
 

Next-to-Next-to-Leading Order Event Generation for Top-Quark Pair Production

Javier Mazzitelli,1 Pier Francesco Monni,2 Paolo Nason ,3 Emanuele Re ,4 Marius Wiesemann ,1 and Giulia Zanderighi1
1Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany
2CERN, Theoretical Physics Department, CH-1211 Geneva 23, Switzerland
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The production of top-quark pairs in hadronic collisions is among the most important reactions in
modern particle physics phenomenology and constitutes an instrumental avenue to study the properties of
the heaviest quark observed in nature. The analysis of this process at the Large Hadron Collider relies
heavily on Monte Carlo simulations of the final state events, whose accuracy is challenged by the
outstanding precision of experimental measurements. In this Letter we present the first matched
computation of top-quark pair production at next-to-next-to-leading order in QCD with all-order radiative
corrections as implemented via parton-shower simulations. Besides its intrinsic relevance for LHC
phenomenology, this work also establishes an important step towards the simulation of other hadronic
processes with color charges in the final state.
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Top quarks are the heaviest elementary particles observed
in nature and play a unique role in the standardmodel (SM) of
particle physics. The large Yukawa coupling of the top quark
to the Higgs boson establishes a special avenue in the
exploration of the Higgs sector of the SM [1] and of new
physics signals [2].Moreover, thevalue of the top-quarkmass
enters precision electroweak (EW) tests [3] and theoretical
considerations on the stability of our Universe [4].
At the Large Hadron Collider (LHC), top quarks are

predominantly produced by strong interactions in associ-
ation with their own antiparticle (tt̄). The large value of the
top-quark mass is such that its production dynamics is
safely inside the region of validity of QCD perturbation
theory. Remarkable theoretical advancements in the past
years have led to very accurate predictions for this process.
Specifically, fixed-order computations that rely on a power
expansion in the strong coupling constant αs are known up
to next-to-next-to-leading order (NNLO) [5–12] (also
including the top-quark decays [13]), and EW corrections
have been computed up to next-to-leading order (NLO)
[14–18]. In specific kinematic regimes, a reliable pertur-
bative description requires the all-order resummation of
large radiative corrections [19–25]. Some of the above
calculations have been consistently combined to obtain the
state-of-the-art predictions at the LHC [26]. The striking

accuracy of experimental measurements of the top-quark
mass requires pushing theoretical calculations to the edge
of what can be achieved with perturbative methods (for
recent reviews see Refs. [27,28]), and motivates new
studies of nonperturbative aspects of top-quark physics
(see, e.g., Refs. [29–32]).
The large number of top-quark pairs produced at the

LHC has allowed for very satisfactory tests of the theory,
both for the inclusive production cross section and for
multidifferential distributions [33–41]. These tests have
paved the way to the exploitation of top cross-section
measurements for the extraction of fundamental parameters
of the standard model, such as αs and parton density
functions (PDFs), the top mass itself, and the top Yukawa
couplings (see, e.g., Refs. [42–48]).
Experimental analyses involving tt̄ production heavily

rely upon its fully exclusive simulation. This is important
not only for the study of the production dynamics itself,
but, due to the complex final states that involve a combi-
nation of leptons, jets, b hadrons, and missing energy, also
for several SM processes and new physics searches for
which the tt̄ process acts as background. The needed
simulations rely on event generators, which combine a
prediction for the high-energy scattering, which produces
the tt̄ pair, initial- and final-state QCD radiation at all
perturbative orders via parton shower (PS) algorithms and
hadronization models (for a review see Ref. [49]). These
event generators have been the subject of considerable
research, dealing with the matching of NLO QCD calcu-
lations to PS and a consistent description of the top-quark
resonance [50–55]. Current research for the improvement
of event generators focuses upon the development of more
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accurate PS [56–62], as well as a framework to combine
NNLO computations with PS into a consistent event
generator (NNLOþ PS in the following).
Different frameworks for NNLOþ PS computations

