
Knowledge-Based Systems 293 (2024) 111663

A
0
n

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Dealing with uncertainty: Balancing exploration and exploitation in deep
recurrent reinforcement learning
Valentina Zangirolami, Matteo Borrotti ∗
Department of Economics, Management and Statistics, University of Milano-Bicocca, Piazza dell’Ateneo Nuovo, 1, Milano, 20126, Italy

A R T I C L E I N F O

Dataset link: https://github.com/ValentinaZan
girolami/DRL

MSC:
0000
1111

Keywords:
Exploration strategies
Deep recurrent reinforcement learning
Autonomous driving

A B S T R A C T

Incomplete knowledge of the environment leads an agent to make decisions under uncertainty. One of the
major dilemmas in Reinforcement Learning (RL) where an autonomous agent has to balance two contrasting
needs in making its decisions is: exploiting the current knowledge of the environment to maximize the
cumulative reward as well as exploring actions that allow improving the knowledge of the environment,
hopefully leading to higher reward values (exploration–exploitation trade-off). Concurrently, another relevant
issue regards the full observability of the states, which may not be assumed in all applications. For instance,
when 2D images are considered as input in an RL approach used for finding the best actions within a 3D
simulation environment. In this work, we address these issues by deploying and testing several techniques to
balance exploration and exploitation trade-off on partially observable systems for predicting steering wheels
in autonomous driving scenarios. More precisely, the final aim is to investigate the effects of using both
adaptive and deterministic exploration strategies coupled with a Deep Recurrent Q-Network. Additionally,
we adapted and evaluated the impact of a modified quadratic loss function to improve the learning phase of
the underlying Convolutional Recurrent Neural Network. We show that adaptive methods better approximate
the trade-off between exploration and exploitation and, in general, Softmax and Max-Boltzmann strategies
outperform 𝜖-greedy techniques.
1. Introduction

Reinforcement learning (RL) is a core topic in machine learning and
is concerned with sequential decision-making in an uncertain environ-
ment. Two key concepts in RL are exploration, which consists of learn-
ing via interactions with an unknown environment, and exploitation,
which consists of optimizing the objective function given accumulated
information. In such a scenario, an RL algorithm repeatedly makes
decisions to maximize its rewards, the so-called exploitation; the RL
algorithm, however, has only limited knowledge about the process
of generating the rewards. Thus, occasionally, the algorithm might
decide to perform exploration which improves the knowledge about the
reward generating process, but which is not necessarily maximizing the
current reward [1]. Exploitation can be studied using the (stochastic)
control theory, while exploration relies on the theory of statistical
learning. These two concepts are complementary but opposite: explo-
ration leads to the maximization of the gain in the long run at the risk of
losing short-term reward, while exploitation maximizes the short-term
gain at the price of losing the gain over the long run. A careful trade-off
between these two objectives is important to the success of any learner.

∗ Corresponding author.
E-mail address: matteo.borrotti@unimib.it (M. Borrotti).

The main motivation of this work is to address the issues of partial
observability of states together with the exploration–exploitation trade-
off through deterministic and stochastic strategies. The final aim is
to provide a comprehensive analysis of reinforcement learning, with
a focus on deep recurrent reinforcement learning from the point of
view of the previously mentioned trade-off. In summary, the main
contributions of this work can be summarized as follows:

(1) Refine the quadratic loss function proposed by Lample and Chap-
lot [2] to align with the Bootstrapped Random Update sam-
pling technique. While Lample and Chaplot [2] originally de-
veloped this strategy for Bootstrapped Sequential Update sam-
pling technique. The introduction of this strategy to deep recur-
rent reinforcement learning leads to a speed-up of the algorithm
convergence.

