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A B S T R A C T

We carry out a stability and convergence analysis for the fully discrete scheme obtained by
combining a finite or virtual element spatial discretization with the upwind-discontinuous
Galerkin time-stepping applied to the time-dependent advection–diffusion equation. A space–
time streamline-upwind Petrov–Galerkin term is used to stabilize the method. More precisely,
we show that the method is inf–sup stable with constant independent of the diffusion coefficient,
which ensures the robustness of the method in the convection- and diffusion-dominated regimes.
Moreover, we prove optimal convergence rates in both regimes for the error in the energy norm.
An important feature of the presented analysis is the control in the full 𝐿2(0, 𝑇 ;𝐿2(𝛺)) norm
without the need of introducing an artificial reaction term in the model. We finally present
some numerical experiments in (3 + 1)-dimensions that validate our theoretical results.

1. Introduction

The present contribution focuses on the classical time-dependent advection–diffusion equations, also thought as a first step
towards more complex nonlinear fluid dynamic problems. More specifically, let the space–time cylinder 𝑄𝑇 = 𝛺× (0, 𝑇 ), where 𝛺 ⊂
R𝑑 (𝑑 = 2, 3) is an open, bounded polytopic domain with Lipschitz boundary 𝜕 𝛺, and let 𝑇 > 0 represent the final time. Then,
for given strictly positive diffusion coefficient 𝜈, transport solenoidal field 𝜷, source term 𝑓 , and initial datum 𝑢0, we consider the
following advection–diffusion IBVP:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑡𝑢 − 𝜈 𝛥𝑢 + 𝜷 ⋅ ∇𝑢 = 𝑓 in 𝑄𝑇 ,

𝑢 = 0 on 𝛤D,

𝑢 = 𝑢0 on 𝛴0,

(1.1)

where the surfaces 𝛴0 ∶= 𝛺 × {0}, 𝛴𝑇 ∶= 𝛺 × {𝑇 }, and 𝛤D ∶= 𝜕 𝛺 × (0, 𝑇 ).
In the numerical analysis literature, problem (1.1), in addition to its specific interest, has often represented an important

step towards the study of more complex models, such as those describing incompressible fluid flows at high Reynolds numbers.
This concurs in motivating the very large amount of articles dealing with the so called advection-dominated case, that is in the
development and analysis of numerical methods able to deliver accurate and reliable solutions also when |𝜷| >> 𝜈. Indeed, many
stabilization techniques have been designed to address the well-known issue of spurious oscillations or instabilities of conforming
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finite element (FE) discretizations of model (1.1) in the advection-dominated regime. Such techniques include space–time least
squares [1], streamline-upwind Petrov–Galerkin (SUPG) and variants [2–6], local projection stabilization (LPS) [7,8], and other
symmetric stabilization terms [9]; see also the analysis, in an abstract framework, for spatial discretizations based on symmetric
stabilization terms with discontinuous Galerkin time stepping in [10].

Some simplifications are commonly found in the literature, such as omitting the effect of the time discretizations [11],
restricting to low-order time stepping schemes [5,9,12–14], and requiring a sufficiently strong reaction term 𝜎 𝑢 such that (see,
e.g., [7,12,15,16])

inf
(𝑥,𝑡)∈𝑄𝑇

(

𝜎 − 1
2
div 𝜷

)

≥ 𝜎0 > 0. (1.2)

Note that the latter condition is relevant to higher order schemes in time, where the standard discrete energy argument only leads
o control in 𝐿2(𝛺) at discrete time instants (plus the sum of the time-jumps at the time-mesh nodes) but not in 𝐿2(0, 𝑇 ;𝐿2(𝛺)) and
ven less so in 𝐿∞(0, 𝑇 ;𝐿2(𝛺)). Condition (1.2) is typically justified by the fact that the problem for the variable 𝑤 = 𝑒−𝑡∕𝑇 𝑢 satisfies

such an assumption (at least when 𝜎 − 1
2 div 𝜷 ≥ 0). Although this is surely acceptable, we prefer to tackle the more complex (from

the theoretical standpoint) case in which such transformation is not assumed so that no data modification is needed in the method,
see Remark 3.8. This choice is also motivated by the possible extension to nonlinear problems, where the above transformation

ould induce the introduction of time-dependent factors also in front of the nonlinear terms. Similar observations hold for the more
ecent Virtual Element (VE) technology [17], its literature being clearly less rich than the FE one; some articles dealing with the
bove issue are [18–21].

The present work concerns the design and analysis of an SUPG-stabilized version of the fully discrete scheme obtained by
ombining a conforming FE or VE spatial discretization with an upwind-DG time stepping; in particular, we focus on the robustness

analysis of the method in the advection-dominated regime (i.e., when 0 ≤ 𝜈 ≪ 1). Our main contributions are the following:

• We carry out the first stability and error analysis of a high-order-in-time SUPG-stabilized scheme for the time-dependent
advection–diffusion IBVP (1.1), which does not require the transformation of the original problem, and does not rely on the
presence of a positive reaction term. Although stability and optimal convergence of the upwind-discontinuous Galerkin (DG)
SUPG-stabilized finite element method (FEM) have been hypothesized [22, §3.3], a thorough analysis was missing in the
literature even for FEM (and less so for VEM, for which the proposed methodology is novel).

• We address, in a unified framework, conforming FE and VE spatial discretizations. Our analysis focuses on VE spaces; however,
the same ideas apply to conforming FE spaces with some simplifications (as detailed in Section 3.4).

• We show an inf–sup estimate with stability constant independent of the meshsize, the time step, and the diffusion coefficient 𝜈.
Such an estimate is used to prove that, in a certain energy norm, the fully discrete solution satisfies: i) a continuous dependence
on the data of the problem uniformly in 𝜈, and ii) some a priori error bounds, which do not degenerate when the diffusion
coefficient 𝜈 is small, and depend only on the interpolation and the nonconsistency errors.

• At the end of the article we evaluate the practical performance of the proposed scheme through a set of numerical tests
in (3 + 1)-dimensions, for different orders of approximation in time and space.

The manuscript is organized as follows. In Section 2, we present some basic notation, the variational form of the continuous
problem and a well-known stability result. In Section 3, we present the proposed VEM, discuss the particular case of FEM and the
extension to Serendipity VEM, and present our main theoretical results. Section 4 is devoted to the proof of the well-posedness and
stability of the scheme. In Section 5, we develop the convergence analysis, first addressing the general case of changing meshes
(that is, when the spatial mesh can change form one time-slab to the next one) and then particularizing to the more favourable case
with fixed spatial mesh. Finally, we present some numerical tests in Section 6 and make some concluding remarks in Section 7.

2. Basic notation and weak formulation of the problem.

We start by reviewing some basic notation we will use through the article. We denote the first-order time derivative operator
by 𝜕𝑡, and the spatial gradient and Laplacian operators by ∇ and 𝛥, respectively. We will use standard notation for Sobolev spaces,
seminorms, and norms [23]. For instance, given an open, bounded domain 𝛶 ⊂ R𝑑 (𝑑 ∈ N), and scalars 𝑝 ∈ [2,∞] and 𝑠 ∈ R, we
denote by 𝑊 𝑠,𝑝(𝛶 ) the standard Sobolev space, and its associated seminorm and norm by | ⋅ |𝑊 𝑠,𝑝(𝛶 ) and ‖ ⋅ ‖𝑊 𝑠,𝑝(𝛶 ), respectively. In
particular, for 𝑝 = 2, we use the notation 𝐻𝑠(𝛶 ) = 𝑊 𝑠,2(𝛶 ), and denote its associated seminorm and norm by | ⋅ |𝐻𝑠(𝛶 ) and ‖ ⋅‖𝐻𝑠(𝛶 ),
respectively. Moreover, the space 𝐿2(𝛶 ) = 𝐻0(𝛶 ) denotes the space of Lebesgue square integrable functions over 𝛶 with its
corresponding inner product (⋅, ⋅)𝛶 , and 𝐻1

0 (𝛶 ) denotes the space of functions in 𝐻1(𝛶 ) with zero trace on 𝜕 𝛶 . A superscript 𝑑
is used to represent the seminorms and norms of vector fields with 𝑑-components. In addition, given a Banach space (𝑋 , ‖ ⋅ ‖𝑋 ), a
time interval (𝑎, 𝑏), and a scalar 𝑠 ∈ R, we denote the Bochner–Sobolev space by 𝐻𝑠(𝑎, 𝑏;𝑋). Finally, we use the following notation
for the algebraic tensor product of two spaces, say 𝑉 and 𝑊 :

𝑉 ⊗ 𝑊 ∶= span{𝑣𝑤 ∶ 𝑣 ∈ 𝑉 and 𝑤 ∈ 𝑊 }.

Given 𝑘 ∈ N, we denote the space of polynomials of degree at most 𝑘 defined on 𝛶 by P𝑘(𝛶 ).
For the time being, we assume the following data regularity. The transport advective field 𝜷 ∈ 𝑊 1,∞(0, 𝑇 ;𝐿∞(𝛺)) with div 𝜷 = 0,

the source term 𝑓 ∈ 𝐿2(𝑄 ), and the initial datum 𝑢 ∈ 𝐿2(𝛺). Then, denoting by 𝑎 ∶ 𝐻1(𝛺) ×𝐻1(𝛺) → R and 𝑏 ∶ 𝐻1(𝛺) ×𝐻1(𝛺) → R
𝑇 0 0 0 0 0
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the following bilinear forms:

𝑎(𝑢, 𝑣) = ∫𝛺
∇𝑢 ⋅ ∇𝑣 d𝒙 and 𝑏(𝑢, 𝑣) = ∫𝛺

𝑣𝜷 ⋅ ∇𝑢 d𝒙, (2.1)

the continuous week formulation of the IBVP (1.1) reads (see [24, §7.1.1]): find 𝑢 ∈ 𝐿2(0, 𝑇 ;𝐻1
0 (𝛺)) ∩ 𝐻1(0, 𝑇 ;𝐻−1(𝛺)) ⊂

([0, 𝑇 ];𝐿2(𝛺)) such that 𝑢 = 𝑢0 on 𝛴0, and for almost all 𝑡 ∈ (0, 𝑇 ), it holds

⟨𝜕𝑡𝑢, 𝑣⟩ + 𝜈 𝑎(𝑢, 𝑣) + 𝑏(𝑢, 𝑣) = (𝑓 , 𝑣)𝛺 ∀𝑣 ∈ 𝐻1
0 (𝛺), (2.2)

where ⟨⋅, ⋅⟩ denotes the duality between 𝐻−1(𝛺) and 𝐻1
0 (𝛺).

For any 𝑡 ∈ (0, 𝑇 ], integrating in time equation (2.2) over (0, 𝑡) and using the skew symmetry of the bilinear form 𝑏(⋅, ⋅)
i.e., 𝑏(𝑢, 𝑣) = −𝑏(𝑣, 𝑢)), and the Hölder and the Young inequalities, we obtain the following bound:

1
2
‖𝑢(⋅, 𝑡)‖2

𝐿2(𝛺)
+ 𝜈‖𝑢‖2

𝐿2(0,𝑡;𝐻1(𝛺))
≤ 1

2
‖𝑢0‖

2
𝐿2(𝛺)

+ ‖𝑓‖2
𝐿1(0,𝑡;𝐿2(𝛺))

+ 1
4
‖𝑢‖2

𝐿∞(0,𝑡;𝐿2(𝛺))
. (2.3)

Since 𝑢 ∈ 𝐶0([0, 𝑇 ];𝐿2(𝛺)), we can take the maximum over [0, 𝑇 ] in (2.3) and deduce the following stability estimate:
1
4
‖𝑢‖2

𝐿∞(0,𝑇 ;𝐿2(𝛺))
+ 𝜈‖𝑢‖2

𝐿2(0,𝑇 ;𝐻1(𝛺))
≤ 1

2
‖𝑢0‖

2
𝐿2(𝛺)

+ ‖𝑓‖2
𝐿1(0,𝑇 ;𝐿2(𝛺))

.

The above inequality shows a uniform-in-𝜈 continuous dependence of the solution to (2.2) on the data of the problem. Such a
property is clearly desirable to be reproduced at the discrete level.

3. Description of the method and main results

In this section, we describe the proposed SUPG-stabilized time-DG VEM for the discretization of model (1.1) and present the
major theoretical results. Some notation for tensor-product-in-time meshes is introduced in Section 3.1. In Section 3.2, we recall
the definition of the local enhanced VE spaces in two and three dimensions, their corresponding degrees of freedom, and some
computable polynomial projections. In Section 3.3, global discrete spaces are defined as the tensor product of the space of piecewise
olynomials in time and 𝐻1

0 (𝛺)-conforming VE spaces, and we present the discrete bilinear forms in the definition of the SUPG-
tabilized time-DG VEM in Section 3.5. Finally the main theoretical results, asserting the well posedness of the discrete problem and
ts convergence properties, are presented in Section 3.6.

3.1. Space–time mesh notation and assumptions

Let {𝛺ℎ}ℎ>0 be a family of polytopic partitions of the spatial domain 𝛺 ⊂ R𝑑 with 𝑑 = 2, 3 (see Remark 3.4 regarding the case
with variable spatial meshes). For each 𝐾 ∈ {𝛺ℎ}ℎ>0 and each facet 𝐹 of 𝐾, we denote by ℎ𝐾 and ℎ𝐹 the diameters of 𝐾 and 𝐹 ,
espectively. We make the following assumption on the family {𝛺ℎ}ℎ>0.

Assumption 3.1 (Mesh Regularity). There exists a strictly positive constant 𝜚 such that the following conditions hold for any
lement 𝐾 ∈ {𝛺ℎ}ℎ>0:

(A1) 𝐾 is star-shaped with respect to a ball 𝐵𝐾 of radius larger than or equal to 𝜚ℎ𝐾 ;
(A2) (if 𝑑 = 2) each facet 𝐹 has length larger than or equal to 𝜚ℎ𝐾 ;
(A3) (if 𝑑 = 3) each facet 𝐹 is star-shaped with respect to a disk 𝐵𝐹 of radius larger than or equal to 𝜚ℎ𝐾 , and each edge 𝑒 of the

(polygonal) facet 𝐹 has length larger than or equal to 𝜚ℎ𝐾 .
In particular, Assumptions (A1)–(A3) imply the existence of a uniform maximum number of facets for each element 𝐾 of {𝛺ℎ}ℎ>0.

Let 𝜏 be a partition of the time interval (0, 𝑇 ) given by 0 ∶= 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 ∶= 𝑇 . For 𝑛 = 1,… , 𝑁 , we define
the time interval 𝐼𝑛 ∶= (𝑡𝑛−1, 𝑡𝑛), the surface 𝛴𝑛 ∶= 𝛺 × {𝑡𝑛}, and the time step 𝜏𝑛 ∶= 𝑡𝑛 − 𝑡𝑛−1. We further define the spatial

eshsize ℎ ∶= max𝐾∈𝛺ℎ ℎ𝐾 , the minimum element diameter ℎmin ∶= min𝐾∈𝛺ℎ ℎ𝐾 , and the maximum time step 𝜏 ∶= max𝑛=1,…,𝑁 𝜏𝑛.
Finally, for each 𝐾 ∈ 𝛺ℎ and 𝑛 = 1,… , 𝑁 , we define the space–time prism 𝐾𝑛 ∶= 𝐾 × 𝐼𝑛.

Remark 3.2 (Relaxation of the Mesh Assumptions). The above regularity assumptions on the mesh could be partially relaxed, see for
instance [25, §2.3], [26, §2 and §5.1], and [27, §3] for some results in this direction.

3.2. Local virtual element spaces and projections

Let 𝑘 and 𝑟 be integer numbers such that 𝑘 ≥ 1 and 𝑟 ≥ 0, which denote the ‘‘degrees of approximation’’ in space and time,
respectively.

Let  ⊂ R𝑑 be an open (𝑑 − 𝑗)-polytope for some 𝑗 ∈ {0,… , 𝑑 − 1}. We denote by 𝒙 the centroid of , and introduce the
following scaled and shifted monomial basis for the space P𝑘():

𝑘() ∶=
𝑘
⋃

M𝓁() with M𝓁() ∶=
{

𝑚𝜶 =
(𝒙 − 𝒙 )𝜶

∶ 𝜶 ∈ N𝑑 with |𝜶| = 𝓁
}

.

𝓁=0 ℎ𝐾
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In the VE context, the use of these bases is particularly convenient for implementation.
We denote by 𝛱0,𝐾

𝑘 ∶ 𝐿2(𝐾) → P𝑘(𝐾) and 𝜫0,𝐾
𝑘 ∶ 𝐿2(𝐾)𝑑 → P𝑘(𝐾)𝑑 the 𝐿2(𝐾)-orthogonal projection operators in P𝑘(𝐾)

and P𝑘(𝐾)𝑑 , respectively. Moreover, we denote by 𝛱∇,𝐾
𝑘 ∶ 𝐻1(𝐾) → P𝑘(𝐾) the 𝐻1(𝐾)-orthogonal projection operator, defined

or any 𝑣 ∈ 𝐻1(𝐾) as the solution to the following local problem:
⎧

⎪

⎨

⎪

⎩

∫𝐾
∇(𝛱∇,𝐾

𝑘 𝑣 − 𝑣) ⋅ ∇𝑞𝑘 d𝒙 = 0 ∀𝑞𝑘 ∈ P𝑘(𝐾),

∫𝜕 𝐾
(𝛱∇,𝐾

𝑘 − 𝑣) d𝑆 = 0.

Two-dimensional virtual element spaces. If 𝛺 ⊂ R2, for each element 𝐾 ∈ 𝛺ℎ, we define the following local spaces:

B𝑘(𝜕 𝐾) ∶= {𝑣 ∈ 𝐶0(𝜕 𝐾) ∶ 𝑣∣𝑒 ∈ P𝑘(𝑒) for each edge 𝑒 of 𝐾}, (3.1a)

𝑉 𝟤𝖣
𝑘 (𝐾) ∶= {𝑣 ∈ 𝐻1(𝐾) ∶ 𝑣∣𝜕 𝐾 ∈ B𝑘(𝜕 𝐾) and 𝛥𝑣 ∈ P𝑘(𝐾)}, (3.1b)

𝑉 𝟤𝖣
𝑘 (𝐾) ∶= {

𝑣 ∈ 𝑉 𝟤𝖣
𝑘 (𝐾) ∶ ∫𝐾

(𝑣 −𝛱∇,𝐾
𝑘 𝑣)𝑚𝜶 d𝒙 = 0 for all 𝑚𝜶 ∈ M𝑘−1(𝐾) ∪M𝑘(𝐾)

}

, (3.1c)

where the latter is the standard local enhanced VE space introduced in [28, §3]. The following linear functionals constitute a set of
nisolvent degrees of freedom (DoFs) for 𝑉 𝟤𝖣

𝑘 (𝐾) (see [28, Prop. 2]):

Dv1) the values of 𝑣 at the vertices of 𝐾;
Dv2) (if 𝑘 ≥ 2) the values of 𝑣 at (𝑘 − 1) distinct internal points along each edge 𝑒 of 𝐾;
Dv3) (if 𝑘 ≥ 2) the following moments of 𝑣 against the elements of 𝑘−2(𝐾):

1
|𝐾|

∫𝐾
𝑣𝑚𝜶 d𝒙 ∀𝑚𝜶 ∈ 𝑘−2(𝐾).

Three-dimensional virtual element spaces. If 𝛺 ⊂ R3, for each element 𝐾 ∈ 𝛺ℎ, we define the following local spaces:

W𝑘(𝜕 𝐾) ∶= {𝑣 ∈ 𝐶0(𝜕 𝐾) ∶ 𝑣∣𝐹 ∈ 𝑉 𝟤𝖣
𝑘 (𝐹 ) for each face 𝐹 of 𝐾}, (3.2a)

𝑉 𝟥𝖣
𝑘 (𝐾) ∶= {𝑣 ∈ 𝐻1(𝐾) ∶ 𝑣∣𝜕 𝐾 ∈ W𝑘(𝜕 𝐾) and 𝛥𝑣 ∈ P𝑘(𝐾)}, (3.2b)

𝑉 𝟥𝖣
𝑘 (𝐾) ∶= {

𝑣 ∈ 𝑉 𝟥𝖣
𝑘 (𝐾) ∶ ∫𝐾

(𝑣 −𝛱∇,𝐾
𝑘 𝑣)𝑚𝜶 d𝒙 = 0 for all 𝑚𝜶 ∈ M𝑘−1(𝐾) ∪M𝑘(𝐾)

}

, (3.2c)

where we have denoted by 𝑉 𝟤𝖣
𝑘 (𝐹 ) the local enhanced VE space on the face 𝐹 , as 𝐹 is contained in a (two-dimensional) plane. The

following linear functionals constitute a set of unisolvent DoFs for 𝑉 𝟥𝖣
𝑘 (𝐾) (see [28, §4.1]):

v1*) the values of 𝑣 at the vertices of 𝐾;
v2*) (if 𝑘 ≥ 2) the following moments of 𝑣 on each edge 𝑒 of 𝐾:

1
|𝑒| ∫𝑒

𝑣𝑚𝜸 d𝑠 ∀𝑚𝜸 ∈ 𝑘−2(𝑒);

v3*) (if 𝑘 ≥ 2) the following moments of 𝑣 on each face 𝐹 of 𝐾:
1
|𝐹 | ∫𝐾

𝑣𝑚𝜷 d𝒙 ∀𝑚𝜷 ∈ 𝑘−2(𝐹 );

v4*) (if 𝑘 ≥ 2) the following moments of 𝑣 on 𝐾:
1
|𝐾|

∫𝐾
𝑣𝑚𝜶 d𝒙 ∀𝑚𝜶 ∈ 𝑘−2(𝐾).

Henceforth, we will denote by 𝑉𝑘(𝐾) the local enhanced VE space, regardless of the spatial dimension 𝑑.
For any 𝐾 ∈ 𝛺ℎ and 𝑣 ∈ 𝑉𝑘(𝐾), the following polynomial projections are computable using the DoFs in sets (Dv1)–(Dv3)

(if 𝑑 = 2) or in sets (Dv1*)–(Dv4*) (if 𝑑 = 3):

𝛱0,𝐾
𝑘 𝑣, 𝜫0,𝐾

𝑘 ∇𝑣, 𝛱∇,𝐾
𝑘 𝑣.

3.3. Global space and bilinear forms

For 𝑑 = 2 or 𝑑 = 3, we define the global VE space

ℎ ∶= {𝑣 ∈ 𝐻1
0 (𝛺) ∶ 𝑣

|𝐾
∈ 𝑉𝑘(𝐾) ∀𝐾 ∈ 𝛺ℎ}, (3.3)

and the global space–time VE–DG space
4 
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𝜏ℎ ∶=
𝑁
∏

𝑛=1
P𝑟(𝐼𝑛)⊗ℎ.

For any piecewise scalar function 𝑤 and 𝑚 ∈ {1,… , 𝑁}, we denote by 𝑤(𝑚) the restriction of 𝑤 to the time slab 𝛺 × 𝐼𝑚. Moreover,
for 𝑛 = 1,… , 𝑁 − 1, we define the time jump ([[⋅]]𝑛) of 𝑤 as follows:

[[𝑤]]𝑛(𝒙) ∶= 𝑤(𝒙, 𝑡−𝑛 ) −𝑤(𝒙, 𝑡+𝑛 ) ∀𝒙 ∈ 𝛺 ,
where

𝑤(𝒙, 𝑡−𝑛 ) ∶= lim
𝜀→0+

𝑤(𝑛)(𝒙, 𝑡𝑛 − 𝜀) and 𝑤(𝒙, 𝑡+𝑛 ) ∶= lim
𝜀→0+

𝑤(𝑛+1)(𝒙, 𝑡𝑛 + 𝜀).

We now introduce the discrete bilinear forms we use in the definition of the space–time VEM–DG formulation in Section 3.5
below. Henceforth, we denote by 𝖨𝖽 the identity operator. In the following, the projection operators defined in Section 3.2 are to
e understood as applied pointwise in time.

