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Abstract
We propose an evolutionary optimization method for maximum likelihood and approximate maximum likelihood estimation
of discrete latent variable models. The proposal is based on modified versions of the expectation–maximization (EM) and
variational EM (VEM) algorithms, which are based on the genetic approach and allow us to accurately explore the parameter
space, reducing the chance to be trapped into oneof themultiple localmaximaof the log-likelihood function. Their performance
is examined through an extensive Monte Carlo simulation study where they are employed to estimate latent class, hidden
Markov, and stochastic block models and compared with the standard EM and VEM algorithms. We observe a significant
increase in the chance to reach global maximum of the target function and a high accuracy of the estimated parameters for
each model. Applications focused on the analysis of cross-sectional, longitudinal, and network data are proposed to illustrate
and compare the algorithms.

Keywords Expectation–maximization algorithm · Local maxima ·Maximum-likelihood estimation ·Variational expectation–
maximization algorithm

1 Introduction

Discrete latent variable (DLV) models (Bartolucci et al.
2022) have attracted much attention in the statistical liter-
ature as these models: (i) ensure a high degree of flexibility
to account for complex dependence data structures; (ii)
allow performing model-based clustering; (iii) have a likeli-
hood that is generally much simpler to be maximized with
respect to models based on latent variables with a contin-
uous distribution. When the likelihood of a DLV model is
explicitly computable, maximum likelihood estimation of
the model parameters may be performed by the expectation–
maximization (EM) algorithm (Baum et al. 1970; Dempster
et al. 1977), which is known to converge to a maximum of
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the target function monotonically. If this approach turns out
to be computationally unfeasible, a modified version known
as variational expectation–maximization (VEM) algorithm
(Jordan et al. 1999; Daudin et al. 2008) may be employed in
most cases.

The choice of the initialization rule of these algorithms
is crucial in this setting, since a relevant drawback of DLV
models is that the model likelihood has generally multiple
local maxima, especially when many latent components are
assumed and the EM and VEM algorithms may easily be
trapped into one of them. Different sets of starting values are
usually chosen according to a combination of determinis-
tic and stochastic random rules (Berchtold 2004; Bartolucci
et al. 2014;Maruotti and Punzo 2021), and inference is based
on the solution corresponding to the largest value of the like-
lihood at convergence.

An alternative to using different starting values is adopt-
ing a suitably modified maximization algorithm to increase
the chance of reaching the global maximum of the like-
lihood. Along this direction, Brusa et al. (2023) illustrate
a tempered EM (TEM) algorithm that allows exploring a
broader region of the parameter space and outperforms the
standard algorithm in avoiding local maxima. In line with
this previous work we propose the evolutionary expectation–
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maximization (EEM) algorithm as an enhancement of the
TEM approach, and explore an extension of the VEM
algorithm, named evolutionary expectation–maximization
(EVEM) algorithm. These are defined following the idea
of the evolutionary algorithms (Bäck 1996; Deb 2001;
Ashlock 2004) already employed in the finite mixture mod-
els (McLachlan and Peel 2000) but never explored with
DLV models in general; see, among others, Pernkopf and
Bouchaffra (2005), Andrews and McNicholas (2013), and
McNicholas et al. (2021).We evaluate the performance of the
EEMandEVEMalgorithms throughMonteCarlo simulation
studies conducted using three main classes of DLV models,
namely latent class (LC, Goodman 1974), hidden Markov
(HM, Bartolucci et al. 2013), and stochastic block (SB, Now-
icki and Snijders 2001) models. We compare the proposals
with the standard EMandVEMalgorithms evaluating: (i) the
frequency of convergence to the global maximum; (ii) the
average distance from the global maximum; (iii) the accu-
racy of the estimated parameters; and (iv) the computational
time. The algorithms are also compared through applications
concerning cross-sectional, longitudinal, and network data
analysis. The code implemented for the proposals is written
in C++ and is available for the R software (R Core Team
2023) at the following link in the GitHub repository: https://
github.com/LB1304/estDLVM.

Overall, the main features of the proposal are that: (i)
taking inspiration form the evolutionary approach, a new
method, able to explore the parameter space more broadly
with respect to the tempered technique, is used to improve
the EM algorithm; (ii) an advanced version of the VEM algo-
rithm is implemented; (iii) the proposed methods are tested
for DLV models of different complexity. These methods
prove to be particularly effective in avoiding local maxima
in applications.

The remainder of this paper is organized as follows. In
Sect. 2 we outline the assumptions of DLV models and we
review the steps of the EM and VEM algorithms. In Sect. 3,
after having introduced some features of the evolutionary
algorithms, we illustrate the EEM and EVEM algorithms
dealing with their specific settings. In Sect. 4 we report and
discuss simulation results. In Sect. 5 we use cross-sectional,
longitudinal, and network data to estimate LC, HM, and
SB models with the proposed algorithms evaluating their
performance. In Sect. 6we summarize findings and offer con-
cluding remarks. Details about the simulation study and the
applications results are illustrated in the Appendices and in
the Supplementary Material (SM).

2 Notation andmaximum likelihood of DLV
models

Denoting by Y = (Y1, . . . ,Yr ) the vector of response vari-
ables and by U = (U1, . . . ,Ul) the set of discrete latent

variables, the conditional distribution of the responses given
the latent variables, expressed as pY |U( y|u), and the distribu-
tion of the latent variables, denoted by pU(u), characterize a
DLV model. The manifest distribution of the response vari-
ables is expressed as

pY ( y) =
∑

u

pY |U( y|u)pU(u), (1)

and the posterior distribution of the latent variables given the
responses is computed according to the Bayes’ law as

pU|Y (u| y) = pY |U( y|u)pU(u)

pY ( y)
; (2)

see Bartolucci et al. (2022) for a thorough review of DLV
models.