(2) Conduct a comprehensive deep analysis and comparison of sev-
eral exploration strategies on partially observable systems. Specif-
ically, we evaluated several 𝜖-greedy and Softmax approaches,
incorporating Bayesian perspectives and assessing the agent’s
uncertainty to adjust the 𝜖 probability dynamically. Originally,
vailable online 19 March 2024
950-7051/© 2024 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.knosys.2024.111663
Received 9 June 2023; Received in revised form 8 March 2024; Accepted 17 March
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

2024

https://www.elsevier.com/locate/knosys
https://www.elsevier.com/locate/knosys
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
https://github.com/ValentinaZangirolami/DRL
mailto:matteo.borrotti@unimib.it
https://doi.org/10.1016/j.knosys.2024.111663
https://doi.org/10.1016/j.knosys.2024.111663
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2024.111663&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Knowledge-Based Systems 293 (2024) 111663V. Zangirolami and M. Borrotti

w
a
r
r
D
f
e
p
w
u
D
i
s
o

2

p
t

2

c
𝜖
t
i
s
t
[

p
a
o
t
d
c
c
𝜖
M
c
[
S
g
A
e

these methods were proposed by Tokic [3], Tokic and Palm [4],
and Gimelfarb et al. [5] for fully observable system states, we
successfully adapted all strategies to the recurrent framework.

(3) Modify the Value Difference Based Exploration (VDBE) method
to suit its adaptation and integration into the Deep Recurrent Q-
learning and, more broadly, Deep Q-Learning scenarios. Indeed,
we consider the difference among estimated Q-values with differ-
ent estimated weights of neural networks (related to previous and
current updates of the agent).

(4) Implement a simulation study to predict the steering wheel an-
gle in autonomous driving systems. Within this application, we
examined the impact of the exploration strategies in partially
observable systems for balancing exploration. To address the
challenges posed by partially observable states, we proposed Deep
Double Dueling Recurrent Q-Learning with a modified loss to
enhance collision avoidance performance while keeping the speed
constant, evaluating solely the vehicle’s steering control.

This paper is organized as follows. Section 2 describes related
ork based on exploration strategies, recurrent models of DRL and
utonomous driving. Section 3 provides a comprehensive overview of
einforcement learning, highlighting key issues and introducing deep
ecurrent reinforcement learning. Section 4 delves into the details of
eep Recurrent Q-learning model tailored for self-driving cars speci-

ying our loss proposal for Bootstrapped Random updates. Section 5
lucidates the exploration strategies compared in the experiments em-
hasizing their theoretical aspects within a partial observable frame-
ork. Section 6 outlines the experimental settings, encompassing the
se of AirSim simulator, the parameters of exploration strategies, and
RL model. Additionally, it shows the results obtained from the train-

ng and test set, along with a deep analysis of the impacts of exploration
trategies. Section 7 concludes this paper with final considerations and
utlines for future works.

. Related literature

This work is related to three major research fields, namely ex-
loration strategies, function gradient approximation for RL and au-
onomous driving.

.1. Exploration strategies

In the literature, many different exploration methods for RL pro-
esses are based on a discrete action space, in which Softmax and
-greedy are the most popular. Ortiz et al. [6] considered a determinis-
ic 𝜖-greedy strategy with linear decreasing using four different models,
ncluding Q-learning. This kind of 𝜖-greedy method is significantly
implified, where 𝜖 is the inverse of the step number without defining
he lower bound to be reached in the final step. Gimelfarb et al.
5] and Tokic [3] proposed two novel adaptive methods for 𝜖-greedy

on full-observable domain and used training information to update 𝜖
robability. Tokic [3] compared constant 𝜖-greedy and softmax with an
daptive 𝜖-greedy strategy based on Q-value differences as a measure
f uncertainty. Gimelfarb et al. [5] used Bayesian Inference to estimate
he 𝜖 value with theoretical convergence guarantee and compare it with
eterministic and adaptive 𝜖-greedy approaches. However, both papers
onducted a limited comparison of strategies. Gimelfarb et al. [5]
ompare only 𝜖-greedy strategies while Tokic [3] only includes constant
-greedy while Softmax. Tokic and Palm [4] proposed an extension of
ax-Boltzmann Exploration in a full-observable states domain which

ombines Softmax and value-based adaptive 𝜖-greedy. Tokic and Palm
4] compared this novel strategy with constant 𝜖-greedy, VDBE, and
oftmax regardless of decreasing 𝜖-greedy and other adaptive strate-
ies. Cruz et al. [7] studied the effect of many exploration strategies.
mong others, the baseline form of 𝜖-greedy and Softmax with the
2

xtensions proposed by Tokic and Palm [4] and Tokic [3]. Our work
extends the previous analysis by investigating the impact of other tech-
niques such as Max-Boltzmann Exploration and Decreasing 𝜖-greedy
strategy, where the decreasing linear equations assume changes in
slope depending on the progress in the training learning. Furthermore,
we analyzed all these methods in order to evaluate the balance of
exploration–exploitation trade-off on a partially observable system.