The bilinear form 𝑚𝜕𝑡ℎ,𝜏 (⋅, ⋅). We define the upwind-DG VE discretization of the first-order time derivative operator 𝜕𝑡(⋅) as follows:

𝑚𝜕𝑡ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ) ∶=
𝑁
∑

𝑛=1
∫𝐼𝑛

𝑚ℎ
(

𝜕𝑡𝑢ℎ,𝜏 (⋅, 𝑡), 𝑣ℎ,𝜏 (⋅, 𝑡)
)

d𝑡 −
𝑁−1
∑

𝑛=1
𝑚ℎ

(

[[𝑢ℎ,𝜏 ]]𝑛, 𝑣ℎ,𝜏 (⋅, 𝑡+𝑛 )
)

+ 𝑚ℎ
(

𝑢ℎ,𝜏 (⋅, 0), 𝑣ℎ,𝜏 (⋅, 0)
)

,

where 𝑚ℎ ∶ ℎ × ℎ → R is the standard VE discretization of the 𝐿2(𝛺)-inner product, which can be written as

𝑚ℎ(𝑢ℎ, 𝑣ℎ) =
∑

𝐾∈𝛺ℎ

𝑚𝐾ℎ (𝑢ℎ, 𝑣ℎ),

with local contributions 𝑚𝐾ℎ (⋅, ⋅) given by

𝑚𝐾ℎ (𝑢ℎ, 𝑣ℎ) ∶= (𝛱0,𝐾
𝑘 𝑢ℎ, 𝛱0,𝐾

𝑘 𝑣ℎ)𝐾 + 𝑠𝐾𝑚 ((𝖨𝖽 −𝛱
0,𝐾
𝑘 )𝑢ℎ, (𝖨𝖽 −𝛱

0,𝐾
𝑘 )𝑣ℎ),

for some symmetric bilinear form 𝑠𝐾𝑚 (⋅, ⋅) chosen so that the following condition holds:

◦ Stability of 𝑠𝐾𝑚 (⋅, ⋅): there exist positive constants 𝜇̌ and 𝜇̂ independent of ℎ and 𝐾, but depending on the degree 𝑘 and the
parameter 𝜚 in Assumption 3.1 such that

𝜇̌‖𝑣ℎ‖
2
𝐿2(𝐾)

≤ 𝑠𝐾𝑚 (𝑣ℎ, 𝑣ℎ) ≤ 𝜇̂‖𝑣ℎ‖
2
𝐿2(𝐾)

∀𝑣ℎ ∈ k er (𝛱0,𝐾
𝑘 ) ∩ 𝑉𝑘(𝐾). (3.4)

Defining

𝜇∗ ∶= min{1, 𝜇̌} and 𝜇∗ ∶= max{1, 𝜇̂},
the stability property (3.4) implies

𝜇∗‖𝑣ℎ‖
2
𝐿2(𝐾)

≤ 𝑚𝐾ℎ (𝑣ℎ, 𝑣ℎ) ≤ 𝜇∗‖𝑣ℎ‖
2
𝐿2(𝐾)

∀𝑣ℎ ∈ 𝑉𝑘(𝐾). (3.5)

The bilinear form 𝑎ℎ,𝜏 (⋅, ⋅). We discretize the spatial Laplacian operator (−𝛥)(⋅) as follows:

𝑎ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ) ∶=
𝑁
∑

𝑛=1
∫𝐼𝑛

𝑎ℎ
(

𝑢ℎ,𝜏 (⋅, 𝑡), 𝑣ℎ,𝜏 (⋅, 𝑡)
)

d𝑡,

where 𝑎ℎ ∶ ℎ × ℎ is the VE discretization of the bilinear form 𝑎(⋅, ⋅) in (2.1), which can be written as

𝑎ℎ(𝑢ℎ, 𝑣ℎ) =
∑

𝐾∈𝛺ℎ

𝑎𝐾ℎ (𝑢ℎ, 𝑣ℎ),

with local contributions 𝑎𝐾ℎ (⋅, ⋅) given by

𝑎𝐾ℎ (𝑢ℎ, 𝑣ℎ) ∶=
(

𝜫0,𝐾
𝑘−1∇𝑢ℎ,𝜫

0,𝐾
𝑘−1∇𝑣ℎ

)

𝐾 + 𝑠𝐾𝑎
(

(𝖨𝖽 −𝛱∇,𝐾
𝑘 )𝑢ℎ, (𝖨𝖽 −𝛱

∇,𝐾
𝑘 )𝑣ℎ

)

,

for some symmetric bilinear form 𝑠𝐾𝑎 (⋅, ⋅) chosen so that the following condition holds:

◦ Stability of 𝑠𝐾𝑎 (⋅, ⋅): there exist positive constants 𝛼̌ and 𝛼̂ independent of ℎ and 𝐾, but depending on the degree 𝑘 and the
parameter 𝜚 in Assumption 3.1 such that

𝛼̌‖∇𝑣ℎ‖2𝐿2(𝐾)𝑑
≤ 𝑠𝐾𝑎 (𝑣ℎ, 𝑣ℎ) ≤ 𝛼̂‖∇𝑣ℎ‖2𝐿2(𝐾)𝑑

∀𝑣ℎ ∈ k er (𝛱∇,𝐾
𝑘 ) ∩ 𝑉𝑘(𝐾). (3.6)

Defining
𝛼∗ ∶= min{1, ̌𝛼} and 𝛼∗ ∶= max{1, ̂𝛼},
5 
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using the stability property (3.6), the stability of 𝜫0,𝐾
𝑘 in the 𝐿2(𝐾)𝑑 -norm, and the fact that ∇𝛱∇,𝐾

𝑘 𝑣ℎ ∈ P𝑘−1(𝐾)𝑑 , we deduce that

𝛼∗‖∇𝑣ℎ‖2𝐿2(𝐾)𝑑
≤ 𝑎𝐾ℎ (𝑣ℎ, 𝑣ℎ) ≤ 𝛼∗‖∇𝑣ℎ‖2𝐿2(𝐾)𝑑

∀𝑣ℎ ∈ 𝑉𝑘(𝐾). (3.7)

The bilinear form 𝑏𝗌𝗄𝖾𝗐ℎ,𝜏 (⋅, ⋅). As for the discretization of the advective term (𝜷 ⋅ ∇𝑢), we introduce the following skew-symmetric
bilinear form:

𝑏𝗌𝗄𝖾𝗐ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ) ∶= 1
2

𝑁
∑

𝑛=1
∫𝐼𝑛

(

𝑏ℎ
(

𝑢ℎ,𝜏 (⋅, 𝑡), 𝑣ℎ,𝜏 (⋅, 𝑡)
)

− 𝑏ℎ
(

𝑣ℎ,𝜏 (⋅, 𝑡), 𝑢ℎ,𝜏 (⋅, 𝑡)
)

)

d𝑡,

where 𝑏ℎ ∶ ℎ × ℎ → R is given by

𝑏ℎ(𝑢ℎ, 𝑣ℎ) ∶=
∑

𝐾∈𝛺ℎ

(

𝜷 ⋅𝜫0,𝐾
𝑘 ∇𝑢ℎ, 𝛱0,𝐾

𝑘 𝑣ℎ
)

𝐾 . (3.8)

The above form (3.8) corresponds to the choice in [19, Eq. (4.5)] (see also [18, Eq. (15)]); in the two-dimensional case, it can be
ubstituted with the alternative choice in [19, Eq. (4.6)].

The bilinear form 𝑠𝗌𝗎𝗉𝗀ℎ,𝜏 (⋅, ⋅). Finally, we introduce the SUPG-stability bilinear form

𝑠𝗌𝗎𝗉𝗀ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ) ∶=
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝑠𝐾𝑛 ,𝗌𝗎𝗉𝗀ℎ,𝜏
(

𝑢ℎ,𝜏 , 𝑣ℎ,𝜏
)

,

with

𝑠𝐾𝑛 ,𝗌𝗎𝗉𝗀ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ) ∶=𝜆𝐾𝑛
(

𝐾ℎ,𝜏𝑢ℎ,𝜏 , ̃
𝐾
ℎ,𝜏𝑣ℎ,𝜏

)

𝐾𝑛
+ 𝛽2𝐾𝑛𝜆𝐾𝑛 ∫𝐼𝑛

𝑠𝐾𝑎
(

(𝖨𝖽 −𝛱∇,𝐾
𝑘 )𝑢ℎ,𝜏 , (𝖨𝖽 −𝛱

∇,𝐾
𝑘 )𝑣ℎ,𝜏

)

d𝑡,

for some parameter 𝜆𝐾𝑛 > 0 to be specified later, 𝛽𝐾𝑛 ∶= max{𝛽𝜀, ‖𝜷‖𝐿∞(𝐾𝑛)𝑑 } for some mesh-independent strictly positive ‘‘safeguard’’
onstant 𝛽𝜀, the stability term 𝑠𝐾𝑎 (⋅, ⋅) as in the definition of 𝑎ℎ(⋅, ⋅), and the linear operators 𝐾ℎ,𝜏 and ̃𝐾ℎ,𝜏 defined as follows:

̃𝐾ℎ,𝜏𝑣ℎ,𝜏 ∶= 𝜕𝑡𝛱
0,𝐾
𝑘 𝑣ℎ,𝜏 + 𝜷 ⋅𝜫0,𝐾

𝑘−1∇𝑣ℎ,𝜏 , (3.9a)

𝐾ℎ,𝜏𝑢ℎ,𝜏 ∶= 𝜕𝑡𝛱
0,𝐾
𝑘 𝑢ℎ,𝜏 − 𝜈 div𝜫

0,𝐾
𝑘−1∇𝑢ℎ,𝜏 + 𝜷 ⋅𝜫0,𝐾

𝑘−1∇𝑢ℎ,𝜏 . (3.9b)

For convenience, we also define

𝛽𝑄𝑇 ∶= ‖𝜷‖𝐿∞(𝑄𝑇 )𝑑 .

and assume, up to suitable scalings of the data, that 𝛽𝑄𝑇 ≃ 1.

Remark 3.3 (Stability Terms). There exists a very large literature concerning different choices for the stabilization terms for VE
discretizations and developing the associated theoretical support. Explicit expressions for the definition of the stability terms 𝑠𝐾𝑚 (⋅, ⋅)
and 𝑠𝐾𝑎 (⋅, ⋅) can be found, for instance in [17,28,29] and some related proofs for instance in [25,26]; see also [30] for a recent
discussion on the role of the stability terms for virtual element methods.

3.4. Finite element and serendipity VE spaces

The proposed method immediately extends to the case of the classical Lagrangian FEM. If the mesh is simplicial, one can substitute
the local spaces (3.1c) (and (3.2c) in three space dimensions) with

𝑉𝑘(𝐾) ∶= P𝑘(𝐾) ∀𝐾 ∈ 𝛺ℎ,

thus obtaining, c.f. (3.3), the standard Lagrangian FE space. In such a case, the scheme boils down to a standard SUPG-stabilized
time-DG FEM approach, as all the polynomial projections appearing in the definition of the discrete forms disappear and, for the
same reason, the stability terms vanish. Therefore, the theoretical results of this article trivially extend to such (simpler) case,
yielding new results also for classical FEMs. Indeed, on our knowledge, results of this kind are missing in the literature, as previous
SUPG schemes are low-order accurate in time (see, e.g., [5,12–14]) and the analysis of many techniques rely on the presence of a
eaction term (see, e.g., [7,15], the discussion in the introduction of this contribution and Remark 3.8).

Another variant that can be considered is that of Serendipity Virtual Elements, which is a construction allowing to reduce the
number of DoFs, an asset which is particularly useful for high-order approaches as the present one. We refer to [31] for a detailed
presentation of Serendipity VEM (see also [32] for the associated interpolation and stability analysis) and here limit ourselves to a
ery brief review of the construction in three space dimensions. The idea is to eliminate DoFs that are internal to faces (since those
hat are internal to elements can be statically condensed) by introducing, for every face 𝐹 of the polyhedral mesh, a projection
perator

𝛱𝖲
𝐹 ∶ 𝑉 𝟤𝖣

𝑘 (𝐹 ) ⟶ P𝑘(𝐹 )

that depends only on the DoFs associated with the boundary of 𝐹 (vertex values and edge pointwise values). Clearly, such an
operator can be constructed only if the P -bubbles space on 𝐹 reduces to {0}, a condition that depends on the geometry of 𝐹 and
𝑘

6 



L. Beirão da Veiga et al.

s

Computer Methods in Applied Mechanics and Engineering 436 (2025) 117722 
on the polynomial degree 𝑘. Alternatively, one can use an extended construction (see [31, §3]), but in the present brief review we
prefer to stick to the simpler case where no such bubbles exist. Once such an operator is available, one can introduce the smaller
space

𝑉 𝖲,𝟤𝖣
𝑘 (𝐹 ) ∶= {

𝑣 ∈ 𝑉 𝟤𝖣
𝑘 (𝐹 ) ∶ ∫𝐹

(𝑣 −𝛱𝖲
𝐹 𝑣)𝑚𝜶 d𝒙 = 0 for all 𝑚𝜶 ∈ M𝑘(𝐹 )

}

,

whose associated DoFs are only (Dv1) and (Dv2). Afterwards, one follows the same identical 3D construction as in Section 3.2 but
ubstituting the face spaces in (3.2a) with its Serendipity variant

W𝖲
𝑘(𝜕 𝐾) ∶= {𝑣 ∈ 𝐶0(𝜕 𝐾) ∶ 𝑣∣𝑓 ∈ 𝑉 𝖲,𝟤𝖣

𝑘 (𝑓 ) for any face 𝑓 of 𝐾},

and using such a boundary space in (3.2b) instead of W𝑘(𝜕 𝐾).
The final space has only degrees of freedom of type (Dv1*), (Dv2*), and (Dv4*) but retains all the key properties, such as

approximation, of the original VE space [31,32].

3.5. SUPG-stabilized time-DG VEM

The proposed SUPG-stabilized time-DG VEM variational formulation is: find 𝑢ℎ,𝜏 ∈ 𝜏ℎ such that

𝗌𝗎𝗉𝗀
ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ) = 𝓁𝗌𝗎𝗉𝗀

ℎ,𝜏 (𝑣ℎ,𝜏 ) ∀𝑣ℎ,𝜏 ∈ 𝜏ℎ , (3.10)

where

𝗌𝗎𝗉𝗀
ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ) ∶= 𝑚𝜕𝑡ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ) + 𝜈 𝑎ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ) + 𝑏𝗌𝗄𝖾𝗐ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ) + 𝑠𝗌𝗎𝗉𝗀ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ), (3.11)

and

𝓁𝗌𝗎𝗉𝗀
ℎ,𝜏 (𝑣ℎ,𝜏 ) ∶=

∑

𝐾∈𝛺ℎ

𝑁
∑

𝑛=1

(

𝑓 , 𝛱0,𝐾
𝑘 𝑣ℎ,𝜏 + 𝜆𝐾𝑛 ̃

𝐾
ℎ,𝜏𝑣ℎ,𝜏

)

𝐾𝑛
+

∑

𝐾∈𝛺ℎ

(

𝑢0, 𝛱0,𝐾
𝑘 𝑣ℎ,𝜏 (⋅, 0)

)

𝐾 . (3.12)

Remark 3.4. The method proposed above, and (unless clearly stated as will happen in Section 5.3) the stability and convergence
analysis here developed apply identically to the case when the spatial mesh 𝛺ℎ changes at every time slab, that is we have a different
mesh 𝛺𝑛

ℎ for all 𝑛 = 0, 1,… , 𝑁 . Nevertheless, in order to allow for a simpler notation and a clearer exposition, we prefer to keep the
above simpler setting in the following developments.

3.6. Main theoretical results

In this section, we present the main theoretical results of the article, namely the well-posedness of the discrete problem (3.10)
and the associated quasi-robust error bounds. The proofs are postponed to Sections 4 and 5, respectively.

In what follows, we write 𝑎 ≲ 𝑏 to indicate the existence of a positive constant 𝐶 independent of the meshsize ℎ, the time step 𝜏,
and the diffusion coefficient 𝜈 such that 𝑎 ≤ 𝐶 𝑏. Moreover, we write 𝑎 ≃ 𝑏 meaning that 𝑎 ≲ 𝑏 and 𝑏 ≲ 𝑎.

We need to introduce some preliminary quantities. Let the upwind-jump functional

|𝑢ℎ,𝜏 |
2
𝖩
∶= 1

2

(

‖𝑢ℎ,𝜏‖
2
𝐿2(𝛴𝑇 )

+
𝑁−1
∑

𝑛=1
‖[[𝑢ℎ,𝜏 ]]𝑛‖2𝐿2(𝛺)

+ ‖𝑢ℎ,𝜏‖
2
𝐿2(𝛴0)

)

, (3.13)

and the SUPG-functional

|𝑢ℎ,𝜏 |
2
𝗌𝗎𝗉𝗀

∶=
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

|𝑢ℎ,𝜏 |
2
𝐾𝑛 ,𝗌𝗎𝗉𝗀

,

where

|𝑢ℎ,𝜏 |
2
𝐾𝑛 ,𝗌𝗎𝗉𝗀

∶= 𝜆𝐾𝑛‖̃
𝐾
ℎ,𝜏𝑢ℎ,𝜏‖

2
𝐿2(𝐾𝑛)

+ 𝜆𝐾𝑛𝛽
2
𝐾𝑛

‖∇(𝖨𝖽 −𝛱∇,𝐾
𝑘 )𝑢ℎ,𝜏‖2𝐿2(𝐾𝑛)𝑑

. (3.14)

We also define the following norm in 𝜏ℎ :

|||𝑢ℎ,𝜏 |||
2
 ∶= ‖𝑢ℎ,𝜏‖

2
𝐿2(𝑄𝑇 )

+ |𝑢ℎ,𝜏 |
2
𝖩
+ 𝜈‖∇𝑢ℎ,𝜏‖2𝐿2(𝑄𝑇 )𝑑

+ |𝑢ℎ,𝜏 |
2
𝗌𝗎𝗉𝗀

. (3.15)

The following assumption will be adopted in the sequel.

Assumption 3.5. For any 𝐾 ∈ 𝛺ℎ and 𝑛 = 1,… , 𝑁 , let 𝜆𝐾𝑛 be chosen so that

𝜆𝐾𝑛 ≤ 𝜁 min
{ ℎ2𝐾

2
,
ℎ𝐾 }

, (3.16)

𝜈 𝐶inv 𝛽𝑄𝑇
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with 𝐶inv an inverse-estimate constant (c.f. Lemma 4.1 below) and some scalar constant 𝜁 independent of ℎ, 𝜏, and 𝜈. Moreover, let
the following mild condition hold for some positive constant 𝐶∗ independent of ℎ and 𝜈:

𝜏 ≤ 𝐶∗ℎ
1
2
min. (3.17)

The proposed method satisfies the following inf–sup estimate with stability constant independent of the diffusion coefficient 𝜈;
as a consequence, method (3.10) is well posed and remains stable even in the advection-dominated regime (0 < 𝜈 ≪ 1). The proof
can be found in Section 4.

Theorem 3.6 (Inf-Sup Stability). There exist positive constants 𝐶∗, 𝜁 , and 𝛾𝐼 independent of ℎ, 𝜏, and 𝜈 such that, if 𝜏 ≤ 𝐶∗ℎ
1
2
min, and the

stability parameters 𝜆𝐾𝑛 are chosen so that (3.16) is satisfied, it holds

|||𝑢ℎ,𝜏 ||| ≤ 𝛾𝐼 sup
𝑣ℎ,𝜏∈𝜏ℎ⧵{0}

𝗌𝗎𝗉𝗀
ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 )
|||𝑣ℎ,𝜏 |||

∀𝑣ℎ,𝜏 ∈ 𝜏ℎ .

The well-posedness of the scheme is a simple consequence of the above result (see the end of Section 4) and is stated here below.

Corollary 3.7 (Well-Posedness). Under the assumptions of Theorem 3.6, there exists a unique solution 𝑢ℎ,𝜏 ∈ 𝜏ℎ to the discrete variational
formulation (3.10). Moreover, if ℎ and 𝜁 are such that 𝜆𝐾𝑛 ≤ 1 for all 𝐾 ∈ 𝛺ℎ and 𝑛 ∈ {1,… , 𝑁}, the following continuous dependence
on the data is satisfied:

|||𝑢ℎ,𝜏 ||| ≤
√

2𝛾𝐼
(

‖𝑢0‖𝐿2(𝛺) + ‖𝑓‖𝐿2(𝑄𝑇 )
)

.

The constant 1 appearing above in the condition 𝜆𝐾𝑛 ≤ 1 was introduced only for simplicity of exposition. What is actually
required for the well-posedness is that all the 𝜆𝐾𝑛 are uniformly bounded (in practice the 𝜆𝐾𝑛 are expected to be ‘‘small’’, c.f.
(3.16)).

Remark 3.8 (Stability in 𝐿2(0, 𝑇 ;𝐿2(𝛺))). Theorem 3.6 shows the stability of the fully discrete scheme in a norm including
𝐿2(0, 𝑇 ;𝐿2(𝛺)) without resorting to the exponential transformation 𝑤 = 𝑒−𝑡∕𝑇 𝑢, thus underlining that also the method applied directly
to (1.1) is able to recover the full stability properties of the continuous problem.

We now introduce the main a priori error estimates for our method, yielding optimal convergence rates in the energy norm ||| ⋅ |||
defined in (3.15). The error estimates hold under the following assumption on the regularity of the data and the exact solution.

Assumption 3.9 (Data Assumption). For all 𝐾 ∈ 𝛺ℎ and 𝑛 ∈ {1,… , 𝑁}, the solution 𝑢 to the continuous weak formulation in (2.2),
the source term 𝑓 , and the initial condition 𝑢0 satisfy:

𝑢 ∈ 𝐻𝑞+1(𝐼𝑛;𝐻1(𝐾)) ∩𝐻1(𝐼𝑛;𝐻𝑠+1(𝐾)), 𝑓 ∈ 𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾)), and 𝑢0 ∈ 𝐻𝑠+1(𝐾),

and the advective field 𝜷 satisfies,

𝜷 ∈ 𝐿∞(0, 𝑇 ;𝑊 𝑠+1,∞(𝛺)) ∩𝑊 1,∞(0, 𝑇 ;𝐿∞(𝛺)),

for 0 ≤ 𝑞 ≤ 𝑟 and 0 ≤ 𝑠 ≤ 𝑘.
The following convergence result holds (the proof can be found in Section 5).

Theorem 3.10 (A Priori Error Estimates). Let Assumption 3.1 (on the mesh-regularity) and Assumption 3.5 (on the choice of 𝜆𝐾𝑛 and the
relation of 𝜏 and ℎmin) hold. Let also Assumption 3.9 hold with 𝑞 = 𝑠 = 𝑟 = 𝑘. If the time steps {𝜏𝑛}𝑁𝑛=1 are quasi-uniform and the solution

is sufficiently regular, we have the following error estimates (all bounds being uniform in 𝜈):

• Advection-dominated regime (𝜈 ≪ ℎ𝐾 ): 𝜆𝐾𝑛 = 𝜁 ℎ𝐾
𝛽𝑄𝑇

≃ ℎ𝐾

|||𝑢 − 𝑢ℎ,𝜏 |||2 ≲ 𝜏2𝑘+1 + ℎ2𝑘+1 + ℎ2𝜏2𝑘 + ℎ2𝑘+1 (ℎ∕𝜏 + ℎ2∕𝜏2) + 𝜏2𝑘+2∕ℎmin. (3.18)

• Diffusion-dominated regime (𝜈 ≃ 1, ℎ𝐾 ≲ 𝜈): 𝜆𝐾𝑛 = 𝜁
ℎ2𝐾
𝜈 𝐶2

inv
≃ ℎ2𝐾

|||𝑢 − 𝑢ℎ,𝜏 |||2 ≲ 𝜏2𝑘+1 + ℎ2𝑘 + ℎ2𝜏2𝑘 + ℎ2𝑘+2∕𝜏2 + 𝜏2𝑘+2∕ℎ2min. (3.19)

The quantities with negative powers of ℎmin in (3.18)–(3.19) suggest assuming quasi-uniformity also of the spatial mesh. In such
 case, whenever the meshsize ℎ and the time step 𝜏 are orthotropic (i.e., 𝜏 ≃ ℎ) we immediately observe that the error satisfies

|||𝑢−𝑢ℎ,𝜏 ||| ≲ ℎ𝑘 in diffusion dominated cases and |||𝑢−𝑢ℎ,𝜏 ||| ≲ ℎ𝑘+1∕2 in advection dominated cases, which are the optimal behaviours
xpected for quasi-robust schemes. Another important observation is that, since reducing 𝜏 is computationally cheaper than reducing
, one may be interested in the case 𝜏 ≪ ℎ, representing the situation in which the time mesh is substantially finer than the spatial

mesh. The presence of terms of the kind ℎ∕𝜏 in the error estimate above are detrimental in this respect: we investigate the possibility
of eliminating such terms in Section 5.3.
8 
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4. Well-posedness of the method

This section is devoted to prove Theorem 3.6 and Corollary 3.7.

4.1. Some useful tools

In the proof of the inf–sup stability estimate in Theorem 3.6 we make use of the following auxiliary exponential weight function:

𝜑 = 𝜑(𝑡) ∶= 𝑇 exp((𝑇 − 𝑡)∕𝑇 ), (4.1)

which satisfies the following two important uniform bounds:

𝑇 ≤𝜑(𝑡) ≤ 𝑒𝑇 ∀𝑡 ∈ [0, 𝑇 ], (4.2a)

− 1 ≤𝜑′(𝑡) ≤ −𝑒−1 ∀𝑡 ∈ [0, 𝑇 ]. (4.2b)

We denote by 𝛱 𝑡
𝑟 ∶ 𝐿

2(0, 𝑇 ) → P𝑘(𝜏 ) the 𝐿2(0, 𝑇 )-orthogonal projection operator in P𝑟(𝜏 ). In what follows, the operator 𝛱 𝑡
𝑟 is to

be understood as applied pointwise in space.
We start by some inverse estimates for VE functions and polynomials.

Lemma 4.1 (Local Inverse Estimates). Let 𝛺ℎ satisfy Assumption 3.1. Then, for all 𝐾 ∈ 𝛺ℎ and 𝑛 = 1,… , 𝑁 , the following bounds hold:

‖∇𝑤𝑟,𝑘‖𝐿2(𝐼𝑛;𝐿2(𝐾)𝑑 ) ≤ 𝐶invℎ
−1
𝐾 ‖𝑤𝑟,𝑘‖𝐿2(𝐼𝑛;𝐿2(𝐾)) ∀𝑤𝑟,𝑘 ∈ P𝑟(𝐼𝑛)⊗ 𝑉𝑘(𝐾), (4.3a)

‖𝜕𝑡𝑤𝑟‖𝐿2(𝐼𝑛;𝐿2(𝐾)) ≤ 𝐶inv𝜏
−1
𝑛 ‖𝑤𝑟‖𝐿2(𝐼𝑛;𝐿2(𝐾)) ∀𝑤𝑟 ∈ P𝑟(𝐼𝑛)⊗ 𝐿2(𝐾), (4.3b)

‖ div𝐩𝑟,𝑘‖𝐿2(𝐼𝑛;𝐿2(𝐾)) ≤ 𝐶invℎ
−1
𝐾 ‖𝐩𝑟,𝑘‖𝐿2(𝐼𝑛;𝐿2(𝐾)𝑑 ) ∀𝐩𝑟,𝑘 ∈ P𝑟(𝐼𝑛)⊗ P𝑘(𝐾)𝑑 , (4.3c)

for some positive constant 𝐶inv independent of 𝐾, ℎ𝐾 , and 𝜏𝑛.

Proof. The inverse estimate in (4.3a) follows from the tensor-product structure of the element 𝐾 × 𝐼𝑛 and the space P𝑟(𝐼𝑛)⊗𝑉𝑘(𝐾),
nd the inverse estimates for VE functions in [33, Lemma 6.1] (for 𝑑 = 2) and [34, Thm. 3.4] (for 𝑑 = 3). The inverse estimates (4.3b)

and (4.3c) are standard; see e.g., [35, §4.5]. □

In next lemma, we recall some approximation properties of 𝛱 𝑡
𝑟 from [36, Lemma 4.3].