The EM algorithm maximizes the observed-data log-
likelihood �(θ) = log pY ( y) with respect to the model
parameters collected in the vector θ , relying on the complete-
data log-likelihood �∗(θ), which can be written as

�∗(θ) = log pY,U( y, u) = log pY |U( y|u) + log pU(u).

Once the model parameters have been initialized, the algo-
rithmalternates two coupled steps: (i) an expectation step (E),
where the conditional expected value of �∗(θ) is computed
given the value of the parameters at the previous step and the
observed data and (ii) a maximization step (M), where the
parameters are updated by maximizing the expected value
of �∗(θ). In particular, the E-step relies on the posterior dis-
tribution pU|Y (u| y). Note that, for certain models, such as
the HM model, computation of pY ( y) through the sum in
(1), and consequently of the log-likelihood and the posterior
distribution defined in (2), is infeasible and suitable recur-
sions are necessary (Baum et al. 1970; Welch 2003). For
other DLV models with a complex latent structure, such as
the SB model, computation of pY ( y) is infeasible and then
maximum likelihood estimates cannot be obtained. In these
cases, the VEM algorithm (Jordan et al. 1999) is an efficient
alternative to the EM algorithm. It relies on the following
lower bound of the observed-data log-likelihood function:

J (θ, τ ) = log pY ( y) − KL
[
qU(u) || pU|Y (u| y)] ,

where τ collects the variational parameters and KL[·||·]
denotes the Kullback–Leibler divergence (Kullback and
Leibler 1951) measuring the (non-symmetric) distance
between the intractable posterior distribution pU|Y (u| y) and
a suitable approximation qU(u). The VEM algorithm then
alternates the following two steps: (i) a variational expecta-
tion step (VE), where J (θ, τ ) is maximized with respect to
τ , thus finding the best approximation qU(u) for the condi-
tional distribution and (ii) a maximization step (M), where
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J (θ , τ ) is maximized with respect to θ , thus updating the
model parameters as in the EM algorithm.

Concerning the choice of the starting values for both the
EM and VEM algorithms, the general advice is using a com-
bination of deterministic and random rules in order to limit
the problem of the likelihoodmultimodality (Bartolucci et al.
2013). The global maximum is then taken as the solution
corresponding to the largest value of log-likelihood at conver-
gence. This approach, implemented to explore the parameter
space, has some drawbacks since, even with many different
sets of starting values, reaching the global maximum may
be unfeasible and the resulting computational time can be
extremely high.

Rather than relying on multiple sets of starting values, the
aforementioned TEM algorithm (Brusa et al. 2023) employs
a parameter, known as temperature, to re-scale the condi-
tional expected value of �∗(θ) computed in the E-step and
hence controls the prominence of all maxima. By alternat-
ing high temperatures, which ensure an adequate exploration
of the parameter space, and low temperatures, which secure
a precise optimization in a local region of the parameter
space, the procedure is gradually attracted towards the global
maximum, escaping local sub-optimal solutions. Despite a
significant increase in the chance to reach the global maxi-
mum, a main limitation of the TEM algorithm is the required
choice of the temperature sequence, also known as tempering
profile. Two possibilities are illustrated in Brusa et al. (2023),
both relying on some tempering constants: a monotonically
decreasing exponential profile and a non-monotonic profile
with oscillations of gradually smaller amplitude. None of
these constants has a straightforward interpretation, and the
effect of a change in their values on the performance of the
TEM algorithm may be unpredictable. Therefore, a draw-
back of this approach is that a grid search is required for an
optimal tuning, resulting in a time and resources demanding
procedure.

2.1 Three classes of discrete latent variable models

The LC model (Lazarsfeld and Henry 1968; Goodman
1974; Lindsay et al. 1991) is employed in the context of
cross-sectional data and it considers s categorical response
variables for n individuals. These variables are relabelled
as Yi j , i = 1, . . . , n, j = 1, . . . , s, and have c categories.
Individual-specific latent variables Ui with k support points
are assumed and identify k latent classes in the population.
Themodel parameters are the classweightsπu = p(Ui = u),
u = 1, . . . , k, and the conditional response probabilities
φ j y|u = p(Yi j = y|Ui = u), j = 1, . . . , s, u = 1, . . . , k,
y = 0, . . . , c − 1. For this model, pY ( y) may be directly
computed by (1) and simple steps of the EM algorithm may
be implemented to maximize �(θ).

The HM model (Bartolucci et al. 2013; Zucchini et al.
2016) considers response variables observed at T time
occasions, with response variables relabelled as Yi jt , i =
1, . . . , n, j = 1, . . . , s, t = 1, . . . , T , and relies on
individual-specific latent processes U i = (Ui1, . . . ,UiT )′,
usually assumed as a first-order Markov chain, with k latent
states. The corresponding model parameters are the ini-
tial probabilities πu = p(Ui1 = u), u = 1, . . . , k, the
transition probabilities π

(t)
u|ū = p(Uit = u|Ui,t−1 = ū),

t = 2, . . . , T , ū, u = 1, . . . , k. When categorical response
variables with c categories are considered (the corresponding
model is denoted by HMcat in the following) the parame-
ters include the conditional response probabilities φ j y|u =
p(Yi jt = y|Uit = u), t = 1, . . . , T , ū, u = 1, . . . , k,
y = 0, . . . , c − 1, whereas, when continuous response vari-
ables are analyzed (HMcont in the following), state specific
mean vectors μu (u = 1, . . . , k) and a variance-covariance
matrix� of dimension r×r are estimated under the assump-
tion of conditional Gaussian distribution of the responses
(Pennoni et al. 2022). Another important aspect of the HM
model is that it allows performing a dynamic clusteringwhere
units may move between clusters across time through local
and global decoding (Viterbi 1967).

