local problem:

/ VU1 v -v)- Vg dx =0 Vg, € P(K),
K

/ a1y * - v)ds =o.
oK

Two-dimensional virtual element spaces. If 2 c R?, for each element K € 2,, we define the following local spaces:

B.(0K) :={ve Cc%0K) : v}, € P (e) for each edge e of K}, (3.1a)

VP (K) :={ve H'(K) : v, €B,(0K)and v € P,(K)}, (3.1b)

VP(K) = {ve VPK) : /(u — 11"  v)my dx =0 for all m, € M,_,(K) UM, (K)}, (3.10)
K

where the latter is the standard local enhanced VE space introduced in [28, §3]. The following linear functionals constitute a set of
unisolvent degrees of freedom (DoFs) for VkZD(K ) (see [28, Prop. 2]):

(Dv1) the values of v at the vertices of K;
(Dv2) (if k > 2) the values of v at (k — 1) distinct internal points along each edge e of K;
(Dv3) (if k > 2) the following moments of v against the elements of M, _,(K):

l?ll/Kvmadx Vmy € My_»(K).

Three-dimensional virtual element spaces. If Q2 c R3, for each element K € 2,,, we define the following local spaces:

W (0K) := {v € C°0K) : vjp € VP(F) for each face F of K}, (3.2a)

VP(K) = {ve H'(K) : v}, € Wi(0K) and dv € P,(K)}, (3.2b)

VP(K) == {veVPK) : /(u — 117X v)mg dx =0 for all m, € M,_,(K) UM, (K)}, (3.20)
K

where we have denoted by szD(F) the local enhanced VE space on the face F, as F is contained in a (two-dimensional) plane. The
following linear functionals constitute a set of unisolvent DoFs for Vk3D(K ) (see [28, §4.1]):

(Dv1*) the values of v at the vertices of K;
(Dv2*) (if k > 2) the following moments of v on each edge e of K:

1
T /eumy ds Vm, € My_,(e);

(Dv3*) (if k > 2) the following moments of v on each face F of K:

% /K vmg dx Vmg € My_»(F);

(Dv4*) (if k > 2) the following moments of v on K:
1
—_ d A/ K).
K] /K vm, dx mg € My _»(K)
Henceforth, we will denote by ¥V (K) the local enhanced VE space, regardless of the spatial dimension d.

For any K € 2, and v € V,(K), the following polynomial projections are computable using the DoFs in sets (Dv1)—(Dv3)
(if d = 2) or in sets (Dv1*)-(Dv4*) (if d = 3):

0,K 0,K V.K
ﬂk v, Hk Vo, ﬂk v.

3.3. Global space and bilinear forms

For d =2 or d = 3, we define the global VE space
V), i={v € Hy(Q) : v, € Vi(K) VK € 2}, (3.3)

and the global space-time VE-DG space
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N
vi =[] P.a)ev.

n=1

For any piecewise scalar function w and m € {1,..., N}, we denote by w™ the restriction of w to the time slab 2 x I,,. Moreover,
forn=1,...,N — 1, we define the time jump ([[-],) of w as follows:

[wl,(x) 1= w(x, 1) —wx,5) Vx e,
where

w(x, 1)) 1= 61_i)r(glJf w"(x,t, —€) and w(x,th) = El_i}g;r w"D(x, 1, + €).

We now introduce the discrete bilinear forms we use in the definition of the space-time VEM-DG formulation in Section 3.5
below. Henceforth, we denote by Id the identity operator. In the following, the projection operators defined in Section 3.2 are to
be understood as applied pointwise in time.

The bilinear form mf: LG.). We define the upwind-DG VE discretization of the first-order time derivative operator 9,(-) as follows:

N N-1
mf,i,(uh,r’ Upe) 1= Z/I mh(at”h,r(',’)a Uh,f('J)) dr — Z mh([[uh,f]]mUh,f(',’:)) +my (“hiyf(',o)a Uh,f('ao))’
n=1 n n=1

where m;, : V, XV, > R is the standard VE discretization of the L?(2)-inner product, which can be written as

K
my(up, Uy) = Z my, (up, Up),
KeQ,

with local contributions m,’f(-, -) given by
mf (uy, vp) 1= TR uy 50, + 58 (@d = 15wy, (1d - 1125 ))),
for some symmetric bilinear form sX(-,-) chosen so that the following condition holds:
o Stability of sX(.,.): there exist positive constants ji and 4 independent of 4 and K, but depending on the degree k and the
parameter o in Assumption 3.1 such that

Aol o ) < S @nevw) < AlloallT ) You € ker(TEF) N V(K. 3.4

Defining
u, :=min{l, 1} and u* :=max{l,a},
the stability property (3.4) implies

MOl 2 gy < i Wre0) < W llORIT ) Yo € Vi(KD. (3.5

The bilinear form a,, .(-,-). We discretize the spatial Laplacian operator (-4)(-) as follows:
N
ap WUy oy Up ) 1= Z/ ay (up 1), 0., 1)) dt,
n=171n

where a, : V), XV, is the VE discretization of the bilinear form a(-,-) in (2.1), which can be written as

K
ap(up,vp) = Z ay (up, vp),
KeQy,

with local contributions af (-,-) given by
ak @y vp) o= (K Yy, YK Vo,) 4+ 55 (@d = 1), (1d - 11750y,
for some symmetric bilinear form sX(-,-) chosen so that the following condition holds:
o Stability of sX(.,.): there exist positive constants & and & independent of h and K, but depending on the degree k and the
parameter ¢ in Assumption 3.1 such that

&IVo,ll sKwp o) < @llVo,l2 Vo, € ker(11"%) 0 Vi (K). (3.6)

2
<
L2(K)d = L2(K)d

Defining

a, :=min{l,&} and «* :=max{l,a},
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using the stability property (3.6), the stability of IT 2”( in the L2(K)?-norm, and the fact that V11 kv K v, € P, (K), we deduce that

@ NVORII g < ah W) S @ IVORIT, 0 V0p € VidK). (3.7

The bilinear form bj!kj“’(-, -). As for the discretization of the advective term (B - Vu), we introduce the following skew-symmetric
bilinear form: ’

N
B (g oy Vp ) = % Z/I ( by (up e (0, 0p (1) = by (0 (. 1), 1y (1)) ) dr,
n=1 n

where b, : V, XV, — R is given by

bplupvp) = Y (B M5 Vuy, 1 0,) . (3.8)
KeQ,
The above form (3.8) corresponds to the choice in [19, Eq. (4.5)] (see also [18, Eq. (15)]); in the two-dimensional case, it can be
substituted with the alternative choice in [19, Eq. (4.6)].

The bilinear form s,"(.,-). Finally, we introduce the SUPG-stability bilinear form
N
. Ky .supg
s;,ilfg(uh,f! Uh,‘r) = Z Z S},J (uh;r’ Uh,‘r)’
n=1 KEQ,
with
Ky .supg . K ~K 2 K V.K V.K
Sy (U Upr) .=/1Kn(L,”uh,f,Lh‘fu,,,r)Kn + ﬂKn/IKn/ sK(@d -1, uy,, Ad — 11,/ )y, ) dr,

for some parameter Ax > 0 to be specified later, fx = max{p,,[|Bll =, } for some mesh-independent strictly positive “safeguard”
constant f,, the stability term s"f(A, -) as in the definition of a,(-,-), and the linear operators Ep’ﬁ[ and E}’ﬁ[ defined as follows:

Ve 1= 000K v, 4+ - 1K V0, (3.9a)

K
L 1

h,t
cX =001 uy,  —vdiv IV, + g K Vu, . (3.9b)

For convenience, we also define

Bo, = ||ﬁ||L°°(QT)d~

and assume, up to suitable scalings of the data, that ﬁ_QT ~ 1.

Remark 3.3 (Stability Terms). There exists a very large literature concerning different choices for the stabilization terms for VE
discretizations and developing the associated theoretical support. Explicit expressions for the definition of the stability terms sX(, )
and sf (-,+) can be found, for instance in [17,28,29] and some related proofs for instance in [25,26]; see also [30] for a recent
discussion on the role of the stability terms for virtual element methods. "

3.4. Finite element and serendipity VE spaces

The proposed method immediately extends to the case of the classical Lagrangian FEM. If the mesh is simplicial, one can substitute
the local spaces (3.1c) (and (3.2c¢) in three space dimensions) with

Vi(K) :=P,(K) VK € Q,,

thus obtaining, c.f. (3.3), the standard Lagrangian FE space. In such a case, the scheme boils down to a standard SUPG-stabilized
time-DG FEM approach, as all the polynomial projections appearing in the definition of the discrete forms disappear and, for the
same reason, the stability terms vanish. Therefore, the theoretical results of this article trivially extend to such (simpler) case,
yielding new results also for classical FEMs. Indeed, on our knowledge, results of this kind are missing in the literature, as previous
SUPG schemes are low-order accurate in time (see, e.g., [5,12-14]) and the analysis of many techniques rely on the presence of a
reaction term (see, e.g., [7,15], the discussion in the introduction of this contribution and Remark 3.8).

Another variant that can be considered is that of Serendipity Virtual Elements, which is a construction allowing to reduce the
number of DoFs, an asset which is particularly useful for high-order approaches as the present one. We refer to [31] for a detailed
presentation of Serendipity VEM (see also [32] for the associated interpolation and stability analysis) and here limit ourselves to a
very brief review of the construction in three space dimensions. The idea is to eliminate DoFs that are internal to faces (since those
that are internal to elements can be statically condensed) by introducing, for every face F of the polyhedral mesh, a projection
operator

13 @ VP(F) — P (F)

that depends only on the DoFs associated with the boundary of F (vertex values and edge pointwise values). Clearly, such an
operator can be constructed only if the P, -bubbles space on F reduces to {0}, a condition that depends on the geometry of F and
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on the polynomial degree k. Alternatively, one can use an extended construction (see [31, §3]), but in the present brief review we
prefer to stick to the simpler case where no such bubbles exist. Once such an operator is available, one can introduce the smaller
space

VSO (F) = {ve V°(F) : /F (v—I5v)m, dx =0 for all m, € M, (F)},
whose associated DoFs are only (Dv1) and (Dv2). Afterwards, one follows the same identical 3D construction as in Section 3.2 but
substituting the face spaces in (3.2a) with its Serendipity variant
WE(K) := {v e C%K) : v); € V?(f) for any face f of K},
and using such a boundary space in (3.2b) instead of W, (0K).
The final space has only degrees of freedom of type (Dv1*), (Dv2*), and (Dv4*) but retains all the key properties, such as
approximation, of the original VE space [31,32].