2.2. Function gradient-based RL

The success of RL in decision-making has recently enticed re-
searchers to apply Deep Q-Learning (DQL) methods on video games
and autonomous driving tasks, which all require Convolutional Neural
networks to approximate value functions with image-based states.
In literature, there are several models used to estimate Q-values in
discrete control systems which could be based on Full and Partial
observability of the states. Minwoo et al. [8] suggested the extension
of Deep Q-Network (DQN) approach, like Double Deep Q-Network
(DDQN) and Double Dueling Deep Q-Network (D3QN), to find the
optimal action avoiding obstacles on autonomous drone. Minwoo et al.
[8] showed that DDQN and D3QN overcome the performance of the
baseline DQN structure, in which D3QN learns better policies than
other methods. Several works [9–13] evaluated Deep Q-Learning in
several RL applications. However, DQN and its extensions assume the
full observability of the states that fall in the real world and, in gen-
eral, 3D environment. The real-world environment is characterized by
uncertainty whereas a system based on full observability fails to capture
the true dynamics as there might be noisy sensors, missing information
about the state, or outside interferences. Hausknecht and Stone [14]
proposed two main sampling methods of Deep Recurrent Q-Learning
(DRQL) and they used Bootstrapped Random Updates from memory
replay for Neural Network weight optimization. Moreover, Hausknecht
and Stone [14] compared DQN and Deep Recurrent Q-Network (DRQN)
methods on two game environments, where DRQN performed both well
and poorly. In fact, Hausknecht and Stone [14] showed how DRQN
updates might trigger some problems with the learning of functions
which could be reflected in the final performance. Other papers [15–
18] compared Deep Q-Network and Deep Recurrent Q-Network in
different fields to evaluate the performance on a partially observable
domain. However, most of these studies did not achieve good results
when systems were based on hidden states. Lample and Chaplot [2]
proposed a novel method for Deep Recurrent Q-Network so as to
overcome challenges during the agent’s update. Consistently, Lample
and Chaplot [2] proposed a technique based on an error mask in
the optimization phase in order to update neural network weights
with enough history of observations. Lample and Chaplot [2] tested
their techniques coupled with Bootstrapped Sequential Update as a
sampling strategy. In this work, we extend the contribution of Lample
and Chaplot [2] to Bootstrapped Random Update sampling strategy.

2.3. Autonomous driving

The use of Convolutional Neural Network (CNN) in Autonomous
Driving has been a topic of great interest in recent years. Some works
have applied Deep Reinforcement Learning in order to automate ve-
hicle and process images with more scalability. Several researchers
studied autonomous driving tasks by using simulators that generate
iterative images and perform actions in real time. Wu et al. [19]
and Santara et al. [20] considered TORCS simulator platform to build
DRL frameworks. Generally, TORCS is used to simulate a car racing
environment, which is useful for managing and training the agent in
situations where other cars are present. However, a car racing environ-
ment does not include several real-world peculiarities like parked cars,
static obstacles, animals, and vegetation. Xiao et al. [21] and Michel-
more et al. [22] show the results obtained by two different DRL
frameworks using CARLA simulator. In comparison to TORCS, CARLA