The SBmodel deals with network data, typically encoded
in graphs (Holland et al. 1983; Snijders and Nowicki 1997;
Nowicki and Snijders 2001) and the set of response vari-
ables corresponds to the adjacency matrix Y of dimension
n × n with elements Yi j , such that Yi j = 1 if there exists
an edge connecting nodes i and j and Yi j = 0 otherwise.
Similarly to the LC model, individual-specific latent vari-
ables Ui with k support points identifying the latent blocks
are conceived. The model parameters are the group weights
πu , u = 1, . . . , k, and the connection probabilities βuv ,
u, v = 1, . . . , k, between nodes of the graph.

3 Evolutionary EM and VEM algorithms

In this section we first introduce the main rationale under the
evolutionary algorithms and then provide a comprehensively
description the proposed algorithms.

3.1 Preliminaries

Evolutionary algorithms represent a class of computational
methods commonly employed to solve complex optimization
problems for continuous and discrete functions; see, among
others, Bäck (1996), Deb (2001), and Ashlock (2004). For a
related R package, see Scrucca (2013). Individuals of a cer-
tain population become more eligible for a specific context
through an iterative procedure that mimics the basic princi-
ples of the Darwinian theory of evolution. Potential solutions
for the optimizationproblemat issue play the role of individu-
als in the population, and their evolution is aimed at gradually
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improving the result of the optimization procedure. Once an
initial population has been defined, evolutionary algorithms
are based on the following three steps:

(i) selection is performed according to an estimated score
assigned to each individual through a fitness function, and
aims at favoring the most eligible candidate solutions;

(ii) crossover produces a new generation of individuals (off-
spring) from the previous one (parents);

(iii) mutation introduces random variations to the individuals
in the population.

This algorithm is successfully employed for unsupervised
clustering to determine suitable partitions of the points into
clusters; see Hruschka et al. (2009), among others. It is also
used for the estimation ofGaussian finitemixturemodels, see
Pernkopf and Bouchaffra (2005), Andrews and McNicholas
(2013) and McNicholas et al. (2021) among others, and for
Gaussian parsimonious clustering models (Kampo 2021).

3.2 Steps of the EEM and EVEM algorithms

In the context of DLV models, the EEM and EVEM algo-
rithms deal with populations in which each individual is
associated with a different array containing the posterior
probabilities of the latent states for each response configura-
tion and, in the case of longitudinal data, also for each time
occasion. In this respect, our proposal follows McNicholas
et al. (2021), and differs from that in Pernkopf andBouchaffra
(2005) where the evolution of the parameter space is consid-
ered, and crossover andmutation are performed on themodel
parameters. It is worth mentioning that, as we will show in
the following, the structure of the algorithms can be adapted
to estimate many different DLVmodels with minor changes.

Hereafter we denote by letter P the evolving popula-
tion and by NP and NO the number of parents (individuals
before crossover) and offspring (individuals after crossover),
respectively. The pseudo-code of the two algorithms is pre-
sented in Algorithm 1.

In the following, we detail the steps of the EEMalgorithm;
the EVEM follows the same overall structure illustrated
below, except that in steps 1 and 3, the VEM approach is
employed in place of the EM algorithm.

Once the initial population P0 is initialized with NP indi-
viduals, the algorithm alternates the following procedures
until convergence:

1. Update. Population P0 is updated by performing R cycles
of the EM algorithm with random initialization on each
individual; P1 denotes the resulting updated population.
The value of R should be kept sufficiently small to reduce
the computational time. Convergence is checked on the
basis of the relative change in the log-likelihood of two

Algorithm 1 General scheme of the EEM and EVEM algo-

rithms
1: Initialize: NP , NO , R, and P0

2: while (Convergence Condition = FALSE) do

3: P1 ← Update (P0): run R steps of the EM or VEM

algorithm

4: P2 ← Crossover (P1)

5: P3 ← Update (P2): run R steps of the EM or VEM

algorithm

6: P4 ← Select (P1 ∪ P3)

7: P5 ← Mutate (P4)

8: P0 ← P5

9: end while

10: Select the best result from population P4

consecutive steps; if this condition is fulfilled, the EM
algorithm is interrupted without performing the remain-
ing cycles. In implementing the algorithm, specificities of
each model are limited to this step, as well as to step 3
illustrated below.

2. Crossover. Individuals from population P1 are recom-
bined to obtain the NO offspring of new population
denoted by P2. Parents are randomly selected among the
individuals of population P1, the same row of the poste-
rior probabilities array is randomly chosen from the two
corresponding arrays, which are swapped from that line
to the end. This operator is usually known as single-point
crossover; see Bäck (1996) and Michalewicz and Fogel
(2000) for additional details. This operation is repeated
for every time occasion when the HMmodel is estimated.
Note that the same pair of parents could be selected mul-
tiple times; this surely happens if NP (NP − 1)/2 < NO .

3. Update. Population P2 is updated through R steps of the
EM algorithm on each offspring, generating the updated
population P3. This procedure is identical to the previous
update performed at step 1.

4. Selection. The selection strategy employs the complete
data log-likelihood as a fitness function (see Sect. 3.1),
and is performed by adapting the proposal in Bäck et al.
(1996) to the context of DLV models. In this case, mem-
bers from populations P1 and P3 are considered jointly
and the NP individuals with the highest fitness value are
selected for the next generation, denoted by P4. This eli-
tist approach allows us to retain the property ofmonotonic
convergence of the EM algorithm to the maximum of the
log-likelihood.