have been developed in recent years in the context of
color-singlet production [63–67]. However, nearly a decade
after these developments, a NNLOþ PS method to deal
with hadron-collider processes with color charges in the
final state (e.g., tt̄), which are considerably more complex,
is still missing.
In this Letter, we show how a generator of the same type

as the ones developed for color-singlet production proc-
esses in Refs. [66,67], dubbed there MINNLOPS, can be
constructed for top-quark pair production. Our work con-
stitutes the first computation of this type for reactions with
colored particles in the final state.
The MINNLOPS procedure involves three steps. The first

one (referred to as Step I in the following) corresponds to
the generation of a tt̄ pair plus one light parton (i.e., the
underlying Born configuration) according to the POWHEG

method [68–71], carried out at the NLO level, inclusive
over the radiation of a second light parton.
The second step (step II) characterizes the MINNLOPS

procedure, and it concerns the limit in which the light
partons in the above calculation become unresolved (i.e.,
the underlying Born degenerates into a tt̄ configuration
without light jets). In this limit the calculation must be
supplemented with an appropriate Sudakov form factor and
higher-order terms, so as to guarantee that the simulation
remains finite as well as NNLO accurate for inclusive tt̄
production. Most of the novelties in this Letter have to do
with step II and will be illustrated below.
In the third step (step III), the kinematics of the second

radiated parton, accounted for inclusively in step I, is
generated according to the standard POWHEG method,
which guarantees that the NLO accuracy of the tt̄þ jet
cross section is preserved. From this point on, subsequent
radiation is included by the parton shower, with the
constraint of having a transverse momentum softer than
that of the last POWHEG real emission.
The starting point to achieve NNLO accuracy in step II is

the well-known factorization theorem for tt̄ pair production
at small transverse momentum pT ≡ jp⃗T j differential in the
phase space of the tt̄ pair dΦtt̄ ≡ dx̄1dx̄2½dΦ2�. Here
x̄1;2 ¼ mtt̄=

ffiffiffi
s

p
e�ytt̄ , with ytt̄ being the rapidity of the tt̄

system, mtt̄ its invariant mass, ½dΦ2� denotes the Lorentz-
invariant two-body phase space, and

ffiffiffi
s

p
is the collider

center-of-mass energy. It reads [19–22]

dσ
d2p⃗TdΦtt̄

¼
X

c¼q;q̄;g

jMð0Þ
cc̄ j2

2m2
tt̄

Z
d2b⃗
ð2πÞ2 e

ib⃗·p⃗T e−Scð
b0
b Þ

×
X
i;j

TrðHcΔÞðCci ⊗ fiÞðCc̄j ⊗ fjÞ; ð1Þ

where b0 ¼ 2e−γE , b ¼ jb⃗j. Sc is the Sudakov radiator
which also enters the description of the production of a
color-singlet system at small transverse momentum

ScðkÞ ¼
Z

m2
tt̄

k2

dq2

q2

�
A(αsðqÞ) ln

m2
tt̄

q2
þ B(αsðq))

�
: ð2Þ

The first sum in Eq. (1) runs over all possible flavor
configurations of the incoming partons p1 of flavor c and
p2 of flavor c̄. The collinear coefficient functions Cij ¼
Cij(z; p1; p2; b⃗; αsðb0=bÞ) describe the structure of constant
terms related to the emission of collinear radiation, and the
parton densities are denoted by fi and are evaluated at b0=b.
The operation⊗ denotes the standard convolution over the
momentum fraction z carried by initial state radiation. The
factor TrðHcΔÞðCci ⊗ fiÞðCc̄j ⊗ fjÞ has different expres-
sions for the qq̄ and gg channels and has here a symbolic
meaning. In particular, it has a rich Lorentz structure that we
omit for simplicity in Eq. (1), which is a source of azimuthal
correlations in the collinear limit [21,72].
All quantities in bold face denote operators in color

space, and the trace TrðHcΔÞ in Eq. (1) runs over the color
indices. This term can be expressed conveniently in the
color space formalism of Ref. [73], where the infrared-
subtracted amplitude jMcc̄i for the production of the tt̄
system is a vector in color space [12,21]. It reads