provides environments that are visually closer to reality. AirSim and

Knowledge-Based Systems 293 (2024) 111663V. Zangirolami and M. Borrotti

c

3

e
a
I
p
i
t
e
t

𝜋

w

3

s
o
(
t
s
a

A
Q
t
f
i

4

d
a
p
e
a
i
t
r
m
t
e
m
p
A
w

CARLA are very similar, which is the reason why Pilz et al. [23]
assigned positive ratings to these two simulators in terms of interface
compatibility, access to ego vehicle data, access to nonego vehicle
data, access to pedestrian data, detail and variety of sensors, detail
of the rendered graphics, detail of the physics engine and cost effi-
ciency. In the literature, there are some works on DRL for autonomous
driving. Riboni et al. [24] compared DDQN and D3QN models with
transfer learning techniques via decreasing 𝜖-greedy in order to evalu-
ate collision avoidance performance assuming a discrete action space
of the steering angle. Deshpande et al. [25] proposed a DRQN model
with descending 𝜖-greedy to control car’s steering angle and speed,
as Liao et al. [26] compared DQN and DDQN models for the same
objective. Our study aims to overcome these papers by considering
several exploration strategies on a partially observable system, which
proves a central issue in dealing with 3D environments. Moreover,
previous works only considered deterministic strategies for balancing
exploration, which may not have been efficient in approximating agent
uncertainty because of a 𝜖 exogenous.

3. Background and preliminaries

In this section we delve into the concept of exploration within
reinforcement learning, presenting prior frameworks addressing sim-
ilar challenges. We subsequently introduce fundamental notions and
theoretical background of reinforcement learning, emphasizing its ap-
plication in partially observable environments and exploring the realm
of deep recurrent reinforcement learning.

3.1. Multi-armed bandits and contextual bandits

The multi-armed bandit problem (Rodman [27], Whittle [28],
Bubeck and Cesa-Bianchi [29]) is the simplest framework that en-
compasses the key issue of balancing exploration and exploitation. In
the aim of maximizing the cumulative discounted future rewards,
the current decision about the action to be taken revolves around
a dilemma: yielding the highest reward (exploitation) or exploring
new actions (exploration) thereby gaining additional knowledge for
improving future decisions.

The stochastic multi-armed bandit problem could be represented by
a set of actions  = {1,… , 𝐾}, an agent which should select one action
(or arm) at every time step 𝑡 until a finite horizon 𝑡 = 1,… , 𝑇 and a
sequence 𝑟𝑘,1,… , 𝑟𝑘,𝑇 of unknown rewards associated with each arm 𝑘.
Hence, at each time step 𝑡 an agent, after choosing an action 𝑎𝑡, receives
a reward 𝑟𝑎𝑡 ,𝑡 which is drawn from an unknown probability distribution
𝑅𝑎𝑡 (independently from the past). The effectiveness of the agent’s strat-
egy is evaluated by comparing it with the optimal action in expectation,
with the aim of minimizing the pseudo-regret. The stochastic contextual
bandit enriches the multi-armed bandit framework by incorporating
context sets . The new objective of an agent is to identify the optimal
policy within a class of policies that maps the context to the action.

3.2. Reinforcement learning

Multi-armed bandit and contextual bandit frameworks can be seen
as particular cases of a full reinforcement learning problem. RL (Kael-
bling et al. [30], Sutton and Barto [31]) is formulated as (completely
observed) Markov Decision Process (MDP), where current actions can
affect the next states. A MDP describe a decision-making process and it
can be defined as a tuple ( ,,  ,, 𝛾), where  is a set of states which
contain information about the environment for each time step,  is a
set of potential actions to be taken based on the states received by an
agent and  is a set of rewards. 𝑇 is a set of the transition probabilities
𝑇𝑠𝑎𝑠′ = P(𝑆𝑡 = 𝑠′|𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎) describing the dynamics of
the environment, and 𝛾 ∈ (0, 1) is a discount factor which is used to
compute discounted return.
3

f

The most popular RL methods, such as Deep Q-learning, involve
action-value functions 𝑄𝜋 (𝑠, 𝑎) = E𝜋 [

∑𝑇−1
𝑘=0 𝛾𝑘𝑅𝑡+𝑘+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

to encode the policy 𝜋, which maps the states to the probabilities of
selecting each action 𝑎 ∈ . To solve the RL problem, the aim is to
find a class of optimal policies that corresponds to finding the optimal
action-value function 𝑄∗(𝑠, 𝑎) = max𝜋 𝑄𝜋 (𝑠, 𝑎). Hence, an optimal policy
an be reached by 𝜋∗(𝑎|𝑠) ∈ argmax𝑎 𝑄∗(𝑠, 𝑎).