5. Mutation. Differently from the crossover operator, muta-
tion introduces variations with respect to a single indi-
vidual at a time. More specifically, given a row of the
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corresponding array, selected with a certain probability
denoted by pm , the mutation operator swaps the highest
value with a random one; that is, it changes the latent
component to which a subject is assigned. To preserve
the elitism of the algorithm, the best individual of the cur-
rent population is always retained for the next generation,
denoted by P5.

To check the convergence of both EEM and EVEM algo-
rithms, the best solution of population P4 is selected at
each step, considering both the relative difference in terms
of the log-likelihood of two consecutive steps and the dif-
ference between the corresponding parameter vectors. The
algorithms are stopped when:

�(θ (h)) − �(θ (h−1))

|�(θ (h))| < ε1 and max
s

|θ(h)
s − θ(h−1)

s | < ε2,

where θ (h) is the vector of parameter estimates corresponding
to the best candidate solution at the h-th iteration, and ε1, ε2
are suitable tolerance levels (both are set equal to 10−8 in the
following simulation study). After convergence, the vector
θ̂ corresponding to the highest log-likelihood is taken as an
estimate of the model parameters among θ̂0, . . . , θ̂ NP .

The proposed algorithms respond to the need to explore
the entire parameter space; therefore, a random initialization
of the population is themost suitable choice, andmore elabo-
rated initializations, such as k-means or k-modes algorithms,
are neither necessary nor appropriate. Model parameters are
then randomly drawn and used to compute the array of the
estimated posterior probabilities. The process is repeated for
each of the NP individuals of the initial population.

4 Simulation study

We show the simulation experiments carried out to evaluate
the quality of the EEM and EVEM algorithms. The simu-
lation study is designed providing specific settings for each
DLV model illustrated in Sect. 2.1. A total of 22 different
scenarios, listed in Table 4 in Appendix A, are considered
according to the following simulation setup: sample size
n = 500, 1000, number of response variables r = 6, 12, and
of categories c = 3, 6, number of time occasions T = 5, 10,
and number of latent components k = 3, 6. With respect to
the SB model we consider two different behaviors defined as
assortative, with high intra-group and low inter-groups con-
nectionprobabilities, anddisassortative,with low intra-group
and high inter-groups connection probabilities.

For each scenario, we randomly draw 50 samples and we
estimate 100 times the corresponding model using both the
true number of latent components (k, for a correctly specified
model) and a wrong number of latent components (k + 1,
for a misspecified model). In this way, we can evaluate the

performance of the algorithms in situations where the true
model generating the data is unknown. This circumstance is
common in practical applications and can lead to errors in
the specification of the latent structures.

The performance of the proposed algorithms is compared
with that of the standard EM and VEM algorithms initial-
ized with random starting values using the following relevant
criteria: frequency of convergence to the global maximum,
average distance from the global maximum, and accuracy
of the estimated parameters. In the SM we also assess the
performance of the proposals in term of computational time,
showing that the proposed algorithms are generally slower
with respect to the EM and VEM algorithms.

4.1 Evaluating the achievement of the optimum

We let �̂MAX be the highest log-likelihood value and �̂ a
generic value of the log-likelihood function at convergence.
We assume that the global optimum is reached when

�̂MAX − �̂

|�̂MAX | < ε̃,

where ε̃ is a suitable threshold, fixed at 10−4 in the simulation
study.

Figure 1 depicts the percentages of globalmaxima reached
by the EEM and EVEM compared to the EM and VEM algo-
rithms for each class of models estimated with a correctly
specified latent structure. The proposed algorithms outper-
form the standard ones under all the simulated scenarios, thus
revealing their superior performance to avoid local maxima.
The improvement is especially evident in the most complex
scenarios, namely those with many latent components and
those related to the SB models (see Table 4 in Appendix A
for details of each scenario).

Figure 2 shows percentages of global maxima obtained
when the models are estimating with a misspecified latent
structure. In this case, in each simulated scenario, the per-
formance of the proposed evolutionary approach is much
superior to that of the EMandVEMalgorithms. For example,
in SettingCof theLCmodel the average percentage increases
from 16%with the EM algorithm to 93%with the EEM algo-
rithm. In Setting A of the HMcont model this percentage
reaches only 33% when the EM algorithm is employed, and
is much higher (83%) with the EEM algorithm. Considering
the LC and HM models estimated with many latent com-
ponents, both the EM and EEM show poor performance in
reaching the global optimum; for example, the percentage is
equal to 2% and 9%, respectively for scenario F referred to
the HMcat model. In these cases, however, a second funda-
mental property of the EEM algorithm emerges, namely its
ability to improve the value of the found global maximum,
in addition to increasing the chance of reaching it. In par-
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Fig. 1 Percentages of global maxima obtained using EM or VEM algorithms (in blue) and EEM or EVEM algorithms (in yellow) under the
simulated scenarios (see Table 4 in Appendix A) for the LC, HMcat, HMcont, and SB models with correctly specified latent structure (estimated
with k latent components)

ticular, focusing again on scenario F for the HMcat model,
the EM algorithm is unable to detect the global maximum
in 30 samples (out of 50), while the EEM algorithm always
reaches the optimum.