3.5. SUPG-stabilized time-DG VEM

The proposed SUPG-stabilized time-DG VEM variational formulation is: find u;, . € ¥ such that

B;‘fg(uh’,, vpe) =0 oy Yoy, €V, (3.10)
where
0,
B;ﬁsg(“h,r’ Uh,‘r) = mhtr(uh,r’ UhA,r) + Vah,r(uh,r’ Uh,‘r) + bi,lfiw(uh,p Uh,r) + si:jsg(uh,fa Uh,r)a (311)
and
N
O ) = Y Z(f Ko, + AK'IﬁﬁTUh,T)K + Y (g, K0, (,0)) . (3.12)
KeQy n=1 n Ke,

Remark 3.4. The method proposed above, and (unless clearly stated as will happen in Section 5.3) the stability and convergence
analysis here developed apply identically to the case when the spatial mesh 2, changes at every time slab, that is we have a different
mesh @} forall n =0, 1,..., N. Nevertheless, in order to allow for a simpler notation and a clearer exposition, we prefer to keep the
above simpler setting in the following developments. "

3.6. Main theoretical results

In this section, we present the main theoretical results of the article, namely the well-posedness of the discrete problem (3.10)
and the associated quasi-robust error bounds. The proofs are postponed to Sections 4 and 5, respectively.

In what follows, we write a < b to indicate the existence of a positive constant C independent of the meshsize h, the time step z,
and the diffusion coefficient v such that a < Cb. Moreover, we write a ~ b meaning that a < b and b < a.

We need to introduce some preliminary quantities. Let the upwind-jump functional

N-1
2._ 1 2 2 2
el i= 3 (Mun el s, + 2 MWt g+ Wt ) (3.13)
n=
and the SUPG-functional
N
2 . 2
luhsflsupg T Z Z |uh,7 K,.supg’
n=1 K€,
where
2 . ~K 2 2 V.K 2
luhﬂ"K”.supg = AKn ”ﬁh.ruh,r ”LZ(K,,) + AKnﬂK,, ”V(Id - Hk )uh,r ”LZ(K,,)‘!' (314)
We also define the following norm in V;:
2. 2 2 2 2
"luh,rl"g = ”uh’THLZ(QT) + |uh,T|J + Vllvuh,r”Lz(QT)d + |“h»T|supg' (3-15)

The following assumption will be adopted in the sequel.

Assumption 3.5. For any K € 2, and n=1,..., N, let A¢ be chosen so that

Mk kg
)“Kn < ijln{ o ﬁ_ } (3.16)
Or

inv
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with C;,, an inverse-estimate constant (c.f. Lemma 4.1 below) and some scalar constant ¢ independent of A, 7, and v. Moreover, let
the following rnild condition hold for some positive constant C, independent of # and v:

7<C, h' (3.17)

min’

The proposed method satisfies the following inf-sup estimate with stability constant independent of the diffusion coefficient v;
as a consequence, method (3.10) is well posed and remains stable even in the advection-dominated regime (0 < v < 1). The proof
can be found in Section 4.

Theorem 3.6 (Inf-Sup Stability). There exist positive constants C,, ¢, and y; independent of h, =, and v such that, if = < C hmm, and the
stability parameters Ay, are chosen so that (3.16) is satisfied, it holds
Byr Gz Up0)

MupMle <vr  sup Yoy € V.

seevnio) Moplle
The well-posedness of the scheme is a simple consequence of the above result (see the end of Section 4) and is stated here below.

Corollary 3.7 (Well-Posedness). Under the assumptions of Theorem 3.6, there exists a unique solution u;, , € V; to the discrete variational
formulation (3.10). Moreover, if h and { are such that Ax, <1 for all K € ©, and n € {1, ..., N}, the following continuous dependence
on the data is satisfied:

Napclle < V271 (gl 20y + 17120,

The constant 1 appearing above in the condition A < 1 was introduced only for simplicity of exposition. What is actually
required for the well-posedness is that all the Ay are umformly bounded (in practice the Ay are expected to be “small”, c.f.
(3.16)).

Remark 3.8 (Stability in L*(0,T; L*(2))). Theorem 3.6 shows the stability of the fully discrete scheme in a norm including

L%(0,T; L?(£2)) without resorting to the exponential transformation w = e~"/Tu, thus underlining that also the method applied directly
to (1.1) is able to recover the full stability properties of the continuous problem. n
We now introduce the main a priori error estimates for our method, yielding optimal convergence rates in the energy norm || - ||

defined in (3.15). The error estimates hold under the following assumption on the regularity of the data and the exact solution.
Assumption 3.9 (Data Assumption). For all K € Q, and n € {1, ..., N}, the solution « to the continuous weak formulation in (2.2),
the source term f, and the initial condition u satisfy:

ue H'M I, H'(K) n H'(I; HY(K)), f € L*(I,; H*Y(K)), and u, € H'(K),
and the advective field g satisfies,

B € L=, T; W) n W0, T; L®(2)),

for0<g<rand 0<s<k.
The following convergence result holds (the proof can be found in Section 5).

Theorem 3.10 (A Priori Error Estimates). Let Assumption 3.1 (on the mesh-regularity) and Assumpnon 3.5 (on the choice of 4 K, and the
relation of = and hy;,) hold. Let also Assumption 3.9 hold with q = s = r = k. If the time steps {r,,} are quasi-uniform and the solution
u is sufficiently regular, we have the following error estimates (all bounds being uniform in v):

* Advection-dominated regime (v < hg): ig, = cj &~y

it =y 12 S 224 4+ W2 4 p2e% h2k+| (h/r+ n22?) + 2 (3.18)
w2
+ Diffusion-dominated regime (v = I, hg Sv): Ag, = cZ ~h%
"|u —uy, ”l? < 72k+1 + th + h2T2k h2k+2/ + 2k+2/hfnm (3.19)

The quantities with negative powers of A, in (3.18)-(3.19) suggest assuming quasi-uniformity also of the spatial mesh. In such
a case, whenever the meshsize /4 and the time step 7 are orthotropic (i.e., = ~ h) we immediately observe that the error satisfies
Mu—uy e S h* in diffusion dominated cases and Mu—up Me S hk+1/2 in advection dominated cases, which are the optimal behaviours
expected for quasi-robust schemes. Another important observation is that, since reducing  is computationally cheaper than reducing
h, one may be interested in the case r <« h, representing the situation in which the time mesh is substantially finer than the spatial
mesh. The presence of terms of the kind //7 in the error estimate above are detrimental in this respect: we investigate the possibility
of eliminating such terms in Section 5.3.
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4. Well-posedness of the method

This section is devoted to prove Theorem 3.6 and Corollary 3.7.

4.1. Some useful tools

In the proof of the inf-sup stability estimate in Theorem 3.6 we make use of the following auxiliary exponential weight function:
@ =) :=Texp(T —1)/T), 4.1
which satisfies the following two important uniform bounds:
T <o) <eT  Vte[0,T], (4.2a)
- 1<’ <-e! Vrelo,Tl. (4.2b)

We denote by II} : L*(0,T) — P,(7,) the L?(0, T)-orthogonal projection operator in P,(7,). In what follows, the operator I is to
be understood as applied pointwise in space.
We start by some inverse estimates for VE functions and polynomials.

Lemma 4.1 (Local Inverse Estimates). Let £2;, satisfy Assumption 3.1. Then, for all K € 2, and n =1, ..., N, the following bounds hold:

IV, il 2,2 xyay < Cinvh;(l e, il z2r,.r2 k) Vw, , € P.(1,) ® Vi (K), (4.32)
00, 21,120k < CinTy Nl p2r r2x0) Yw, € P,(I,) ® L*(K), (4.3b)
Hdivp. g ll 2r,; 2k < Cinvh;(l sl 2r, L2k vp.x €P.(1,) ® Py (K), (4.30)

for some positive constant C,,, independent of K, hy, and ,,.

Proof. The inverse estimate in (4.3a) follows from the tensor-product structure of the element K x I, and the space P.(I,)®V,(K),
and the inverse estimates for VE functions in [33, Lemma 6.1] (for d = 2) and [34, Thm. 3.4] (for d = 3). The inverse estimates (4.3b)
and (4.3c) are standard; see e.g., [35, §4.5]. []

In next lemma, we recall some approximation properties of 11! from [36, Lemma 4.3].

Lemma 4.2. There exists a positive constant Cg independent of h and t such that, forn=1,..., N and K € Q,, the following bounds hold:

It — @)l 2k, ) < Csmallio N2k, Vuw, € P,(I,) ® LK), (4.42)
ll0,(Xd = )@l 12(x,y < Csllwell 2k, Vw, € P(I,) ® L*(K), (4.4b)
I — T pw )l s, ) < Cyr2 o, | @) Vi, € P(I,) ® L), (4.40)

I(1d - Hﬁ)((ﬂwr)nﬁ(zn) < CSTn% ||WT||L2(1";L2(_Q)) Vw, €P.(I,)® L2(9)~ (4.4d)

Proof. We show only the proof of (4.4b); the other bounds can be derived with very similar arguments. We start by introducing
@ := I1}p and applying some simple steps

19,1d — T @wll 2k ) = 10,dd — T (@ — B)w )l 2 < 19,0 = Dwll 2k “s)
+ ||atnrt((§0 - E)WT)IILz(KH) < ||(0lwr||L2(Kn) + |l — a)ath”U(Kn) + ||01H:(((P - @wT)IILz(Kn)-

The first term on the right-hand side is bounded trivially by |jw. || 2k, using (4.2b). The second term is bounded first by standard
approximation properties of constant polynomials, afterwards by recalling (4.2b) and (4.3b):

It = @atwfllen) <lle- 5||L°°(1n)||0twf||L2(Kn) < CTn”(l’l”Lw([")”axwr||L2(K") < C||LUT||L2(Kn),

where C is a generic constant independent of z,,.

The last term in (4.5) is bounded similarly. Since the function is polynomial in time we can apply an inverse estimate, afterwards
use the continuity of the projection operator, and finally deploy again standard approximation properties of constant polynomials.
We obtain

||0,H;(((p - 5)”')‘[)”[,2(](”) < CT;I ”H:(((P - 5)“}1)”L2(K") < CT;I [[(@ — a)WT”LZ(KH) < C”Wr”LZ(KM),

which completes the proof. []
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Furthermore, the following estimate follows from [37, Lemma A.1(e)] and the equivalence of I'[(') and the averaged Taylor
polynomial T° defined in [37, Eq. (A.1)]: for all K € Q,and n=1,..., N, it holds

18- H(t)ﬁ”Lw(In;Lq(K)) < CorulloBll o, Laky V4 € [1,00], (4.6)
for some positive constant C,, independent of ~ and .
We finally prove a simple orthogonality property for generic bilinear forms s(-,-) on V,(K).
Lemma 4.3. Let ¢ be defined as in (4.1) and s(-, ) be a bilinear form on V,(K). For any K € Q, and n=1,..., N, it holds

/ s (1d = T(Quy Nt =0 Vuy . 04, € P(1)@V,(K). (4.7a)
I

n

Proof. Let K € 2, n € {1,...,N}, and u, ., v, . € P,(I,) ® V}(K). Moreover, let {qﬁf}?,i:l(v"(m be a basis for the space V,(K). Then,

there exist polynomials {af}‘;i“l(V"(K) ) ¢ P.(1,) and {ﬂm}rd'f':"l(vk(m) c P,(1,) such that
dim(V;,(K))
w60 = Y (%) V(x.1) € K,
/=1
dim(V;(K))
(Id — ) (v, )(x, 1) = Z Ad — ) (1), (1)) (%) V(x,1) € K,,.

m=1

Therefore,
dim(V;,(K)) dim(V;.(K))

/ $(up,g, (Id = 1) (p0p ;)) df = Z Z S(¢f,¢m)/ a,(0(Ad — I} ((1)p,,(1) dr = 0,
I,

1, £=1 m=1

which completes the proof. []

4.2. Inf-sup stability

For the sake of clarity, in next Lemmas we show some bounds that will be used to prove the inf-sup stability estimate in
Theorem 3.6.