.3. Exploration strategies

Exploration strategies are employed to balance the exploration–
xploitation trade-off in the above settings. The most popular methods
re, among others, 𝜖-greedy, softmax, and Max-Boltzmann methods.
n the case of Deep Q-learning (assuming full observable states), ex-
loration strategies lead to exploring new actions rather than follow-
ng a greedy policy, concerning the optimal action-value function,
hroughout the process. For instance, 𝜖-greedy techniques balance the
xploration–exploitation trade-off through a probability 𝜖 ∈ (0, 1) such
hat

𝜖(𝑎|𝑠) =

⎧

⎪

⎨

⎪

⎩

1 − 𝜖𝑡 +
𝜖𝑡
||

, if 𝑎∗ = argmax𝑎∈ 𝑄(𝑠, 𝑎)
𝜖𝑡
||

, otherwise
, (1)

where 𝑡 = 1,… , 𝑇 refers to time steps. Softmax exploration encompasses
Boltzmann distribution function such that

𝜋𝐵(𝑎|𝑠) =
𝑒
𝑄(𝑠,𝑎)

𝜅

∑

𝑙∈ 𝑒
𝑄(𝑠,𝑙)
𝜅

, (2)

here 𝜅 regulates the trade-off between exploration and exploitation.

.4. Recurrent reinforcement learning

Recurrent Reinforcement Learning is formulated as Partially Ob-
ervable Markov Decision Process (POMDP), which deals with partially
bservable states instead of fully observable states as in MDP. POMDP
Hauskrecht [32]) can be seen as a generalization of MDP, allowing
o model and reason about the uncertainty on the current state of the
ystem in sequential decision problems (Ross et al. [33]). It is defined
s a tuple ( ,,,,  ,, 𝛾), where  is a set of observations and 

is the set of observation probabilities 𝑂𝑠𝑎𝑧 = P(𝑍𝑡 = 𝑧|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎).
s in the previous case, Deep Q-learning encodes the policy by using
-values which are estimated through a Deep Neural Network. Hence,

he optimal policy can be reached by finding the optimal action-value
unction 𝑄∗(ℎ, 𝑎) = max𝜋 𝑄𝜋 (ℎ, 𝑎), where 𝐻𝑡−1 = ℎ is the previous
nformation state.

. Deep recurrent Q-learning for autonomous driving

In this section, we outline the proposed approach, based on a
eep recurrent reinforcement learning framework, as a solution to
utonomously control the steering angle of cars. Concurrently, we com-
are several exploration strategies to achieve an improved balance of
xploration–exploitation trade-off, intending to enhance obstacle avoid-
nce performance (Section 5). We also enrich our proposed method by
ncorporating task-specific rewards and implementing pre-processing
echniques on the states. Fig. 1 shows the agent’s network, the state
epresentation, and the action set which are involved in the reinforce-
ent learning framework. At each step, 𝑡, the state 𝑠𝑡 is processed by

he agent’s network (in Fig. 1) which is used to estimate Q-values for
ach action. The agent chooses the action 𝑎𝑡 which corresponds to the
aximum of Q-values. Then, the reward value 𝑟𝑡 is computed, and
erforming the action 𝑎𝑡, the environment provides the next state 𝑠𝑡+1.
t a specific moment of the process, the agent’s network is updated
ith traces of experience samples in a Bootstrapped Random Update
ashion (Section 4.3).

Knowledge-Based Systems 293 (2024) 111663V. Zangirolami and M. Borrotti
Fig. 1. Convolutional neural network with LSTM layer. Each pre-processed input image was processed by three convolutional layers and the resulting activations were performed
through LSTM layer. Q-values were estimated by dividing the latter output into advantage and value fully-connected layers respectively and combining them together.
Fig. 2. Pre-processing of car’s front camera images. The two-step pre-processing procedure is illustrated. Initially, each input image undergoes cropping at the top and bottom to
concentrate the view of the road. Subsequently, downsampling is employed on the images before feeding them into the neural network.
4.1. Observation space

In our framework, the observations are represented by images cap-
tured by the car’s front camera, extracting information from the sur-
rounding environment. At each time step, an image is collected, pro-
viding a snapshot of the current road conditions ahead of the car. To
highlight the road and the related obstacles, each image has been pre-
processed by using cropping techniques. Additionally, to streamline
image processing and reduce dimensionality, we apply downsampling
on the cropped images, effectively eliminating non-essential informa-
tion (see Fig. 2). The resulting size corresponds to 200 × 66 pixels.