4.2 Evaluating the average distance from the global
maximum

We compute the normalized average distance of the 100
log-likelihood values �̂1, . . . , �̂100 from the global maximum
�̂MAX for each simulated scenario considering the following
simple measure
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Fig. 2 Percentages of global maxima obtained using EM or EVEM algorithms (in blue) and EEM or EVEM algorithms (in yellow) under the
simulated scenarios (see Table 4 in Appendix A) for the LC, HMcat, HMcont, and SB models with misspecified latent structure (estimated with
k + 1 latent components)

dgm = 1

100

100∑

s=1

�̂MAX − �̂s

|�̂MAX | . (3)

Table 5 in Appendix B presents the results depicting the
normalized average distance in (3) for each scenario under
correctly and misspecified latent structures. The proposed
EEM and EVEM algorithms perform much better than the
standard ones, always showing significantly lower values.
Regarding the correctly specified LCmodel, and specifically

considering scenario D, the average distance is 4.7 · 10−7

with the EM algorithm and decreases to 2.5 · 10−18 with
the EEM. Note that the reported distance values are negli-
gible (of the order of 10−16 or smaller), highlighting that
the global maximum is reached for all 50 samples and 100
starting values of each sample. The slightest improvement is
obtained under scenario F for the HMcat model with mis-
specified latent structure, showing values equal to 1.2 · 10−3

and 6.8 · 10−4 for EM and EEM, respectively. This measure
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shows that the proposed algorithms never provide values sig-
nificantly distant from the global maximum.

4.3 Evaluating the accuracy of the estimated
parameters

Considering correctly specified models we also assess the
quality of the proposals in terms of root mean square error
(RMSE) of the parameter estimates defined as

RMSE =
√√√√ 1

M

M∑

m=1

(θ̂m − θm)2,

where M denotes the number of free parameters. Results are
presented in Table 6 in Appendix C, showing that the evo-
lutionary algorithms provide more accurate estimates of the
model parameters. In particular, they show major improve-
ments when used for estimating the HMcont and SBmodels.

5 Applications

In the following we show the performance of the algorithms
to estimate DLV models with cross-sectional, longitudi-
nal, and network data. Each model is estimated 500 times
for every data set using both the proposed algorithms and
their standard counterparts. Model selection is performed by
choosing between a number of components ranging from 1 to
8 and considering the Bayesian information criterion (BIC,
Schwarz 1978) or the integrated classification likelihood cri-
terion (ICL, Biernacki et al. 2000). In the next subsections,
we illustrate the data and the results of each application.

5.1 Latent class model: drinking behavior in young
adults

We consider cross-sectional data coming from a national rep-
resentative survey conducted in 2014 about alcohol behavior
of n = 250 high school seniors in the United States. The
following six variables (r = 6), measuring lifetime, past-
year, and past-month alcohol use and drunkenness based
on a seven point scale (c = 7) are considered. The data
set is a portion of the survey described in Johnston et al.
(2017) and data are freely available at the following link:
https://www.icpsr.umich.edu/web/NAHDAP/studies/36263/
datadocumentationhttps://www.icpsr.umich.edu/web/
NAHDAP/studies/36263/datadocumentation. An LC model
was proposed for the analysis of similar data, related to the
year 2004, in Lanza et al. (2007) to discover sub-populations
with similar drinking behavior (see also Collins and Lanza
2010).

TheBIC suggests selecting three latent classes. The results
of the log-likelihood values at convergence are shown in Fig-

Fig. 3 Estimated weights (π̂k ) and conditional response probabilities
(φ̂ j y|u) for the LCmodelwith k = 3 latent classes for the data on alcohol
behavior; categories are referred to occasions of alcohol consumption
coded as follows: 1 = 0, 2 = 1–2, 3 = 3–5, 4 = 6–9, 5 = 10–19, 6 = 20–39,
7 = 40 or more

ure 1a in the SM. The global maximum is almost always
obtained with the EEM algorithm and all log-likelihood val-
ues are equal or very close to that global optimum. On the
other hand, with the standard EM algorithm, the global max-
imum is not the most frequent mode, and shallow values are
sometimes reached. In more detail, the frequency of global
maximum, computed as shown in Sect. 4.1, is equal to 96.4%
with the EEM algorithm and 9.4% with the standard EM
algorithm.

The estimated conditional response probabilities are
depicted in Fig. 3 and they show that the three subpopulations
of young people are defined according to increasing levels
of alcohol consumption. The 1st class, the largest with about
49% of the scholars, is mainly related to young people who
do not drink alcohol or drink few. They exhibit a high proba-
bility of never having drunk alcohol (0.64) and an even higher
chance of never having consumed alcohol in the past month
(0.96). Furthermore, individuals in this class have a proba-
bility of 0.90 of never having been drunk and a probability
almost equal to one of being drunk in the past year. The 2nd
latent class comprises approximately 35% of the subjects.
They are moderate drinkers who have consumed alcohol two
times or less in the last month with a probability of 0.84.
Instances of being drunk are even less frequent: the probabil-
ity of this occurring 1 or 2 times in the past year is 0.57, while
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Table 1 Estimated initial probabilities (π̂u) and conditional response
probabilities (φ̂ j1|u) of the HMcat model with k = 3 latent states for
the criminal data. Reported values are referred to the probabilities of
commiting the four types of crime

u π̂u φ̂ j1|u
j = 1 j = 2 j = 3 j = 4

1 0.96 0.00 0.00 0.01 0.00

2 0.04 0.12 0.01 0.63 0.05

3 0.00 0.17 0.03 0.06 0.10

Fig. 4 State transition diagram (π̂u|ū) of the HMcat model with k = 3
latent states for the criminal data

the probability of never being drunk in the last month is 0.72.
Finally, the 3rd latent class encompasses 15% of young peo-
ple identified as heavy drinkers, showing a probability equal
to 0.81 of having been drunk at least 40 times in their lifetime.