TrðHcΔÞ ¼
hMcc̄jΔjMcc̄i

jMð0Þ
cc̄ j2

; ð3Þ

where jMð0Þ
cc̄ j2 ¼ hMð0Þ

cc̄ jMð0Þ
cc̄ i. The hard function Hc ¼

HcðΦtt̄; αsðmtt̄ÞÞ is obtained from the subtracted amplitudes
and the ambiguity in its definition corresponds to using a
specific resummation scheme [74]. We adopt here the
definition of Ref. [21]. The operatorΔ encodes the structure
of the quantum interference due to the exchange of soft
radiation at large angle between the initial and final state, and
within the final state. It is given by Δ ¼ V†DV, where [21]

V ¼ P exp

�
−
Z

m2
tt̄

b2
0
=b2

dq2

q2
ΓtðΦtt̄; αsðqÞÞ

�
: ð4Þ

The symbol P denotes the path ordering (with increasing
scales from left to right) of the exponential matrix with
respect to the integration variable q2. Γt is the anomalous
dimension accounting for the effect of real soft radiation at
large angles, and D ¼ D(Φtt̄; b⃗;αsðb0=bÞ) encodes the
azimuthal dependence of the corresponding constant terms,
and is defined such that ½D�ϕ ¼ 1, where ½� � ��ϕ denotes the
average over the azimuthal angle ϕ of p⃗T .
All of the above quantities admit a perturbative expan-

sion in a series in αsðμÞ=ð2πÞ, where μ is the scale indicated
explicitly in the argument of each function. We generically
denote these expansions as
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F(fxg; αsðμÞ) ¼
X
i

αisðμÞ
ð2πÞi F

ðiÞðfxgÞ; ð5Þ

with fxg being any other set of arguments of
F≡ fA;B;Cij;Hc;D;Γt; jMcc̄ig. We do not indicate
explicitly the scale of the amplitude jMcc̄i. In this case,
the expansion (5) is in powers of αsðmtt̄Þ, and each of its

perturbative coefficients jMðiÞ
cc̄ i includes an extra single

power of αsðμð0ÞR Þ with μð0ÞR ∼mtt̄. The above coefficients
FðiÞ up to two loops are given in Refs. [12,20,21,72,75–86].
The two-loop coefficient Dð2Þ is irrelevant at NNLO for
observables averaged over ϕ, since ½D�ϕ ¼ 1, and therefore
we do not include it here.
Expanding the second order term in the exponential of

Eq. (4), one can write

V ¼ P
�
exp

�
−
Z

m2
tt̄

b2
0
=b2

dq2

q2
αsðqÞ
2π

Γð1Þ
t

�

×

�
1 −

Z
m2

tt̄

b2
0
=b2

dq2

q2
α2sðqÞ
ð2πÞ2 Γ

ð2Þ
t

��
þOðN3LLÞ; ð6Þ

where we neglected N3LL corrections which do not
contribute at NNLO in Eq. (1). In the following we will
denote by VNLL the right-hand side of Eq. (6) with

Γð2Þ
t → 0. This enters the description of the pT spectrum

at NLL accuracy.
To make contact with the procedure described in

Ref. [66] we need to simplify further the structure of the
term HcΔ, which encodes the difference with the color
singlet case. Our goal is to obtain a closed formula in pT
space that retains NNLO accuracy. To this order, we

observe that we can take the Γð2Þ
t term in Eq. (6) out of

the path ordering symbol. We then perform a rotation in

color space to diagonalize Γð1Þ
t and evaluate the exponential

matrix in Eq. (6). Equation (1) can be reorganized using

e−Scð
b0
b ÞTrðHcΔÞ ¼ e−Ŝcð

b0
b Þ hM

ð0Þ
cc̄ jðVNLLÞ†VNLLjMð0Þ

cc̄ i
jMð0Þ

cc̄ j2
× TrðHcDÞ þ EðΦtt̄; b⃗Þ þOðα5sÞ; ð7Þ

where the trace is to be interpreted as inEq. (3). TheSudakov
radiator Ŝc is obtained from Sc via the replacement