4.2. Action space and reward

To avoid obstacles, we consider a set of discrete actions, each
representing distinct values for the car’s steering angle. The action set
 = {−1,−0.5, 0, 0.5, 1} encompasses two levels of left steering, straight-
ahead steering, and two levels of right steering. When an action is
chosen, the car performs the related steering while keeping a constant
speed.

We define a task-specific Reward by incorporating a measure of the
distance between the position of the car (𝑥𝑒) and the center of the roads
(𝑥𝑟), such that

𝑟(𝑠, 𝑠′, 𝑎) = 𝑒−𝑐 ⋅ ‖𝑥𝑒−𝑥𝑟‖, (3)

where 𝑐 is a positive constant and 𝑟 ∈ [0, 1] is the reward function. This
formulation, proposed by Riboni et al. [24], and devised by Spryn et al.
[34], is used to measure the goodness of steering angle actions, where
the best action is achieved when the car is placed in the center of the
road.

4.3. Agent’s architecture

We consider the Double Dueling Deep Recurrent Q-Network archi-
tecture as the agent’s network, where the weights are updated by using
Bootstrapped Random Update. We propose to combine a modified loss
function which leads to update weights only for the last observations
of the episode trace (Lample and Chaplot [2]).
4

The agent’s network combines convolutional and LSTM layers to
estimate advantage 𝐴(ℎ𝑡, 𝑎; 𝜗, 𝛼) and value function 𝑉 (ℎ𝑡; 𝜗, 𝛽) for ob-
taining Q-value estimates (see Fig. 1) such that

𝑄(ℎ𝑡, 𝑎; 𝜃) = 𝑉 (ℎ𝑡; 𝜗, 𝛽) +
(

𝐴(ℎ𝑡, 𝑎; 𝜗, 𝛼) −
1
|𝐴|

⋅
∑

𝑎′
𝐴(ℎ𝑡, 𝑎′; 𝜗, 𝛼)

)

, (4)

where 𝜃 = (𝜗, 𝛽, 𝛼) are the weights of the main network. The weights
of the main network are updated by using a modified quadratic loss
function, which is defined as

𝐿(𝜃𝑖) =

{

0, if 𝑖 ≤ 𝑛𝑒𝑟𝑟
𝐸(𝑜𝑡 ,𝑎𝑡 ,𝑟𝑡 ,𝑜𝑡+1)

[

(𝑦𝑖 −𝑄(ℎ𝑡, 𝑎𝑡; 𝜃𝑖)2)
]

, otherwise
, (5)

where 𝑖 = 1,… , 𝑇 are the time steps of the LSTM layer. 𝜃, 𝜃′ are
the weights of the main network and the target network, respectively.
𝑛𝑒𝑟𝑟 is the number of errors masked. The target 𝑦𝑖 are estimated using
a double estimator, as 𝑦𝑖 = 𝑟𝑡 + 𝛾𝑄(ℎ𝑡+1, argmax𝑎 𝑄(ℎ𝑡+1, 𝑎; 𝜃𝑖); 𝜃′𝑖).
During the weights updating process, Bootstrapped Random Updates
are used as a sampling method. The choice of this method requires
the LSTM’s hidden state to be zeroed at the beginning of each update,
and this peculiarity can make the learning of recurrent neural networks
harder [14]. Consequently, to mitigate this challenge, only accurate
gradients are propagated at each agent update through the network
masking the first losses, to guarantee the update of the states with
sufficient history [2]. The sample sequences are built by randomly
drawing out episodes from the experience replay, followed by the
definition of an experience trace. The length of this experience trace
is regulated by a specific parameter, and the initial state is randomly
selected from the sampled sequences (see Algorithm 1). Finally, the
target network weights are updated by using the following rule

𝜃′ = 𝜃 ⋅ 𝜂 + 𝜃′ ⋅ (1 − 𝜂) , (6)

where 𝜂 is a parameter that regulates the proportion of main network
weights involved in the updated target network weights.