Lemma 4.4. Let Assumption 3.5 hold. Then, under the same notation, for any u,, € V; and v, = I (pu,.) + Ou, . € V;, with ¢
defined in (4.1) and some positive constant 0, the following bound holds:
1
onelle < V2[2T)? +2C3 + 48 (1 + DL h + 8Fg, C2) + 02| lluy 1. “4.8)
with 6 = C4Cy,.

Proof. Let u, . € V;. Using the triangle inequality and the definition of v, ., we get
None 3 < 20T (@uy ONIZ +26% llup NI (4.9

Hence, it only remains to bound the first term on the right-hand side of (4.9).
The following estimates follow immediately from the stability properties of 11/, the commutativity of the spatial gradient V and
the operator IT : , and bound (4.2a) for ¢:

t 2 2 2
M (@up 2, < €T Nunelly g s (4.10a)
t 2 2 2
VIVUT @up N 10 < VTP IV e (4.10b)
lpuy |2 < (€T |uy, |2 (4.10¢)

By using the triangle inequality, estimates (4.4c) and (4.4d), bound (4.2a) for ¢, and estimate (4.10c), we obtain
2 2
T (pup Dy < 21(1d = )@ )y + 21pup, oI < 2C5 Tl 1175 ) + 2T lup I (4.11)
We now bound the SUPG-seminorm of IT!(¢uy,,). For all K € 2, and n = 1,..., N, we have

2 K
T} @un N e = A, 17 (T D) 5 |+ A, B T (990 = T )13 - (4.12)

We consider the first term on the right-hand side of (4.12). Using the triangle inequality, the orthogonality properties of H,?’K

and IT 2_'(1, estimates (4.4a) and (4.4b), the inverse estimate (4.3a), bounds (4.2a) and (4.2b), assumption (3.16) on the choice

10
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of A K, and the mild condition (3.17), we get
A NEL (T )13
<2k ILE (ouy I

< 20k, 10, (@ T  uy ) + @B - 1)K Vuy |12

+ 22 I£} (1d = IT)(guy, )1

L2(K,) L2(K,)

+44 110,ad — T (@I u, )12

L2(K,) L2(K,)

+ 44k, |IB - (I1d - ”’)((017 K Va1

L2(K,)
<4 9 I uy 17 o+ 40k 0L S e+ 44k 110,(0d = ID@IT  uy I
T L2(K) K, hothr LZ(K) K, h,t LZ(K)
0,K
+4Ag B - (1d = IT))(@IT; Vu;”)IILz(K)
2 2 72 2 2
<41+ CPHAg, ||uh,||L2(K)+4(eT) Ik, ||£,”uh,||L2(K)+4ﬂQTcS/1K T ||Vuh,||L2(K v
2 2 3 22 2
<4+ CHB,) hKlluthle(K)+4(eT) Ag 1K ru,,,||L2(K)+4ﬂQTc C2 Ctihy 1||u,”||L2(K)
2 2 2 2
<4(a+C2 $)8g) hi + 6P, C: )||uhT||L2(K)+4(eT) Ag 1K el (4.13)

where 6§ = C4Ci, -
Moreover, using the stability properties of IT! and bound (4.2a), the second term on the right-hand side of (4.12) can be bounded
as follows:

AKnﬂIZ(n 11! (V(d - 11" < (eT)ZAKnﬂf(n IV(1d - 1%

2
)uhf)”LZ(K )d )uh,T”LZ(Kn)d’

which, combined with (4.13) and summing up for all », gives

2 2 2 2
L@t )y < ATVt +4C ((L+ CHBGLR+ 620, €2l I, - (4.14)
Therefore, combining bound (4.9) with estimates (4.10a), (4.10b), (4.11), and (4.14), we get the desired result. []

Lemma 4.5. Under the notation and assumptions of Lemma 4.4, the following bound holds:

vay (Up . Vp ) 2 va, (T + 0)||Vuy, Tlle(Q e
where a, is the stability constant in (3.7).
Proof. Let u; . € V. By the stability property in (3.7) of the bilinear form a,(-,-), and bound (4.2a) for ¢, we have

Vah,‘r(uh,r’ Uh,‘r) = Vah ‘r(uh T (Puh T) - Vah,‘r(uh,r’ (Id - ”,{)((puh,r)) + evah,‘r(uh,r’ uh,r)

> (T + 0)a,v||Vu, Tlle(Q y —vay, (up, ., (Id — I )(pup, ). (4.15)

The last term on the right-hand side of (4.15) vanishes due to the orthogonality properties of 11/ and Lemma 4.3, which completes
the proof. [

Lemma 4.6. Under the notation and assumptions of Lemma 4.4, the following bound holds:

B (s Vpe) 2 =8,C Nty oI (4.16)

L2(r)’
with 6, = 6Cyl10, Bl Lo o,y1» and C, as in the mild condition (3.17).

Proof. Let u, . € V;. Using the skew symmetry of the bilinear form bSkeW( -), and the commutativity of IT (,:’K and I1!, we have
By (U e Une) = By s Pty ) = Bixe" (o (1d = TNy ) + OB (.t )
= =05 (up . (1d = 1T))(uy, )
N
1
=3 z 2;2 [ BN Vuy,, (= M@ ), = (4= T Vw0, BT u, ) ] . @A
n=1 KeQ,

In particular, if § = B(x), then b (., v;,) = 0. Otherwise, since I1\(B) - )X Vu,, € P.(T,; LX) and (BT u,, €
P.(T,; L*(2)9), using identity (4.17) and the orthogonality properties of I1', ; we obtaln

N
1 0,K 0.K
bSkew(uh 72 Up, ‘r) = _5 Z Z [ ((Id - H(t))ﬁ : Hk Vuh,r’ (Id - H;)((pnk uh,‘r))K"
n=1 K€Q (4.18)

— ((d= I)@IY V). (1d= TFTT ), |-

11



L. Beirdo da Veiga et al. Computer Methods in Applied Mechanics and Engineering 436 (2025) 117722
For any K € 2, and n = 1, ..., N, using the stability properties of H%K, the local inverse estimate in (4.3a), estimate (4.4a),
error bound (4.6) for 8, and the Holder inequality, we get
—(ad = 1mpp - " Vuy . (1= I)(@IT)} uy )
> — 1B = I}l oo i o T = TN @IT  wy VIS Vit 1 e
> — 1B — I}l oo i ya 1T = TY@ITY Dl 20k IS Vg N 2k ya
—8h'r

2 2
2lan e (4.19)

where 8, = 6Cyl|0, Bl Lo (e -
The following bound can be proven in a similar way:
~((d = I QI Vuy, ). (d = MBI wy ) 2 =5 Thllun el -

which, combined with identity (4.18), the mild condition (3.17) and bound (4.19), leads to (4.16). [

Lemma 4.7. Under the assumptions of Lemma 4.4, the following bound holds:

1

o u* 2C§,r N )
m e ond 2 i (5= (50) 55 ) Wneliiag,, + Tlonel} ). (4.20)

where p, and y* are the stability constants in (3.4), and Cy is the constant from Lemma 4.2.

Proof. Let uj, . € V;. By adding and subtracting suitable terms, we have
’"Z',T(“h,rv Upe) = mzir(uh,r’ Qup ;) — miir(uh,r, (Id — O (euy ) + 9m[;,',,(uh,,, up ;)
= M+ M, + M;. (4.21)
We treat each term M, i = 1,2, 3, separately.
Bound for M,. Since ¢'(t) = —(1/T)e(1) for all ¢ € [0, T], the following identity follows:
00,y ) = (1/Tuj, @ + 0y (ouy ).

which, together with the 1dent1ty [[(pw2]] —[pwl,w(. 1) = —[[\/aw]]2 the symmetry and stability of the bilinear form m(,-), and
bound (4.2a) for ¢, leads to

0,
M, = mh',(”h o Py )

2

=z Z / (p(t)—mh Up oy 1) dr - mh(ﬂuh,r]]n, @t up (- T:)) +mp(up (-, 0), @(0)uy (-, 0))

d
/1 o (wo)mh(uh.r’uh.r) ) dr

N
- Z my [[uh s 0@ Dup (s t+)) +mh(uh (5 0), O)uy, . (-, O))

n=1

M=

n

N

1 1

= ﬁ’;/ @(t)my, uhr,uhr)dt+§
-1

N-1
« 1
> ;—TII\/auh,fllsz(QT) +3 [mh((p(T)u,,,T(.,T), U (5T)) + z Lot mpy (g ot )y = my (@Ot (-, 0), up, (-, 0)) ]

n=1
N-1

- Z mpy ([[Mh,r]]n’ (p(tn)uh,r(" t:)) +my ((p(o)uh,r(" 0), uh,r(" O))

n=1
N-1

* 1
= T INVPun g, + 5 [ (@ Tht S T0) + 3 )t Dy Lt 1)+ (0Ot - 011, 0) |

n=1
1 2 2
(S IVEu R, + 1V )

1
2y (Sl + Tlunel? ) (4.22)

Bound for M,. Using the orthogonality properties of IT!, Lemma 4.3, estimate (4.4c), the local inverse estimate in (4.3b), the
symmetry and stability of the bilinear form m,(-,-), and the Young inequality, we obtain

9
My = —m)) (uy ., (Id = II})(@uy, ;)

N
==Y T [ Qe 0= Miguy0) +/ K ((ad = 1S90y, (1 = 1T (001 = 1105w, ) ) i |
" 1

n=1 KEQ, n

12



L. Beirdo da Veiga et al. Computer Methods in Applied Mechanics and Engineering 436 (2025) 117722

N-1
+ Z my, (Tt 0> Td = I @up )5 1)) = my, (g -, 0), (Ad = T ) (@uy, (-, 0))
n=1
N-1
my, (g D> (0d = )@ )G, 1)) = my, (g (-, 0), (Td = TT})(@uy, ), 0))

n=
N-1
> —u* ( Z “IIuh,T]]n”LZ(Q)“(Id - ”:)((ouh,r)“LZ(zn) + ||uh,7||L2(20)||(Id - ”;)((ﬂuh,r)”LZ():o) )

n=1

% Hy 2 C§‘T
> —pu 9F|uh,T|J to “uhT”LZ(Q ) (4.23)

Bound for Mj;. Integration by parts in time, the symmetry and stability of the bilinear form ’"‘er,f(" -), and the identity %[[wzﬂ,, -
], w(., ) = 2w]? yield
M, = Bm(;"r(uhyr, Upt)
N-1

/ dtmh(uh,,uh,)dt 0 th et e Do gy G 1)) + Omy, (g, (-, 0), 1y, (-, 0))
n=1
0 N-1
-2 ( g (e Tt e ) 4 3 T (st ) Dy = 0 1, 00,1, -, ) )
n=1

N-1
=0 my (Ltp Dot o 1) + Omy, (1, 0), -, 0))

n=1
N-1

= & (a0 ) + 3 (WD 1) + 7 (1, 001, 0). )

n=1

2 O, lupc |3 (4.24)

Combining identity (4.21) with bounds (4.22), (4.23), and (4.24), we get (4.20). [

Lemma 4.8. Under the assumptions of Lemma 4.4, the following bound holds:

h 1 1 1 = =
supg 2 -1 2 2 2
(uh T Uh T) > Iuh‘r supg Z: [ + %) + _0(C5ﬂQTh + 1 ﬂQTC*) ] ”uh,T”LZ(QT)

_¢ [e2T+ < S+l > ] VIV, (4.25)

with 6 = C4C;,,, a, is the stability constant in (3.6), and C, is the constant in the mild condition (3.17).