Bð2Þ → Bð2Þ þ hMð0Þ
cc̄ jΓð2Þ†

t þ Γð2Þ
t jMð0Þ

cc̄ i
jMð0Þ

cc̄ j2

þ 1

jMð0Þ
cc̄ j2

2ℜ½hMð1Þ
cc̄ jΓð1Þ†

t þ Γð1Þ
t jMð0Þ

cc̄ i�

− 2
hMð0Þ

cc̄ jΓð1Þ†
t þ Γð1Þ

t jMð0Þ
cc̄ i

jMð0Þ
cc̄ j4

ℜ½hMð1Þ
cc̄ jMð0Þ

cc̄ i�: ð8Þ

The remainder term EðΦtt̄; b⃗Þ in Eq. (7) contributes at order
α2s lnðmtt̄bÞ, but it is irrelevant for our computation since it
vanishes upon azimuthal integration (i.e., ½E�ϕ ¼ 0). For this
reason, we will ignore it in the following. We then obtain

dσ
d2p⃗TdΦtt̄

¼ 1

2m2
tt̄

X
c¼q;q̄;g

Z
d2b⃗
ð2πÞ2 e

ib⃗·p⃗T e−Ŝcð
b0
b Þ

× hMð0Þ
cc̄ jðVNLLÞ†VNLLjMð0Þ

cc̄ i
×
X
i;j

TrðHcDÞðCci ⊗ fiÞðCc̄j ⊗ fjÞ þOðα5sÞ:

ð9Þ

This expression has almost the structure needed in order to
carry out the same procedure used in the color singlet case
[66,67], except for the Hc function which needs to be
evaluated at the scale b0=b rather than mtt̄. To the relevant
accuracy we can perform this scale change provided Bð2Þ in
Ŝc is alsomodified as follows [63,66] [see, e.g., Eq. (4.25) of
Ref. [66] ]

Bð2Þ → Bð2Þ þ 2πβ0
2ℜ½hMð1Þ

cc̄ jMð0Þ
cc̄ i�

jMð0Þ
cc̄ j2

: ð10Þ

In the color basis in which Γð1Þ
t is diagonal, the matrix

element hMð0Þ
cc̄ jðVNLLÞ†VNLLjMð0Þ

cc̄ i is a linear combination
of complex exponential terms, each of which has the same
factorized structure used as a starting point in the appendix
of Ref. [66].
Using this observation, we finally integrate over b⃗ by

expanding the integrand about b0=b ∼ pT . Noticing that the

matrix element hMð0Þ
cc̄ jðVNLLÞ†VNLLjMð0Þ

cc̄ i does not depend
on the azimuthal angle ϕ, up to terms of Oðα5sÞ we can
express the result as a total derivative, leading to the final
pT space formula

dσ
dpTdΦtt̄

¼ d
dpT

�X
c

e−S̃cðpT Þ

2m2
tt̄

hMð0Þ
cc̄ jðVNLLÞ†VNLLjMð0Þ

cc̄ i

×
X
i;j

½TrðH̃cDÞðC̃ci ⊗ fiÞðC̃c̄j ⊗ fjÞ�ϕ
�

þ Rf þOðα5sÞ: ð11Þ

To obtain Eq. (11), we introduced the quantities S̃c, H̃c, and
C̃ij, which are obtained by applying the transformations
given in Eq. (4.24) of Ref. [66] to Ŝc,Hc, andCij. The latter
quantities are now evaluated at the scale pT . The azimu-
thally averaged term ½� � ��ϕ in Eq. (11) is taken from the
NNLO computation of the tt̄ cross section of
Refs. [11,12,86] (see also Ref. [87] for more details).
We also included the remainder Rf ¼ RfðpTÞ, which
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denotes the regular contribution to the pT distribution
through Oðα4sÞ, such that pTRfðpTÞ vanishes in the pT →
0 limit. The integral of Eq. (11) over pT provides a NNLO
accurate description of tt̄ production differential in Φtt̄.
In order to build a Monte Carlo algorithm for the