5. Exploration strategies for recurrent learning

The behavioral policies of our agents are contingent upon the
selected exploration strategy. Together with the proposed method for
autonomous driving (see Section 4.3), we conduct a comparative anal-
ysis of various exploration strategies, encompassing both deterministic

Knowledge-Based Systems 293 (2024) 111663V. Zangirolami and M. Borrotti

n

5

𝜖
o
t
m

w
t

5

d
a

Algorithm 1 Bootstrapped Random Update with masking of errors
Buffer Size n, Trace Length t, Batch Size b, Loss Function L
Neural Network (Main) MN, Neural Network (Target) TN
Replay Memory  = {𝑡,,𝑡+1,,  }
if 𝑙𝑒𝑛𝑔𝑡ℎ() ≥ 𝑛

2 then ⊳ Update starts
sample_episode = random_sample(𝑡, n_sample = 𝑏) ⊳ Indicator

of episodes
end if
for i in sample_episode do ⊳ Sampling

sample_step = random_sample(𝑡[i,], n_sample = 1)
trace(𝑡)= 𝑡[i, sample_step : sample_step+t] ⊳ For each element

of 
end for
𝑚𝑎𝑖𝑛_𝑄 = MN(trace(𝑡+1)) ⊳ According to (4)
𝑡𝑎𝑟𝑔𝑒𝑡_𝑄 = TN(trace(𝑡+1)) ⊳ According to (4)
𝑑𝑜𝑢𝑏𝑙𝑒_𝑄 = 𝑡𝑎𝑟𝑔𝑒𝑡_𝑄[, argmax𝑎 𝑚𝑎𝑖𝑛_𝑄] ⊳ 𝑎 ∈ 
𝑌 = 𝑡𝑟𝑎𝑐𝑒() + 𝛾 ⋅ 𝑑𝑜𝑢𝑏𝑙𝑒_𝑄 ⋅ (1 − 𝑡𝑟𝑎𝑐𝑒())
𝑄 = max𝑎MN(𝑡𝑟𝑎𝑐𝑒(𝑡))

𝐿𝑗 =
∑𝑡

𝑖=1 𝑤𝑖⋅(𝑌𝑗,𝑖−𝑄𝑗,𝑖)2

𝑡 ⊳ 𝑤𝑖 ∈ {0, 1} with (5) condition; ∀𝑗 ∈ {1,… , 𝑏}

and adaptive approaches. Therefore, we present a theoretical overview
of these strategies within deep recurrent reinforcement learning. We
consider many 𝜖-greedy and softmax methods, as well as their combi-
nations. Within a partial observable process, the 𝜖-greedy policy can be
defined as

𝑎𝑡 =

{

argmax𝑎 𝑄𝑡(ℎ𝑡, 𝑎), with probability 1 − 𝜖
any action(a), with probability 𝜖

. (7)

The 𝜖-greedy strategy balances exploration and exploitation by employ-
ing 𝜖, which represents the exploration probability at each step. During
the exploration phase, actions are selected randomly. Hence, how to
adjust the 𝜖 probability poses one of the greatest challenges of RL, since
it measures the degree to which the RL process should explore. The 𝜖-
greedy is widely used and can be adapted in various forms depending
on how 𝜖 is determined, thus considering deterministic or stochastic
approaches. However, a notable drawback of this strategy concerns the
random policy during the exploration phase. Although exploration is
intended to facilitate the discovery of new actions for optimal decision-
making in the future, the use of a random policy introduces the risk of
obtaining significantly worse actions. To address this issue, we com-
pare 𝜖-greedy strategies with Softmax and Max-Boltzmann Exploration
methods.

Softmax is based on a different policy in which actions are drawn
out from Boltzmann distribution. In the case of Deep Recurrent Q-
Learning, we can define the Softmax policy as

𝜋𝐵(𝑎|ℎ𝑡) =
𝑒
𝑄(ℎ𝑡,𝑎)

𝜅

∑

𝑏 𝑒
𝑄(ℎ𝑡,𝑏)

𝜅

. (8)

Despite this, the Softmax method entails continuous exploration
throughout the process, wherein the degree of separability from a
completely random policy is regulated by 𝜅, known as the temperature,
ot leaving the possibility of integrating the greedy actions.