Proof. Let uj, . € V;. By adding and subtracting suitable terms, we have
sng(uh > Plp ) — s (uh L(d-11" Moup ) + HSS pg(uh > Ups)

i+ 4 s (4.26)

s
pg(uh o Up, r)

We bound each term J;, i = 1,2, 3, separately.

Bound for J,. Using the triangle and the Young inequalities, the stability property in (3.6) of sX(-,-), the inverse estimates in (4.3b)
and (4.3c), bounds (4.2a) and (4.2b) for ¢, the stability properties of II,?‘K and IT 2 1 and assumption (3.16) on the choice of 4 K,
we get

_ supg
Jy =5, g @y )

N
=Y Y [(E,’iruh’r,ﬁﬁr((puhﬁ))l( +/3}(n/ (psf((ld—HZ’K)uh’T,(Id—HkV’K)uh,T)dt]
n I,

=1 KEQ,
N
=Yy [/IKH (ﬁfﬁruh,,,a,«png"u,m) +op- H,(:;Kqu,,J> + B2 Ax / os¥ (ad - 17X, ., (1d — 17wy, ) dt]
=1 Ke, Ku " I,
N
2D [ (B e @ T un )+ 2k IO el
n=1 K€y,

v V.K . 0,K 0,K K
+ a/ﬁ(n,a,(n ly/ovad -1, )u,,%fnsz(Kn)d —vig, (div )8 Vuy, . @' 1) u;,  + (pL{l“ruh,T)Kn ]

13
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>Z O [ S A NES el + T AR B 19 = 11
n=1 KeQ,
(L 4+ Ly s 2 (L4 ) Ndiv 0K Va2
KT T 2917 Tk Vi, (3 Fe Upy

”'””L%K ) L2(K,) ]

N
T M
>3 [ DA IE B+ G B 198 = T 2

205 \d
n=1Ke, 2 B
1 0.K 2 6, 2
_}'K (T+_)||(pH uhT”Lz(K) VAK (§+€T) inv K”H Vuhr”LZ(K)]
5 ) Ch [
> 2 |uhT|supg ﬂ—QT( 29)”uhfllL2(Q ) vC ( 5 +e°T ) ”VuhTHLZ(Q ) (427)

Bound for J,. The following identity follows from Lemma 4.3

Jry= —SSUpg(uhT’ d — ) (pup,:))

= —Z D [ (LK wyo £F (1d = 1) uy,)) o + P AKH/ sK(ad - 11wy, .. (1d - 117)((1d - nZ'K)uh,,))dz]
n n 1

n= 11<e.o,, n
——Z Yk, (Lf up, = vdiv K Vuy, , £F (1d- H)((pu,,,))
n=1 K€Qy,

Using the Cauchy-Schwarz, the triangle, and the Young inequalities, estimates (4.4a) and (4.4b), the local inverse estimates in
Lemma 4.1, assumption (3. 16) on the choice of A K, and condition (3.17), we get

[ /1,( VZAK a,
122—2 Z ||£,ZT hrlle(K) T”dl\’ﬂ V“hr”Lz(K)

9
N [ Ag .0 v2/1 a0
Z Z K, "7 Sk K77 0 h=2
- 2 ”Lh ruh‘r”LZ(K ) + 2 Cinv ”Vuh T”LZ(K yd

n=1 K2y,
24K 2, 232
+u (Ci4 00,7 )uuh,uLz(K)]
N
~ via,0
== [ Notnel2ag )+ =5 Ve
n=1KeQ,
= (Cafighhi + 55 s
or 'K QT hellp2k,)
VC 28 2 2
> - supg * ”Vuhr”Lz(Q )l - ( ﬁQ h+6 ﬂQ C )”uhT”LZ(Q ) (428)
with 6 = C4Cjpy -
Bound for J;. Similarly as for the bound for J, it can be shown that
a0 vC@
2
Iy 2 =l g = 1Vl (4.29)

Combining identity (4.26) w1th bounds (4.27), (4.28), and (4.29), we get (4.25) [

We are now in a position to prove the stability and well-posedness of the method.

Proof of Theorem 3.6. Let u, . € V; and vy, , := IT\(¢uy ;) +0uy, . € V;, with ¢ defined in (4.1) and the real 6 > 0 to be fixed later.
From Lemmas 4.5, 4.6, 4.7, and 4.8, we get

1 2C57 2 h (1 1 2 (21 27 2 2
P ns ) >[”* (3- (u) 2 ) o= Po, (7+%) *oa. (Cslo,h+ 500, C.) )| el
T
[04
TR AT P [T(a*—cez) o (a-t(5+1) )] VIV

Choosing ¢ and C, small enough, and 6 large enough, we deduce that there exists a constant #* > 0 independent of 4, z, and v such
that
By g vp0) 2 1 g N (4.30)

which, combined with Lemma 4.4, completes the proof.

14
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Proof of Corollary 3.7. The result follows from the inf-sup stability estimate in Theorem 3.6 and the following continuity bound

for the linear functional /’Zﬁ'fg() in (3.12): for all v, , € V}, it holds

1
1 N 2
pSUpg 2 2 2 1 FK 2
13275 .0l < V2 (ol 2@ + 17 200 ( N0ne g+ 3 M0nelias ) + X0 0 43 I OnelZay )
n=1 K€Qy "

< \/E(HMOHLZ(_Q) + ”f”LZ(QT))mUh,T |||g

Remark 4.9 (Inf-Sup Constant for Long-Time Simulations). The inf-sup stability constant y; is of the form
My
Y=
1=
where #* is the constant in bound (4.30) and 7, is an upper bound for the constant on the right-hand side of (4.8).
Assuming that 7 > 1 and

1 ( M* )2 n . Ay 2 . Hi Ay . Xy X ”*T T
T<—(—]), h<p mln{—, 1}, C <m1n{—, —_}, C<m1n{—, _— —}, 9=max{4, —},
2\, Or 2c2 * 85, 262f,, 2027 a,+2° 32 2
we have that
wo o f B _ s _
n* > min 3 w, T, aT ;= 3 and 7, =O).
Therefore, the inf-sup stability constant y; ~ 7. L]

5. Convergence analysis

In the present section, we prove Theorem 3.10, which will follow as a simplified case of the more general error bounds derived
below. We start by recalling some polynomial and VE approximation results. The Bramble-Hilbert lemma (see e.g., [35, Lemma
4.3.8]) implies the following approximation properties of the polynomial projections introduced in Section 3.2.

Lemma 5.1 (Estimates for Polynomial Projections). Under Assumption (A1), for any element K € £, and any sufficiently smooth
function ¢ defined on K, the following estimates hold:

I3d = TSV llymociy S B 1blwrsac) ssmeN, m<s<k+1, pell,+oo], (5.1)

I@d = 11 )bl iy S W™ b sy smeN, m<s<k+1, s> 1. (5.1b)

Moreover, for any I,, € T, and for any sufficiently smooth function y defined on I, the L*(T,)-orthogonal projection in P,(T,) of v
satisfies

@ = TOwllgng, S 70 " Wlgeq, meEN, m<£<r+1. (5.2)

The next lemma concerns the optimal approximation properties of the VE space V,, see [26, Lemma 3.15 (for 2D) and §5.2
(for 3D)] and [38, Thm. 11] for more details; see instead [32] for the case of serendipity VE spaces.

Lemma 5.2 (Approximation by VE Functions). Under Assumption (A1), for any v € H(}(_Q)nH s+1(Q,) (0 < s < k+1), there exists v; € V),
such that, for all K € Q,, it holds

[lo— UI”LZ(K) + hI(HV(U - Uz)”LZ(K)d < h?l |U|HS+1(K)- (5.3)

The last ingredients are a standard trace inequality in one dimension, a stability bound for 1T’ in the H!(I,)-seminorm, and a
scaled Poincaré-Friedrichs inequality on polytopes.

Lemma 5.3 (Trace Inequality). Let I, € T,. For any y € H'(I,), it holds

+5,llowl,, (5.4)

2

2 2 -
()P + @) S o i,

Lemma 5.4 (Stability of IT'). Let I, € T,. For any w € H'(1,), the following bound holds:

N0 1wl p2¢r,y S N0 Il 2y, -

15
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Proof. Let I, € 7, and y € H'(I,). Using the polynomial inverse estimate (4.3b), the stability properties of II!, and the standard
Poincaré inequality, we get

”azH:II/”LZ(]") = ||(),(H:l// - H(’)l//)”Lz(,n) p T;l ”Hi(ll/ - H(I;‘I/)||L2(1n) b T,,_l II(1d - H(’))l//”Lz(,n) < ||01W||L2(1”),

which completes the proof. []

Lemma 5.5 (Scaled Poincaré—Friedrichs Inequality (See e.g., [39, Lemma 2.2])). Under Assumption 3.1, for any element K € £,
and v € H'(K), it holds

@d = 11,50l 2 k) S RV = I 5)0ll 24000 -

In the forthcoming convergence analysis, estimates (5.1a), (5.1b), and (5.3), as well as the scaled Poincaré-Friedrichs inequality
in Lemma 5.5, are applied pointwise in time, whereas estimate (5.2) and the trace inequality (5.4) are applied pointwise in space.