generation of events with NNLO accuracy, we have to
modify the formula for the underlying Born cross section of
step I in such a way that it matches Eq. (11) maintaining its
NNLO accuracy. The procedure is described in detail in
Refs. [63,66,67,88] and for this reason we omit it here. For
the practical implementation, we use the NLOþ PS code
for tt̄þ jet of Ref. [89], and apply the MINNLOPS
procedure for heavy-quark pair production given in this
Letter. The PS simulation is obtained with PYTHIA8 [90],
without the modeling of nonperturbative effects, and under
the assumption of stable top quarks. We stress that up to
Eq. (10) we retained also NLL accuracy in the pT spectrum,
while Eq. (11) is strictly LL accurate. Higher logarithmic
accuracy could, in principle, be maintained in Eq. (11).
However, this higher accuracy would be spoiled by the PS
used here, which is limited to LL. On the other hand,
Eq. (11) also preserves the class of NLL corrections
associated with the coefficient Að2Þ in the Sudakov, which
are traditionally included in PS algorithms [91]. The
formulation of a (N)NLO matching to PS that preserves
logarithmic accuracy beyond LL is still an open problem.
In the phenomenological study presented below, we

consider LHC collisions with a center-of-mass energy of
13 TeV. The top-quark pole mass is set to 173.3 GeV and
we consider five massless quark flavors using the corre-
sponding NNLO set of the NNPDF31 [92] parton densities
with αsðmZÞ ¼ 0.118. The renormalization scale for the
two powers of the strong coupling constant entering the

Born cross section is set to μð0ÞR ¼ KRmtt̄=2. In the rest of
Eq. (11), we implement the renormalization (μR ¼ KRμ0)
and factorization (μF ¼ KFμ0) scale dependence as
described in Ref. [66], with the central scale μ0 ¼
mtt̄=2e−L [hence replacing the scales set to pT in
Eq. (11)], where we defined L ¼ lnQ=pT and
Q ¼ mtt̄=2. The logarithm L is turned off in the hard
region of the pT spectrum so that the total derivative in
Eq. (11) smoothly vanishes for pT ≳Q as in Refs. [74,93–
96]. The dependence of Eq. (11) on μR, μF, and Q is of
order Oðα5sÞ. At small pT the scale of the strong coupling
and the parton densities is smoothly frozen around Q0 ¼
2 GeV following the procedure of Ref. [67] to avoid the
Landau singularity. To estimate the scale uncertainties
we vary KR and KF by a factor of 2 around their central
value, while keeping 1=2 ≤ KR=KF ≤ 2. Results with a
different central scale choice are reported in Supplemental
Material [97].
For comparison, we consider results from the fixed-order

NNLO calculation of Refs. [11,12] obtained with the
MATRIX code [98] using μ0 ¼ mtt̄=2. Furthermore, we also
show MINLO0 results, obtained with the NLOþ PS

generator for tt̄ plus zero and one jet, constructed by
turning off the NNLO corrections in Eq. (11). The latter
constitutes a new calculation as well.
Table I shows the total cross section for top-quark pair

production for MINLO0, NNLO, and MINNLOPS. The
central MINLO0 result is about 10.3% (9.6%) smaller than
the MINNLOPS (NNLO) prediction and features much
larger scale uncertainties. The MINNLOPS result instead
agrees with NNLO at the subpercent level, well within the
perturbative uncertainties. Small numerical differences are
expected even for inclusive observables, since the
MINNLOPS and NNLO calculations differ by terms beyond
accuracy.
In Fig. 1 we examine a set of differential distributions. To

validate MINNLOPS, we compare it to the NNLO pre-
diction without fiducial cuts, which could lead to signifi-
cant differences due to the PS. Experimental data from the
CMS Collaboration unfolded and extrapolated to the
inclusive phase space [99], and divided by the appropriate
branching fractions, are also shown. The top-left plot shows
the rapidity difference between the tt̄ system and the
leading jet defined with pT;j1 ≥ 120 GeV. Both MINLO0