Lemma 4.2. There exists a positive constant 𝐶𝑆 independent of ℎ and 𝜏 such that, for 𝑛 = 1,… , 𝑁 and 𝐾 ∈ 𝛺ℎ, the following bounds hold:

‖(𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝑤𝜏 )‖𝐿2(𝐾𝑛) ≤ 𝐶𝑆𝜏𝑛‖𝑤𝜏‖𝐿2(𝐾𝑛) ∀𝑤𝜏 ∈ P𝑟(𝐼𝑛)⊗ 𝐿2(𝐾), (4.4a)

‖𝜕𝑡(𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝑤𝜏 )‖𝐿2(𝐾𝑛) ≤ 𝐶𝑆‖𝑤𝜏‖𝐿2(𝐾𝑛) ∀𝑤𝜏 ∈ P𝑟(𝐼𝑛)⊗ 𝐿2(𝐾), (4.4b)

‖(𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝑤𝜏 )‖𝐿2(𝛴𝑛−1) ≤ 𝐶𝑆𝜏

1
2
𝑛 ‖𝑤𝜏‖𝐿2(𝐼𝑛;𝐿2(𝛺)) ∀𝑤𝜏 ∈ P𝑟(𝐼𝑛)⊗ 𝐿2(𝛺), (4.4c)

‖(𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝑤𝜏 )‖𝐿2(𝛴𝑛) ≤ 𝐶𝑆𝜏

1
2
𝑛 ‖𝑤𝜏‖𝐿2(𝐼𝑛;𝐿2(𝛺)) ∀𝑤𝜏 ∈ P𝑟(𝐼𝑛)⊗ 𝐿2(𝛺). (4.4d)

Proof. We show only the proof of (4.4b); the other bounds can be derived with very similar arguments. We start by introducing
𝜑 ∶= 𝛱 𝑡

0𝜑 and applying some simple steps
‖𝜕𝑡(𝖨𝖽 −𝛱 𝑡

𝑟)(𝜑𝑤𝜏 )‖𝐿2(𝐾𝑛) = ‖𝜕𝑡(𝖨𝖽 −𝛱 𝑡
𝑟)
(

(𝜑 − 𝜑
)

𝑤𝜏 )‖𝐿2(𝐾𝑛) ≤ ‖𝜕𝑡((𝜑 − 𝜑)𝑤𝜏 )‖𝐿2(𝐾𝑛)

+ ‖𝜕𝑡𝛱
𝑡
𝑟((𝜑 − 𝜑)𝑤𝜏 )‖𝐿2(𝐾𝑛) ≤ ‖𝜑′𝑤𝜏‖𝐿2(𝐾𝑛) + ‖(𝜑 − 𝜑)𝜕𝑡𝑤𝜏‖𝐿2(𝐾𝑛) + ‖𝜕𝑡𝛱

𝑡
𝑟((𝜑 − 𝜑)𝑤𝜏 )‖𝐿2(𝐾𝑛).

(4.5)

The first term on the right-hand side is bounded trivially by ‖𝑤𝜏‖𝐿2(𝐾𝑛) using (4.2b). The second term is bounded first by standard
approximation properties of constant polynomials, afterwards by recalling (4.2b) and (4.3b):

‖(𝜑 − 𝜑)𝜕𝑡𝑤𝜏‖𝐿2(𝐾𝑛) ≤ ‖𝜑 − 𝜑‖𝐿∞(𝐼𝑛)‖𝜕𝑡𝑤𝜏‖𝐿2(𝐾𝑛) ≤ 𝐶 𝜏𝑛‖𝜑′
‖𝐿∞(𝐼𝑛)‖𝜕𝑡𝑤𝜏‖𝐿2(𝐾𝑛) ≤ 𝐶‖𝑤𝜏‖𝐿2(𝐾𝑛),

where 𝐶 is a generic constant independent of 𝜏𝑛.
The last term in (4.5) is bounded similarly. Since the function is polynomial in time we can apply an inverse estimate, afterwards

use the continuity of the projection operator, and finally deploy again standard approximation properties of constant polynomials.
We obtain

‖𝜕𝑡𝛱
𝑡
𝑟((𝜑 − 𝜑)𝑤𝜏 )‖𝐿2(𝐾𝑛) ≤ 𝐶 𝜏−1𝑛 ‖𝛱 𝑡

𝑟((𝜑 − 𝜑)𝑤𝜏 )‖𝐿2(𝐾𝑛) ≤ 𝐶 𝜏−1𝑛 ‖(𝜑 − 𝜑)𝑤𝜏‖𝐿2(𝐾𝑛) ≤ 𝐶‖𝑤𝜏‖𝐿2(𝐾𝑛),

which completes the proof. □
9 
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Furthermore, the following estimate follows from [37, Lemma A.1(e)] and the equivalence of 𝛱 𝑡
0 and the averaged Taylor

polynomial 𝑇 0 defined in [37, Eq. (A.1)]: for all 𝐾 ∈ 𝛺ℎ and 𝑛 = 1,… , 𝑁 , it holds

‖𝜷 −𝛱 𝑡
0𝜷‖𝐿∞(𝐼𝑛;𝐿𝑞 (𝐾)) ≤ 𝐶0𝜏𝑛‖𝜕𝑡𝜷‖𝐿∞(𝐼𝑛;𝐿𝑞 (𝐾)) ∀𝑞 ∈ [1,∞], (4.6)

for some positive constant 𝐶0 independent of ℎ and 𝜏.
We finally prove a simple orthogonality property for generic bilinear forms 𝑠(⋅, ⋅) on 𝑉𝑘(𝐾).

Lemma 4.3. Let 𝜑 be defined as in (4.1) and 𝑠(⋅, ⋅) be a bilinear form on 𝑉𝑘(𝐾). For any 𝐾 ∈ 𝛺ℎ and 𝑛 = 1,… , 𝑁 , it holds

∫𝐼𝑛
𝑠(𝑢ℎ,𝜏 , (𝖨𝖽 −𝛱 𝑡

𝑟)(𝜑𝑣ℎ,𝜏 )) d𝑡 = 0 ∀𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ∈ P𝑟(𝐼𝑛)⊗𝑉𝑘(𝐾). (4.7a)

Proof. Let 𝐾 ∈ 𝛺ℎ, 𝑛 ∈ {1,… , 𝑁}, and 𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ∈ P𝑟(𝐼𝑛)⊗ 𝑉𝑘(𝐾). Moreover, let {𝜙𝓁}
dim(𝑉𝑘(𝐾))
𝓁=1 be a basis for the space 𝑉𝑘(𝐾). Then,

here exist polynomials {𝛼𝓁}
dim(𝑉𝑘(𝐾))
𝓁=1 ⊂ P𝑟(𝐼𝑛) and {𝛽𝑚}

dim(𝑉𝑘(𝐾))
𝑚=1 ⊂ P𝑟(𝐼𝑛) such that

𝑢ℎ,𝜏 (𝑥, 𝑡) =
dim(𝑉𝑘(𝐾))

∑

𝓁=1
𝛼𝓁(𝑡)𝜙𝓁(𝑥) ∀(𝑥, 𝑡) ∈ 𝐾𝑛,

(𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝑣ℎ,𝜏 )(𝑥, 𝑡) =

dim(𝑉𝑘(𝐾))
∑

𝑚=1
(𝖨𝖽 −𝛱 𝑡

𝑟)
(

𝜑(𝑡)𝛽𝑚(𝑡)
)

𝜙𝑚(𝑥) ∀(𝑥, 𝑡) ∈ 𝐾𝑛.

Therefore,

∫𝐼𝑛
𝑠(𝑢ℎ,𝜏 , (𝖨𝖽 −𝛱 𝑡

𝑟)(𝜑𝑣ℎ,𝜏 )) d𝑡 =
dim(𝑉𝑘(𝐾))

∑

𝓁=1

dim(𝑉𝑘(𝐾))
∑

𝑚=1
𝑠(𝜙𝓁 , 𝜙𝑚)∫𝐼𝑛

𝛼𝓁(𝑡)(𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑(𝑡)𝛽𝑚(𝑡)) d𝑡 = 0,

which completes the proof. □

4.2. Inf–sup stability

For the sake of clarity, in next Lemmas we show some bounds that will be used to prove the inf–sup stability estimate in
Theorem 3.6.

Lemma 4.4. Let Assumption 3.5 hold. Then, under the same notation, for any 𝑢ℎ,𝜏 ∈ 𝜏ℎ and 𝑣ℎ,𝜏 ∶= 𝛱 𝑡
𝑟(𝜑𝑢ℎ,𝜏 ) + 𝜃 𝑢ℎ,𝜏 ∈ 𝜏ℎ , with 𝜑

defined in (4.1) and some positive constant 𝜃, the following bound holds:

|||𝑣ℎ,𝜏 ||| ≤
√

2
[

2(𝑒𝑇 )2 + 2𝐶2
𝑆𝜏 + 4𝜁((1 + 𝐶2

𝑆 )𝛽
−1
𝑄𝑇
ℎ + 𝛿2𝛽𝑄𝑇 𝐶

2
∗
)

+ 𝜃2
]
1
2
|||𝑢ℎ,𝜏 ||| , (4.8)

with 𝛿 = 𝐶𝑆𝐶inv.

Proof. Let 𝑢ℎ,𝜏 ∈ 𝜏ℎ . Using the triangle inequality and the definition of 𝑣ℎ,𝜏 , we get

|||𝑣ℎ,𝜏 |||
2
 ≤ 2|||𝛱 𝑡

𝑟(𝜑𝑢ℎ,𝜏 )|||
2
 + 2𝜃2|||𝑢ℎ,𝜏 |||2 . (4.9)

Hence, it only remains to bound the first term on the right-hand side of (4.9).
The following estimates follow immediately from the stability properties of 𝛱 𝑡

𝑟, the commutativity of the spatial gradient ∇ and
he operator 𝛱 𝑡

𝑟, and bound (4.2a) for 𝜑:

‖𝛱 𝑡
𝑟(𝜑𝑢ℎ,𝜏 )‖

2
𝐿2(𝑄𝑇 )

≤ (𝑒𝑇 )2‖𝑢ℎ,𝜏‖2𝐿2(𝑄𝑇 )
, (4.10a)

𝜈‖∇(𝛱 𝑡
𝑟(𝜑𝑢ℎ,𝜏 ))‖

2
𝐿2(𝑄𝑇 )𝑑

≤ 𝜈(𝑒𝑇 )2‖∇𝑢ℎ,𝜏‖2𝐿2(𝑄𝑇 )𝑑
, (4.10b)

|𝜑𝑢ℎ,𝜏 |
2
𝖩
≤ (𝑒𝑇 )2|𝑢ℎ,𝜏 |

2
𝖩
. (4.10c)

By using the triangle inequality, estimates (4.4c) and (4.4d), bound (4.2a) for 𝜑, and estimate (4.10c), we obtain

|𝛱 𝑡
𝑟(𝜑𝑢ℎ,𝜏 )|

2
𝖩
≤ 2|(𝖨𝖽 −𝛱 𝑡

𝑟)(𝜑𝑢ℎ,𝜏 )|
2
𝖩
+ 2|𝜑𝑢ℎ,𝜏 |2𝖩 ≤ 2𝐶2

𝑆𝜏‖𝑢ℎ,𝜏‖
2
𝐿2(𝑄𝑇 )

+ 2(𝑒𝑇 )2|𝑢ℎ,𝜏 |2𝖩 . (4.11)

We now bound the SUPG-seminorm of 𝛱 𝑡
𝑟(𝜑𝑢ℎ,𝜏 ). For all 𝐾 ∈ 𝛺ℎ and 𝑛 = 1,… , 𝑁 , we have

|𝛱 𝑡
𝑟(𝜑𝑢ℎ,𝜏 )|

2
𝐾𝑛 ,𝗌𝗎𝗉𝗀

= 𝜆𝐾𝑛‖̃
𝐾
ℎ,𝜏

(

𝛱 𝑡
𝑟(𝜑𝑢ℎ,𝜏 )

)

‖

2
𝐿2(𝐾𝑛)

+ 𝜆𝐾𝑛𝛽
2
𝐾𝑛

‖𝛱 𝑡
𝑟
(

𝜑∇(𝖨𝖽 −𝛱∇,𝐾
𝑘 )𝑢ℎ,𝜏

)

‖

2
𝐿2(𝐾𝑛)𝑑

. (4.12)

We consider the first term on the right-hand side of (4.12). Using the triangle inequality, the orthogonality properties of 𝛱0,𝐾
𝑘

and 𝜫0,𝐾 , estimates (4.4a) and (4.4b), the inverse estimate (4.3a), bounds (4.2a) and (4.2b), assumption (3.16) on the choice
𝑘−1
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of 𝜆𝐾𝑛 , and the mild condition (3.17), we get

𝜆𝐾𝑛‖̃
𝐾
ℎ,𝜏

(

𝛱 𝑡
𝑟(𝜑𝑢ℎ,𝜏 )

)

‖

2
𝐿2(𝐾𝑛)

≤ 2𝜆𝐾𝑛‖̃
𝐾
ℎ,𝜏 (𝜑𝑢ℎ,𝜏 )‖

2
𝐿2(𝐾𝑛)

+ 2𝜆𝐾𝑛‖̃𝐾ℎ,𝜏 (𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝑢ℎ,𝜏 )‖

2
𝐿2(𝐾𝑛)

≤ 2𝜆𝐾𝑛‖𝜕𝑡(𝜑𝛱
0,𝐾
𝑘 𝑢ℎ,𝜏 ) + 𝜑𝜷 ⋅𝜫0,𝐾

𝑘−1∇𝑢ℎ,𝜏‖
2
𝐿2(𝐾𝑛)

+ 4𝜆𝐾𝑛‖𝜕𝑡(𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝛱

0,𝐾
𝑘 𝑢ℎ,𝜏 )‖2𝐿2(𝐾𝑛)

+ 4𝜆𝐾𝑛‖𝜷 ⋅ (𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝜫

0,𝐾
𝑘−1∇𝑢ℎ,𝜏 )‖

2
𝐿2(𝐾𝑛)

≤ 4𝜆𝐾𝑛‖𝜑
′𝛱0,𝐾

𝑘 𝑢ℎ,𝜏‖
2
𝐿2(𝐾𝑛)

+ 4𝜆𝐾𝑛‖𝜑̃𝐾ℎ,𝜏𝑢ℎ,𝜏‖2𝐿2(𝐾𝑛)
+ 4𝜆𝐾𝑛‖𝜕𝑡(𝖨𝖽 −𝛱 𝑡

𝑟)(𝜑𝛱
0,𝐾
𝑘 𝑢ℎ,𝜏 )‖2𝐿2(𝐾𝑛)

+ 4𝜆𝐾𝑛‖𝜷 ⋅ (𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝜫

0,𝐾
𝑘−1∇𝑢ℎ,𝜏 )‖

2
𝐿2(𝐾𝑛)

≤ 4(1 + 𝐶2
𝑆 )𝜆𝐾𝑛‖𝑢ℎ,𝜏‖

2
𝐿2(𝐾𝑛)

+ 4(𝑒𝑇 )2𝜆𝐾𝑛‖̃𝐾ℎ,𝜏𝑢ℎ,𝜏‖2𝐿2(𝐾𝑛)
+ 4𝛽2𝑄𝑇 𝐶

2
𝑆𝜆𝐾𝑛𝜏

2
𝑛‖∇𝑢ℎ,𝜏‖

2
𝐿2(𝐾𝑛)𝑑

≤ 4𝜁 (1 + 𝐶2
𝑆 )𝛽

−1
𝑄𝑇
ℎ𝐾‖𝑢ℎ,𝜏‖

2
𝐿2(𝐾𝑛)

+ 4(𝑒𝑇 )2𝜆𝐾𝑛‖̃𝐾ℎ,𝜏𝑢ℎ,𝜏‖2𝐿2(𝐾𝑛)
+ 4𝛽𝑄𝑇 𝐶2

𝑆𝐶
2
inv𝜁 𝜏2𝑛ℎ−1𝐾 ‖𝑢ℎ,𝜏‖

2
𝐿2(𝐾𝑛)

≤ 4𝜁
(

(1 + 𝐶2
𝑆 )𝛽

−1
𝑄𝑇
ℎ𝐾 + 𝛿2𝛽𝑄𝑇 𝐶

2
∗
)

‖𝑢ℎ,𝜏‖
2
𝐿2(𝐾𝑛)

+ 4(𝑒𝑇 )2𝜆𝐾𝑛‖̃𝐾ℎ,𝜏𝑢ℎ,𝜏‖2𝐿2(𝐾𝑛)
, (4.13)

where 𝛿 = 𝐶𝑆𝐶inv.
Moreover, using the stability properties of 𝛱 𝑡

𝑟 and bound (4.2a), the second term on the right-hand side of (4.12) can be bounded
as follows:

𝜆𝐾𝑛𝛽
2
𝐾𝑛

‖𝛱 𝑡
𝑟
(

𝜑∇(𝖨𝖽 −𝛱∇,𝐾
𝑘 )𝑢ℎ,𝜏

)

‖

2
𝐿2(𝐾𝑛)𝑑

≤ (𝑒𝑇 )2𝜆𝐾𝑛𝛽
2
𝐾𝑛

‖∇(𝖨𝖽 −𝛱∇,𝐾
𝑘 )𝑢ℎ,𝜏‖2𝐿2(𝐾𝑛)𝑑

,

which, combined with (4.13) and summing up for all 𝑛, gives

|𝛱 𝑡
𝑟(𝜑𝑢ℎ,𝜏 )|

2
𝗌𝗎𝗉𝗀

≤ 4(𝑒𝑇 )2|𝑢ℎ,𝜏 |
2
𝗌𝗎𝗉𝗀

+ 4𝜁((1 + 𝐶2
𝑆 )𝛽

−1
𝑄𝑇
ℎ + 𝛿2𝛽𝑄𝑇 𝐶

2
∗
)

‖𝑢ℎ,𝜏‖
2
𝐿2(𝑄𝑇 )

. (4.14)

Therefore, combining bound (4.9) with estimates (4.10a), (4.10b), (4.11), and (4.14), we get the desired result. □

Lemma 4.5. Under the notation and assumptions of Lemma 4.4, the following bound holds:

𝜈 𝑎ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ) ≥ 𝜈 𝛼∗(𝑇 + 𝜃)‖∇𝑢ℎ,𝜏‖2𝐿2(𝑄𝑇 )𝑑
,

where 𝛼∗ is the stability constant in (3.7).

Proof. Let 𝑢ℎ,𝜏 ∈ 𝜏ℎ . By the stability property in (3.7) of the bilinear form 𝑎ℎ(⋅, ⋅), and bound (4.2a) for 𝜑, we have

𝜈 𝑎ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ) = 𝜈 𝑎ℎ,𝜏 (𝑢ℎ,𝜏 , 𝜑𝑢ℎ,𝜏 ) − 𝜈 𝑎ℎ,𝜏 (𝑢ℎ,𝜏 , (𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝑢ℎ,𝜏 )) + 𝜃 𝜈 𝑎ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑢ℎ,𝜏 )

≥ (𝑇 + 𝜃)𝛼∗𝜈‖∇𝑢ℎ,𝜏‖2𝐿2(𝑄𝑇 )𝑑
− 𝜈 𝑎ℎ,𝜏 (𝑢ℎ,𝜏 , (𝖨𝖽 −𝛱 𝑡

𝑟)(𝜑𝑢ℎ,𝜏 )). (4.15)

The last term on the right-hand side of (4.15) vanishes due to the orthogonality properties of 𝛱 𝑡
𝑟 and Lemma 4.3, which completes

the proof. □

Lemma 4.6. Under the notation and assumptions of Lemma 4.4, the following bound holds:

𝑏𝗌𝗄𝖾𝗐ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ) ≥ −𝛿𝑡𝐶2
∗‖𝑢ℎ,𝜏‖

2
𝐿2(𝑄𝑇 )

, (4.16)

with 𝛿𝑡 = 𝛿 𝐶0‖𝜕𝑡𝜷‖𝐿∞(𝑄𝑇 )𝑑 , and 𝐶∗ as in the mild condition (3.17).

Proof. Let 𝑢ℎ,𝜏 ∈ 𝜏ℎ . Using the skew symmetry of the bilinear form 𝑏𝗌𝗄𝖾𝗐ℎ,𝜏 (⋅, ⋅), and the commutativity of 𝜫0,𝐾
𝑘 and 𝛱 𝑡

𝑟, we have

𝑏𝗌𝗄𝖾𝗐ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ) = 𝑏𝗌𝗄𝖾𝗐ℎ,𝜏 (𝑢ℎ,𝜏 , 𝜑𝑢ℎ,𝜏 ) − 𝑏𝗌𝗄𝖾𝗐ℎ,𝜏 (𝑢ℎ,𝜏 , (𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝑢ℎ,𝜏 )) + 𝜃 𝑏𝗌𝗄𝖾𝗐ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑢ℎ,𝜏 )

= −𝑏𝗌𝗄𝖾𝗐ℎ,𝜏 (𝑢ℎ,𝜏 , (𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝑢ℎ,𝜏 ))

= −1
2

𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

[

(

𝜷 ⋅𝜫0,𝐾
𝑘 ∇𝑢ℎ,𝜏 , (𝖨𝖽 −𝛱 𝑡

𝑟)(𝜑𝛱
0,𝐾
𝑘 𝑢ℎ,𝜏 )

)

𝐾𝑛
−
(

(𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝜫

0,𝐾
𝑘 ∇𝑢ℎ,𝜏 ), 𝜷𝛱

0,𝐾
𝑘 𝑢ℎ,𝜏

)

𝐾𝑛

]

. (4.17)

In particular, if 𝜷 = 𝜷(𝒙), then 𝑏𝗌𝗄𝖾𝗐ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ) = 0. Otherwise, since 𝛱 𝑡
0(𝜷) ⋅ 𝜫

0,𝐾
𝑘 ∇𝑢ℎ,𝜏 ∈ P𝑟(𝜏 ;𝐿2(𝛺)) and 𝛱 𝑡

0(𝜷)𝛱
0,𝐾
𝑘 𝑢ℎ,𝜏 ∈

𝑟(𝜏 ;𝐿2(𝛺)𝑑 ), using identity (4.17) and the orthogonality properties of 𝛱 𝑡
𝑟, we obtain

𝑏𝗌𝗄𝖾𝗐ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ) = −1
2

𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

[

(

(𝖨𝖽 −𝛱 𝑡
0)𝜷 ⋅𝜫0,𝐾

𝑘 ∇𝑢ℎ,𝜏 , (𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝛱

0,𝐾
𝑘 𝑢ℎ,𝜏 )

)

𝐾𝑛

−
(

(𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝜫

0,𝐾
𝑘 ∇𝑢ℎ,𝜏 ), (𝖨𝖽 −𝛱 𝑡

0)𝜷𝛱
0,𝐾
𝑘 𝑢ℎ,𝜏

)

𝐾𝑛

]

.

(4.18)
11 
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For any 𝐾 ∈ 𝛺ℎ and 𝑛 = 1,… , 𝑁 , using the stability properties of 𝜫0,𝐾
𝑘 , the local inverse estimate in (4.3a), estimate (4.4a),

error bound (4.6) for 𝜷, and the Hölder inequality, we get

−
(

(𝖨𝖽 −𝛱 𝑡
0)𝜷 ⋅𝜫0,𝐾

𝑘 ∇𝑢ℎ,𝜏 , (𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝛱

0,𝐾
𝑘 𝑢ℎ,𝜏 )

)

𝐾𝑛

≥ −‖𝜷 −𝛱 𝑡
0𝜷‖𝐿∞(𝐾𝑛)𝑑 ‖(𝖨𝖽 −𝛱

𝑡
𝑟)(𝜑𝛱

0,𝐾
𝑘 𝑢ℎ,𝜏 )𝜫

0,𝐾
𝑘 ∇𝑢ℎ,𝜏‖𝐿1(𝐾𝑛)𝑑

≥ −‖𝜷 −𝛱 𝑡
0𝜷‖𝐿∞(𝐾𝑛)𝑑 ‖(𝖨𝖽 −𝛱

𝑡
𝑟)(𝜑𝛱

0,𝐾
𝑘 𝑢ℎ,𝜏 )‖𝐿2(𝐾𝑛)‖𝜫

0,𝐾
𝑘 ∇𝑢ℎ,𝜏‖𝐿2(𝐾𝑛)𝑑

≥ −𝛿𝑡ℎ−1𝐾 𝜏2𝑛‖𝑢ℎ,𝜏‖
2
𝐿2(𝐾𝑛)

, (4.19)

where 𝛿𝑡 = 𝛿 𝐶0‖𝜕𝑡𝜷‖𝐿∞(𝑄𝑇 )𝑑 .
The following bound can be proven in a similar way:

−
(

(𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝜫

0,𝐾
𝑘 ∇𝑢ℎ,𝜏 ), (𝖨𝖽 −𝛱 𝑡

0)𝜷𝛱
0,𝐾
𝑘 𝑢ℎ,𝜏

)

𝐾𝑛
≥ −𝛿𝑡ℎ−1𝐾 𝜏2𝑛‖𝑢ℎ,𝜏‖

2
𝐿2(𝐾𝑛)

,

which, combined with identity (4.18), the mild condition (3.17) and bound (4.19), leads to (4.16). □

Lemma 4.7. Under the assumptions of Lemma 4.4, the following bound holds:

𝑚𝜕𝑡ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ) ≥ 𝜇∗

(

( 1
2
−
(𝜇∗

𝜇∗

)2 𝐶2
𝑆𝜏
2𝜃

)

‖𝑢ℎ,𝜏‖
2
𝐿2(𝑄𝑇 )

+ 𝑇 |𝑢ℎ,𝜏 |
2
𝖩

)

, (4.20)

where 𝜇∗ and 𝜇∗ are the stability constants in (3.4), and 𝐶𝑆 is the constant from Lemma 4.2.