5.1. Some preliminary assumptions and notations

Henceforth, we assume that the solution u to the continuous weak formulation (2.2) has the following parabolic regularity:

u € L*(0,T; H*(£)) n L®(0,T; Hy (2) n H'(0,T; L()). (5.5)
Consequently, a density argument can be used to show that

Ou—vau+p-Vu,v)p, =(f.v)g,  YveEL*Orp) (5.6)
For convenience, we also define the following operators:

£y = ou—vau+B-Vu, LXv:=ou+p- Vo, (5.7)
and the following bilinear forms and linear functionals:

m? (u, v) 1= (Ou, V)g, + U, V)5, al(u,v) 1= /0 ! a(u, v) dt,

N

Z ZxKn(z:Ku,EKu)Kn,

Ke@y n=1

N
2 2k Lo,

Ke@y n=1

T
b (u,v) = / bu, v)drt, sSUPB(y, 1) ¢
0

Cr) 1= (f,v)g, FROF

fun(v) 1= (ug, V) g-

Remark 5.6 (Parabolic Regularity). The parabolic regularity assumption (5.5) holds, for instance, if 2 is convex, compatibility of the
initial and boundary conditions is satisfied (i.e., u, € Hd (£2)), and B does not depend on ¢ (see [24, Thm. 5 in Ch. 7.1] for smooth
domains, which can be extended to convex domains using the results in [40, Ch. 3]) n

5.2. A priori error estimates

Let the solution u to the continuous weak formulation (2.2) satisfy the parabolic regularity (5.5), and let u, , € vy be the solution
to the SUPG-stabilized time-DG VEM formulation (3.10). We define up =11 ; uz, and the following error functions:

e =u—ug, e?[:u—H,?u, eZ:u—HkVu, epr = Ug —Up ;.

Proposition 5.7 (A Priori Error Bounds). Let Assumption 3.1 and 3.5 hold, then the following bound holds:

Ml = up Me < Mezlle +7; sup  xe(Op )+ SUD Xaupe(Up ) + sup  x,(op )+ sup xu(0n) ) (5.8)
op,rEVEIO), Up,rEVEN(O), Up - EVIN(O), o, r€VEO),
Moz llg=1 Nopzllg =1 Nop e llg=1 oz lle=1

where

XeWpg) 1= C (0 ) = €U K 0y ) + £, (0) = €, (1)K 0y ),
Koupg ) 1= €58 Wy0) = 538, 04,0),
Xapo) 1= va (wvp,) = vay (U5, v, ),

. 0, T 9, k
s W) 1= m v ) + b (v ) —my (W, vp,) = b (U7, Upo)-

16
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Proof. The result follows easily from the triangle inequality, the inf-sup stability estimate in Theorem 3.6, the definition of the
SUPG-stabilized time-DG VEM in (3.10), and observing that the continuous solution satisfies

m? (u, vy ) + val (v ) + b W0y, ) = €0y ) + €, (V) Vo, €V [

We now estimate each term on the right-hand side of (5.8).

Lemma 5.8 (Estimate of [le7[ll-). Under Assumption 3.1 on the mesh-regularity, Assumption 3.5 on the choice of A, and the relation of
and h,;,, and Assumption 3.9 on the data of the problem, it holds

2q+1 2 2542
llezlle < Z Z < Ak, T q)”“”Hq+1(I JL2(K)) + Ak, ”a””LZ(I JHSH(K))
n=1 K€y,

2542
25+2 K 2s 2 12s
+( + VR + g B W)

- (.

+(v+ A, By )7, 2q+2||V“||Hq+1(, L2K)) > (5.9)
Proof. By the definition of the energy norm || - ||+ in (3.15), we have
2 2 2
e li2 = ef 12, + 1e3 1+ VIVER 2 o+ e} 2y (5.10)

We treat each term on the right-hand side of (5.10) separately.

« Estimate of ||e7 || L20p)- Using the triangle inequality, the stability of I1! and its approximation properties in Lemma 5.1, and the
VE interpolation estimate in Lemma 5.2, for all K € 2, and n € {1, ..., N}, we get

t < 724+2 2542
NG 1% ) < 2= Il + 20T = un)l o S TPl oy + P N2 s

« Estimate of |e7|,. Using the trace inequality in Lemma 5.3, the stability of /7] and its approximation properties in Lemma 5.1, the
inverse estimate in (4.3b), and the VE interpolation estimate in Lemma 5.2, we obtain

-1
Z ( ”e ”LZ(I 1L2(Q)) + T"”() el”Lz(I 1L2()) )

n=1

4

1%\
—~

- Ty — 2 _ te, 2
"(llu Hulle(, 12y T “Z)”LZ(I,,;LZ(Q))) 7, (110, (u HM)IILZ(, 12y T 10U (u uz))lle(,n;Lz(Q))))

3
I

2_s+2

2q+1
(2 M, 1 g2 * % W iy )
Ke@,

Mz

3
Il

« Estimate of v||VeZ|| 1207y Using the triangle inequality, the stability of IT! and its approximation properties in Lemma 5.1, the
commutativity of the spatial gradient operator V and the L?(7,)-orthogonal projection II’, and the VE interpolation estimate in
Lemma 5.2, for all K € 2, and n € {1, ..., N}, we have

vl[Vel |2 <2\ Vu—I'Vul?,  , +2vIHT'V (@ = up)|? < v || Vu|)?

2y + VA

L2(K,)d — L2(K,,) H (I, L2(K)?) L2(1,;HSY1(K))'

« Estimate of |e] |supg. We bound this term using the triangle inequality, the commutativity of the first-order time derivative operator o,

and the L%(K)-orthogonal projection operator H,(: the stability properties of I7, O.K " 1% Pl 1, , and IT!, the stability bound in
Lemma 5.4, the estimates for /1] in Lemma 5.1, and the VE interpolation estlmate in Lemma 5. 2 as follows.

A Mo, 115 el + g 10K ver |2 + g, ﬂK IV(d — 11 %)e |12

1 lK”~SUPg L2(K,) L2(K,)

S Ak, llose] IILZ(K )t 4k, x. IIVeIIILz(K v
S Ak, (llo,(2d — 1] )ulle(K)+ N0, I (u ~ uz)lle(K )

+ A, ﬂK (llad - ! )Vu||L2(K ot 1TV (u - u1)||L2(Kn)d)
S Ak, (l9,(1d — 11} )uIILz(K)+ 19, (u - uz)IILz(K )

+ a0 (10d = DV, o+ 1V = uply )

17
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< g, (22 Nlull? + R 0,ull?

LZ(, H~‘+1(K)))
+ 12 lul)?

Ha+(1, LZ(K))

+ g, By (2 11Vull?

Hq+l([ LZ(]()d) L2(l HS+1(K)))

Conclusion. Estimate (5.9) follows combining (5.10) with the above four estimates. []

Lemma 5.9 (Estimate of y,(vy.)). Under Assumption 3.1 on the mesh-regularity, Assumption 3.5 on the choice of g, and the relation
of 7 and hy,,, and Assumption 3.9 on the data of the problem, for all v, , € vy with ||v, .lle = 1, the term y,(v, ;) can be bounded as

follows:
1

. 1 N 2

< s+4 2542

7o) [ Y, min{-———.2 . PRIy ey + Z 0
n=1 Kefy, K, K,

Proof. Using the orthogonality properties of IT,?’K and %K | we have

k-1
XeWpo) =€ p(Up ) — ff(HE’KUh,r) + 4y W) — qu(H,?’K Vhr)
N
= Z Z (ad—m>*)f.ad - 1w, ) o + Z ((Xd — 11 yug, vy (- 0))
n=1 KEQy, " Keg,
J K
=2 ) 1, (5.11)
n=1 KEQ, KeQ,

Using the scaled Poincaré-Friedrichs inequality in Lemma 5.5, the approximation properties of H]?'K from Lemma 5.1, and the

definition of | - Ik, supg 0 (3.14), forall K € 2, and n € {1,..., N}, we get

K
2 = (M= I f,ad = 1 0y0) S A = T F L2, 19 = T )0 2o

lU |K ,su
. -SUPg
S BN N 2a, s m‘“{ 1/2—’ IVoRell L2k, i }
Ag Px,
which, combined with the Cauchy-Schwarz inequality and the definition of the energy norm || - ||+ in (3.15), implies
N N 1
K, . 1 2
T (Y X wtmin{ - 7 IRy i) Mol (512)
n=1 KeQ, n=1 KeQ, K

Finally, using estimate (5.1a) for HI?’K and the definition of the jump functional | - |, in (3.13), we obtain

1
2542 2542 2
z )(1/0 ( z h* |"0|Hy+1(,<)) ||”hr||L2(20)~( z h* |“0|Hs+1(,<)) Vnel)- (5.13)

The desired result follows combining identity (5.11) with estimates (5.12) and (5.13). []

Lemma 5.10 (Estimate 0f y5(vy ). Under Assumption 3.1 on the mesh-regularity, Assumption 3.5 on the choice of ix  and the relation
of = and h,y,, and Assumption 3.9 on the data of the problem, for all v, . € V; with |lv, .o = 1, the term ., (vy, ;) can be bounded as
follows:

N Ax qu K, 2542
: 2 K
Kupe @) S| 2, < s 1yt — 19 u”LZ(I SH*1(K))

n=1 K€y ﬁ[(n " ﬁ[(n

2 25=2
viig hy
n 2 2s
( —_— + Ak, (1 +ﬁKn)hKY ) ||u||L2(1 )

ﬂ,(n
Viag 10t ) Ag W
+( 12 52 + 4k, T )” “”Hw([ vant Tom 2ﬁ2 ”f”L2<1 SH*(K))
K"K,

1

2
}llﬁ”m(, Wroo([()d)”f”Lz(I JHS(K)) >]

+ /l%( h%’ min{
n
AKn K,,

Proof. Adding and subtracting suitable terms, we get

Houpg(One) = €58 Wp0) = 583, vp )

18
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N
= Z Z ( Ak, (fs Koy, Dk, — 4k, (L) TuZ’L;\;rvh,T)Kn - ﬁKnﬂin/ 5 ((1d = ”kv’K)”;’(Id - ”Z’K)Uh,f)df )
n=1 K€, I,

Y ( Ak, (R E oy 0k, = Ak, (CF 5 £ 04,0k, = A, P / sK(1d = 1wy, (1d = 11wy dr )
"JI

n=1 KeQ, n
N
=y > ( A (L5u— 8wl L vy) o+ dg (C5u,0,(0d = 120, O+ Ag (C5up,1d - X))V, )i
n=1 K€, "
i B / sK (= 1wz, (1d = 117Ky, ) dr )
N
. K?l
= Z Z (){supgl + }(sung 'Ysupgi ){supg4) (5'14)
n=1 K€Ly

We bound each term g, i = 1, ..., 4, separately.
Using the Cauchy-Schwarz and the triangle inequalities, and the definition of | - [, in (3.14), we get

K, — K K ut K
/Ysupg,l - }LKn(L u-= El o 17 Eh.rUh,T)K

= Ag, (0, — M u) — vdiv(Vu — K vug) + B (Vu— 10K Vi), 2K v, )
4172

Ky 0, . 0, 0,
= Pk ( 10, = IS w2k + VI div(Ve = K VUl 2 + 18 - (Vu = IS Vi)l ) 1Wnelk, supe: (5.15)

We now focus on the local interpolation error terms on the right-hand side of (5.15). Using the triangle inequality, the commutativity
of H,?’K with the first-order time derivative operator 9, and that of 9, with the VE interpolant operator, the estimates for /I’ and IT Q’K
in Lemma 5.1, the stability of 71! in Lemma 5.4, and the VE interpolation estimate in Lemma 5.2, it follows that