5.2 HiddenMarkovmodel with categorical
responses: criminal histories

We analyze longitudinal data simulated according to the offi-
cial criminal histories of a cohort of n = 10, 000 individuals
born in 1953 in England and Wales during six age bands
(T = 6) of five years in length, from the age of criminal
responsibility (10 years) until the end of 1993. Data are avail-
able in the R package LMest (Bartolucci et al. 2017). Four
binary response variables (r = 4, c = 2) indicate whether
or not a subject has committed a particular offense among
the following typologies: violence against the person, sex-
ual offenses, theft and handling of stolen goods, and drug
offenses (see Development and Directorate 1998). As pro-
posed in Bartolucci et al. (2007) and Pennoni (2014), an
HMcat model may be used to determine trajectories of crim-
inal behavior over time.

According to theBIC index, a number of latent states equal
to three is selected. Results are reported in Figure 1b in the
SM. Employing the EEM algorithm the global optimum is
reached steadily on around 97.2% of the time. On the other
hand, using the EM algorithm, the global optimum is reached
only in 8.6% of times and the most frequent local maximum,
which is far smaller than the global one, is obtained around
60% of the time.

The estimated initial and conditional probabilities are
summarized in Table 1 and allow us to identify different
criminal behaviors.At the initial time, themajority of individ-
uals (96%) fall into the 1st latent state, which characterizes
subjects not committing crimes. The 2nd latent state, repre-
senting only 2% of the population describes individuals with
an evident prevalence of theft and handling of stolen goods
since the estimated conditional probability is equal to 0.63
and of violence against the person (0.12). The 3rd latent state
represents individuals committing all crimes with a preva-
lence of violence against the person and drug offenses (0.17
and 0.10, respectively). The estimated transition probabilities
of the Markov chain are depicted in Fig. 4. It is interesting to
note that 22% of criminals tend to reduce crimes over time
and transit from the 3rd to the 2nd state, and 43% of individ-
uals are becoming nonoffenders, switching from the 3rd to
the 1st latent state.

5.3 HiddenMarkovmodel with continuous
responses: energy consumption across countries

We use the HMcont model to study per capita energy con-
sumption over the years 1990–2020 in 71 countries consid-
ering the following sources: coal, natural gas, hydroelectric,
nuclear, oil, solar, and wind. Data are stored by the pub-
lic repository freely available at the link https://github.com/
owid/energy-data (Ritchie et al. 2022). A Box–Cox trans-
formation (Box and Cox 1964) is applied to all the variables
before estimating an HMcont model to fulfill the assump-
tion of conditional Gaussian distribution of the response
variables.When estimating theHMcontmodel for an increas-
ing number of latent states, the BIC index always decreases
until a certain large value of k. This tendency is frequently
observedwith large data and heuristic approaches are applied
to reach a good compromise between fit and parsimony. For
the data at hand we choose k = 6 andwe notice that the EEM
algorithm ensures convergence to the global maximum, cor-
responding to a log-likelihood value equal to−7, 346.16 (see
Figure 1c in the SM). The EM algorithm never detects such
a maximum, providing −7, 358.35 as the highest value at
convergence.

Table 2 reports the estimated conditional means of the
response variables given the latent state and the last col-
umn shows the sum of the estimated averages. The first two
subpopulations refer to countries with reduced energy con-
sumption, relying on fossil fuel sources, especially coal and
oil. Their usage of renewable energy is extremely limited.
The 3rd group is characterized by countries with a rela-
tively balanced energy mix among different sources. While
fossil fuels, particularly gas and oil, dominate their energy
profile, there is also a significant use of renewable sources.
Countries in the 4th and 5th groups show high energy con-
sumption and they differ significantly in hydroelectric and
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Table 2 Estimated initial probabilities (π̂u) and averages (μ̂ j |u ) across latent states of the HMcont model with k = 6 states for the energy
consumption data. The last column reports the sum of the estimated averages for each latent state

u π̂u μ̂ j |u
Coal Gas Hydro Nuclear Oil Solar Wind Total

1 0.05 2,621.99 1,225.52 1,053.58 52.60 3,087.1 39.92 18.4 8,099.11

2 0.24 677.40 2,729.69 1,056.12 0.00 6,412.19 18.11 23.33 10,916.84

3 0.04 6,066.70 10,321.92 1,409.40 548.60 11,671.35 147.72 253.66 30,419.36

4 0.28 6,966.89 6,923.88 10,849.74 0.00 18,311.05 113.81 613.01 43,778.37

5 0.28 9,164.71 10,416.30 4,953.07 7,401.36 18,220.26 144.10 474.28 50,774.09

6 0.10 153.14 69,471.64 0.00 0.00 53,487.26 10.09 1.31 123,123.45

Fig. 5 State transition diagram of the averaged transition probabilities
π̂

(t)
u|ū of the HMcont model with k = 6 latent states for the energy

consumption data

nuclear energy use, respectively. Finally, countries allocated
to the 6th group are major producers of oil and gas and stand
out with extremely high overall energy consumption.

The highest transition probabilities, shown in Fig. 5, occur
towards the 3rd latent state and reflect, on the one hand,
the economic growth of emerging countries. We notice high
persistence in each state. With this model, countries are
dynamically clustered into six groups according to the poste-
rior probabilities through the local decoding (see Sect. 2.1).
Results are not reported here, but we notice that China, Iran,
Brazil, andMexico are switching from the 1st and 2nd state to
the 3rd. Japan transits from the 5th state to the 3rd, showing a
decrease in energy consumption likely due to the decision to
phase out nuclear energy in 2013. The United Arab Emirates
also transits from the 6th state to the 3rd, possibly due to the
reduced oil reserve.