Proof. Let 𝑢ℎ,𝜏 ∈ 𝜏ℎ . By adding and subtracting suitable terms, we have

𝑚𝜕𝑡ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ) = 𝑚𝜕𝑡ℎ,𝜏 (𝑢ℎ,𝜏 , 𝜑𝑢ℎ,𝜏 ) − 𝑚
𝜕𝑡
ℎ,𝜏 (𝑢ℎ,𝜏 , (𝖨𝖽 −𝛱

𝑡
𝑟)(𝜑𝑢ℎ,𝜏 )) + 𝜃 𝑚

𝜕𝑡
ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑢ℎ,𝜏 )

=∶𝑀1 +𝑀2 +𝑀3. (4.21)

We treat each term 𝑀𝑖, 𝑖 = 1, 2, 3, separately.

Bound for 𝑀1. Since 𝜑′(𝑡) = −(1∕𝑇 )𝜑(𝑡) for all 𝑡 ∈ [0, 𝑇 ], the following identity follows:

𝜑𝜕𝑡(𝑢2ℎ,𝜏 ) = (1∕𝑇 )𝑢2ℎ,𝜏𝜑 + 𝜕𝑡(𝜑𝑢2ℎ,𝜏 ),

which, together with the identity 1
2 [[𝜑𝑤

2]]𝑛 − [[𝜑𝑤]]𝑛𝑤(⋅, 𝑡+𝑛 ) = 1
2 [[

√

𝜑𝑤]]2𝑛, the symmetry and stability of the bilinear form 𝑚ℎ(⋅, ⋅), and
ound (4.2a) for 𝜑, leads to

𝑀1 = 𝑚𝜕𝑡ℎ,𝜏 (𝑢ℎ,𝜏 , 𝜑𝑢ℎ,𝜏 )

= 1
2

𝑁
∑

𝑛=1
∫𝐼𝑛

𝜑(𝑡) d
d𝑡
𝑚ℎ

(

𝑢ℎ,𝜏 , 𝑢ℎ,𝜏
)

d𝑡 −
𝑁−1
∑

𝑛=1
𝑚ℎ([[𝑢ℎ,𝜏 ]]𝑛, 𝜑(𝑡𝑛)𝑢ℎ,𝜏 (⋅, 𝑡+𝑛 )) + 𝑚ℎ(𝑢ℎ,𝜏 (⋅, 0), 𝜑(0)𝑢ℎ,𝜏 (⋅, 0))

= 1
2𝑇

𝑁
∑

𝑛=1
∫𝐼𝑛

𝜑(𝑡)𝑚ℎ
(

𝑢ℎ,𝜏 , 𝑢ℎ,𝜏
)

d𝑡 + 1
2

𝑁
∑

𝑛=1
∫𝐼𝑛

d
d𝑡

(

𝜑(𝑡)𝑚ℎ
(

𝑢ℎ,𝜏 , 𝑢ℎ,𝜏
)

)

d𝑡

−
𝑁−1
∑

𝑛=1
𝑚ℎ

(

[[𝑢ℎ,𝜏 ]]𝑛, 𝜑(𝑡𝑛)𝑢ℎ,𝜏 (⋅, 𝑡+𝑛 )
)

+ 𝑚ℎ
(

𝑢ℎ,𝜏 (⋅, 0), 𝜑(0)𝑢ℎ,𝜏 (⋅, 0)
)

≥
𝜇∗
2𝑇

‖

√

𝜑𝑢ℎ,𝜏‖
2
𝐿2(𝑄𝑇 )

+ 1
2

[

𝑚ℎ
(

𝜑(𝑇 )𝑢ℎ,𝜏 (⋅, 𝑇 ), 𝑢ℎ,𝜏 (⋅, 𝑇 )
)

+
𝑁−1
∑

𝑛=1
[[𝜑(𝑡𝑛)𝑚ℎ

(

𝑢ℎ,𝜏 , 𝑢ℎ,𝜏
)

]]𝑛 − 𝑚ℎ
(

𝜑(0)𝑢ℎ,𝜏 (⋅, 0), 𝑢ℎ,𝜏 (⋅, 0)
)

]

−
𝑁−1
∑

𝑛=1
𝑚ℎ

(

[[𝑢ℎ,𝜏 ]]𝑛, 𝜑(𝑡𝑛)𝑢ℎ,𝜏 (⋅, 𝑡+𝑛 )
)

+ 𝑚ℎ
(

𝜑(0)𝑢ℎ,𝜏 (⋅, 0), 𝑢ℎ,𝜏 (⋅, 0)
)

=
𝜇∗
2𝑇

‖

√

𝜑𝑢ℎ,𝜏‖
2
𝐿2(𝑄𝑇 )

+ 1
2

[

𝑚ℎ
(

𝜑(𝑇 )𝑢ℎ,𝜏 (⋅, 𝑇 ), 𝑢ℎ,𝜏 (⋅, 𝑇 )
)

+
𝑁−1
∑

𝑛=1
𝑚ℎ(𝜑(𝑡𝑛)[[𝑢ℎ,𝜏 ]]𝑛, [[𝑢ℎ,𝜏 ]]𝑛) + 𝑚ℎ

(

𝜑(0)𝑢ℎ,𝜏 (⋅, 0), 𝑢ℎ,𝜏 (⋅, 0)
)

]

≥ 𝜇∗
( 1

2𝑇
‖

√

𝜑𝑢ℎ,𝜏‖
2
𝐿2(𝑄𝑇 )

+ |

√

𝜑𝑢ℎ,𝜏 |
2
𝖩

)

≥ 𝜇∗
( 1

2
‖𝑢ℎ,𝜏‖

2
𝐿2(𝑄𝑇 )

+ 𝑇 |𝑢ℎ,𝜏 |
2
𝖩

)

. (4.22)

Bound for 𝑀2. Using the orthogonality properties of 𝛱 𝑡
𝑟, Lemma 4.3, estimate (4.4c), the local inverse estimate in (4.3b), the

symmetry and stability of the bilinear form 𝑚ℎ(⋅, ⋅), and the Young inequality, we obtain

𝑀2 = −𝑚𝜕𝑡ℎ,𝜏 (𝑢ℎ,𝜏 , (𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝑢ℎ,𝜏 ))

= −
𝑁
∑ ∑

[

(

𝜕𝑡𝑢ℎ,𝜏 , (𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝑢ℎ,𝜏 )

)

𝐾𝑛
+ ∫ 𝑠𝐾𝑚

(

(𝖨𝖽 −𝛱0,𝐾
𝑘 )𝜕𝑡𝑢ℎ,𝜏 , (𝖨𝖽 −𝛱 𝑡

𝑟)
(

𝜑(𝖨𝖽 −𝛱0,𝐾
𝑘 )𝑢ℎ,𝜏

)

)

d𝑡
]

𝑛=1 𝐾∈𝛺ℎ 𝐼𝑛

12 
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+
𝑁−1
∑

𝑛=1
𝑚ℎ

(

[[𝑢ℎ,𝜏 ]]𝑛, (𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝑢ℎ,𝜏 )(⋅, 𝑡+𝑛 )

)

− 𝑚ℎ
(

𝑢ℎ,𝜏 (⋅, 0), (𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝑢ℎ,𝜏 )(⋅, 0)

)

=
𝑁−1
∑

𝑛=1
𝑚ℎ

(

[[𝑢ℎ,𝜏 ]]𝑛, (𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝑢ℎ,𝜏 )(⋅, 𝑡+𝑛 )

)

− 𝑚ℎ
(

𝑢ℎ,𝜏 (⋅, 0), (𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝑢ℎ,𝜏 )(⋅, 0)

)

≥ −𝜇∗
(

𝑁−1
∑

𝑛=1
‖[[𝑢ℎ,𝜏 ]]𝑛‖𝐿2(𝛺)‖(𝖨𝖽 −𝛱

𝑡
𝑟)(𝜑𝑢ℎ,𝜏 )‖𝐿2(𝛴𝑛) + ‖𝑢ℎ,𝜏‖𝐿2(𝛴0)‖(𝖨𝖽 −𝛱

𝑡
𝑟)(𝜑𝑢ℎ,𝜏 )‖𝐿2(𝛴0)

)

≥ −𝜇∗
(

𝜃
𝜇∗
𝜇∗

|𝑢ℎ,𝜏 |
2
𝖩
+
𝐶2
𝑆𝜏
2𝜃

⋅
𝜇∗

𝜇∗
‖𝑢ℎ,𝜏‖

2
𝐿2(𝑄𝑇 )

)

. (4.23)

Bound for 𝑀3. Integration by parts in time, the symmetry and stability of the bilinear form 𝑚𝜕𝑡ℎ,𝜏 (⋅, ⋅), and the identity 1
2 [[𝑤

2]]𝑛 −
[[𝑤]]𝑛𝑤(⋅, 𝑡+𝑛 ) = 1

2 [[𝑤]]
2
𝑛 yield

𝑀3 = 𝜃 𝑚𝜕𝑡ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑢ℎ,𝜏 )

= 𝜃
2

𝑁
∑

𝑛=1
∫𝐼𝑛

d
d𝑡
𝑚ℎ(𝑢ℎ,𝜏 , 𝑢ℎ,𝜏 ) d𝑡 − 𝜃

𝑁−1
∑

𝑛=1
𝑚ℎ

(

[[𝑢ℎ,𝜏 ]]𝑛, 𝑢ℎ,𝜏 (⋅, 𝑡+𝑛 )
)

+ 𝜃 𝑚ℎ
(

𝑢ℎ,𝜏 (⋅, 0), 𝑢ℎ,𝜏 (⋅, 0)
)

= 𝜃
2

(

𝑚ℎ
(

𝑢ℎ,𝜏 (⋅, 𝑇 ), 𝑢ℎ,𝜏 (⋅, 𝑇 )
)

+
𝑁−1
∑

𝑛=1
[[𝑚ℎ

(

𝑢ℎ,𝜏 , 𝑢ℎ,𝜏
)

]]𝑛 − 𝑚ℎ
(

𝑢ℎ,𝜏 (⋅, 0), 𝑢ℎ,𝜏 (⋅, 0)
)

)

− 𝜃
𝑁−1
∑

𝑛=1
𝑚ℎ

(

[[𝑢ℎ,𝜏 ]]𝑛, 𝑢ℎ,𝜏 (⋅, 𝑡+𝑛 )
)

+ 𝜃 𝑚ℎ
(

𝑢ℎ,𝜏 (⋅, 0), 𝑢ℎ,𝜏 (⋅, 0)
)

= 𝜃
2

(

𝑚ℎ
(

𝑢ℎ,𝜏 (⋅, 𝑇 ), 𝑢ℎ,𝜏 (⋅, 𝑇 )
)

+
𝑁−1
∑

𝑛=1
𝑚ℎ

(

[[𝑢ℎ,𝜏 ]]𝑛, [[𝑢ℎ,𝜏 ]]𝑛
)

+ 𝑚ℎ
(

𝑢ℎ,𝜏 (⋅, 0), 𝑢ℎ,𝜏 (⋅, 0)
)

)

≥ 𝜃 𝜇∗|𝑢ℎ,𝜏 |2𝖩 . (4.24)

Combining identity (4.21) with bounds (4.22), (4.23), and (4.24), we get (4.20). □

Lemma 4.8. Under the assumptions of Lemma 4.4, the following bound holds:

𝑠𝗌𝗎𝗉𝗀ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ) ≥
𝛼∗𝑇
2

|𝑢ℎ,𝜏 |
2
𝗌𝗎𝗉𝗀

− 𝜁
[ ℎ
𝛽𝑄𝑇

( 1
𝑇

+ 1
2𝜃

)

+ 1
𝛼∗𝜃

(

𝐶2
𝑆𝛽

−1
𝑄𝑇
ℎ + 𝛿2𝛽𝑄𝑇 𝐶

2
∗
)

]

‖𝑢ℎ,𝜏‖
2
𝐿2(𝑄𝑇 )

− 𝜁
[

𝑒2𝑇+
(

𝛼∗
2

+ 1
)

𝜃
]

𝜈‖∇𝑢ℎ,𝜏‖2𝐿2(𝑄𝑇 )𝑑
, (4.25)

with 𝛿 = 𝐶𝑆𝐶inv, 𝛼∗ is the stability constant in (3.6), and 𝐶∗ is the constant in the mild condition (3.17).

Proof. Let 𝑢ℎ,𝜏 ∈ 𝜏ℎ . By adding and subtracting suitable terms, we have

𝑠𝗌𝗎𝗉𝗀ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ) = 𝑠𝗌𝗎𝗉𝗀ℎ,𝜏 (𝑢ℎ,𝜏 , 𝜑𝑢ℎ,𝜏 ) − 𝑠𝗌𝗎𝗉𝗀ℎ,𝜏 (𝑢ℎ,𝜏 , (𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝑢ℎ,𝜏 )) + 𝜃 𝑠𝗌𝗎𝗉𝗀ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑢ℎ,𝜏 )

=∶ 𝐽1 + 𝐽2 + 𝐽3. (4.26)

We bound each term 𝐽𝑖, 𝑖 = 1, 2, 3, separately.

Bound for 𝐽1. Using the triangle and the Young inequalities, the stability property in (3.6) of 𝑠𝐾𝑎 (⋅, ⋅), the inverse estimates in (4.3b)
and (4.3c), bounds (4.2a) and (4.2b) for 𝜑, the stability properties of 𝛱0,𝐾

𝑘 and 𝜫0,𝐾
𝑘−1, and assumption (3.16) on the choice of 𝜆𝐾𝑛 ,

we get

𝐽1 = 𝑠𝗌𝗎𝗉𝗀ℎ,𝜏 (𝑢ℎ,𝜏 , 𝜑𝑢ℎ,𝜏 )

=
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜆𝐾𝑛
[ (

𝐾ℎ,𝜏𝑢ℎ,𝜏 , ̃
𝐾
ℎ,𝜏 (𝜑𝑢ℎ,𝜏 )

)

𝐾𝑛
+ 𝛽2𝐾𝑛 ∫𝐼𝑛

𝜑𝑠𝐾𝑎
(

(𝖨𝖽 −𝛱∇,𝐾
𝑘 )𝑢ℎ,𝜏 , (𝖨𝖽 −𝛱

∇,𝐾
𝑘 )𝑢ℎ,𝜏

)

d𝑡
]

=
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

[

𝜆𝐾𝑛
(

𝐾ℎ,𝜏𝑢ℎ,𝜏 , 𝜕𝑡(𝜑𝛱0,𝐾
𝑘 𝑢ℎ,𝜏 ) + 𝜑𝜷 ⋅𝛱0,𝐾

𝑘−1∇𝑢ℎ,𝜏
)

𝐾𝑛
+ 𝛽2𝐾𝑛𝜆𝐾𝑛 ∫𝐼𝑛

𝜑𝑠𝐾𝑎
(

(𝖨𝖽 −𝛱∇,𝐾
𝑘 )𝑢ℎ,𝜏 , (𝖨𝖽 −𝛱

∇,𝐾
𝑘 )𝑢ℎ,𝜏

)

d𝑡
]

≥
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

[

𝜆𝐾𝑛
(

̃𝐾ℎ,𝜏𝑢ℎ,𝜏 , 𝜑′𝛱0,𝐾
𝑘 𝑢ℎ,𝜏

)

𝐾𝑛
+ 𝜆𝐾𝑛‖

√

𝜑̃𝐾ℎ,𝜏𝑢ℎ,𝜏‖
2
𝐿2(𝐾𝑛)

+ 𝛼̌ 𝛽2 𝜆 ‖

√

𝜑∇(𝖨𝖽 −𝛱∇,𝐾 )𝑢 ‖

2 − 𝜈 𝜆 (

div𝜫0,𝐾 ∇𝑢 , 𝜑′𝛱0,𝐾𝑢 + 𝜑̃𝐾 𝑢
)

]

𝐾𝑛 𝐾𝑛 𝑘 ℎ,𝜏 𝐿2(𝐾𝑛)𝑑 𝐾𝑛 𝑘−1 ℎ,𝜏 𝑘 ℎ,𝜏 ℎ,𝜏 ℎ,𝜏 𝐾𝑛
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≥
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

[ 𝑇
2
𝜆𝐾𝑛‖̃

𝐾
ℎ,𝜏𝑢ℎ,𝜏‖

2
𝐿2(𝐾𝑛)

+ 𝛼̌ 𝑇 𝜆𝐾𝑛𝛽2𝐾𝑛‖∇(𝖨𝖽 −𝛱
∇,𝐾
𝑘 )𝑢ℎ,𝜏‖2𝐿2(𝐾𝑛)𝑑

− 𝜆𝐾𝑛
( 1
𝑇

+ 1
2𝜃

)

‖𝜑′𝛱0,𝐾
𝑘 𝑢ℎ,𝜏‖

2
𝐿2(𝐾𝑛)

− 𝜈2𝜆𝐾𝑛
( 𝜃

2
+ 𝑒2𝑇

)

‖ div𝜫0,𝐾
𝑘−1∇𝑢ℎ,𝜏‖

2
𝐿2(𝐾𝑛)

]

≥
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

[ 𝑇
2
𝜆𝐾𝑛‖̃

𝐾
ℎ,𝜏𝑢ℎ,𝜏‖

2
𝐿2(𝐾𝑛)

+ (𝛼̌ 𝑇 )𝜆𝐾𝑛𝛽2𝐾𝑛‖∇(𝖨𝖽 −𝛱
∇,𝐾
𝑘 )𝑢ℎ,𝜏‖2𝐿2(𝐾𝑛)𝑑

− 𝜆𝐾𝑛
( 1
𝑇

+ 1
2𝜃

)

‖𝜑′𝛱0,𝐾
𝑘 𝑢ℎ,𝜏‖

2
𝐿2(𝐾𝑛)

− 𝜈2𝜆𝐾𝑛
( 𝜃

2
+ 𝑒2𝑇

)

𝐶2
invℎ

−2
𝐾 ‖𝜫0,𝐾

𝑘−1∇𝑢ℎ,𝜏‖
2
𝐿2(𝐾𝑛)

]

≥
𝑇 𝛼∗
2

|𝑢ℎ,𝜏 |
2
𝗌𝗎𝗉𝗀

−
𝜁 ℎ
𝛽𝑄𝑇

( 1
𝑇

+ 1
2𝜃

)

‖𝑢ℎ,𝜏‖
2
𝐿2(𝑄𝑇 )

− 𝜈 𝜁
( 𝜃

2
+ 𝑒2𝑇

)

‖∇𝑢ℎ,𝜏‖2𝐿2(𝑄𝑇 )𝑑
. (4.27)

Bound for 𝐽2. The following identity follows from Lemma 4.3

𝐽2 = −𝑠𝗌𝗎𝗉𝗀ℎ,𝜏 (𝑢ℎ,𝜏 , (𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝑢ℎ,𝜏 ))

= −
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

[

𝜆𝐾𝑛
(

𝐾ℎ,𝜏𝑢ℎ,𝜏 , ̃
𝐾
ℎ,𝜏 (𝖨𝖽 −𝛱

𝑡
𝑟)(𝜑𝑢ℎ,𝜏 )

)

𝐾𝑛
+ 𝛽2𝐾𝑛𝜆𝐾𝑛 ∫𝐼𝑛

𝑠𝐾𝑎
(

(𝖨𝖽 −𝛱∇,𝐾
𝑘 )𝑢ℎ,𝜏 , (𝖨𝖽 −𝛱 𝑡

𝑟)(𝜑(𝖨𝖽 −𝛱
∇,𝐾
𝑘 )𝑢ℎ,𝜏 )

)

d𝑡
]

= −
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜆𝐾𝑛
(

̃𝐾ℎ,𝜏𝑢ℎ,𝜏 − 𝜈 div𝜫
0,𝐾
𝑘−1∇𝑢ℎ,𝜏 , ̃

𝐾
ℎ,𝜏 (𝖨𝖽 −𝛱

𝑡
𝑟)(𝜑𝑢ℎ,𝜏 )

)

𝐾𝑛
.

Using the Cauchy–Schwarz, the triangle, and the Young inequalities, estimates (4.4a) and (4.4b), the local inverse estimates in
Lemma 4.1, assumption (3.16) on the choice of 𝜆𝐾𝑛 , and condition (3.17), we get

𝐽2 ≥ −
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

[ 𝜆𝐾𝑛𝛼∗𝜃

2
‖̃𝐾ℎ,𝜏𝑢ℎ,𝜏‖

2
𝐿2(𝐾𝑛)

+
𝜈2𝜆𝐾𝑛𝛼∗𝜃

2
‖ div𝜫0,𝐾

𝑘−1∇𝑢ℎ,𝜏‖
2
𝐿2(𝐾𝑛)

+
2𝜆𝐾𝑛
𝜃 𝛼∗

(

‖𝜕𝑡(𝖨𝖽 −𝛱 𝑡
𝑟)𝛱

0,𝐾
𝑘 (𝜑𝑢ℎ,𝜏 )‖2𝐿2(𝐾𝑛)

+ ‖𝜷 ⋅ (𝖨𝖽 −𝛱 𝑡
𝑟)(𝜑𝜫

0,𝐾
𝑘−1∇𝑢ℎ,𝜏 )‖

2
𝐿2(𝐾𝑛)

)

]

≥ −
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

[ 𝜆𝐾𝑛𝛼∗𝜃

2
‖̃𝐾ℎ,𝜏𝑢ℎ,𝜏‖

2
𝐿2(𝐾𝑛)

+
𝜈2𝜆𝐾𝑛𝛼∗𝜃

2
𝐶2
invℎ

−2
𝐾 ‖∇𝑢ℎ,𝜏‖2𝐿2(𝐾𝑛)𝑑

+
2𝜆𝐾𝑛
𝜃 𝛼∗

(

𝐶2
𝑆 + 𝛿2𝛽2𝑄𝑇 𝜏

2
𝑛ℎ

−2
𝐾

)

‖𝑢ℎ,𝜏‖
2
𝐿2(𝐾𝑛)

]

≥ −
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

[ 𝜆𝐾𝑛𝛼∗𝜃

2
‖̃𝐾ℎ,𝜏𝑢ℎ,𝜏‖

2
𝐿2(𝐾𝑛)

+
𝜈 𝜁 𝛼∗𝜃

2
‖∇𝑢ℎ,𝜏‖2𝐿2(𝐾𝑛)𝑑

+
2𝜁
𝜃 𝛼∗

(

𝐶2
𝑆𝛽

−1
𝑄𝑇
ℎ𝐾 + 𝛿2𝛽𝑄𝑇 𝜏

2
𝑛ℎ

−1
𝐾

)

‖𝑢ℎ,𝜏‖
2
𝐿2(𝐾𝑛)

]

≥ −
𝛼∗𝜃
2

|𝑢ℎ,𝜏 |
2
𝗌𝗎𝗉𝗀

−
𝜈 𝜁 𝛼∗𝜃

2
‖∇𝑢ℎ,𝜏‖2𝐿2(𝑄𝑇 )𝑑

−
2𝜁
𝛼∗𝜃

(

𝐶2
𝑆𝛽

−1
𝑄𝑇
ℎ + 𝛿2𝛽𝑄𝑇 𝐶

2
∗
)

‖𝑢ℎ,𝜏‖
2
𝐿2(𝑄𝑇 )

, (4.28)

with 𝛿 = 𝐶𝑆𝐶inv.

Bound for 𝐽3. Similarly as for the bound for 𝐽1, it can be shown that

𝐽3 ≥
𝛼∗𝜃
2

|𝑢ℎ,𝜏 |
2
𝗌𝗎𝗉𝗀

−
𝜈 𝜁 𝜃
2

‖∇𝑢ℎ,𝜏‖2𝐿2(𝑄𝑇 )𝑑
. (4.29)

Combining identity (4.26) with bounds (4.27), (4.28), and (4.29), we get (4.25) □

We are now in a position to prove the stability and well-posedness of the method.

Proof of Theorem 3.6. Let 𝑢ℎ,𝜏 ∈ 𝜏ℎ and 𝑣ℎ,𝜏 ∶= 𝛱 𝑡
𝑟(𝜑𝑢ℎ,𝜏 ) + 𝜃 𝑢ℎ,𝜏 ∈ 𝜏ℎ , with 𝜑 defined in (4.1) and the real 𝜃 > 0 to be fixed later.

From Lemmas 4.5, 4.6, 4.7, and 4.8, we get

𝗌𝗎𝗉𝗀
ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ) ≥

[

𝜇∗
( 1

2
−
(𝜇∗

𝜇∗

)2 𝐶2
𝑆𝜏
2𝜃

)

−𝛿𝑡𝐶2
∗ − 𝜁

( ℎ
𝛽𝑄𝑇

( 1
𝑇

+ 1
2𝜃

)

+ 2
𝜃 𝛼∗

(

𝐶2
𝑆𝛽

−1
𝑄𝑇
ℎ + 𝛿2𝛽𝑄𝑇 𝐶

2
∗
)

)

]

‖𝑢ℎ,𝜏‖
2
𝐿2(𝑄𝑇 )

+ 𝜇∗𝑇 |𝑢ℎ,𝜏 |
2
𝖩
+
𝛼∗𝑇
2

|𝑢ℎ,𝜏 |
2
𝗌𝗎𝗉𝗀

+
[

𝑇
(

𝛼∗ − 𝜁 𝑒2
)

+𝜃
(

𝛼∗ − 𝜁
(𝛼∗
2

+ 1)
)

]

𝜈‖∇𝑢ℎ,𝜏‖2𝐿2(𝑄𝑇 )𝑑
.

Choosing 𝜁 and 𝐶∗ small enough, and 𝜃 large enough, we deduce that there exists a constant 𝜂∗ > 0 independent of ℎ, 𝜏, and 𝜈 such
hat

𝗌𝗎𝗉𝗀
ℎ,𝜏 (𝑢ℎ,𝜏 , 𝑣ℎ,𝜏 ) ≥ 𝜂∗|||𝑢ℎ,𝜏 |||

2
 . (4.30)

which, combined with Lemma 4.4, completes the proof.
14 



L. Beirão da Veiga et al.

b

f

s

(

s

s

Computer Methods in Applied Mechanics and Engineering 436 (2025) 117722 
Proof of Corollary 3.7. The result follows from the inf–sup stability estimate in Theorem 3.6 and the following continuity bound
for the linear functional 𝓁𝗌𝗎𝗉𝗀

ℎ,𝜏 (⋅) in (3.12): for all 𝑣ℎ,𝜏 ∈ 𝜏ℎ , it holds

|𝓁𝗌𝗎𝗉𝗀
ℎ,𝜏 (𝑣ℎ,𝜏 )| ≤

√

2
(

‖𝑢0‖𝐿2(𝛺) + ‖𝑓‖𝐿2(𝑄𝑇 )
)

(

‖𝑣ℎ,𝜏‖
2
𝐿2(𝑄𝑇 )

+ 1
2
‖𝑣ℎ,𝜏‖

2
𝐿2(𝛴0)

+
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜆2𝐾𝑛‖̃
𝐾
ℎ,𝜏𝑣ℎ,𝜏‖

2
𝐿2(𝐾𝑛)

)

1
2

≤
√

2(‖𝑢0‖𝐿2(𝛺) + ‖𝑓‖𝐿2(𝑄𝑇 ))|||𝑣ℎ,𝜏 ||| .