and MINNLOPS are formally NLO accurate in this case,
and the agreement between them indicates that this accu-
racy is retained by the MINNLOPS procedure. The same
conclusion holds for other observables that require at least
one resolved hard jet.
The distributions in the average top-quark rapidity (ytav )

and transverse momentum (pT;tav ) as well as in the invariant
mass (mtt̄) and rapidity (ytt̄) of the tt̄ pair shown in Fig. 1
are inclusive over QCD radiation. For such distributions
MINNLOPS is expected to be NNLO accurate. Indeed,
MINNLOPS and NNLO yield consistent results, with fully
overlapping uncertainty bands. The small differences in the
central value are once again due to the different treatment of
terms beyond NNLO accuracy. The larger uncertainty
bands of the MINNLOPS predictions are expected, since
additional scale dependent terms are included within the
first term in the right-hand side of Eq. (11) that are not
present in the fixed-order calculation. In comparison to the
MINLO0 results the inclusion of NNLO corrections through
MINNLOPS has an impact of about 10%–20% on the
differential distributions and substantially reduces the
perturbative uncertainties. Also the agreement with data
is quite remarkable. All data points are within 1 standard
deviation from the MINNLOPS prediction, with the

TABLE I. The total tt̄ cross section in different approximations.
The quoted errors represent the scale uncertainty, while the
numbers in brackets are the numerical uncertainty on the last
digit.

MINLO0 NNLO MINNLOPS

695.6ð3Þþ22%
−17% pb 769.8ð9Þþ5.0%

−6.5% pb 775.5ð2Þþ9.8%
−7.2% pb

PHYSICAL REVIEW LETTERS 127, 062001 (2021)

062001-4



exception of the very first bin in themtt̄ distribution that, on
the other hand, is strongly affected by the finite width of the
top, whose effects are not included here.
We finally discuss the transverse-momentum spectrum

of the tt̄ pair, denoted by pT;tt̄ in the bottom-right panel of
Fig. 1. At large transverse momenta, the three predictions
considered are effectively NLO accurate. Indeed, MINLO0
and MINNLOPS are essentially indistinguishable in that
region, and at the same time consistent with the spectrum
at fixed order. The small differences with NNLO are
due to the generation of further radiation by the PS. At
small transverse momenta, MINNLOPS induces Oð10%Þ
corrections with respect to MINLO0 and significantly
reduces the large scale dependence. In this region, it also
differs in shape from the NNLO calculation, which
diverges and becomes unphysical for vanishing transverse

momenta. Within the relatively large experimental errors,
MINNLOPS slightly improves the description of the
data in terms of shape compared to NNLO for this
observable.
In this Letter we have presented the matching of the

NNLO computation for top-quark pair production at
hadron colliders with parton showers. This result has been
obtained by constructing the MINNLOPS method for the
production of heavy quarks, which constitutes the first
NNLOþ PS prediction for reactions with color charges in
the final state in hadronic collisions. The comparisons
presented in Fig. 1 provide a numerical validation of
MINNLOPS for top-quark pair production, demonstrating
its NNLO accuracy. The simulations presented here also
allow for the inclusion of the top-quark decay, paving the
way to an accurate event generation for tt̄ production at the

FIG. 1. Distribution in the rapidity difference between the tt̄ pair and the leading jet (Δytt̄;j1 ), in the rapidity (ytav ) and the average
transverse-momentum (pT;tav ) of the top and the antitop, as well as in the rapidity (ytt̄), in the invariant mass (mtt̄) and in the transverse
momentum (pT;tt̄) of the tt̄ system. Predictions are shown for MINNLOPS (blue, solid), MINLO0 (black, dashed), and at NNLO (red,
dashed). The black data points represent the CMS measurement at 13 TeVof Ref. [99], where the ytav and pT;tav distributions have been
obtained with leptonically decaying top quarks.

PHYSICAL REVIEW LETTERS 127, 062001 (2021)

062001-5



LHC which will enable precise comparisons of fiducial
measurements to theory.
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