0, = IRl 2y < @D = IFVoull 2y + IHT) K 0,(0d = 0wl 2 + TN 0T @ = up)ll 2
0,
S Nd = 1590l o e ) + 10,(0d = Tl 2 ) + 10, = up)ll 2k
S WOl 2, sy + Tl et 20 (5.16)

As for the second term on the right-hand side of (5.15), we use the triangle inequality, the estimates for I’ and IT 2K1 in Lemma 5.1

and their stability properties, the commutativity of /I’ and the spatial divergence operator div, and the inverse estimates in (4.3b)
and (4.3¢) to obtain

vl div(Vu = A Va2 ) < vIEiv(Ve— T8 Vil ) + Vi div T (Va = TVl oy + VI div TS V= up)ll 2
q+
SV ull g2, s iy + V— ”Vu”[-[qH(I L2k (5.17)

Note that the negative power of hy could be avoided by asklng more space regularity for u, but such effort is not required since
this term will be balanced by suitable factors in the final estimates. The last term on the right-hand side of (5.15) can be bounded
similarly as follows:

18- (Vu— K Vu)ll 2y < 1B - (Vi = V)| 2y + 1B - (Vi = IVl oy + 1B - TN (V= Vup)ll 2

b ﬁKnTZH IVull gari(r,:2(k02) + ﬁKn xlull g2 s iy - (5.18)

Combining estimates (5.16), (5.17), and (5 18) with identity (5.15), we get

A’K h2s+2 VZJ»K h2s—2
n_ K 2s
z z 'Ysupgl "‘[2 2 < Hfl“(l LZ(K))+ ﬂ ”a u”LZ(I JHSHH(K)) ( 2 +/1KnhK ) ”u”Lz(l JHSHL(K))
n=1 Kegy, K, K,
2 q+2
ViAk T, 1
n 2g+2 2 3
( hZ ﬁ2 + /1K Tn ! ) Hvu”H:ﬁ-l(ln;LZ(K)d) >] 2. (519)
kPk,

Due to identity (5.6), we get

xsfpgz = g (C5u,0,(0d = IT5)0, Vg = ag (Ad = TP5) £, (1d = 11500, ) .
xs'jpgs = g (C5up, (1d = TVX Vo, ) = dy (@d— I8/ B).(1d — 15 )Vo, ) .

Using the polynomial inverse estimate (4.3b), the scaled Poincaré-Friedrichs inequality in Lemma 5.5, the approximation

properties in Lemma 5.1 for HI?’K , and the definition in (3.14) of | - | K, .supg> WE have
N
Z Z Isung Z Z AK ((Id - I?K)f 9,(Id — nk )UhT)
n=1KeQy, n=1 KeQy,

19
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Ky 0.K 0.K
II(Id — I, )f”LZ(Kn)”(Id - 11, )Uh,f”LZ(Kn)

N
K
sy Y lTd = 15 £ 1l 2 IV = 10y Nl 2
n=1 K€y, n
1/2h

0,K
T ”(Id - Hk )f”LZ(Kn)lvh»TlK”.supg
n=1KeQ, n’Ky,

N Ax h2s+4 %
s( PN A ) ol (5.20)
=1 KeQ, K,
An improved estimate of Isu;gz’ valid only for fixed spatial meshes, can be found in Remark 5.11 of [41].
As for )( , we use the Cauchy-Schwarz inequality, the approximation properties of IT 2 K] , the fact that VII, v.K Up, €Pp_(K ),
the definition of |+ Ik, supg i (3.14), and the Holder inequality to get
K,
g3 = 4k, ((1d = Y )p).ad - HU")VU,”)
S A I0d = IS Bl 2y llTd = TN Wu,,fan(K v
1nel supg NVORLN 20k, ya
. pg -7 L2 (Ky)
i BBl o s il 2, min{ W P }
The following estimate can be then obtained using the Cauchy-Schwarz inequality and the definition of the energy norm || - ||| z:
N i
2,2 1 2
2 2 Tamea 5 (D 2 7 1 min{ ymaris MBI o, s Py i) Monelle (5.21)
n=1 K€ n=1 KeQ K. K,

Finally, we estimate the term ;(:j’;g 4 To do so, we use the stability bound of the bilinear form sf (+,+) in (3.6), the commutativity

of IT! and the spatial gradient operator V, the stability properties of IT! and IT kv K the triangle inequality, the definition of | - |
in (3.14), the estimate for IT kV K in Lemma 5.1, and the VE interpolation estimate in Lemma 5.2 to deduce

n-SUPg

K, v, v,
Koupga = =45, Pk, / s (@d = 11w, (@d — 110, ) dr
< adg, By TV = 11 gl g o VA = 1T )0, Nl 2k o
1/2 5
<aiy / (”V(uz - u)”LZ(K y + IV - H )u”LZ(K,,)" + ”VHkV’K(u - ul)”LZ(Kn)d)lvh,rlk,wS“Pg
1/2
S Ag B, W lull 2, s oy el g
The sum of the above local estimate over all the elements K € @, and the time steps n € {1, ..., N} leads to
2s 2

Z Z 'Ysupg4 ~ iKnﬁK h ”u”LZ([ JHSH(K)) . (522)
n=1Ke n= IKE.Q;,

Combining identity (5.14) with estimates (5.19), (5.20), (5.21), and (5.22), the desired error bound is obtained. []

Lemma 5.11 (Estimate of y,(v;,)). Under Assumption 3.1 on the mesh-regularity, Assumption 3.5 on the choice of ig and the relation
of 7 and hy,,, and Assumption 3.9 on the data of the problem, for dll v, . € V}; with ||v, . lls = 1, the term x,(v), ;) can be bounded as
follows:

N 1
2
2 2q+2
Za(Op) S <§ > ( VIR, ey VR IV e )) :

n=1 KeQ,

Proof. Using the polynomial consistency of the bilinear form a, .(-,-), the stability bound in (3.7), the triangle inequality, the
commutativity of I1! and the spatial gradient operator V, the stability of II!, the estimates for IT kv * in Lemma 5.1 and for u;
in Lemma 5.2, and the Cauchy-Schwarz inequality, we obtain

r
ZoWp ) =va' (v, ) — vah,r(u;, Up.t)

N
K
=Y D v((Vad = 11w, Vo, ) + @, U1K u =l v, )
n=1 K€y

N
Z X v(IVey llzi o + @ IVULY S u = w2k 1 ) IVOR N 20k o
n=1 KEQy
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N
<D v (A +anIVel ll g y + @ Il0d = TVl 2 g + @ 1TV @ = up)ll 2 0 ) 1V0R 2k o
n=1 KEQ,

N
1
2s 2 2q+2 2 5 )
<z 2 (VhK||u||L2(ln:H~‘+1(K))+VT Vel g1 1, 0200) ))””'J"’f”l*’
=1 KeQ,

N

which completes the proof. []

Lemma 5.12 (Estimate of ,,,(v, ;). Under Assumption 3.1 on the mesh-regularity, Assumption 3.5 on the choice of Ag_and the relation
of = and hy;,, and Assumption 3.9 on the data of the problem, for all v, . € V; with ||v,ll- = 1, the term y,, ,(v), ;) can be bounded as
follows:

N 25+2

< 2 2542 K 2

/}'m,b ~< Z Z <( “ﬂ”L‘”(In;WlW(K)d)hK + /1 ﬁz ”'BllLoo(In;le(K)d)
n=1 K€Q Ka"'K,

h2s+2

K 2542 1 2
+ +h mm{ -}||ﬁ||
K 2 Lo(], W stloeo(K)d
Ak, P (LW s+l (K)d)
h23+4 h25+4
K

11 )
+ + mm{ ,—} ) flull
> o 2 2 L2(1,;;HS* 1 (K)
4k, By, T T A, Py, v
2q+2

Tn 2 2. { 1 1 } 2q+1 | _2¢421 a2 ) 2
+( + Hm, ! min P2 DTN ooty ) 1 g 1,020
.

n AJ:II K,
242
2 24+

2 242y a2 K'n 2 L
* ( e MBI o, ooty 1 ) IVl 1512000, )) B

Proof. Integrating by parts in time, and using the fact that u is continuous in time and the flux—jump identity ¢(-,z)[w1, +
v(.t)I¢l, = [dw],, we get the following identity:

N
PED YY) (—(u,a,uh,T)Kn+/Im,’f(u;,atuh’r)+(ﬂ~Vu, Unok,

n=1 KeQ, n

1 0Ky 7 70K 1 0K ¢ 0.K
——(ﬁ'Hk Vul’Hk Uh,T)Kn+§(Hk ulsﬂ'Hk VUh,T)Kn )

2
N-1
+ (@ onoz, =m0 T ) + Y (@t lon g =m0, )
n=1
N N-1
=Y X ntat X (5.23)
n=1 K€, =1

« Estimate of ;(5”. We first consider the volume terms ;(5”. Using the definition of the bilinear form m(:,-), the definition of the
operators £ /’f _ and £X, the skew-symmetry of the bilinear form b(-,-), and the orthogonality properties of H]?‘K and IT Z’K , we have

N N
Z Z ;(f” =Z Z <—(u,d,uh’r)Kn+/Im,’f(u;,atuhj)—(u,ﬂ~Vuh’T)Kn

n=1 K€y, n=1 Kegy, n

1 T 1 T -
-3 Y v, v, g + E(HE’Kul,ﬂ XV, Ok >

N
Py 0, X 0,
= Z Z [—(u,LKUhJ)KH + g 0, v, + g XV,

+ / sK(ad - 1) s, 0,1d - v, ) dr

n

1
-3 ((ﬂ . H%KVu;, n,?’th,,)Kn +(17,‘3’Ku;,ﬁ . nstva)Kn )]

N
= z z [—(u, 0,(Id — H,?‘K)Uh,r)K,, - (up.(1d - HZ‘K)V”hVT)Kn

0.K 0.K 0.K
-1, 7 —u, 001" v+ B-II " Vo, )i,

+ / sK(ad - 1) s, 0,a1d - 11w, ) dt

n
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1
2 ((/3 VUG T v, O+ AT G B ITE V0, O, )]

K, K, K, K, 1 k
= _Z 2 < AR AR AR RV O ) :
n=1Ke,
The terms )(5"1 and )(5"2 can be treated similarly t0 ygpg» and fgpg3 in Lemma 5.10, respectively. The following estimates are

then obtained:
N N

K, 0,
DY Ay =22 (“’af(Id_HkK)UhJ)Kn
n=1 KeQy, n=1 KeQy,
N 2v+4 1
2
S(X X g i) s lap (5.24)
n=1 K€, 4K, ﬂK
N N
K, 0.K
XD mh=2 D whad— MV, )k,
n=1 KeQ, n=1 K€y,
N 1
2542 1 2 2
S(X X mminf 7 B e ayostemaiy 1805 ey ) Wonelle (5.25)
n=1 KeQy, K,PK