Remark 4.9 (Inf–Sup Constant for Long-Time Simulations). The inf–sup stability constant 𝛾𝐼 is of the form

𝛾𝐼 =
𝜂∗
𝜂∗
,

where 𝜂∗ is the constant in bound (4.30) and 𝜂∗ is an upper bound for the constant on the right-hand side of (4.8).
Assuming that 𝑇 ≫ 1 and

𝜏 < 1
𝐶2
𝑆

(𝜇∗

𝜇∗

)2
, ℎ < 𝛽𝑄𝑇 min

{ 𝛼∗
2𝐶2

𝑆

, 1
}

, 𝐶2
∗ < min

{ 𝜇∗
8𝛿𝑡

,
𝛼∗

2𝛿2𝛽𝑄𝑇

}

, 𝜁 < min
{ 𝛼∗
2𝑒2

,
𝛼∗

𝛼∗ + 2 ,
𝜇∗𝑇
32

}

, 𝜃 = max
{

4, 𝑇
2

}

,

we have that

𝜂∗ ≥ min
{𝜇∗

8
, 𝜇∗𝑇 , 𝛼∗𝑇

}

=
𝜇∗
8

and 𝜂∗ = (𝑇 ).

Therefore, the inf–sup stability constant 𝛾𝐼 ∼ 𝑇 .

5. Convergence analysis

In the present section, we prove Theorem 3.10, which will follow as a simplified case of the more general error bounds derived
elow. We start by recalling some polynomial and VE approximation results. The Bramble–Hilbert lemma (see e.g., [35, Lemma

4.3.8]) implies the following approximation properties of the polynomial projections introduced in Section 3.2.

Lemma 5.1 (Estimates for Polynomial Projections). Under Assumption (A1), for any element 𝐾 ∈ 𝛺ℎ and any sufficiently smooth
unction 𝜙 defined on 𝐾, the following estimates hold:

‖(𝖨𝖽 −𝛱0,𝐾
𝑘 )𝜙‖𝑊 𝑚,𝑝(𝐾) ≲ ℎ𝑠−𝑚𝐾 |𝜙|𝑊 𝑠,𝑝(𝐾) 𝑠, 𝑚 ∈ N, 𝑚 ≤ 𝑠 ≤ 𝑘 + 1, 𝑝 ∈ [1,+∞], (5.1a)

‖(𝖨𝖽 −𝛱∇,𝐾
𝑘 )𝜙‖𝐻𝑚(𝐾) ≲ ℎ𝑠−𝑚𝐾 |𝜙|𝐻𝑠(𝐾) 𝑠, 𝑚 ∈ N, 𝑚 ≤ 𝑠 ≤ 𝑘 + 1, 𝑠 ≥ 1. (5.1b)

Moreover, for any 𝐼𝑛 ∈ 𝜏 and for any sufficiently smooth function 𝜓 defined on 𝐼𝑛, the 𝐿2(𝜏 )-orthogonal projection in P𝑟(𝜏 ) of 𝜓
atisfies

‖(𝖨𝖽 −𝛱 𝑡
𝑟)𝜓‖𝐻𝑚(𝐼𝑛) ≲ 𝜏𝓁−𝑚𝑛 |𝜓|𝐻𝓁 (𝐼𝑛) 𝓁, 𝑚 ∈ N, 𝑚 ≤ 𝓁 ≤ 𝑟 + 1. (5.2)

The next lemma concerns the optimal approximation properties of the VE space ℎ, see [26, Lemma 3.15 (for 2D) and §5.2
for 3D)] and [38, Thm. 11] for more details; see instead [32] for the case of serendipity VE spaces.

Lemma 5.2 (Approximation by VE Functions). Under Assumption (A1), for any 𝑣 ∈ 𝐻1
0 (𝛺) ∩𝐻𝑠+1(𝛺ℎ) (0 < 𝑠 ≤ 𝑘+ 1), there exists 𝑣 ∈ ℎ

uch that, for all 𝐾 ∈ 𝛺ℎ, it holds

‖𝑣 − 𝑣‖𝐿2(𝐾) + ℎ𝐾‖∇(𝑣 − 𝑣 )‖𝐿2(𝐾)𝑑 ≲ ℎ𝑠+1𝐾 |𝑣|𝐻𝑠+1(𝐾). (5.3)

The last ingredients are a standard trace inequality in one dimension, a stability bound for 𝛱 𝑡
𝑟 in the 𝐻1(𝐼𝑛)-seminorm, and a

caled Poincaré–Friedrichs inequality on polytopes.

Lemma 5.3 (Trace Inequality). Let 𝐼𝑛 ∈ 𝜏 . For any 𝜓 ∈ 𝐻1(𝐼𝑛), it holds

|𝜓(𝑡𝑛−1)|
2 + |𝜓(𝑡𝑛)|

2 ≲ 𝜏−1𝑛 ‖𝜓‖2
𝐿2(𝐼𝑛)

+ 𝜏𝑛‖𝜕𝑡𝜓‖2𝐿2(𝐼𝑛)
. (5.4)

Lemma 5.4 (Stability of 𝛱 𝑡
𝑟). Let 𝐼𝑛 ∈ 𝜏 . For any 𝜓 ∈ 𝐻1(𝐼𝑛), the following bound holds:

‖𝜕𝑡𝛱
𝑡
𝑟𝜓‖𝐿2(𝐼𝑛) ≲ ‖𝜕𝑡𝜓‖𝐿2(𝐼𝑛).
15 
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Proof. Let 𝐼𝑛 ∈ 𝜏 and 𝜓 ∈ 𝐻1(𝐼𝑛). Using the polynomial inverse estimate (4.3b), the stability properties of 𝛱 𝑡
𝑟, and the standard

Poincaré inequality, we get

‖𝜕𝑡𝛱
𝑡
𝑟𝜓‖𝐿2(𝐼𝑛) = ‖𝜕𝑡(𝛱 𝑡

𝑟𝜓 −𝛱 𝑡
0𝜓)‖𝐿2(𝐼𝑛) ≲ 𝜏−1𝑛 ‖𝛱 𝑡

𝑟(𝜓 −𝛱 𝑡
0𝜓)‖𝐿2(𝐼𝑛) ≲ 𝜏−1𝑛 ‖(𝖨𝖽 −𝛱 𝑡

0)𝜓‖𝐿2(𝐼𝑛) ≲ ‖𝜕𝑡𝜓‖𝐿2(𝐼𝑛),

which completes the proof. □

Lemma 5.5 (Scaled Poincaré–Friedrichs Inequality (See e.g., [39, Lemma 2.2])). Under Assumption 3.1, for any element 𝐾 ∈ 𝛺ℎ
nd 𝑣 ∈ 𝐻1(𝐾), it holds

‖(𝖨𝖽 −𝛱∇,𝐾
𝑘 )𝑣‖𝐿2(𝐾) ≲ ℎ𝐾‖∇(𝖨𝖽 −𝛱∇,𝐾

𝑘 )𝑣‖𝐿2(𝐾)𝑑 .

In the forthcoming convergence analysis, estimates (5.1a), (5.1b), and (5.3), as well as the scaled Poincaré–Friedrichs inequality
in Lemma 5.5, are applied pointwise in time, whereas estimate (5.2) and the trace inequality (5.4) are applied pointwise in space.

5.1. Some preliminary assumptions and notations

Henceforth, we assume that the solution 𝑢 to the continuous weak formulation (2.2) has the following parabolic regularity:

𝑢 ∈ 𝐿2(0, 𝑇 ;𝐻2(𝛺)) ∩ 𝐿∞(0, 𝑇 ;𝐻1
0 (𝛺)) ∩𝐻1(0, 𝑇 ;𝐿2(𝛺)). (5.5)

Consequently, a density argument can be used to show that

(𝜕𝑡𝑢 − 𝜈 𝛥𝑢 + 𝜷 ⋅ ∇𝑢, 𝑣)𝑄𝑇 = (𝑓 , 𝑣)𝑄𝑇 ∀𝑣 ∈ 𝐿2(𝑄𝑇 ). (5.6)

For convenience, we also define the following operators:

𝐾𝑢 ∶= 𝜕𝑡𝑢 − 𝜈 𝛥𝑢 + 𝜷 ⋅ ∇𝑢, ̃𝐾𝑣 ∶= 𝜕𝑡𝑣 + 𝜷 ⋅ ∇𝑣, (5.7)

and the following bilinear forms and linear functionals:

𝑚𝜕𝑡 (𝑢, 𝑣) ∶= (𝜕𝑡𝑢, 𝑣)𝑄𝑇 + (𝑢, 𝑣)𝛴0
, 𝑎𝑇 (𝑢, 𝑣) ∶= ∫

𝑇

0
𝑎(𝑢, 𝑣) d𝑡,

𝑏𝑇 (𝑢, 𝑣) ∶= ∫

𝑇

0
𝑏(𝑢, 𝑣) d𝑡, 𝑠𝗌𝗎𝗉𝗀(𝑢, 𝑣) ∶=

∑

𝐾∈𝛺ℎ

𝑁
∑

𝑛=1
𝜆𝐾𝑛 (

𝐾𝑢, ̃𝐾𝑣)𝐾𝑛 ,

𝓁𝑓 (𝑣) ∶= (𝑓 , 𝑣)𝑄𝑇 , 𝓁𝗌𝗎𝗉𝗀
𝑓 (𝑣) ∶=

∑

𝐾∈𝛺ℎ

𝑁
∑

𝑛=1
(𝑓 , 𝜆𝐾𝑛 ̃𝐾𝑣)𝐾𝑛 ,

𝓁𝑢0 (𝑣) ∶= (𝑢0, 𝑣)𝛺 .

Remark 5.6 (Parabolic Regularity). The parabolic regularity assumption (5.5) holds, for instance, if 𝛺 is convex, compatibility of the
initial and boundary conditions is satisfied (i.e., 𝑢0 ∈ 𝐻1

0 (𝛺)), and 𝜷 does not depend on 𝑡 (see [24, Thm. 5 in Ch. 7.1] for smooth
domains, which can be extended to convex domains using the results in [40, Ch. 3])

5.2. A priori error estimates

Let the solution 𝑢 to the continuous weak formulation (2.2) satisfy the parabolic regularity (5.5), and let 𝑢ℎ,𝜏 ∈ 𝜏ℎ be the solution
to the SUPG-stabilized time-DG VEM formulation (3.10). We define 𝑢𝜏 ∶= 𝛱 𝑡

𝑟𝑢 , and the following error functions:

𝑒𝜏 = 𝑢 − 𝑢𝜏 , 𝑒0𝜋 = 𝑢 −𝛱0
𝑘𝑢, 𝑒∇𝜋 = 𝑢 −𝛱∇

𝑘 𝑢, 𝑒ℎ𝜏 = 𝑢𝜏 − 𝑢ℎ,𝜏 .

Proposition 5.7 (A Priori Error Bounds). Let Assumption 3.1 and 3.5 hold, then the following bound holds:

|||𝑢 − 𝑢ℎ,𝜏 ||| ≤ |||𝑒𝜏 ||| + 𝛾𝐼

(

sup
𝑣ℎ,𝜏∈

𝜏
ℎ⧵{0},

|||𝑣ℎ,𝜏 ||| =1

𝜒𝓁(𝑣ℎ,𝜏 ) + sup
𝑣ℎ,𝜏∈

𝜏
ℎ⧵{0},

|||𝑣ℎ,𝜏 ||| =1

𝜒𝗌𝗎𝗉𝗀(𝑣ℎ,𝜏 ) + sup
𝑣ℎ,𝜏∈

𝜏
ℎ⧵{0},

|||𝑣ℎ,𝜏 ||| =1

𝜒𝑎(𝑣ℎ,𝜏 ) + sup
𝑣ℎ,𝜏∈

𝜏
ℎ⧵{0},

|||𝑣ℎ,𝜏 ||| =1

𝜒𝑚,𝑏(𝑣ℎ,𝜏 )

)

, (5.8)

where

𝜒𝓁(𝑣ℎ,𝜏 ) ∶= 𝓁𝑓 (𝑣ℎ,𝜏 ) − 𝓁𝑓 (𝛱
0,𝐾
𝑘 𝑣ℎ,𝜏 ) + 𝓁𝑢0 (𝑣ℎ,𝜏 ) − 𝓁𝑢0 (𝛱

0,𝐾
𝑘 𝑣ℎ,𝜏 ),

𝜒𝗌𝗎𝗉𝗀(𝑣ℎ,𝜏 ) ∶= 𝓁𝗌𝗎𝗉𝗀
𝑓 (𝑣ℎ,𝜏 ) − 𝑠𝗌𝗎𝗉𝗀ℎ,𝜏 (𝑢𝜏 , 𝑣ℎ,𝜏 ),

𝜒𝑎(𝑣ℎ,𝜏 ) ∶= 𝜈 𝑎𝑇 (𝑢, 𝑣ℎ,𝜏 ) − 𝜈 𝑎ℎ,𝜏 (𝑢𝜏 , 𝑣ℎ,𝜏 ),
𝜒𝑚,𝑏(𝑣ℎ,𝜏 ) ∶= 𝑚𝜕𝑡 (𝑢, 𝑣ℎ,𝜏 ) + 𝑏𝑇 (𝑢, 𝑣ℎ,𝜏 ) − 𝑚𝜕𝑡ℎ,𝜏 (𝑢𝜏 , 𝑣ℎ,𝜏 ) − 𝑏𝗌𝗄𝖾𝗐ℎ,𝜏 (𝑢𝜏 , 𝑣ℎ,𝜏 ).
16 
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Proof. The result follows easily from the triangle inequality, the inf–sup stability estimate in Theorem 3.6, the definition of the
SUPG-stabilized time-DG VEM in (3.10), and observing that the continuous solution satisfies

𝑚𝜕𝑡 (𝑢, 𝑣ℎ,𝜏 ) + 𝜈 𝑎𝑇 (𝑢, 𝑣ℎ,𝜏 ) + 𝑏𝑇 (𝑢, 𝑣ℎ,𝜏 ) = 𝓁𝑓 (𝑣ℎ,𝜏 ) + 𝓁𝑢0 (𝑣ℎ,𝜏 ) ∀𝑣ℎ,𝜏 ∈ 𝜏ℎ . □

We now estimate each term on the right-hand side of (5.8).

Lemma 5.8 (Estimate of |||𝑒𝜏 ||| ). Under Assumption 3.1 on the mesh-regularity, Assumption 3.5 on the choice of 𝜆𝐾𝑛 and the relation of 𝜏
and ℎmin, and Assumption 3.9 on the data of the problem, it holds

|||𝑒𝜏 ||| ≲
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

(

(

𝜏2𝑞+1𝑛 + 𝜆𝐾𝑛𝜏
2𝑞
𝑛
)

‖𝑢‖2
𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾))

+ 𝜆𝐾𝑛ℎ
2𝑠+2
𝐾 ‖𝜕𝑡𝑢‖

2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

+
(

ℎ2𝑠+2𝐾 +
ℎ2𝑠+2𝐾
𝜏𝑛

+ 𝜈 ℎ2𝑠𝐾 + 𝜆𝐾𝑛𝛽
2
𝐾𝑛
ℎ2𝑠𝐾

)

‖𝑢‖2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

+
(

𝜈 + 𝜆𝐾𝑛𝛽
2
𝐾𝑛

)

𝜏2𝑞+2𝑛 ‖∇𝑢‖2
𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾)𝑑 )

)

. (5.9)

Proof. By the definition of the energy norm ||| ⋅ ||| in (3.15), we have

|||𝑒𝜏 |||
2
 = ‖𝑒𝜏‖

2
𝐿2(𝑄𝑇 )

+ |𝑒𝜏 |
2
𝖩
+ 𝜈‖∇𝑒𝜏‖

2
𝐿2(𝑄𝑇 )𝑑

+ |𝑒𝜏 |
2
𝗌𝗎𝗉𝗀

. (5.10)

We treat each term on the right-hand side of (5.10) separately.

∙ Estimate of ‖𝑒𝜏‖𝐿2(𝑄𝑇 ). Using the triangle inequality, the stability of 𝛱 𝑡
𝑟 and its approximation properties in Lemma 5.1, and the

VE interpolation estimate in Lemma 5.2, for all 𝐾 ∈ 𝛺ℎ and 𝑛 ∈ {1,… , 𝑁}, we get
‖𝑒𝜏‖

2
𝐿2(𝐾𝑛)

≤ 2‖𝑢 −𝛱 𝑡
𝑟𝑢‖

2
𝐿2(𝐾𝑛)

+ 2‖𝛱 𝑡
𝑟(𝑢 − 𝑢 )‖

2
𝐿2(𝐾𝑛)

≲ 𝜏2𝑞+2𝑛 ‖𝑢‖2
𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾))

+ ℎ2𝑠+2𝐾 ‖𝑢‖2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

.

∙ Estimate of |𝑒𝜏 |𝖩. Using the trace inequality in Lemma 5.3, the stability of 𝛱 𝑡
𝑟 and its approximation properties in Lemma 5.1, the

inverse estimate in (4.3b), and the VE interpolation estimate in Lemma 5.2, we obtain

|𝑒𝜏 |
2
𝖩
≲

𝑁
∑

𝑛=1

(

𝜏−1𝑛 ‖𝑒𝜏‖
2
𝐿2(𝐼𝑛;𝐿2(𝛺))

+ 𝜏𝑛‖𝜕𝑡𝑒𝜏‖
2
𝐿2(𝐼𝑛;𝐿2(𝛺))

)

≲
𝑁
∑

𝑛=1

(

𝜏−1𝑛
(

‖𝑢 −𝛱 𝑡
𝑟𝑢‖

2
𝐿2(𝐼𝑛;𝐿2(𝛺))

+ ‖𝛱 𝑡
𝑟(𝑢 − 𝑢 )‖

2
𝐿2(𝐼𝑛;𝐿2(𝛺))

)

+ 𝜏𝑛
(

‖𝜕𝑡(𝑢 −𝛱 𝑡
𝑟𝑢)‖

2
𝐿2(𝐼𝑛;𝐿2(𝛺))

+ ‖𝜕𝑡(𝛱 𝑡
𝑟(𝑢 − 𝑢 ))‖

2
𝐿2(𝐼𝑛;𝐿2(𝛺))

)

)

≲
𝑁
∑

𝑛=1

(

𝜏2𝑞+1𝑛 ‖𝑢‖2
𝐻𝑞+1(𝐼𝑛;𝐿2(𝛺))

+
∑

𝐾∈𝛺ℎ

ℎ2𝑠+2𝐾
𝜏𝑛

‖𝑢‖2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

)

.

∙ Estimate of 𝜈‖∇𝑒𝜏‖𝐿2(𝑄𝑇 )𝑑 . Using the triangle inequality, the stability of 𝛱 𝑡
𝑟 and its approximation properties in Lemma 5.1, the

commutativity of the spatial gradient operator ∇ and the 𝐿2(𝜏 )-orthogonal projection 𝛱 𝑡
𝑟, and the VE interpolation estimate in

Lemma 5.2, for all 𝐾 ∈ 𝛺ℎ and 𝑛 ∈ {1,… , 𝑁}, we have

𝜈‖∇𝑒𝜏‖
2
𝐿2(𝐾𝑛)𝑑

≤ 2𝜈‖∇𝑢 −𝛱 𝑡
𝑟∇𝑢‖

2
𝐿2(𝐾𝑛)𝑑

+ 2𝜈‖𝛱 𝑡
𝑟∇(𝑢 − 𝑢 )‖

2
𝐿2(𝐾𝑛)𝑑

≲ 𝜈 𝜏2𝑞+2𝑛 ‖∇𝑢‖2
𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾)𝑑 )

+ 𝜈 ℎ2𝑠𝐾 ‖𝑢‖2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

.

∙ Estimate of |𝑒𝜏 |𝗌𝗎𝗉𝗀. We bound this term using the triangle inequality, the commutativity of the first-order time derivative operator 𝜕𝑡
and the 𝐿2(𝐾)-orthogonal projection operator 𝛱0,𝐾

𝑘 , the stability properties of 𝛱0,𝐾
𝑘 , 𝜫0,𝐾

𝑘−1, 𝛱
∇,𝐾
𝑘 , and 𝛱 𝑡

𝑟, the stability bound in
Lemma 5.4, the estimates for 𝛱 𝑡

𝑟 in Lemma 5.1, and the VE interpolation estimate in Lemma 5.2, as follows:

|𝑒𝜏 |
2
𝐾𝑛 ,𝗌𝗎𝗉𝗀

= 𝜆𝐾𝑛‖𝜕𝑡𝛱
0,𝐾
𝑘 𝑒𝜏 + 𝜷 ⋅𝜫0,𝐾

𝑘−1∇𝑒
𝜏
‖

2
𝐿2(𝐾𝑛)

+ 𝜆𝐾𝑛𝛽
2
𝐾𝑛

‖∇(𝖨𝖽 −𝛱∇,𝐾
𝑘 )𝑒𝜏‖

2
𝐿2(𝐾𝑛)𝑑

≲ 𝜆𝐾𝑛‖𝜕𝑡𝑒𝜏‖2𝐿2(𝐾𝑛)
+ 𝜆𝐾𝑛𝛽

2
𝐾𝑛

‖∇𝑒𝜏‖
2
𝐿2(𝐾𝑛)𝑑

≲ 𝜆𝐾𝑛
(

‖𝜕𝑡(𝖨𝖽 −𝛱 𝑡
𝑟)𝑢‖

2
𝐿2(𝐾𝑛)

+ ‖𝜕𝑡𝛱
𝑡
𝑟(𝑢 − 𝑢 )‖

2
𝐿2(𝐾𝑛)

)

+ 𝜆𝐾𝑛𝛽
2
𝐾𝑛

(

‖(𝖨𝖽 −𝛱 𝑡
𝑟)∇𝑢‖

2
𝐿2(𝐾𝑛)𝑑

+ ‖𝛱 𝑡
𝑟∇(𝑢 − 𝑢 )‖

2
𝐿2(𝐾𝑛)𝑑

)

≲ 𝜆𝐾𝑛
(

‖𝜕𝑡(𝖨𝖽 −𝛱 𝑡
𝑟)𝑢‖

2
𝐿2(𝐾𝑛)

+ ‖𝜕𝑡(𝑢 − 𝑢 )‖2𝐿2(𝐾𝑛)

)

+ 𝜆 𝛽2
(

‖(𝖨𝖽 −𝛱 𝑡)∇𝑢‖2 + ‖∇(𝑢 − 𝑢 )‖2
)

𝐾𝑛 𝐾𝑛 𝑟 𝐿2(𝐾𝑛)𝑑  𝐿2(𝐾𝑛)𝑑
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≲ 𝜆𝐾𝑛
(

𝜏2𝑞𝑛 ‖𝑢‖2
𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾))

+ ℎ2𝑠+2𝐾 ‖𝜕𝑡𝑢‖
2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

)

+ 𝜆𝐾𝑛𝛽
2
𝐾𝑛

(

𝜏2𝑞+2𝑛 ‖∇𝑢‖2
𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾)𝑑 )

+ ℎ2𝑠𝐾 ‖𝑢‖2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

)

.

Conclusion. Estimate (5.9) follows combining (5.10) with the above four estimates. □

Lemma 5.9 (Estimate of 𝜒𝓁(𝑣ℎ,𝜏 )). Under Assumption 3.1 on the mesh-regularity, Assumption 3.5 on the choice of 𝜆𝐾𝑛 and the relation
of 𝜏 and ℎmin, and Assumption 3.9 on the data of the problem, for all 𝑣ℎ,𝜏 ∈ 𝜏ℎ with |||𝑣ℎ,𝜏 ||| = 1, the term 𝜒𝓁(𝑣ℎ,𝜏 ) can be bounded as
ollows:

𝜒𝓁(𝑣ℎ,𝜏 ) ≲
[ 𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

min
{ 1
𝜆𝐾𝑛𝛽

2
𝐾𝑛

, 1
𝜈

}

ℎ2𝑠+4𝐾 ‖𝑓‖2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

+
∑

𝐾∈𝛺ℎ

ℎ2𝑠+2𝐾 |𝑢0|
2
𝐻𝑠+1(𝐾)

]
1
2
.