5.4 Stochastic blockmodel: links betweenmembers
of a karate club

We analyze network data concerning n = 34 members of
a university-based karate club in the United States during
the 1970s (Zachary 1977). After a dispute between the pres-
ident and the instructor over the price of karate lessons, the
club experienced a significant division, forming opposing
factions and eventually leading to the emergence of two dis-
tinct clubs. Relationships among members are stored as a

Fig. 6 Graph visualization with nodes referred to the karate club data
colored by estimated partition of the SBmodel with k = 6 latent blocks

34× 34 adjacency matrix and are available in the R package
igraphdata (Csardi and Nepusz 2006). By estimating an
SBmodel, we cluster the clubmembers into different groups,
according to their friendship relations. An SB model with 6
latent blocks is selected according to the ICL criterion. As
shown in Figure 1d in the SM, the EVEM algorithm consis-
tently converges to a log-likelihood value equal to −277.91.
When themodel is estimatedwith the EMalgorithm, its high-
est value is −316.46.

Figure 6 depicts the network with nodes colored accord-
ing to the estimated partition. The connection probabilities
are instead summarized in Table 3, showing that the model
effectively identifies the two opposing factions that emerge
within the network. The faction led by the president (denoted
by A) consists of 2 latent blocks, in the following referred to
as Aa and Ab. Block Aa (depicted in blue) contains only the
president and another individual; they are characterized by a
high number of interactions with other members (17 and 12,
respectively). Block Ab (pictured in red) is larger, compris-
ing 16 individuals; these are marked by a limited number of
interactionswith othermembers (atmost 6). Being part of the
same faction, the estimated connection probability between
these two blocks is quite high (0.75). On the other hand, the
faction led by the instructor (denoted byH) is constituted by
the remaining 4 latent blocks, in the following referred to as
Ha, Hb, Hc, and Hd. Block Ha (represented in violet) solely
contains the instructor; as leader of the faction, he presents
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Table 3 Estimated connection
probabilities of the SB model
with k = 6 latent blocks for the
karate club data

many interactions with other subjects (16). The other three
blocks of this faction (Hb, Hc, and Hd depicted in yellow,
pink, and green, respectively) exhibit a strong link with the
instructor’s block, as highlighted by the estimated connec-
tion probabilities, equal to 1.00, 0.81, and 1.00, respectively.
These three groups differ in terms of the number and type
of interactions: individuals allocated to latent block Hb are
characterized by a higher number of interactions with respect
to blocks Hc (having only intra-group links, beyond rela-
tions with the instructor) and Hd (having only inter-groups
links). Notably, the connection probabilities between blocks
belonging to different factions are generally very low, with a
maximum of 0.17 and there is no connection at all between
president and instructor.

6 Conclusions

In this paper we introduce the evolutionary expectation–
maximization (EEM) and the evolutionary variational
expectation–maximization (EVEM) algorithms to tackle the
local maxima problem in estimating discrete latent variable
(DLV) models based on maximum likelihood and approx-
imate maximum likelihood approaches. Along with other
evolutionary algorithms, the proposed algorithms rely on
an iterative procedure that accounts for multiple possible
solutions at each step using suitable criteria to evalu-
ate their performance. Employing evolutionary operators,
such as crossover and mutation, facilitates broad explo-
ration of the parameter space, avoiding local maxima and
converging closer to the global maximum. The behavior
of the EEM and EVEM algorithms is controlled by a
set of constants having a simple interpretation. We per-
form an extensive Monte Carlo simulation study to com-
pare the performance of the EEM and EVEM algorithms
with the expectation–maximization (EM) and variational
expectation–maximization (VEM) algorithms. Simulation
results show the superior performance of the two propos-
als under each scenario designed for the latent class, hidden
Markov, and stochastic block models. The applications con-

ducted using cross-sectional, longitudinal, and network data
confirm that the EEM and EVEM algorithms outperforms
their counterparts.

In light of the current results these new algorithms could
also be applied for estimating more complex DLV models
including covariates, missing values, and dropout. Moreover
the EVEM may be extended to estimate different versions
of the SBM, for example, accounting for directed networks.
Future research can address the choice of different evolu-
tionary operators; for example crossover and mutation may
be performed on model parameters directly. Similarly, the
EEM and EVEM algorithms would benefit from an auto-
matic update of its constants. Along this line high values of
NO (number of offspring) and pm (probability of mutation)
may be employed in the first steps to encourage exploration
of the parameter space, and gradually decreased after some
iterations to reduce the computational time. Moreover the
algorithms could be used to select the number of latent com-
ponents. To this aim the evolutionary selection step may be
updated to use an information criterion as fitness function
instead of the log-likelihood function.

Overall, theEEMandEVEMalgorithmsoffer an improved
solution for parameter estimation inDLVmodels, addressing
the drawbacks of existing algorithms and providing effective
and versatile approaches. Their main limitation is related to
the computational complexity: they involve multiple itera-
tions and evaluations of potential solutions, and therefore
could be enhanced by a parallel implementation to reduce
the computational time. Models presented in this paper have
the peculiarity to achieve a considerable dimension reduc-
tion. However, an aspect of research that also needs to be
addressed in the future is the scalability of the estimation
algorithms in order to handle also the analysis of a variety of
new data of also large dimension.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-023-10358-
5.
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Appendices

AppendixAdetails the scenarios of the simulations presented
in Sect. 4. Appendices B and C provide additional simulation
results. The SM contains further results concerning the sim-
ulation study and the applications.

Appendix A: Description of the simulation
design

We provide additional details about the simulation studies
presented in Sect. 4. Table 4 describes the settings of the

simulated scenarios for the latent class (LC), hidden Markov
with categorical response variables (HMcat), hiddenMarkov
with continuous response variables (HMcont), and stochastic
block (SB) models.