The term 15"3 can be bounded using the definition of | - | ., in (3.14), the Cauchy-Schwarz and the triangle inequalities, the
estimates for HE’K and [1! in Lemma 5.1, and the VE interpolation estimate in Lemma 5.2, as follows:

N N
K, 0.K 0.K 0.K 0,K
Yo=Y Y (1R —w B ook, + 01Ky g IR = TSV, )
n=1 K€Ly n=1 K€,
N
—l 2 0,K
<Y X ARG — ul ol

n=1 KeQy,

—1 2
2 V2R = 0l 2y + 1€ 20k W e
KeQ,

IA
iM=

2g+2 h2s+2 L

T, 2
> (e + = ull} )) 10h,¢) g (5.26)
HI+(I,;L2(K L2(I,;Ht1(K »Tlsu
| Ken, /1 ( (K)) Ak, ( (K)) pg

A

Mz

(n

As for the term ;(V > We use the stability bound (3.4), the polynomial inverse estimate (4.3b), the scaled Poincaré-Friedrichs
inequality in Lemma 5.5, and similar steps as those used to estimate Xsupg3 10t (5.21) to obtain the following estimate:
N N

Kﬂ > >
Y X =Y 3 [ 008 m

n=1 K€Ly n=1 K€y

K 0, T v,
lld = 11 | 2 IV = T )0y N2k e

N [opz| [IVop I hSF?
. 71K, supg ha NL2(K,)4 K
sy mln{ , 7 ( - ||u||L2(,”;Hs+1(K))+hKr,“’||u||H,,+1(,n;L2(K)))

1/2
n=1 KEQ /11</,, Bk,
N 1 1 h2¢+4 %
< min{ ,—} ( K _\u +h2 2q u ) v .. (5.27)
(2‘11(2(‘,2 PR A 1l 2y oot Nl gy 2kyy) ) Mol

Adding and subtracting suitable terms, recalling the antisymmetry of the form b(-,-) and using the orthogonality properties
of HI?’K and IT 2”(, the following identity can be obtained:
N N

T X =Y Y (B IV oy o + (1R B TRV, )

n=1 K€Ly n=1 K€,

N
=y Y ( (B U1YK ~1)Vul, 150, ) + (B Vi v, )k

n=1 KeQ,

= (B Vi, (1d = 115, g, + (TP =T, B KV, )

- W} B (d— )XYV, g + W5 B Vo, )k, )

22



L. Beirdo da Veiga et al. Computer Methods in Applied Mechanics and Engineering 436 (2025) 117722

N
==Y ¥ (- npvig, ad- mypmi*e, o,
n=1 KeQy,

+((1d = 5B - Vu), (1d - 115wy
+((ad = s, (ad - g - XV,
+(1d = I8 ), (- 1)V, ), )

N
==Y Y (6" +6)" +6;" +ey"). (5.28)
n=1 KEQ, i

The first term on the right-hand side of (5.28) can be estimated using the Cauchy-Schwarz inequality, the estimates for H]?’K ,
H(?’K, and /1! in Lemma 5.1 and their stability properties, and the VE interpolation estimate in Lemma 5.2, as follows:
Ky 0.K 0.K 0.K
0" = ((1d - I )vus, (1d - MBI v, )k
= (@d - I)*)WVu,(1d - 1)1 v, )i +((1d - M9 )V —ul), (1d - I o,
b hK”ﬁ”Lm(]n;Wl-w(K)d) ( I(Id — H(,z'K)V””LZ(K”)d + IV - ”;)”LZ(K”)II ) ||Uh,1||L2(K”)

1 1
,S ”ﬂ”L‘”(],,;Wl’W(K)d)(hKS+ ||M|IL2(]";H&+1(K)) + hKTZ+ ”Vu“Hqul([n;LZ(K)d))“UhJ”LZ(Kn). (5.29)

As for the second term on the right-hand side of (5.28), we use the estimates for H,?’K and IT : in Lemma 5.1 and their stability
properties, the VE interpolation estimate in Lemma 5.2, and the scaled Poincaré-Friedrichs inequality in Lemma 5.5, to get

0L = ((1d - IP¥)(B - V). (1d — T yw,
= (@ = A - Vuy, (1d — 1), D +((1d = 5B - V(s — ), (1d = 1050, )

N V.K
< hyg ( RSB oo 1w som iy 2l 21, vt iy + B, IV @ = 45| 2 o ) IV = 1150, Nl 2k e

s+1 Tq+1 s+1
K K*n K
S( —1/2 ”ﬂ”Lm([,l;W”’o(K)d)”u“Lz(ln;HJH(K)) + —1/2 ||Vu||Hq+l([n;L2(K)d) + _1/2 ”u”LZ(I,,;HX+1(K)) > |Uhv7|1(,,.supg' (5.30)
/IK,, ﬂK,, /IK,, AK,,

Using the triangle inequality, the estimates for Hg’K, HE’K, and 17 in Lemma 5.1 and their stability properties, the VE

interpolation estimate in Lemma 5.2, and the VE inverse estimate (4.3a), we obtain the following estimate:
K, 0.K 0.K 0,K
6," =(1d- 1, Juz,(Id - o) -1, Vo, )k,
0,K
3 hK”ﬁ”Lm([n;Wl.oo(K)d)||(Id - ”k )“;||L2(Kn)||VUh,f||L2(Kn)d

0,K 0,K
s ||ﬂ||Lc°(1n;W1,OO(1()d) ( llu — “;”LZ(K,’) + |I(1d - 1, )u”LZ(Kn) + ||Hk (u— u;)”LZ(Kn) ) ”Uh,f”LZ(Kn)

S B Leoa, oo iy ( o el s 1,20 + 1 Ml 2o ) ) Nonell L2, (53D

Finally, using the estimates for II%K and IT! in Lemma 5.1 and their stability properties, the Cauchy-Schwarz inequality, the

definition of | - | e in (3.14), and the VE interpolation estimate in Lemma 5.2, we have

O} = (d - M%) B).(1d - M¥)Vv,, ),
= (14— H}S)Wp), (1d = H)F)Vo, g, = (@d = T (@ = up)B), @d = 1TV, ),

0,K
5( WENBI Lo wswrosaomy el 2o iy + B, e = ui N2, ) Ad = I )V, 2,y

s+1 q+1 s+l
K n K
S( —1/2/3 ”ﬁ”Loc([n;W:H,oo(K)d)”u”LZ(]n;HHl(K)) + —11/2 ”u”HqH([”;LZ(K)) + _Al/z ”u”Lz(l,l;HH‘(K)) > |Uhvf|K”_supg' (5.32)
K, FKy K, K,

Combining identity (5.28) with the local estimates (5.29), (5.30), (5.31), and (5.32), we get

S Ky o . 2 p25+2 éﬁz 2 hicﬁz 2
;Kéh Ay s N[;Kéh (( ”ﬂ”Lm(l,.;W‘v”(K)") kot /lknﬂizg ”ﬁ”L""(l,,;W“'l(K)d) + AKn ) ”u”LZ(I,,;H”'](K))
2 2q+2
+ ( hiTr%IH—Z”:B”ioo(ln;wl,oo(K)d) + KAI: > ”Vu”iI‘fH(IK;LZ(K)d)
n
T2q+2 1
+ ( Tzq+2”ﬂ”zLoo(]n;W].oo(K)d) + ZT ) ”u”i{q“(ln;Lz(K)) )] E"luh,T"lé" (533)
n
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Estimate of yr and y'. Using the polynomial consistency of the bilinear form mhK (-, +), the stability bound (3.5), the trace inequality in
Lemma 5.3, the commutativity of ﬂl?’K and the VE interpolant with the first-order time derivative operator 9,, the Cauchy-Schwarz
inequality, and the definition of the upwind-jump functional | - |, in (3.13), we obtain the following estimate:

N-1 N-1
et X A= o), =m0 T+ Y (@t TonT)a = maGs G o) )
n=1

n=1

Z ( (@d = 1125, T), vy (T + m 1)K u = u (. T), 0, (. T))
KeQ,

N-1
+ Y D (@ = 1t oDk + m AT uC, 1) = uy ), o) )

n=1 KeQ,

N
s( Y Y (mtad - mEu,  + wlad = 0wl g,
n=1 KeQy, "

—1/,,%\2 _ 0K 2 — T2
o P (1ad = 1wl =g, )

1

2
+ 5,V (13 = )0l (o + 10, =, ) )) |0nc1,

h23+2 1

N

K 2 2542 2 2q+1 1,112 2

<

~<Z ) ( e W2 s oy MO g oy T T M 120 )) lonel,- (5.34)
n=1 KeQ, n " " "

The desired result is then obtained by combining identity (5.23) with estimates (5.24), (5.25), (5.26), (5.27), (5.33), and (5.34). [

Proof of Theorem 3.10. Combining the a priori error bound in Proposition 5.7 with the estimates in Lemmas 5.8, 5.9, 5.10, 5.11,
and 5.12 one obtains a general convergence result, which underlines the different local contributions. The proof of Theorem 3.10
follows as a simplified case, simply by elaborating on the bounds using the specific theorem assumptions and finally dropping all
the regularity terms.

5.3. Avoiding degeneration of the error estimates for t < h

Under suitable conditions, we are able to eliminate the terms where = appears at the denominator in Theorem 3.10. In the
present section, we describe briefly the involved modifications. As a starting point, we obviously set ourselves within the range of
assumptions outlined in Theorem 3.10.

Differently from the previous part, see Remark 3.4, we now require that the mesh £, is fixed and does not change from one
time-slab to the next. This is quite natural as the “transfer” error induced by a change of mesh depends on the spatial meshsize h,
but the number of such occurrences grows as z~!. Furthermore, we require the polynomial order in time r > 1. Finally, we assume
(mainly for simplicity of exposition) that the spatial mesh (family) is quasi-uniform.