Proof. Using the orthogonality properties of 𝛱0,𝐾
𝑘 and 𝜫0,𝐾

𝑘−1, we have

𝜒𝓁(𝑣ℎ,𝜏 ) = 𝓁𝑓 (𝑣ℎ,𝜏 ) − 𝓁𝑓 (𝛱
0,𝐾
𝑘 𝑣ℎ,𝜏 ) + 𝓁𝑢0 (𝑣ℎ,𝜏 ) − 𝓁𝑢0 (𝛱

0,𝐾
𝑘 𝑣ℎ,𝜏 )

=
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

(

(𝖨𝖽 −𝛱0,𝐾
𝑘 )𝑓 , (𝖨𝖽 −𝛱∇,𝐾

𝑘 )𝑣ℎ,𝜏
)

𝐾𝑛
+

∑

𝐾∈𝛺ℎ

((𝖨𝖽 −𝛱0,𝐾
𝑘 )𝑢0, 𝑣ℎ,𝜏 (⋅, 0))𝐾

=∶
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜒𝐾𝑛 +
∑

𝐾∈𝛺ℎ

𝜒𝐾0
. (5.11)

Using the scaled Poincaré–Friedrichs inequality in Lemma 5.5, the approximation properties of 𝛱0,𝐾
𝑘 from Lemma 5.1, and the

definition of | ⋅ |𝐾𝑛 ,𝗌𝗎𝗉𝗀 in (3.14), for all 𝐾 ∈ 𝛺ℎ and 𝑛 ∈ {1,… , 𝑁}, we get

𝜒𝐾𝑛 =
(

(𝖨𝖽 −𝛱0,𝐾
𝑘 )𝑓 , (𝖨𝖽 −𝛱∇,𝐾

𝑘 )𝑣ℎ,𝜏
)

𝐾𝑛
≲ ℎ𝐾‖(𝖨𝖽 −𝛱0,𝐾

𝑘 )𝑓‖𝐿2(𝐾𝑛)‖∇(𝖨𝖽 −𝛱
∇,𝐾
𝑘 )𝑣ℎ,𝜏‖𝐿2(𝐾𝑛)𝑑

≲ ℎ𝑠+2𝐾 ‖𝑓‖𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾)) min
{

|𝑣ℎ,𝜏 |𝐾𝑛 ,𝗌𝗎𝗉𝗀

𝜆1∕2𝐾𝑛
𝛽𝐾𝑛

, ‖∇𝑣ℎ,𝜏‖𝐿2(𝐾𝑛)𝑑

}

,

which, combined with the Cauchy–Schwarz inequality and the definition of the energy norm ||| ⋅ ||| in (3.15), implies
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜒𝐾𝑛 ≲
(

𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

ℎ2𝑠+4𝐾 min
{ 1
𝜆𝐾𝑛𝛽

2
𝐾𝑛

, 1
𝜈

}

‖𝑓‖2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

)
1
2
|||𝑣ℎ,𝜏 ||| . (5.12)

Finally, using estimate (5.1a) for 𝛱0,𝐾
𝑘 and the definition of the jump functional | ⋅ |𝖩 in (3.13), we obtain

∑

𝐾∈𝛺ℎ

𝜒𝐾0
≲
(

∑

𝐾∈𝛺ℎ

ℎ2𝑠+2𝐾 |𝑢0|
2
𝐻𝑠+1(𝐾)

)
1
2
‖𝑣ℎ,𝜏‖𝐿2(𝛴0) ≲

(

∑

𝐾∈𝛺ℎ

ℎ2𝑠+2𝐾 |𝑢0|
2
𝐻𝑠+1(𝐾)

)
1
2
|𝑣ℎ,𝜏 |𝖩. (5.13)

The desired result follows combining identity (5.11) with estimates (5.12) and (5.13). □

Lemma 5.10 (Estimate of 𝜒𝗌𝗎𝗉𝗀(𝑣ℎ,𝜏 )). Under Assumption 3.1 on the mesh-regularity, Assumption 3.5 on the choice of 𝜆𝐾𝑛 and the relation
of 𝜏 and ℎmin, and Assumption 3.9 on the data of the problem, for all 𝑣ℎ,𝜏 ∈ 𝜏ℎ with |||𝑣ℎ,𝜏 ||| = 1, the term 𝜒𝗌𝗎𝗉𝗀(𝑣ℎ,𝜏 ) can be bounded as
ollows:

𝜒𝗌𝗎𝗉𝗀(𝑣ℎ,𝜏 ) ≲
[ 𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

( 𝜆𝐾𝑛𝜏
2𝑞
𝑛

𝛽2𝐾𝑛
‖𝑢‖2

𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾))
+
𝜆𝐾𝑛ℎ

2𝑠+2
𝐾

𝛽2𝐾𝑛
‖𝜕𝑡𝑢‖

2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

+
( 𝜈2𝜆𝐾𝑛ℎ

2𝑠−2
𝐾

𝛽2𝐾𝑛
+ 𝜆𝐾𝑛 (1 + 𝛽2𝐾𝑛 )ℎ

2𝑠
𝐾

)

‖𝑢‖2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

+
( 𝜈2𝜆𝐾𝑛𝜏

2𝑞+2
𝑛

ℎ2𝐾𝛽
2
𝐾𝑛

+ 𝜆𝐾𝑛𝜏
2𝑞+2
𝑛

)

‖∇𝑢‖2
𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾)𝑑 )

+
𝜆𝐾𝑛ℎ

2𝑠+4
𝐾

𝜏2𝑛𝛽
2
𝐾𝑛

‖𝑓‖2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

+ 𝜆2𝐾𝑛ℎ
2𝑠
𝐾 min

{ 1
𝜆𝐾𝑛𝛽

2
𝐾𝑛

, 1
𝜈

}

‖𝜷‖2
𝐿∞(𝐼𝑛;𝑊 𝑠,∞(𝐾)𝑑 )‖𝑓‖

2
𝐿2(𝐼𝑛;𝐻𝑠(𝐾))

)]
1
2
.

Proof. Adding and subtracting suitable terms, we get

𝜒 (𝑣 ) = 𝓁𝗌𝗎𝗉𝗀(𝑣 ) − 𝑠𝗌𝗎𝗉𝗀(𝑢𝜏 , 𝑣 )
𝗌𝗎𝗉𝗀 ℎ,𝜏 𝑓 ℎ,𝜏 ℎ,𝜏  ℎ,𝜏
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=
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

(

𝜆𝐾𝑛 (𝑓 , ̃𝐾𝑣ℎ,𝜏 )𝐾𝑛 − 𝜆𝐾𝑛 (𝐾ℎ,𝜏𝑢𝜏 , ̃𝐾ℎ,𝜏𝑣ℎ,𝜏 )𝐾𝑛 − 𝜆𝐾𝑛𝛽2𝐾𝑛 ∫𝐼𝑛
𝑠𝐾𝑎 ((𝖨𝖽 −𝛱

∇,𝐾
𝑘 )𝑢𝜏 , (𝖨𝖽 −𝛱

∇,𝐾
𝑘 )𝑣ℎ,𝜏 ) d𝑡

)

=
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

(

𝜆𝐾𝑛 (
𝐾𝑢, ̃𝐾𝑣ℎ,𝜏 )𝐾𝑛 − 𝜆𝐾𝑛 (

𝐾
ℎ,𝜏𝑢

𝜏
 , ̃

𝐾
ℎ,𝜏𝑣ℎ,𝜏 )𝐾𝑛 − 𝜆𝐾𝑛𝛽

2
𝐾𝑛 ∫𝐼𝑛

𝑠𝐾𝑎 ((𝖨𝖽 −𝛱
∇,𝐾
𝑘 )𝑢𝜏 , (𝖨𝖽 −𝛱

∇,𝐾
𝑘 )𝑣ℎ,𝜏 ) d𝑡

)

=
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

(

𝜆𝐾𝑛
(

𝐾𝑢 − 𝐾ℎ,𝜏𝑢
𝜏
 , ̃

𝐾
ℎ,𝜏𝑣ℎ,𝜏

)

𝐾𝑛
+ 𝜆𝐾𝑛 (

𝐾𝑢, 𝜕𝑡(𝖨𝖽 −𝛱0,𝐾
𝑘 )𝑣ℎ,𝜏 )𝐾𝑛 + 𝜆𝐾𝑛 (

𝐾𝑢𝜷, (𝖨𝖽 −𝜫0,𝐾
𝑘−1)∇𝑣ℎ,𝜏 )𝐾𝑛

− 𝜆𝐾𝑛𝛽
2
𝐾𝑛 ∫𝐼𝑛

𝑠𝐾𝑎 ((𝖨𝖽 −𝛱
∇,𝐾
𝑘 )𝑢𝜏 , (𝖨𝖽 −𝛱

∇,𝐾
𝑘 )𝑣ℎ,𝜏 ) d𝑡

)

=∶
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

(

𝜒𝐾𝑛
𝗌𝗎𝗉𝗀,1 + 𝜒

𝐾𝑛
𝗌𝗎𝗉𝗀,2 + 𝜒

𝐾𝑛
𝗌𝗎𝗉𝗀,3 + 𝜒

𝐾𝑛
𝗌𝗎𝗉𝗀,4

)

. (5.14)

We bound each term 𝜒𝗌𝗎𝗉𝗀,𝑖, 𝑖 = 1,… , 4, separately.
Using the Cauchy–Schwarz and the triangle inequalities, and the definition of | ⋅ |𝐾𝑛 ,𝗌𝗎𝗉𝗀 in (3.14), we get

𝜒𝐾𝑛
𝗌𝗎𝗉𝗀,1 = 𝜆𝐾𝑛 (

𝐾𝑢 − 𝐾ℎ,𝜏𝑢
𝜏
 , ̃

𝐾
ℎ,𝜏𝑣ℎ,𝜏 )𝐾𝑛

= 𝜆𝐾𝑛
(

𝜕𝑡(𝑢 −𝛱
0,𝐾
𝑘 𝑢𝜏 ) − 𝜈 div(∇𝑢 −𝜫0,𝐾

𝑘−1∇𝑢
𝜏
 ) + 𝜷 ⋅ (∇𝑢 −𝜫0,𝐾

𝑘−1∇𝑢
𝜏
 ), ̃

𝐾
ℎ,𝜏𝑣ℎ,𝜏

)

𝐾𝑛

≤
𝜆1∕2𝐾𝑛
𝛽𝐾𝑛

(

‖𝜕𝑡(𝑢 −𝛱
0,𝐾
𝑘 𝑢𝜏 )‖𝐿2(𝐾𝑛) + 𝜈‖ div(∇𝑢 −𝜫0,𝐾

𝑘−1∇𝑢
𝜏
 )‖𝐿2(𝐾𝑛) + ‖𝜷 ⋅ (∇𝑢 −𝜫0,𝐾

𝑘−1∇𝑢
𝜏
 )‖𝐿2(𝐾𝑛)

)

|𝑣ℎ,𝜏 |𝐾𝑛 ,𝗌𝗎𝗉𝗀. (5.15)

We now focus on the local interpolation error terms on the right-hand side of (5.15). Using the triangle inequality, the commutativity
of 𝛱0,𝐾

𝑘 with the first-order time derivative operator 𝜕𝑡 and that of 𝜕𝑡 with the VE interpolant operator, the estimates for 𝛱 𝑡
𝑟 and 𝛱0,𝐾

𝑘
in Lemma 5.1, the stability of 𝛱 𝑡

𝑟 in Lemma 5.4, and the VE interpolation estimate in Lemma 5.2, it follows that

‖𝜕𝑡(𝑢 −𝛱
0,𝐾
𝑘 𝑢𝜏 )‖𝐿2(𝐾𝑛) ≤ ‖(𝖨𝖽 −𝛱0,𝐾

𝑘 )𝜕𝑡𝑢‖𝐿2(𝐾𝑛) + ‖𝛱0,𝐾
𝑘 𝜕𝑡(𝖨𝖽 −𝛱 𝑡

𝑟)𝑢‖𝐿2(𝐾𝑛) + ‖𝛱0,𝐾
𝑘 𝜕𝑡𝛱

𝑡
𝑟(𝑢 − 𝑢 )‖𝐿2(𝐾𝑛)

≲ ‖(𝖨𝖽 −𝛱0,𝐾
𝑘 )𝜕𝑡𝑢‖𝐿2(𝐾𝑛) + ‖𝜕𝑡(𝖨𝖽 −𝛱 𝑡

𝑟)𝑢‖𝐿2(𝐾𝑛) + ‖𝜕𝑡(𝑢 − 𝑢 )‖𝐿2(𝐾𝑛)

≲ ℎ𝑠+1𝐾 ‖𝜕𝑡𝑢‖𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾)) + 𝜏
𝑞
𝑛‖𝑢‖𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾)). (5.16)

As for the second term on the right-hand side of (5.15), we use the triangle inequality, the estimates for 𝛱 𝑡
𝑟 and 𝜫0,𝐾

𝑘−1 in Lemma 5.1
and their stability properties, the commutativity of 𝛱 𝑡

𝑟 and the spatial divergence operator div, and the inverse estimates in (4.3b)
and (4.3c) to obtain

𝜈‖ div(∇𝑢 −𝜫0,𝐾
𝑘−1∇𝑢

𝜏
 )‖𝐿2(𝐾𝑛) ≤ 𝜈‖ div(∇𝑢 −𝜫0,𝐾

𝑘−1∇𝑢)‖𝐿2(𝐾𝑛) + 𝜈‖ div𝜫
0,𝐾
𝑘−1(∇𝑢 −𝛱

𝑡
𝑟∇𝑢)‖𝐿2(𝐾𝑛) + 𝜈‖𝛱

𝑡
𝑟 div𝜫

0,𝐾
𝑘−1∇(𝑢 − 𝑢 )‖𝐿2(𝐾𝑛)

≲ 𝜈 ℎ𝑠−1𝐾 ‖𝑢‖𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾)) + 𝜈
𝜏𝑞+1

ℎ𝐾
‖∇𝑢‖𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾)𝑑 ). (5.17)

Note that the negative power of ℎ𝐾 could be avoided by asking more space regularity for 𝑢, but such effort is not required since
his term will be balanced by suitable factors in the final estimates. The last term on the right-hand side of (5.15) can be bounded

similarly as follows:

‖𝜷 ⋅ (∇𝑢 −𝜫0,𝐾
𝑘−1∇𝑢

𝜏
 )‖𝐿2(𝐾𝑛) ≤ ‖𝜷 ⋅ (∇𝑢 −𝛱 𝑡

𝑟∇𝑢)‖𝐿2(𝐾𝑛) + ‖𝜷 ⋅𝛱 𝑡
𝑟(∇𝑢 −𝜫0,𝐾

𝑘−1∇𝑢)‖𝐿2(𝐾𝑛) + ‖𝜷 ⋅𝛱 𝑡
𝑟𝜫

0,𝐾
𝑘−1(∇𝑢 − ∇𝑢𝐼 )‖𝐿2(𝐾𝑛)

≲ 𝛽𝐾𝑛𝜏𝑞+1𝑛 ‖∇𝑢‖𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾)𝑑 ) + 𝛽𝐾𝑛ℎ
𝑠
𝐾‖𝑢‖𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾)). (5.18)

Combining estimates (5.16), (5.17), and (5.18) with identity (5.15), we get
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜒𝐾𝑛
𝗌𝗎𝗉𝗀,1 ≲

[ 𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

( 𝜆𝐾𝑛𝜏
2𝑞
𝑛

𝛽2𝐾𝑛
‖𝑢‖2

𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾))
+
𝜆𝐾𝑛ℎ

2𝑠+2
𝐾

𝛽2𝐾𝑛
‖𝜕𝑡𝑢‖

2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

+
( 𝜈2𝜆𝐾𝑛ℎ

2𝑠−2
𝐾

𝛽2𝐾𝑛
+ 𝜆𝐾𝑛ℎ

2𝑠
𝐾

)

‖𝑢‖2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

+
( 𝜈2𝜆𝐾𝑛𝜏

2𝑞+2
𝑛

ℎ2𝐾𝛽
2
𝐾𝑛

+ 𝜆𝐾𝑛𝜏
2𝑞+2
𝑛

)

‖∇𝑢‖2
𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾)𝑑 )

)]

1
2 . (5.19)

Due to identity (5.6), we get

𝜒𝐾𝑛
𝗌𝗎𝗉𝗀,2 = 𝜆𝐾𝑛 (

𝐾𝑢, 𝜕𝑡(𝖨𝖽 −𝛱0,𝐾
𝑘 )𝑣ℎ,𝜏 )𝐾𝑛 = 𝜆𝐾𝑛 ((𝖨𝖽 −𝛱

0,𝐾
𝑘 )𝑓 , (𝖨𝖽 −𝛱0,𝐾

𝑘 )𝜕𝑡𝑣ℎ,𝜏 )𝐾𝑛 ,

𝜒𝐾𝑛
𝗌𝗎𝗉𝗀,3 = 𝜆𝐾𝑛 (

𝐾𝑢𝜷, (𝖨𝖽 −𝜫0,𝐾
𝑘−1)∇𝑣ℎ,𝜏 )𝐾𝑛 = 𝜆𝐾𝑛 ((𝖨𝖽 −𝜫0,𝐾

𝑘−1)(𝑓𝜷), (𝖨𝖽 −𝜫0,𝐾
𝑘−1)∇𝑣ℎ,𝜏 )𝐾𝑛 .

Using the polynomial inverse estimate (4.3b), the scaled Poincaré–Friedrichs inequality in Lemma 5.5, the approximation
properties in Lemma 5.1 for 𝛱0,𝐾

𝑘 , and the definition in (3.14) of | ⋅ |𝐾𝑛 ,𝗌𝗎𝗉𝗀, we have
𝑁
∑ ∑

𝜒𝐾𝑛
𝗌𝗎𝗉𝗀,2 =

𝑁
∑ ∑

𝜆𝐾𝑛
(

(𝖨𝖽 −𝛱0,𝐾
𝑘 )𝑓 , 𝜕𝑡(𝖨𝖽 −𝛱0,𝐾

𝑘 )𝑣ℎ,𝜏
)

𝐾𝑛

𝑛=1 𝐾∈𝛺ℎ 𝑛=1 𝐾∈𝛺ℎ
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≲
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜆𝐾𝑛
𝜏𝑛

‖(𝖨𝖽 −𝛱0,𝐾
𝑘 )𝑓‖𝐿2(𝐾𝑛)‖(𝖨𝖽 −𝛱

0,𝐾
𝑘 )𝑣ℎ,𝜏‖𝐿2(𝐾𝑛)

≲
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜆𝐾𝑛ℎ𝐾
𝜏𝑛

‖(𝖨𝖽 −𝛱0,𝐾
𝑘 )𝑓‖𝐿2(𝐾𝑛)‖∇(𝖨𝖽 −𝛱

0,𝐾
𝑘 )𝑣ℎ,𝜏‖𝐿2(𝐾𝑛)𝑑

≲
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜆1∕2𝐾𝑛
ℎ𝐾

𝜏𝑛𝛽𝐾𝑛
‖(𝖨𝖽 −𝛱0,𝐾

𝑘 )𝑓‖𝐿2(𝐾𝑛)|𝑣ℎ,𝜏 |𝐾𝑛 ,𝗌𝗎𝗉𝗀

≲
( 𝑁

∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜆𝐾𝑛ℎ
2𝑠+4
𝐾

𝜏2𝑛𝛽
2
𝐾𝑛

‖𝑓‖2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

)
1
2
|𝑣ℎ,𝜏 |𝗌𝗎𝗉𝗀. (5.20)

An improved estimate of 𝜒𝐾𝑛
𝗌𝗎𝗉𝗀,2, valid only for fixed spatial meshes, can be found in Remark 5.11 of [41].

As for 𝜒𝐾𝑛
𝗌𝗎𝗉𝗀,3, we use the Cauchy–Schwarz inequality, the approximation properties of 𝜫0,𝐾

𝑘−1, the fact that ∇𝛱∇,𝐾
𝑘 𝑣ℎ,𝜏 ∈ P𝑘−1(𝐾)𝑑 ,

he definition of | ⋅ |𝐾𝑛 ,𝗌𝗎𝗉𝗀 in (3.14), and the Hölder inequality to get

𝜒𝐾𝑛
𝗌𝗎𝗉𝗀,3 = 𝜆𝐾𝑛

(

(𝖨𝖽 −𝜫0,𝐾
𝑘−1)(𝑓𝜷), (𝖨𝖽 −𝜫0,𝐾

𝑘−1)∇𝑣ℎ,𝜏
)

𝐾𝑛

≲ 𝜆𝐾𝑛‖(𝖨𝖽 −𝜫0,𝐾
𝑘 )(𝑓𝜷)‖𝐿2(𝐾𝑛)𝑑 ‖(𝖨𝖽 −𝜫0,𝐾

𝑘−1)∇𝑣ℎ,𝜏‖𝐿2(𝐾𝑛)𝑑

≲ 𝜆𝐾𝑛ℎ𝑠𝐾‖𝜷‖𝐿∞(𝐼𝑛;𝑊 𝑠,∞(𝐾)𝑑 )‖𝑓‖𝐿2(𝐼𝑛;𝐻𝑠(𝐾)) min
{|𝑣ℎ,𝜏 |𝐾𝑛 ,𝗌𝗎𝗉𝗀

𝜆1∕2𝐾𝑛
𝛽𝐾𝑛

,
‖∇𝑣ℎ,𝜏‖𝐿2(𝐾𝑛)𝑑

𝜈1∕2
}

.

The following estimate can be then obtained using the Cauchy–Schwarz inequality and the definition of the energy norm ||| ⋅ ||| :
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜒𝐾𝑛
𝗌𝗎𝗉𝗀,3 ≲

(

𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜆2𝐾𝑛ℎ
2𝑠
𝐾 min

{ 1
𝜆𝐾𝑛𝛽

2
𝐾𝑛

, 1
𝜈

}

‖𝜷‖2
𝐿∞(𝐼𝑛;𝑊 𝑠,∞(𝐾)𝑑 )‖𝑓‖

2
𝐿2(𝐼𝑛;𝐻𝑠(𝐾))

)
1
2
|||𝑣ℎ,𝜏 ||| . (5.21)

Finally, we estimate the term 𝜒𝐾𝑛
𝗌𝗎𝗉𝗀,4. To do so, we use the stability bound of the bilinear form 𝑠𝐾𝑎 (⋅, ⋅) in (3.6), the commutativity

of 𝛱 𝑡
𝑟 and the spatial gradient operator ∇, the stability properties of 𝛱 𝑡

𝑟 and 𝛱∇,𝐾
𝑘 , the triangle inequality, the definition of | ⋅ |𝐾𝑛 ,𝗌𝗎𝗉𝗀

in (3.14), the estimate for 𝛱∇,𝐾
𝑘 in Lemma 5.1, and the VE interpolation estimate in Lemma 5.2 to deduce

𝜒𝐾𝑛
𝗌𝗎𝗉𝗀,4 = −𝜆𝐾𝑛𝛽2𝐾𝑛 ∫𝐼𝑛

𝑠𝐾𝑎 ((𝖨𝖽 −𝛱
∇,𝐾
𝑘 )𝑢𝜏 , (𝖨𝖽 −𝛱

∇,𝐾
𝑘 )𝑣ℎ,𝜏 ) d𝑡

≤ 𝛼̂ 𝜆𝐾𝑛𝛽2𝐾𝑛‖𝛱
𝑡
𝑟∇(𝖨𝖽 −𝛱

∇,𝐾
𝑘 )𝑢‖𝐿2(𝐾𝑛)𝑑 ‖∇(𝖨𝖽 −𝛱

∇,𝐾
𝑘 )𝑣ℎ,𝜏‖𝐿2(𝐾𝑛)𝑑

≤ 𝛼̂ 𝜆1∕2𝐾𝑛
𝛽𝐾𝑛

(

‖∇(𝑢 − 𝑢)‖𝐿2(𝐾𝑛)𝑑 + ‖∇(𝖨𝖽 −𝛱∇,𝐾
𝑘 )𝑢‖𝐿2(𝐾𝑛)𝑑 + ‖∇𝛱∇,𝐾

𝑘 (𝑢 − 𝑢 )‖𝐿2(𝐾𝑛)𝑑
)

|𝑣ℎ,𝜏 |𝐾𝑛 ,𝗌𝗎𝗉𝗀
≲ 𝜆1∕2𝐾𝑛

𝛽𝐾𝑛ℎ
𝑠
𝐾‖𝑢‖𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))|𝑣ℎ,𝜏 |𝐾𝑛 ,𝗌𝗎𝗉𝗀.

The sum of the above local estimate over all the elements 𝐾 ∈ 𝛺ℎ and the time steps 𝑛 ∈ {1,… , 𝑁} leads to
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜒𝐾𝑛
𝗌𝗎𝗉𝗀,4 ≲

[ 𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

(

𝜆𝐾𝑛𝛽
2
𝐾𝑛
ℎ2𝑠𝐾 ‖𝑢‖2

𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

)]
1
2
. (5.22)

Combining identity (5.14) with estimates (5.19), (5.20), (5.21), and (5.22), the desired error bound is obtained. □

Lemma 5.11 (Estimate of 𝜒𝑎(𝑣ℎ,𝜏 )). Under Assumption 3.1 on the mesh-regularity, Assumption 3.5 on the choice of 𝜆𝐾𝑛 and the relation
of 𝜏 and ℎmin, and Assumption 3.9 on the data of the problem, for all 𝑣ℎ,𝜏 ∈ 𝜏ℎ with |||𝑣ℎ,𝜏 ||| = 1, the term 𝜒𝑎(𝑣ℎ,𝜏 ) can be bounded as
follows:

𝜒𝑎(𝑣ℎ,𝜏 ) ≲
( 𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

(

𝜈 ℎ2𝑠𝐾 ‖𝑢‖2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

+ 𝜈 𝜏2𝑞+2𝑛 ‖∇𝑢‖2
𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾)𝑑 )

)

)
1
2
.