Regarding the values set for the parameters of eachmodel,
the following general rules are considered:

• Weights or initial probabilities πu are randomly selected
from a uniform distribution from 0 to 1 and suitably nor-
malized.

• The transition probabilities for the HM models are
designed to favor persistence so that the chance of
remaining in a given latent component is always higher
than that of switching to another one. In particular, when
k = 3 and k = 6 we set, for t = 2, . . . , T , the following
two matrices of transition probabilities:

� =
⎡

⎣
0.80 0.15 0.05
0.10 0.80 0.10
0.05 0.15 0.80

⎤

⎦ and

� =

⎡

⎢⎢⎢⎢⎢⎢⎣

0.85 0.10 0.05 0.00 0.00 0.00
0.10 0.75 0.10 0.05 0.00 0.00
0.05 0.10 0.70 0.10 0.05 0.00
0.00 0.05 0.10 0.70 0.10 0.05
0.00 0.00 0.05 0.10 0.75 0.10
0.00 0.00 0.00 0.05 0.10 0.85

⎤

⎥⎥⎥⎥⎥⎥⎦
.

• For the HMcat model we set (for j = 1, . . . , s) the fol-
lowing values for the matrix of the conditional response
probabilities:

� =
⎡

⎣
0.80 0.10 0.05
0.15 0.80 0.15
0.05 0.10 0.80

⎤

⎦ (c = 3, k = 3),

Table 4 Simulated designs for
LC, HMcat, HMcont, and SB
models varying: sample size (n),
number of response variables
(r ), categories (c), time
occasions (T ), and latent states
(k). For the SB model the design
also specifies whether
intra-group probabilities (βuu)
are higher or lower than
inter-groups probabilities (βuv ,
u �= v)

Scenario LC HMcat HMcont SB

A n = 500 r = 6 n = 500 r = 6 n = 500 r = 6 n = 500 k = 3

c = 3 k = 3 c = 3 T = 5 k = 3 T = 5 k = 3 βuu > βuv ∀ u �= v

B n = 1, 000 r = 6 n = 1,000 r = 6 n = 1,000 r = 6 n = 500 k = 3

c = 3 k = 3 c = 3 T = 5 k = 3 T = 5 k = 3 βuu < βuv ∀ u �= v

C n = 500 r = 12 n = 500 r = 12 n = 500 r = 12 n = 1,000 k = 3

c = 3 k = 3 c = 3 T = 5 k = 3 T = 5 k = 3 βuu > βuv ∀ u �= v

D n = 500 r = 6 n = 500 r = 6 n = 500 r = 6 n = 1,000 k = 3

c = 6 k = 3 c = 6 T = 5 k = 3 T = 10 k = 3 βuu < βuv ∀ u �= v

E n = 500 r = 6 n = 500 r = 6 n = 500 r = 6 n = 500 k = 6

c = 3 k = 6 c = 3 T = 10 k = 3 T = 5 k = 6 βuu > βuv ∀ u �= v

F – n = 500 r = 6 – n = 500 k = 6

c = 3 T = 5 k = 6 βuu < βuv ∀ u �= v
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� =

⎡

⎢⎢⎢⎢⎢⎢⎣

0.70 0.00 0.00
0.15 0.10 0.00
0.10 0.40 0.05
0.05 0.40 0.10
0.00 0.10 0.15
0.00 0.00 0.70

⎤

⎥⎥⎥⎥⎥⎥⎦
(c = 6, k = 3),

� =
⎡

⎣
0.95 0.65 0.30 0.20 0.10 0.00
0.05 0.25 0.50 0.50 0.25 0.05
0.00 0.10 0.20 0.30 0.65 0.95

⎤

⎦

(c = 3, k = 6).

• For the HMcont model the following conditional means
are considered for each responsevariable:μ = [−2, 0, 2]′
and μ = [−5,−3,−1, 1, 3, 5]′ under the scenarios with
k = 3 and k = 6, respectively. The variance-covariance

matrix � is assumed with all variances equal to 1 and
covariances equal to 0.

• For the SB model the connection probabilities are set
considering two different scenarios: (i) assortative case,
characterized by high intra-group and low inter-groups
connection probabilities βuu = 0.7 > βuv = 0.3; (ii)
disassortative case, characterized by low intra-group and
high inter-groups connection probabilities βuu = 0.3 <

βuv = 0.7.

Appendix B: Results for the average distance
from the global maximum

See Table 5.

Table 5 Normalized average distance from the global maximum com-
puted as the average over 50 samples and 100 starting values (see Sect. 4)
with the EM or VEM algorithms (in blue) and EEM or EVEM algo-
rithms (in yellow) under the simulated scenarios presented in Table 4 of
Appendix A for the LC, HMcat, HMcont, and SBmodels with correctly

specified (top panel) and misspecified (bottom panel) latent structures.
Values are expressed in scientific notation and the colored bars show
the value obtained with the EEM or EVEM algorithm as a proportion
of the corresponding ones computed with the standard counterparts
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Appendix C: Results for the accuracy of the
estimated parameters

See Table 6.

Table 6 Root mean squared error of the estimated model parameters
computed as the average over 50 samples and 100 starting values (see
Sect. 4) with respect to the true model parameters, using EM or VEM
algorithm (in blue) and EEM or EVEM algorithm (in yellow) under
the simulated scenarios presented in Table 4 in Appendix A for the

LC, HMcat, HMcont, and SB models with a correctly specified latent
structure. Values are expressed in scientific notation and the colored
bars show the value obtained with the EEM or EVEM algorithm as
the proportion of the corresponding ones computed with the standard
counterparts
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