The first key point is substituting the space-time projection operator introduced at the beginning of Section 5.2 with the following
approximant, for which we keep the same notation. Given u € H'(0,T; L?(12)) the discrete function uy € V; is continuous in time
and defined by

mh(u;(-, 1), vp) = (U, 1,), vp)o.o Vne {0,1,...,N}, Vv, €V,

ty In
/ my Oy (1), (t = 1,_) vy) dt = / Qu(-,1), (1 = 1,_) v) dr
1 Th-1

n—1

Vne{l,...,N}, Vo, €V, Vie{l,2,....,r—1}.
It can be checked that the above interpolant satisfies, for all n = 1,2, ..., N, the continuity properties

Nzl 2, 2@ S Will 2, 220y + Zall il 2, 12 @nd W07 12, 22y S M9l 12s, 120

and also that optimal (in &, ) approximation error bounds hold for (u —u7) in the various norms of interest needed in our analysis.
Thanks to the continuity of uz, the error term |e;|J2 in Lemma 5.8 vanishes; note that such quantity was the only responsible
for the 1/7, term appearing in Lemma 5.8. Furthermore, thanks to the peculiar definition of u} here above, the term y; + Z,’,V:_ll X
appearing in (5.34) also vanishes. In the simpler finite element case, which is included in our analysis as explained in Section 3.4,
these are the only terms leading to negative powers of = in our error estimate.
In the more general case of virtual elements, we need to modify the scheme, adding the following additional stabilization term
to the discrete form B::?g(~, s

N
> D Ak, / sK©0,ad - m¥u,, . 0,01d — 13w, ) dr, (5.35)
KeQ, n=1 Iy
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which, quite trivially, leads to a stability bound controlling a stronger norm |||u,,y,|||§., c.f. (3.15), now including also the term

N
0.K 2
2 2 A l01d = 150, 0 (5.36)
KeQy, n=1
The control on the test function in the above norm allows us to deal with all the remaining “bad” terms in our convergence
: N K, N K, N K, .
analysis, namely 3.7, ¢ oo, Xgppgo 10 Lemma 5.10, plus ¥, _; Ykeq, 1,y and L1 Lkea, Xy in Lemma 5.12. Indeed, we can
now avoid using the inverse estimate in time and simply exploit directly control on (5.36); the Cauchy-Schwarz inequality and
standard manipulations yield the error terms

N
0.Ky 112 2%+3
YT e M= ISR, S,
n=1 Kegy,
N
-1 0,K 2 ok
Y Y AR - R, s max (v, k) 2
n=1 K€y,
N
Y / TR K (@ = 1. (1d - 1) max (v, k) (B + 2252 /m))
n=1 Ke, /1n

The bounds here above can be easily obtained by the same techniques used in the rest of this contribution and therefore we avoid
showing the details. Finally, it can be checked that term (5.35) is also of optimal order with respect to the interpolation error, as
usual assuming sufficient regularity of the solution u.

Remark 5.13 (The Case r = 0). In the case r = 0, we cannot take a continuous-in-time interpolant, but we can choose the unique
approximant that satisfies

Mm@l o) 0p) = WA 1), 000 Yn € (1,2, , N}, Yo, €V

It is immediate to check that this choice is still sufficient to make term (5.34) vanish. In order to deal with |e§|J2 in Lemma 5.8, we
simply avoid such term in the interpolation estimates. Therefore, in order to avoid negative powers of z, the final error bound for
the r = 0 case will be in the weaker norm

2 i 2 2 2 2

MeonlE g o= Nl +onlZ g +VIVRIL g s+ l0nl2
where the jump terms have been excluded. Finally, note that in the r = 0 case there is no need to introduce (5.35) since all the
associated terms are now vanishing. n

6. Numerical tests

In this section, we present some numerical results in three space dimensions in order to validate the theoretical derivations from
the practical perspective, and evidence the effectiveness of the proposed stabilized scheme compared to a non-stabilized approach.
For the sake of efficiency, we make use of the serendipity version of VEM, see Section 3.4. We will refer to the stabilized method,
i.e., the scheme described in (3.10) as SUPG, whereas the scheme without the SUPG stabilization terms will be denoted as NONE.
As described in the previous sections, the SUPG scheme depends on a set of parameters. In all the numerical experiments of this

section, we will set these parameters as
2 M kg
¢=01, C,, ~10k* and Ax =¢min s -
n VC2 ﬁQT

inv

An (interpolatory) Lagrangian basis is used for the space P, (I,) for n = 1,..., N, so that the associated degrees of freedom (DoFs)
are pointwise evaluations. Finally, we use the classical dofi—-dofi choice (see, e.g., [17, §4.6]) for the VE stabilization term.

The numerical experiments are organized as follows. In Section 6.1, we evaluate the convergence trend of the schemes SUPG
and NONE, both in the convection- and the diffusion-dominated regimes. Then, in Section 6.2, we apply these two schemes to a
benchmark problem similar to the “Three body movement” proposed in [7, §5.1].

6.1. A standard convergence test

In this section, we solve the time-dependent convection—diffusion problem in the space-time domain Q7 = (0, 1)* X (0, 1.5). As
transport advective field, we set the following space-time dependent function:

e sin(z(x + y + 22))
Bx, y, z, 1) :=|  e/?sin(x(x + y + 22))
—e'/2sin(z(x + y + 22))

that increases exponentially with time. We consider the following two values of the diffusive coefficients:

v=1 and v=10719,

25



L. Beirdo da Veiga et al. Computer Methods in Applied Mechanics and Engineering 436 (2025) 117722
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aoetrn T VA
'."

cube

Fig. 1. The interior of some spatial meshes of each type with approximately the same meshsize.

so as to obtain a problem characterized by a diffusion- or a convection-dominated regime, respectively. Then, the right-hand side
will be properly modified according v so that the exact solution is given by

0.3t

u(x, y, z, t) = e sin(zx) cos(zy) sin(zz) .

In the proposed tests, we consider a family of four spatial meshes with decreasing meshsize h, while the time domain is split in
uniform intervals with time step r ~ h. In all the numerical experiments, the VE approximation degree coincides with the time
polynomial degree, and we refer to it simply as k. Moreover, to test the robustness of the proposed method with respect to element
distortion, we consider two different types of spatial meshes:

+ cube: structured meshes composed by cubes, see Fig. 1(left panel);
» voro: meshes composed by polyhedral elements that may have small edges or faces, see Fig. 1(right panel).

For both schemes, we compute the following errors:

+ the H! seminorm error at the final time

[SIE

. v 2 .
= (X V@ MY )G ) s
KeQ,
« the L? norm error at final time
1
. 2.
e = (Y M= Mu IR ) s
Ke®,

+ the H' norm error on the space-time cylinder

N

or ._ 70 12 Va2

= (X T (=l +IV6= 0l )
= h

[SIE

For the scheme SUPG, under the above condition 7 ~ h, the following asymptotic behaviour is expected:

dio=0(hk), ol =o(mh), =0,

1

in both the convection- and the diffusion-dominated regimes. Furthermore, only for the solution u, , obtained with the scheme
SUPG, we compute also the following quantity:

eyr = upe —uglle,

where u; is the DoF-interpolant of the exact solution u. According to Theorem 3.10, the asymptotic behaviour of e),r depends on the

regime we are considering. More specifically, in the convection-dominated regime, it decays as O(h*+!/2), whereas, in a diffusion
dominated regime, it decays as O(h).

In Fig. 2, we show the errors obtained for k = 1 and 2 in the diffusion-dominated regime, i.e., for v = 1. The schemes SUPG
and NONE have the expected convergence rates. Moreover, for the same mesh and approximation degree, the absolute values of the
errors obtained with SUPG and NONE are very close to each other. This is a numerical evidence that the stabilization terms added
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Fig. 2. Convergence Analysis: The trend of all errors taken into account in the diffusion-dominated regime, i.e., for v = 1.

in the SUPG scheme do not affect the convergence rates in the diffusion-dominated regime. In Fig. 2(fourth panel), we observe a
superconvergence trend of the error eyr for cube meshes and k = 1; this may be due to the shape regularity of the mesh and the
fact that we are evaluating an error based only on DoF values.

Now, we consider the convection-dominated regime. In Fig. 3, we show the errors obtained for v = 10719, In this case, the results
for the two approximation degrees considered are different. Indeed, for k = 1, a similar behaviour is observed for the schemes SUPG
and NONE. More precisely, the convergence lines are close to each other for the errors eT1 and eQTl, whereas, for the error eiz, the
error trend for the NONE scheme is not optimal in the last refinement step. The advantage of using the SUPG scheme becomes more
evident for k = 2. For all errors and for both type of meshes, the convergence rates for the NONE scheme degrade. Moreover, if we
compare the error eyr in Fig. 2 and 3, we obtain an additional 1/2 in the convergence rates in the convection-dominated regime,
which is in agreement with Theorem 3.10. This fact is more evident for the voro meshes, which do not satisfy any shape regularity
that may affect the trend of the error.

6.2. A qualitative purely advective test
In this section, we make a qualitative assessment of the proposed scheme. To achieve this goal, we produce a benchmark problem
similar to the bi-dimensional Example 2 of [7, §5.1], here developed in three space dimensions. In that work, the authors considered

three disjoint bodies subject to a rotating advection field and set the diffusive coefficient to 10720 to mimic a transport problem.
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Fig. 3. Convergence Analysis: The trend of all errors taken into account in the convection-dominated regime, i.e., for v =107,

Let 2 = (0, 1)* and the initial condition be given by
1 ifv/(x = 0252+ (y — 0.50)2 + (z — 0.50)2 < 0.2
uy(x, y, z) 1= 0

otherwise
that represents a ball of radius r = 0.2 centred in C(0.25, 0.5, 0.5). We set f =0, v= 102, and the advection field
05—y
x—=0.5
0.0

p(x, y, 2z, 1) :=

For these data, the ball is expected to rotate around the barycentre of the unit cube and, since the diffusive coefficient is close to
zero, it has to preserve its shape.

We compute the discrete solution for k = 1, a fine tetrahedral spatial mesh, a fixed time step = = 10!, and a final time T = 6.

In Fig. 4, we show some clips of the discrete solution at different times for both the NONE and the SUPG schemes, respectively.
Such clips are obtained using the “clip” filter of Paraview [42] where we associate to each mesh vertex the value of the discrete
function u, .. As a consequence, we do not see exact circles in such plots, as the shape is affected by the aforementioned geometric
interpolation and visualization procedure.

At t = 0, we plot the initial condition for both cases. For all the other time instances shown in Fig. 4, several spurious values
of u, , appear in the interior of the domain  with the NONE scheme, i.e., the discrete solution ,, , is not constantly zero outside
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Fig. 4. Benchmark problem: Comparison between the discrete solutions obtained with the schemes NONE and SUPG at different time steps.
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the moving sphere. Such instabilities increase with time, as observed in the results obtained at the final time 7" = 6.

The SUPG scheme does not exhibit these instabilities, as the solution outside the sphere is more uniform and, according to the
colorbar, it is closer to zero then the NONE discrete solution. Furthermore, despite the effect of the Paraview interpolation, the
sphere seems more uniform and rounded.

This benchmark test highlights the importance of using a stabilized scheme even for k = 1, a point that was not evident from
the error plots of Section 6.1, c.f. the errors of NONE and SUPG for k = 1 in Figs. 2 and 3.

7. Conclusions

In this work, we considered a high-order SUPG-stabilized fully discrete scheme that combines finite or virtual element spatial
discretizations with an upwind-DG time-stepping. For this fully discrete scheme with finite element spatial discretizations, a robust
analysis was missing in the literature. Moreover, this is the first work where a SUPG stabilization has been considered in a
high-order-in-time fully discrete setting with virtual element spatial discretizations.

Using nonstandard test functions, we have shown that the method is inf-sup stable with respect to a norm involving
an L%(0,T; L*(R2))-term without requiring any transformation of the original problem. Such a stability estimate is used to show
that the method is robust and provides optimal convergence rates in the convection- and diffusion-dominated regimes.

We have presented some numerical experiments in (3 + 1)-dimensions that show the robustness of the method, as well as the

1
hk+

expected convergence rates of order @(h"" 2) for the error in the energy norm, in the convection-dominated regime 0 < v < 1.
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