Proof. Using the polynomial consistency of the bilinear form 𝑎ℎ,𝜏 (⋅, ⋅), the stability bound in (3.7), the triangle inequality, the
commutativity of 𝛱 𝑡

𝑟 and the spatial gradient operator ∇, the stability of 𝛱 𝑡
𝑟, the estimates for 𝛱∇,𝐾

𝑘 in Lemma 5.1 and for 𝑢
in Lemma 5.2, and the Cauchy–Schwarz inequality, we obtain

𝜒𝑎(𝑣ℎ,𝜏 ) = 𝜈 𝑎𝑇 (𝑢, 𝑣ℎ,𝜏 ) − 𝜈 𝑎ℎ,𝜏 (𝑢𝜏 , 𝑣ℎ,𝜏 )

=
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜈
(

(∇(𝖨𝖽 −𝛱∇,𝐾
𝑘 )𝑢,∇𝑣ℎ,𝜏 )𝐾𝑛 + 𝑎

𝐾𝑛
ℎ (𝛱∇,𝐾

𝑘 𝑢 − 𝑢𝜏 , 𝑣ℎ,𝜏 )
)

≤
𝑁
∑ ∑

𝜈
(

‖∇𝑒∇𝜋 ‖𝐿2(𝐾𝑛)𝑑 + 𝛼
∗
‖∇(𝛱∇,𝐾

𝑘 𝑢 − 𝑢𝜏 )‖𝐿2(𝐾𝑛)𝑑
)

‖∇𝑣ℎ,𝜏‖𝐿2(𝐾𝑛)𝑑

𝑛=1 𝐾∈𝛺ℎ
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≤
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜈
(

(1 + 𝛼∗)‖∇𝑒∇𝜋 ‖𝐿2(𝐾𝑛)𝑑 + 𝛼
∗
‖(𝖨𝖽 −𝛱 𝑡

𝑟)∇𝑢‖𝐿2(𝐾𝑛)𝑑 + 𝛼
∗
‖𝛱 𝑡

𝑟∇(𝑢 − 𝑢 )‖𝐿2(𝐾𝑛)𝑑
)

‖∇𝑣ℎ,𝜏‖𝐿2(𝐾𝑛)𝑑

≲
( 𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

(

𝜈 ℎ2𝑠𝐾 ‖𝑢‖2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

+ 𝜈 𝜏2𝑞+2‖∇𝑢‖2
𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾)𝑑 )

)

)

1
2
|||𝑣ℎ,𝜏 ||| ,

which completes the proof. □

Lemma 5.12 (Estimate of 𝜒𝑚,𝑏(𝑣ℎ,𝜏 )). Under Assumption 3.1 on the mesh-regularity, Assumption 3.5 on the choice of 𝜆𝐾𝑛 and the relation
of 𝜏 and ℎmin, and Assumption 3.9 on the data of the problem, for all 𝑣ℎ,𝜏 ∈ 𝜏ℎ with |||𝑣ℎ,𝜏 ||| = 1, the term 𝜒𝑚,𝑏(𝑣ℎ,𝜏 ) can be bounded as
ollows:

𝜒𝑚,𝑏 ≲
( 𝑁

∑

𝑛=1

∑

𝐾∈𝛺ℎ

((

‖𝜷‖2
𝐿∞(𝐼𝑛;𝑊 1,∞(𝐾)𝑑 )

ℎ2𝑠+2𝐾 +
ℎ2𝑠+2𝐾

𝜆𝐾𝑛𝛽
2
𝐾𝑛

‖𝜷‖2
𝐿∞(𝐼𝑛;𝑊 𝑠+1(𝐾)𝑑 )

+
ℎ2𝑠+2𝐾
𝜆𝐾𝑛

+ ℎ2𝑠+2𝐾 min
{ 1
𝜆𝐾𝑛𝛽

2
𝐾𝑛

, 1
𝜈

}

‖𝜷‖2
𝐿∞(𝐼𝑛;𝑊 𝑠+1,∞(𝐾)𝑑 )

+
ℎ2𝑠+4𝐾

𝜆𝐾𝑛𝛽
2
𝐾𝑛
𝜏2𝑛

+
ℎ2𝑠+4𝐾

𝜏2𝑛
min

{ 1
𝜆𝐾𝑛𝛽

2
𝐾𝑛

, 1
𝜈

} )
‖𝑢‖2

𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

+
( 𝜏2𝑞+2𝑛

𝜆𝐾𝑛
+ ℎ2𝐾𝜏

2𝑞
𝑛 min

{ 1
𝜆𝐾𝑛𝛽

2
𝐾𝑛

, 1
𝜈

}

+ 𝜏2𝑞+1𝑛 + 𝜏2𝑞+2𝑛 ‖𝜷‖2
𝐿∞(𝐼𝑛;𝑊 1,∞(𝐾)𝑑 )

)

‖𝑢‖2
𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾))

+
(

ℎ2𝐾𝜏
2𝑞+2
𝑛 ‖𝜷‖2

𝐿∞(𝐼𝑛;𝑊 1,∞(𝐾)𝑑 )
+
ℎ2𝐾𝜏

2𝑞+2
𝑛

𝜆𝐾𝑛

)

‖∇𝑢‖2
𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾)𝑑 )

)

)

1
2 .

Proof. Integrating by parts in time, and using the fact that 𝑢 is continuous in time and the flux–jump identity 𝜙(⋅, 𝑡+𝑛 )[[𝜓]]𝑛 +
(⋅, 𝑡−𝑛 )[[𝜙]]𝑛 = [[𝜙𝜓]]𝑛, we get the following identity:

𝜒𝑚,𝑏 =
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

(

−(𝑢, 𝜕𝑡𝑣ℎ,𝜏 )𝐾𝑛 + ∫𝐼𝑛
𝑚𝐾ℎ (𝑢

𝜏
 , 𝜕𝑡𝑣ℎ,𝜏 ) + (𝜷 ⋅ ∇𝑢, 𝑣ℎ,𝜏 )𝐾𝑛

− 1
2
(𝜷 ⋅𝜫0,𝐾

𝑘 ∇𝑢𝜏 , 𝛱0,𝐾
𝑘 𝑣ℎ,𝜏 )𝐾𝑛 +

1
2
(𝛱0,𝐾

𝑘 𝑢𝜏 , 𝜷 ⋅𝜫0,𝐾
𝑘 ∇𝑣ℎ,𝜏 )𝐾𝑛

)

+
(

(𝑢, 𝑣ℎ,𝜏 )𝛴𝑇 − 𝑚ℎ(𝑢𝜏 (⋅, 𝑇 ), 𝑣ℎ,𝜏 (⋅, 𝑇 ))
)

+
𝑁−1
∑

𝑛=1

(

(𝑢(⋅, 𝑡𝑛), [[𝑣ℎ,𝜏 ]]𝑛)𝛺 − 𝑚ℎ(𝑢𝜏 (⋅, 𝑡−𝑛 ), [[𝑣ℎ,𝜏 ]]𝑛)
)

=∶
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜒𝐾𝑛𝑉 + 𝜒𝑇 +
𝑁−1
∑

𝑛=1
𝜒𝑛𝐽 . (5.23)

∙ Estimate of 𝜒𝐾𝑛𝑉 . We first consider the volume terms 𝜒𝐾𝑛𝑉 . Using the definition of the bilinear form 𝑚ℎ(⋅, ⋅), the definition of the
perators ̃𝐾ℎ,𝜏 and ̃𝐾 , the skew-symmetry of the bilinear form 𝑏(⋅, ⋅), and the orthogonality properties of 𝛱0,𝐾

𝑘 and 𝜫0,𝐾
𝑘 , we have

𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜒𝐾𝑛𝑉 =
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

(

−(𝑢, 𝜕𝑡𝑣ℎ,𝜏 )𝐾𝑛 + ∫𝐼𝑛
𝑚𝐾ℎ (𝑢

𝜏
 , 𝜕𝑡𝑣ℎ,𝜏 ) − (𝑢, 𝜷 ⋅ ∇𝑣ℎ,𝜏 )𝐾𝑛

− 1
2
(𝜷 ⋅𝜫0,𝐾

𝑘 ∇𝑢𝜏 , 𝛱0,𝐾
𝑘 𝑣ℎ,𝜏 )𝐾𝑛 +

1
2
(𝛱0,𝐾

𝑘 𝑢𝜏 , 𝜷 ⋅𝜫0,𝐾
𝑘 ∇𝑣ℎ,𝜏 )𝐾𝑛

)

=
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

[

−(𝑢, ̃𝐾𝑣ℎ,𝜏 )𝐾𝑛 + (𝛱0,𝐾
𝑘 𝑢𝜏 , 𝜕𝑡𝛱0,𝐾

𝑘 𝑣ℎ,𝜏 + 𝜷 ⋅𝜫0,𝐾
𝑘 ∇𝑣ℎ,𝜏 )𝐾𝑛

+ ∫𝐼𝑛
𝑠𝐾𝑚 ((𝖨𝖽 −𝛱

0,𝐾
𝑘 )𝑢𝜏 , 𝜕𝑡(𝖨𝖽 −𝛱0,𝐾

𝑘 )𝑣ℎ,𝜏 ) d𝑡

− 1
2

(

(𝜷 ⋅𝜫0,𝐾
𝑘 ∇𝑢𝜏 , 𝛱0,𝐾

𝑘 𝑣ℎ,𝜏 )𝐾𝑛 + (𝛱0,𝐾
𝑘 𝑢𝜏 , 𝜷 ⋅𝜫0,𝐾

𝑘 ∇𝑣ℎ,𝜏 )𝐾𝑛
)

]

=
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

[

−(𝑢, 𝜕𝑡(𝖨𝖽 −𝛱0,𝐾
𝑘 )𝑣ℎ,𝜏 )𝐾𝑛 −

(

𝑢𝜷, (𝖨𝖽 −𝜫0,𝐾
𝑘 )∇𝑣ℎ,𝜏

)

𝐾𝑛

− (𝛱0,𝐾
𝑘 𝑢𝜏 − 𝑢, 𝜕𝑡𝛱0,𝐾

𝑘 𝑣ℎ,𝜏 + 𝜷 ⋅𝜫0,𝐾
𝑘 ∇𝑣ℎ,𝜏 )𝐾𝑛

+ 𝑠𝐾𝑚 ((𝖨𝖽 −𝛱
0,𝐾
𝑘 )𝑢𝜏 , 𝜕𝑡(𝖨𝖽 −𝛱0,𝐾

𝑘 )𝑣ℎ,𝜏 ) d𝑡
∫𝐼𝑛
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− 1
2

(

(𝜷 ⋅𝜫0,𝐾
𝑘 ∇𝑢𝜏 , 𝛱0,𝐾

𝑘 𝑣ℎ,𝜏 )𝐾𝑛 + (𝛱0,𝐾
𝑘 𝑢𝜏 , 𝜷 ⋅𝜫0,𝐾

𝑘 ∇𝑣ℎ,𝜏 )𝐾𝑛
)

]

=∶ −
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

(

𝜒𝐾𝑛𝑉 ,1 + 𝜒
𝐾𝑛
𝑉 ,2 + 𝜒

𝐾𝑛
𝑉 ,3 + 𝜒

𝐾𝑛
𝑉 ,4 +

1
2
𝜒𝐾𝑛𝑉 ,5

)

.

The terms 𝜒𝐾𝑛𝑉 ,1 and 𝜒𝐾𝑛𝑉 ,2 can be treated similarly to 𝜒𝗌𝗎𝗉𝗀,2 and 𝜒𝗌𝗎𝗉𝗀,3 in Lemma 5.10, respectively. The following estimates are
then obtained:

𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜒𝐾𝑛𝑉 ,1 =
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

(

𝑢, 𝜕𝑡(𝖨𝖽 −𝛱0,𝐾
𝑘 )𝑣ℎ,𝜏

)

𝐾𝑛

≲
(

𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

ℎ2𝑠+4𝐾

𝜆𝐾𝑛𝛽
2
𝐾𝑛
𝜏2𝑛

‖𝑢‖2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

)
1
2
|𝑣ℎ,𝜏 |𝗌𝗎𝗉𝗀, (5.24)

𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜒𝐾𝑛𝑉 ,2 =
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

(𝑢𝜷, (𝖨𝖽 −𝜫0,𝐾
𝑘 )∇𝑣ℎ,𝜏 )𝐾𝑛

≲
(

𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

ℎ2𝑠+2𝐾 min
{ 1
𝜆𝐾𝑛𝛽

2
𝐾𝑛

, 1
𝜈

}

‖𝜷‖2
𝐿∞(𝐼𝑛;𝑊 𝑠+1,∞(𝐾)𝑑 )

‖𝑢‖2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

)
1
2
|||𝑣ℎ,𝜏 ||| . (5.25)

The term 𝜒𝐾𝑛𝑉 ,3 can be bounded using the definition of | ⋅ |𝐾𝑛 ,𝗌𝗎𝗉𝗀 in (3.14), the Cauchy–Schwarz and the triangle inequalities, the
estimates for 𝛱0,𝐾

𝑘 and 𝛱 𝑡
𝑟 in Lemma 5.1, and the VE interpolation estimate in Lemma 5.2, as follows:

𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜒𝐾𝑛𝑉 ,3 =
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

(

(𝛱0,𝐾
𝑘 𝑢𝜏 − 𝑢, ̃𝐾ℎ,𝜏𝑣ℎ,𝜏 )𝐾𝑛 + (𝛱0,𝐾

𝑘 𝑢𝜏 − 𝑢, 𝜷 ⋅𝜫0,𝐾
𝑘 (𝖨𝖽 −𝜫0,𝐾

𝑘−1)∇𝑣ℎ,𝜏 )𝐾𝑛
)

≤
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜆−1∕2𝐾𝑛
‖𝛱0,𝐾

𝑘 𝑢𝜏 − 𝑢‖𝐿2(𝐾𝑛)|𝑣ℎ,𝜏 |𝐾𝑛 ,𝗌𝗎𝗉𝗀

≤
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜆−1∕2𝐾𝑛

(

‖𝛱0,𝐾
𝑘 (𝑢𝜏 − 𝑢)‖𝐿2(𝐾𝑛) + ‖𝑒0𝜋‖𝐿2(𝐾𝑛)

)

|𝑣ℎ,𝜏 |𝐾𝑛 ,𝗌𝗎𝗉𝗀

≲
( 𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

( 𝜏2𝑞+2𝑛
𝜆𝐾𝑛

‖𝑢‖2
𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾))

+
ℎ2𝑠+2𝐾
𝜆𝐾𝑛

‖𝑢‖2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

)

)
1
2
|𝑣ℎ,𝜏 |𝗌𝗎𝗉𝗀. (5.26)

As for the term 𝜒𝐾𝑛𝑉 ,4, we use the stability bound (3.4), the polynomial inverse estimate (4.3b), the scaled Poincaré–Friedrichs
inequality in Lemma 5.5, and similar steps as those used to estimate 𝜒𝗌𝗎𝗉𝗀,3 in (5.21) to obtain the following estimate:

𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜒𝐾𝑛𝑉 ,4 = −
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ
∫𝐼𝑛

𝑠𝐾𝑚 ((𝖨𝖽 −𝛱
0,𝐾
𝑘 )𝑢𝜏 , 𝜕𝑡(𝖨𝖽 −𝛱0,𝐾

𝑘 )𝑣ℎ,𝜏 ) d𝑡

≤
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜇̂‖(𝖨𝖽 −𝛱0,𝐾
𝑘 )𝑢𝜏‖𝐿2(𝐾𝑛)‖𝜕𝑡(𝖨𝖽 −𝛱

0,𝐾
𝑘 )𝑣ℎ,𝜏‖𝐿2(𝐾𝑛)

≲
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜇∗ℎ𝐾
𝜏𝑛

‖(𝖨𝖽 −𝛱0,𝐾
𝑘 )𝑢𝜏‖𝐿2(𝐾𝑛)‖∇(𝖨𝖽 −𝛱

∇,𝐾
𝑘 )𝑣ℎ,𝜏‖𝐿2(𝐾𝑛)𝑑

≲
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

min
{

|𝑣ℎ,𝜏 |𝐾𝑛 ,𝗌𝗎𝗉𝗀

𝜆1∕2𝐾𝑛
𝛽𝐾𝑛

,
‖∇𝑣ℎ,𝜏‖𝐿2(𝐾𝑛)𝑑

𝜈1∕2

}

( ℎ𝑠+2𝐾
𝜏𝑛

‖𝑢‖𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾)) + ℎ𝐾𝜏
𝑞
𝑛‖𝑢‖𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾))

)

≲
( 𝑁

∑

𝑛=1

∑

𝐾∈𝛺ℎ

min
{ 1
𝜆𝐾𝑛𝛽

2
𝐾𝑛

, 1
𝜈

} ( ℎ2𝑠+4𝐾

𝜏2𝑛
‖𝑢‖2

𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))
+ ℎ2𝐾𝜏

2𝑞
𝑛 ‖𝑢‖2

𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾))

)

)
1
2
|||𝑣ℎ,𝜏 ||| . (5.27)

Adding and subtracting suitable terms, recalling the antisymmetry of the form 𝑏(⋅, ⋅) and using the orthogonality properties
of 𝛱0,𝐾

𝑘 and 𝜫0,𝐾
𝑘 , the following identity can be obtained:

𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜒𝐾𝑛𝑉 ,5 =
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

(

(𝜷 ⋅𝜫0,𝐾
𝑘 ∇𝑢𝜏 , 𝛱0,𝐾

𝑘 𝑣ℎ,𝜏 )𝐾𝑛 + (𝛱0,𝐾
𝑘 𝑢𝜏 , 𝜷 ⋅𝜫0,𝐾

𝑘 ∇𝑣ℎ,𝜏 )𝐾𝑛
)

=
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

(

(𝜷 ⋅ (𝜫0,𝐾
𝑘 − 𝖨𝖽)∇𝑢𝜏 , 𝛱0,𝐾

𝑘 𝑣ℎ,𝜏 )𝐾𝑛 + (𝜷 ⋅ ∇𝑢𝜏 , 𝑣ℎ,𝜏 )𝐾𝑛

− (𝜷 ⋅ ∇𝑢𝜏 , (𝖨𝖽 −𝛱
0,𝐾
𝑘 )𝑣ℎ,𝜏 )𝐾𝑛 + ((𝛱0,𝐾

𝑘 − 𝖨𝖽)𝑢𝜏 , 𝜷 ⋅𝜫0,𝐾
𝑘 ∇𝑣ℎ,𝜏 )𝐾𝑛

− (𝑢𝜏 , 𝜷 ⋅ (𝖨𝖽 −𝜫0,𝐾 )∇𝑣 ) + (𝑢𝜏 , 𝜷 ⋅ ∇𝑣 )
)

 𝑘 ℎ,𝜏 𝐾𝑛  ℎ,𝜏 𝐾𝑛
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= −
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

(

((𝖨𝖽 −𝜫0,𝐾
𝑘 )∇𝑢𝜏 , (𝖨𝖽 −𝜫0,𝐾

0 )𝜷𝛱0,𝐾
𝑘 𝑣ℎ,𝜏 )𝐾𝑛

+ ((𝖨𝖽 −𝛱0,𝐾
𝑘 )(𝜷 ⋅ ∇𝑢𝜏 ), (𝖨𝖽 −𝛱

0,𝐾
𝑘 )𝑣ℎ,𝜏 )𝐾𝑛

+ ((𝖨𝖽 −𝛱0,𝐾
𝑘 )𝑢𝜏 , (𝖨𝖽 −𝜫0,𝐾

0 )𝜷 ⋅𝜫0,𝐾
𝑘 ∇𝑣ℎ,𝜏 )𝐾𝑛

+ ((𝖨𝖽 −𝜫0,𝐾
𝑘 )(𝑢𝜏𝜷), (𝖨𝖽 −𝜫0,𝐾

𝑘 )∇𝑣ℎ,𝜏 )𝐾𝑛
)

=∶ −
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

(

𝛩𝐾𝑛1 + 𝛩𝐾𝑛2 + 𝛩𝐾𝑛3 + 𝛩𝐾𝑛4
)

. (5.28)

The first term on the right-hand side of (5.28) can be estimated using the Cauchy–Schwarz inequality, the estimates for 𝛱0,𝐾
𝑘 ,

𝛱0,𝐾
0 , and 𝛱 𝑡

𝑟 in Lemma 5.1 and their stability properties, and the VE interpolation estimate in Lemma 5.2, as follows:

𝛩𝐾𝑛1 = ((𝖨𝖽 −𝜫0,𝐾
𝑘 )∇𝑢𝜏 , (𝖨𝖽 −𝜫0,𝐾

0 )𝜷𝛱0,𝐾
𝑘 𝑣ℎ,𝜏 )𝐾𝑛

= ((𝖨𝖽 −𝜫0,𝐾
𝑘 )∇𝑢, (𝖨𝖽 −𝜫0,𝐾

0 )𝜷𝛱0,𝐾
𝑘 𝑣ℎ,𝜏 )𝐾𝑛 + ((𝖨𝖽 −𝜫0,𝐾

𝑘 )∇(𝑢 − 𝑢𝜏 ), (𝖨𝖽 −𝜫0,𝐾
0 )𝜷𝛱0,𝐾

𝑘 𝑣ℎ,𝜏 )𝐾𝑛
≲ ℎ𝐾‖𝜷‖𝐿∞(𝐼𝑛;𝑊 1,∞(𝐾)𝑑 )

(

‖(𝖨𝖽 −𝜫0,𝐾
𝑘 )∇𝑢‖𝐿2(𝐾𝑛)𝑑 + ‖∇(𝑢 − 𝑢𝜏 )‖𝐿2(𝐾𝑛)𝑑

)

‖𝑣ℎ,𝜏‖𝐿2(𝐾𝑛)

≲ ‖𝜷‖𝐿∞(𝐼𝑛;𝑊 1,∞(𝐾)𝑑 )
(

ℎ𝐾
𝑠+1

‖𝑢‖𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾)) + ℎ𝐾𝜏
𝑞+1
𝑛 ‖∇𝑢‖𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾)𝑑 )

)

‖𝑣ℎ,𝜏‖𝐿2(𝐾𝑛). (5.29)

As for the second term on the right-hand side of (5.28), we use the estimates for 𝛱0,𝐾
𝑘 and 𝛱 𝑡

𝑟 in Lemma 5.1 and their stability
roperties, the VE interpolation estimate in Lemma 5.2, and the scaled Poincaré–Friedrichs inequality in Lemma 5.5, to get

𝛩𝐾𝑛2 = ((𝖨𝖽 −𝛱0,𝐾
𝑘 )(𝜷 ⋅ ∇𝑢𝜏 ), (𝖨𝖽 −𝛱

0,𝐾
𝑘 )𝑣ℎ,𝜏 )𝐾𝑛

= ((𝖨𝖽 −𝛱0,𝐾
𝑘 )(𝜷 ⋅ ∇𝑢), (𝖨𝖽 −𝛱0,𝐾

𝑘 )𝑣ℎ,𝜏 )𝐾𝑛 + ((𝖨𝖽 −𝛱0,𝐾
𝑘 )(𝜷 ⋅ ∇(𝑢𝜏 − 𝑢)), (𝖨𝖽 −𝛱0,𝐾

𝑘 )𝑣ℎ,𝜏 )𝐾𝑛
≲ ℎ𝐾

(

ℎ𝑠𝐾‖𝜷‖𝐿∞(𝐼𝑛;𝑊 𝑠,∞(𝐾)𝑑 )‖𝑢‖𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾)) + 𝛽𝐾𝑛‖∇(𝑢 − 𝑢
𝜏
 )‖𝐿2(𝐾𝑛)𝑑

)

‖∇(𝖨𝖽 −𝛱∇,𝐾
𝑘 )𝑣ℎ,𝜏‖𝐿2(𝐾𝑛)𝑑

≲
( ℎ𝑠+1𝐾

𝜆1∕2𝐾𝑛
𝛽𝐾𝑛

‖𝜷‖𝐿∞(𝐼𝑛;𝑊 𝑠,∞(𝐾)𝑑 )‖𝑢‖𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾)) +
ℎ𝐾𝜏

𝑞+1
𝑛

𝜆1∕2𝐾𝑛

‖∇𝑢‖𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾)𝑑 ) +
ℎ𝑠+1𝐾

𝜆1∕2𝐾𝑛

‖𝑢‖𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

)

|𝑣ℎ,𝜏 |𝐾𝑛 ,𝗌𝗎𝗉𝗀. (5.30)

Using the triangle inequality, the estimates for 𝜫0,𝐾
0 , 𝛱0,𝐾

𝑘 , and 𝛱 𝑡
𝑟 in Lemma 5.1 and their stability properties, the VE

interpolation estimate in Lemma 5.2, and the VE inverse estimate (4.3a), we obtain the following estimate:

𝛩𝐾𝑛3 = ((𝖨𝖽 −𝛱0,𝐾
𝑘 )𝑢𝜏 , (𝖨𝖽 −𝜫0,𝐾

0 )𝜷 ⋅𝜫0,𝐾
𝑘 ∇𝑣ℎ,𝜏 )𝐾𝑛

≲ ℎ𝐾‖𝜷‖𝐿∞(𝐼𝑛;𝑊 1,∞(𝐾)𝑑 )‖(𝖨𝖽 −𝛱
0,𝐾
𝑘 )𝑢𝜏‖𝐿2(𝐾𝑛)‖∇𝑣ℎ,𝜏‖𝐿2(𝐾𝑛)𝑑

≲ ‖𝜷‖𝐿∞(𝐼𝑛;𝑊 1,∞(𝐾)𝑑 )

(

‖𝑢 − 𝑢𝜏‖𝐿2(𝐾𝑛) + ‖(𝖨𝖽 −𝛱0,𝐾
𝑘 )𝑢‖𝐿2(𝐾𝑛) + ‖𝛱0,𝐾

𝑘 (𝑢 − 𝑢𝜏 )‖𝐿2(𝐾𝑛)

)

‖𝑣ℎ,𝜏‖𝐿2(𝐾𝑛)

≲ ‖𝜷‖𝐿∞(𝐼𝑛;𝑊 1,∞(𝐾)𝑑 )

(

𝜏𝑞+1𝑛 ‖𝑢‖𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾)) + ℎ
𝑠+1
𝐾 ‖𝑢‖𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

)

‖𝑣ℎ,𝜏‖𝐿2(𝐾𝑛). (5.31)

Finally, using the estimates for 𝜫0,𝐾
𝑘 and 𝛱 𝑡

𝑟 in Lemma 5.1 and their stability properties, the Cauchy–Schwarz inequality, the
definition of | ⋅ |𝐾𝑛 ,𝗌𝗎𝗉𝗀 in (3.14), and the VE interpolation estimate in Lemma 5.2, we have

𝛩𝐾𝑛4 = ((𝖨𝖽 −𝜫0,𝐾
𝑘 )(𝑢𝜏𝜷), (𝖨𝖽 −𝜫0,𝐾

𝑘 )∇𝑣ℎ,𝜏 )𝐾𝑛

= ((𝖨𝖽 −𝜫0,𝐾
𝑘 )(𝑢𝜷), (𝖨𝖽 −𝜫0,𝐾

𝑘 )∇𝑣ℎ,𝜏 )𝐾𝑛 − ((𝖨𝖽 −𝜫0,𝐾
𝑘 )((𝑢 − 𝑢𝜏 )𝜷), (𝖨𝖽 −𝜫0,𝐾

𝑘 )∇𝑣ℎ,𝜏 )𝐾𝑛

≲
(

ℎ𝑠+1𝐾 ‖𝜷‖𝐿∞(𝐼𝑛;𝑊 𝑠+1,∞(𝐾)𝑑 )‖𝑢‖𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾)) + 𝛽𝐾𝑛‖𝑢 − 𝑢
𝜏
‖𝐿2(𝐾𝑛)

)

‖(𝖨𝖽 −𝜫0,𝐾
𝑘 )∇𝑣ℎ,𝜏‖𝐿2(𝐾𝑛)𝑑

≲
( ℎ𝑠+1𝐾

𝜆1∕2𝐾𝑛
𝛽𝐾𝑛

‖𝜷‖𝐿∞(𝐼𝑛;𝑊 𝑠+1,∞(𝐾)𝑑 )‖𝑢‖𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾)) +
𝜏𝑞+1𝑛

𝜆1∕2𝐾𝑛

‖𝑢‖𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾)) +
ℎ𝑠+1𝐾

𝜆1∕2𝐾𝑛

‖𝑢‖𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

)

|𝑣ℎ,𝜏 |𝐾𝑛 ,𝗌𝗎𝗉𝗀. (5.32)

Combining identity (5.28) with the local estimates (5.29), (5.30), (5.31), and (5.32), we get
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜒𝐾𝑛𝑉 ,5 ≲
[ 𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

((

‖𝜷‖2
𝐿∞(𝐼𝑛;𝑊 1,∞(𝐾)𝑑 )

ℎ2𝑠+2𝐾 +
ℎ2𝑠+2𝐾

𝜆𝐾𝑛𝛽
2
𝐾𝑛

‖𝜷‖2
𝐿∞(𝐼𝑛;𝑊 𝑠+1(𝐾)𝑑 )

+
ℎ2𝑠+2𝐾
𝜆𝐾𝑛

)

‖𝑢‖2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

+
(

ℎ2𝐾𝜏
2𝑞+2
𝑛 ‖𝜷‖2

𝐿∞(𝐼𝑛;𝑊 1,∞(𝐾)𝑑 )
+
ℎ2𝐾𝜏

2𝑞+2
𝑛

𝜆𝐾𝑛

)

‖∇𝑢‖2
𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾)𝑑 )

+
(

𝜏2𝑞+2𝑛 ‖𝜷‖2
𝐿∞(𝐼 ;𝑊 1,∞(𝐾)𝑑 )

+
𝜏2𝑞+2𝑛

)

‖𝑢‖2
𝐻𝑞+1(𝐼 ;𝐿2(𝐾))

)

]

1
2
|||𝑣ℎ,𝜏 ||| . (5.33)
𝑛 𝜆𝐾𝑛 𝑛
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Estimate of 𝜒𝑇 and 𝜒𝑛𝐽 . Using the polynomial consistency of the bilinear form 𝑚𝐾ℎ (⋅, ⋅), the stability bound (3.5), the trace inequality in
Lemma 5.3, the commutativity of 𝛱0,𝐾

𝑘 and the VE interpolant with the first-order time derivative operator 𝜕𝑡, the Cauchy–Schwarz
inequality, and the definition of the upwind-jump functional | ⋅ |𝖩 in (3.13), we obtain the following estimate:

𝜒𝑇 +
𝑁−1
∑

𝑛=1
𝜒𝑛𝐽 = (𝑢, 𝑣ℎ,𝜏 )𝛴𝑇 − 𝑚ℎ(𝑢𝜏 (⋅, 𝑇 ), 𝑣ℎ,𝜏 (⋅, 𝑇 )) +

𝑁−1
∑

𝑛=1

(

(𝑢(⋅, 𝑡𝑛), [[𝑣ℎ,𝜏 ]]𝑛)𝛺 − 𝑚ℎ(𝑢𝜏 (⋅, 𝑡−𝑛 ), [[𝑣ℎ,𝜏 ]]𝑛)
)

=
∑

𝐾∈𝛺ℎ

(

((𝖨𝖽 −𝛱0,𝐾
𝑘 )𝑢(⋅, 𝑇 ), 𝑣ℎ,𝜏 (⋅, 𝑇 ))𝐾 + 𝑚𝐾ℎ (𝛱

0,𝐾
𝑘 𝑢 − 𝑢𝜏 (⋅, 𝑇 ), 𝑣ℎ,𝜏 (⋅, 𝑇 ))

+
𝑁−1
∑

𝑛=1

∑

𝐾∈𝛺ℎ

(

((𝖨𝖽 −𝛱0,𝐾
𝑘 )𝑢(⋅, 𝑡𝑛), [[𝑣ℎ,𝜏 ]]𝑛)𝐾 + 𝑚𝐾ℎ (𝛱

0,𝐾
𝑘 𝑢(⋅, 𝑡𝑛) − 𝑢𝜏 (⋅, 𝑡−𝑛 ), [[𝑣ℎ,𝜏 ]]𝑛)

)

≲
( 𝑁

∑

𝑛=1

∑

𝐾∈𝛺ℎ

(

𝜏−1𝑛 ‖(𝖨𝖽 −𝛱0,𝐾
𝑘 )𝑢‖2

𝐿2(𝐾𝑛)
+ 𝜏𝑛‖(𝖨𝖽 −𝛱

0,𝐾
𝑘 )𝜕𝑡𝑢‖𝐿2(𝐾𝑛)

+ 𝜏−1𝑛 (𝜇∗)2
(

‖(𝖨𝖽 −𝛱0,𝐾
𝑘 )𝑢‖2

𝐿2(𝐾𝑛)
+ ‖𝑢 − 𝑢𝜏‖

2
𝐿2(𝐾𝑛)

)

+ 𝜏𝑛(𝜇∗)2
(

‖(𝖨𝖽 −𝛱0,𝐾
𝑘 )𝜕𝑡𝑢‖2𝐿2(𝐾𝑛)

+ ‖𝜕𝑡(𝑢 − 𝑢𝜏 )‖
2
𝐿2(𝐾𝑛)

)

)

)
1
2
|𝑣ℎ,𝜏 |𝖩

≲
( 𝑁

∑

𝑛=1

∑

𝐾∈𝛺ℎ

( ℎ2𝑠+2𝐾
𝜏𝑛

‖𝑢‖2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

+ 𝜏𝑛ℎ2𝑠+2𝐾 ‖𝜕𝑡𝑢‖
2
𝐿2(𝐼𝑛;𝐻𝑠+1(𝐾))

+ 𝜏2𝑞+1𝑛 ‖𝑢‖2
𝐻𝑞+1(𝐼𝑛;𝐿2(𝐾))

)

)
1
2
|𝑣ℎ,𝜏 |𝖩. (5.34)

The desired result is then obtained by combining identity (5.23) with estimates (5.24), (5.25), (5.26), (5.27), (5.33), and (5.34). □

Proof of Theorem 3.10. Combining the a priori error bound in Proposition 5.7 with the estimates in Lemmas 5.8, 5.9, 5.10, 5.11,
and 5.12 one obtains a general convergence result, which underlines the different local contributions. The proof of Theorem 3.10
follows as a simplified case, simply by elaborating on the bounds using the specific theorem assumptions and finally dropping all
he regularity terms.

5.3. Avoiding degeneration of the error estimates for 𝜏 ≪ ℎ

Under suitable conditions, we are able to eliminate the terms where 𝜏 appears at the denominator in Theorem 3.10. In the
present section, we describe briefly the involved modifications. As a starting point, we obviously set ourselves within the range of
assumptions outlined in Theorem 3.10.

Differently from the previous part, see Remark 3.4, we now require that the mesh 𝛺ℎ is fixed and does not change from one
time-slab to the next. This is quite natural as the ‘‘transfer’’ error induced by a change of mesh depends on the spatial meshsize ℎ,
ut the number of such occurrences grows as 𝜏−1. Furthermore, we require the polynomial order in time 𝑟 ≥ 1. Finally, we assume
mainly for simplicity of exposition) that the spatial mesh (family) is quasi-uniform.

The first key point is substituting the space–time projection operator introduced at the beginning of Section 5.2 with the following
approximant, for which we keep the same notation. Given 𝑢 ∈ 𝐻1(0, 𝑇 ;𝐿2(𝛺)) the discrete function 𝑢𝜏 ∈ 𝜏ℎ is continuous in time
and defined by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑚ℎ(𝑢𝜏 (⋅, 𝑡𝑛), 𝑣ℎ) = (𝑢(⋅, 𝑡𝑛), 𝑣ℎ)0,𝛺 ∀𝑛 ∈ {0, 1,… , 𝑁}, ∀𝑣ℎ ∈ ℎ,

∫

𝑡𝑛

𝑡𝑛−1
𝑚ℎ(𝜕𝑡𝑢𝜏 (⋅, 𝑡), (𝑡 − 𝑡𝑛−1)𝑙𝑣ℎ) d𝑡 = ∫

𝑡𝑛

𝑡𝑛−1
(𝜕𝑡𝑢(⋅, 𝑡), (𝑡 − 𝑡𝑛−1)𝑙𝑣ℎ) d𝑡

∀𝑛 ∈ {1,… , 𝑁}, ∀𝑣ℎ ∈ ℎ,∀𝑙 ∈ {1, 2,… , 𝑟 − 1} .
It can be checked that the above interpolant satisfies, for all 𝑛 = 1, 2,… , 𝑁 , the continuity properties

‖𝑢𝜏‖𝐿2(𝐼𝑛 ,𝐿2(𝛺)) ≲ ‖𝑢‖𝐿2(𝐼𝑛 ,𝐿2(𝛺)) + 𝜏𝑛‖𝜕𝑡𝑢‖𝐿2(𝐼𝑛 ,𝐿2(𝛺)) and ‖𝜕𝑡𝑢
𝜏
‖𝐿2(𝐼𝑛 ,𝐿2(𝛺)) ≲ ‖𝜕𝑡𝑢‖𝐿2(𝐼𝑛 ,𝐿2(𝛺)),

and also that optimal (in ℎ, 𝜏) approximation error bounds hold for (𝑢− 𝑢𝜏 ) in the various norms of interest needed in our analysis.
Thanks to the continuity of 𝑢𝜏 , the error term |𝑒𝜏 |

2
𝖩

in Lemma 5.8 vanishes; note that such quantity was the only responsible
or the 1∕𝜏𝑛 term appearing in Lemma 5.8. Furthermore, thanks to the peculiar definition of 𝑢𝜏 here above, the term 𝜒𝑇 +

∑𝑁−1
𝑛=1 𝜒𝑛𝐽

appearing in (5.34) also vanishes. In the simpler finite element case, which is included in our analysis as explained in Section 3.4,
these are the only terms leading to negative powers of 𝜏 in our error estimate.

In the more general case of virtual elements, we need to modify the scheme, adding the following additional stabilization term
o the discrete form 𝗌𝗎𝗉𝗀

ℎ,𝜏 (⋅, ⋅):
∑

𝑁
∑

𝜆𝐾𝑛 ∫ 𝑠𝐾𝑚 (𝜕𝑡(𝖨𝖽 −𝛱
0,𝐾
𝑘 )𝑢ℎ,𝜏 , 𝜕𝑡(𝖨𝖽 −𝛱0,𝐾

𝑘 )𝑣ℎ,𝜏 ) d𝑡, (5.35)

𝐾∈𝛺ℎ 𝑛=1 𝐼𝑛
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which, quite trivially, leads to a stability bound controlling a stronger norm |||𝑢ℎ,𝜏 |||2 , c.f. (3.15), now including also the term
∑

𝐾∈𝛺ℎ

𝑁
∑

𝑛=1
𝜆𝐾𝑛‖𝜕𝑡(𝖨𝖽 −𝛱

0,𝐾
𝑘 )𝑣ℎ,𝜏‖2𝐿2(𝐾𝑛)

. (5.36)

The control on the test function in the above norm allows us to deal with all the remaining ‘‘bad’’ terms in our convergence
analysis, namely ∑𝑁

𝑛=1
∑

𝐾∈𝛺ℎ 𝜒
𝐾𝑛
𝗌𝗎𝗉𝗀,2 in Lemma 5.10, plus ∑𝑁

𝑛=1
∑

𝐾∈𝛺ℎ 𝜒
𝐾𝑛
𝑉 ,1 and ∑𝑁

𝑛=1
∑

𝐾∈𝛺ℎ 𝜒
𝐾𝑛
𝑉 ,4 in Lemma 5.12. Indeed, we can

now avoid using the inverse estimate in time and simply exploit directly control on (5.36); the Cauchy–Schwarz inequality and
standard manipulations yield the error terms

∙
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜆𝐾𝑛‖(𝖨𝖽 −𝛱
0,𝐾
𝑘 )𝑓‖2

𝐿2(𝐾𝑛)
≲ ℎ2𝑘+3,

∙
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

𝜆−1𝐾𝑛‖(𝖨𝖽 −𝛱
0,𝐾
𝑘 )𝑢‖2

𝐿2(𝐾𝑛)
≲ max {𝜈 , ℎ}ℎ2𝑘 ,

∙
𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ
∫𝐼𝑛

𝜆−1𝐾𝑛𝑠
𝐾
𝑚 ((𝖨𝖽 −𝛱

0,𝐾
𝑘 )𝑢𝜏 , (𝖨𝖽 −𝛱

0,𝐾
𝑘 )𝑢𝜏 ) ≲ max {𝜈 , ℎ} (ℎ2𝑘 + 𝜏2𝑘(𝜏∕ℎ)2) .

The bounds here above can be easily obtained by the same techniques used in the rest of this contribution and therefore we avoid
showing the details. Finally, it can be checked that term (5.35) is also of optimal order with respect to the interpolation error, as
sual assuming sufficient regularity of the solution 𝑢.

Remark 5.13 (The Case 𝑟 = 0). In the case 𝑟 = 0, we cannot take a continuous-in-time interpolant, but we can choose the unique
pproximant that satisfies

𝑚ℎ(𝑢𝜏 (⋅, 𝑡𝑛), 𝑣ℎ) = (𝑢(⋅, 𝑡−𝑛 ), 𝑣ℎ)0,𝛺 ∀𝑛 ∈ {1, 2,… , 𝑁}, ∀𝑣ℎ ∈ ℎ.

It is immediate to check that this choice is still sufficient to make term (5.34) vanish. In order to deal with |𝑒𝜏 |
2
𝖩

in Lemma 5.8, we
simply avoid such term in the interpolation estimates. Therefore, in order to avoid negative powers of 𝜏, the final error bound for
he 𝑟 = 0 case will be in the weaker norm

|||𝑤ℎ|||
2
 ,𝑟=0 ∶= ‖𝑤ℎ‖

2
𝐿2(𝛴𝑇 )

+ ‖𝑤ℎ‖
2
𝐿2(𝑄𝑇 )

+ 𝜈‖∇𝑤ℎ‖2𝐿2(𝑄𝑇 )𝑑
+ |𝑤ℎ|

2
𝗌𝗎𝗉𝗀

where the jump terms have been excluded. Finally, note that in the 𝑟 = 0 case there is no need to introduce (5.35) since all the
associated terms are now vanishing.

6. Numerical tests

In this section, we present some numerical results in three space dimensions in order to validate the theoretical derivations from
he practical perspective, and evidence the effectiveness of the proposed stabilized scheme compared to a non-stabilized approach.
or the sake of efficiency, we make use of the serendipity version of VEM, see Section 3.4. We will refer to the stabilized method,

i.e., the scheme described in (3.10) as SUPG, whereas the scheme without the SUPG stabilization terms will be denoted as NONE.
s described in the previous sections, the SUPG scheme depends on a set of parameters. In all the numerical experiments of this
ection, we will set these parameters as

𝜁 = 0.1, 𝐶inv ≈ 10𝑘2 and 𝜆𝐾𝑛 = 𝜁 min
{ ℎ2𝐾
𝜈 𝐶2

inv

,
ℎ𝐾
𝛽𝑄𝑇

}

.

An (interpolatory) Lagrangian basis is used for the space P𝑘(𝐼𝑛) for 𝑛 = 1,… , 𝑁 , so that the associated degrees of freedom (DoFs)
re pointwise evaluations. Finally, we use the classical dofi-dofi choice (see, e.g., [17, §4.6]) for the VE stabilization term.

The numerical experiments are organized as follows. In Section 6.1, we evaluate the convergence trend of the schemes SUPG
and NONE, both in the convection- and the diffusion-dominated regimes. Then, in Section 6.2, we apply these two schemes to a
benchmark problem similar to the ‘‘Three body movement’’ proposed in [7, §5.1].

6.1. A standard convergence test

In this section, we solve the time-dependent convection–diffusion problem in the space–time domain 𝑄𝑇 = (0, 1)3 × (0, 1.5). As
transport advective field, we set the following space–time dependent function:

𝜷(𝑥, 𝑦, 𝑧, 𝑡) ∶=
⎡

⎢

⎢

⎢

⎣

𝑒𝑡∕2 sin(𝜋(𝑥 + 𝑦 + 2𝑧))
𝑒𝑡∕2 sin(𝜋(𝑥 + 𝑦 + 2𝑧))

−𝑒𝑡∕2 sin(𝜋(𝑥 + 𝑦 + 2𝑧))

⎤

⎥

⎥

⎥

⎦

that increases exponentially with time. We consider the following two values of the diffusive coefficients:
𝜈 = 1 and 𝜈 = 10−10,
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Fig. 1. The interior of some spatial meshes of each type with approximately the same meshsize.

so as to obtain a problem characterized by a diffusion- or a convection-dominated regime, respectively. Then, the right-hand side
will be properly modified according 𝜈 so that the exact solution is given by

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑒0.3𝑡 sin(𝜋 𝑥) cos(𝜋 𝑦) sin(𝜋 𝑧) .
In the proposed tests, we consider a family of four spatial meshes with decreasing meshsize ℎ, while the time domain is split in
uniform intervals with time step 𝜏 ≃ ℎ. In all the numerical experiments, the VE approximation degree coincides with the time
polynomial degree, and we refer to it simply as 𝑘. Moreover, to test the robustness of the proposed method with respect to element
distortion, we consider two different types of spatial meshes:

• cube: structured meshes composed by cubes, see Fig. 1(left panel);
• voro: meshes composed by polyhedral elements that may have small edges or faces, see Fig. 1(right panel).

For both schemes, we compute the following errors:

• the 𝐻1 seminorm error at the final time

𝑒𝑇
𝐻1 ∶=

(

∑

𝐾∈𝛺ℎ

‖∇(𝑢 −𝛱∇
𝑘 𝑢ℎ,𝜏 )(⋅, 𝑇 )‖2𝐿2(𝐾)3

)
1
2 ;

• the 𝐿2 norm error at final time

𝑒𝑇
𝐿2 ∶=

(

∑

𝐾∈𝛺ℎ

‖(𝑢 −𝛱0
𝑘𝑢ℎ,𝜏 )(⋅, 𝑇 )‖2𝐿2(𝐾)

)
1
2 ;

• the 𝐻1 norm error on the space–time cylinder

𝑒𝑄𝑇
𝐻1 ∶=

(

𝑁
∑

𝑛=1

∑

𝐾∈𝛺ℎ

(

‖𝑢 −𝛱0
𝑘𝑢‖

2
𝐿2(𝐾𝑛)

+ ‖∇(𝑢 −𝛱∇
𝑘 𝑢)‖

2
𝐿2(𝐾𝑛)3

)

)
1
2 .

For the scheme SUPG, under the above condition 𝜏 ≃ ℎ, the following asymptotic behaviour is expected:

𝑒𝑇
𝐻1 = 

(

ℎ𝑘
)

, 𝑒𝑇
𝐿2 = 

(

ℎ𝑘+1
)

, 𝑒𝑄𝑇
𝐻1 = 

(

ℎ𝑘
)

,

in both the convection- and the diffusion-dominated regimes. Furthermore, only for the solution 𝑢ℎ,𝜏 obtained with the scheme
SUPG, we compute also the following quantity:

𝑒𝜏ℎ ∶= |||𝑢ℎ,𝜏 − 𝑢𝐼 ||| ,

where 𝑢𝐼 is the DoF-interpolant of the exact solution 𝑢. According to Theorem 3.10, the asymptotic behaviour of 𝑒𝜏ℎ depends on the
regime we are considering. More specifically, in the convection-dominated regime, it decays as (ℎ𝑘+1∕2), whereas, in a diffusion
dominated regime, it decays as (ℎ𝑘).

In Fig. 2, we show the errors obtained for 𝑘 = 1 and 2 in the diffusion-dominated regime, i.e., for 𝜈 = 1. The schemes SUPG
and NONE have the expected convergence rates. Moreover, for the same mesh and approximation degree, the absolute values of the
errors obtained with SUPG and NONE are very close to each other. This is a numerical evidence that the stabilization terms added
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Fig. 2. Convergence Analysis: The trend of all errors taken into account in the diffusion-dominated regime, i.e., for 𝜈 = 1.

in the SUPG scheme do not affect the convergence rates in the diffusion-dominated regime. In Fig. 2(fourth panel), we observe a
uperconvergence trend of the error 𝑒𝜏ℎ for cube meshes and 𝑘 = 1; this may be due to the shape regularity of the mesh and the
act that we are evaluating an error based only on DoF values.

Now, we consider the convection-dominated regime. In Fig. 3, we show the errors obtained for 𝜈 = 10−10. In this case, the results
or the two approximation degrees considered are different. Indeed, for 𝑘 = 1, a similar behaviour is observed for the schemes SUPG
nd NONE. More precisely, the convergence lines are close to each other for the errors 𝑒𝑇

𝐻1 and 𝑒𝑄𝑇
𝐻1 , whereas, for the error 𝑒𝑇

𝐿2 , the
rror trend for the NONE scheme is not optimal in the last refinement step. The advantage of using the SUPG scheme becomes more
vident for 𝑘 = 2. For all errors and for both type of meshes, the convergence rates for the NONE scheme degrade. Moreover, if we
ompare the error 𝑒𝜏ℎ in Fig. 2 and 3, we obtain an additional 1∕2 in the convergence rates in the convection-dominated regime,

which is in agreement with Theorem 3.10. This fact is more evident for the voro meshes, which do not satisfy any shape regularity
hat may affect the trend of the error.

6.2. A qualitative purely advective test

In this section, we make a qualitative assessment of the proposed scheme. To achieve this goal, we produce a benchmark problem
similar to the bi-dimensional Example 2 of [7, §5.1], here developed in three space dimensions. In that work, the authors considered
three disjoint bodies subject to a rotating advection field and set the diffusive coefficient to 10−20 to mimic a transport problem.
27 



L. Beirão da Veiga et al. Computer Methods in Applied Mechanics and Engineering 436 (2025) 117722 
Fig. 3. Convergence Analysis: The trend of all errors taken into account in the convection-dominated regime, i.e., for 𝜈 = 10−10.

Let 𝛺 = (0, 1)3 and the initial condition be given by

𝑢0(𝑥, 𝑦, 𝑧) ∶=
{

1 if
√

(𝑥 − 0.25)2 + (𝑦 − 0.50)2 + (𝑧 − 0.50)2 ≤ 0.2

0 otherwise

that represents a ball of radius 𝑟 = 0.2 centred in 𝐶(0.25, 0.5, 0.5). We set 𝑓 = 0, 𝜈 = 10−20, and the advection field

𝜷(𝑥, 𝑦, 𝑧, 𝑡) ∶=
⎡

⎢

⎢

⎢

⎣

0.5 − 𝑦
𝑥 − 0.5
0.0

⎤

⎥

⎥

⎥

⎦

.

For these data, the ball is expected to rotate around the barycentre of the unit cube and, since the diffusive coefficient is close to
zero, it has to preserve its shape.

We compute the discrete solution for 𝑘 = 1, a fine tetrahedral spatial mesh, a fixed time step 𝜏 = 10−1, and a final time 𝑇 = 6.
In Fig. 4, we show some clips of the discrete solution at different times for both the NONE and the SUPG schemes, respectively.

Such clips are obtained using the ‘‘clip’’ filter of Paraview [42] where we associate to each mesh vertex the value of the discrete
function 𝑢ℎ,𝜏 . As a consequence, we do not see exact circles in such plots, as the shape is affected by the aforementioned geometric
interpolation and visualization procedure.

At 𝑡 = 0, we plot the initial condition for both cases. For all the other time instances shown in Fig. 4, several spurious values
of 𝑢 appear in the interior of the domain 𝛺 with the NONE scheme, i.e., the discrete solution 𝑢 is not constantly zero outside
ℎ,𝜏 ℎ,𝜏
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Fig. 4. Benchmark problem: Comparison between the discrete solutions obtained with the schemes NONE and SUPG at different time steps.
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the moving sphere. Such instabilities increase with time, as observed in the results obtained at the final time 𝑇 = 6.
The SUPG scheme does not exhibit these instabilities, as the solution outside the sphere is more uniform and, according to the

olorbar, it is closer to zero then the NONE discrete solution. Furthermore, despite the effect of the Paraview interpolation, the
phere seems more uniform and rounded.

This benchmark test highlights the importance of using a stabilized scheme even for 𝑘 = 1, a point that was not evident from
he error plots of Section 6.1, c.f. the errors of NONE and SUPG for 𝑘 = 1 in Figs. 2 and 3.

7. Conclusions

In this work, we considered a high-order SUPG-stabilized fully discrete scheme that combines finite or virtual element spatial
discretizations with an upwind-DG time-stepping. For this fully discrete scheme with finite element spatial discretizations, a robust
analysis was missing in the literature. Moreover, this is the first work where a SUPG stabilization has been considered in a
high-order-in-time fully discrete setting with virtual element spatial discretizations.

Using nonstandard test functions, we have shown that the method is inf–sup stable with respect to a norm involving
n 𝐿2(0, 𝑇 ;𝐿2(𝛺))-term without requiring any transformation of the original problem. Such a stability estimate is used to show
hat the method is robust and provides optimal convergence rates in the convection- and diffusion-dominated regimes.

We have presented some numerical experiments in (3 + 1)-dimensions that show the robustness of the method, as well as the
xpected convergence rates of order (ℎ𝑘+

1
2 ) for the error in the energy norm, in the convection-dominated regime 0 < 𝜈 ≪ 1.
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