.1. Deterministic 𝜖-greedy

Using a deterministic strategy for 𝜖-greedy, the evolution of the
probability is fixed and exogenously defined independently of the

ngoing process. We explore two deterministic approaches, including
he simplest form known as constant 𝜖-greedy. However, the latter
ay fall short of defining an optimal policy as it keeps the 𝜖 proba-

bility constant over time, resulting in the same amount of exploration
throughout the process. Indeed, in the initial stages of learning, the
agent should require more exploration than in the final stages due
5

b

to the agent’s greater uncertainty. To address this, we introduce an
alternative deterministic approach where 𝜖 is modeled as a linear
equation, the so-called Decreasing 𝜖-greedy, allowing it to adapt based
on the evolving dynamics of the process [24]. This method adjusts the
decrease rate for 𝜖, tailoring it differently for each number of steps. The
system of the equations describing 𝜖 is given by

𝜖𝑡 =

⎧

⎪

⎨

⎪

⎩

1, if 𝑋𝑠𝑡𝑒𝑝𝑠 ≤ 𝑛𝑠𝑡𝑎𝑟𝑡
𝛿0 + 𝛿1 ⋅𝑋𝑠𝑡𝑒𝑝𝑠, if 𝑋𝑠𝑡𝑒𝑝𝑠 > 𝑛𝑠𝑡𝑎𝑟𝑡 + 𝜖𝑎𝑛𝑛
𝜋0 + 𝜋1 ⋅𝑋𝑠𝑡𝑒𝑝𝑠, otherwise

, (9)

where 𝑋𝑠𝑡𝑒𝑝𝑠 represents the current step number, 𝜋0, 𝜋1 are the in-
tercepts and 𝛿0, 𝛿1 are the slopes of the two linear functions. These
coefficients are derived from the following equations

𝜋0 = 𝜖𝑠𝑡𝑎𝑟𝑡 − 𝜋1 ⋅ 𝑛𝑠𝑡𝑎𝑟𝑡 , (10)

𝜋1 = −
𝜖𝑠𝑡𝑎𝑟𝑡 − 𝜖𝑙𝑎𝑠𝑡

𝜖𝑎𝑛𝑛
, (11)

𝛿0 = 𝜖𝑒𝑛𝑑 − 𝛿1 ⋅ 𝑛𝑚𝑎𝑥 , (12)

𝛿1 = −
𝜖𝑙𝑎𝑠𝑡 − 𝜖𝑒𝑛𝑑

𝑛𝑚𝑎𝑥 − 𝜖𝑎𝑛𝑛 − 𝑛𝑠𝑡𝑎𝑟𝑡
. (13)

The 𝜖 probability is formulated using two different equations to
get a different balance of the exploration–exploitation trade-off. The
change point is built upon 𝜖𝑎𝑛𝑛 parameter (expressed in frames), which
specifies the number of steps after which 𝜖 should decrease more
slowly. This method is indeed characterized by two linear trends: the
initial phase is governed by a steeper decrease with higher values of 𝜖,
while the final phase adopts a more gradual trend with lower values of
𝜖.

To gather sufficient experience memory, all exploration strategies
are modified to ensure an initial phase of full exploration. The parame-
ter 𝑛𝑠𝑡𝑎𝑟𝑡 represents the upper limit in terms of steps that define the end
of full exploration.

5.2. Value-difference based exploration

The VDBE strategy, introduced by Tokic [3] in Q-learning sce-
nario, revolves around adjusting the 𝜖 probability based on Temporal
Difference (TD) errors computed during the learning process. Unlike
deterministic methods, VDBE is a data-driven 𝜖-greedy approach that
dynamically updates 𝜖 using information gained from the agent’s learn-
ing. In this work, we extend this method to a Deep Q-learning scenario
and specifically to the recurrent case. We consider a value of 𝜖 to be
updated for each epoch as the difference between the previous 𝜖 value
and a new piece of information obtained by the Boltzmann distribution
function, as

𝑓 (ℎ, 𝑎, 𝜈) = 1 − 𝑒−
𝛥𝑒𝑟𝑟
𝜈

1 + 𝑒−
𝛥𝑒𝑟𝑟
𝜈

, and (14)

𝜖𝑡+1 = 𝜆 ⋅ 𝑓 (ℎ, 𝑎, 𝜈) + (1 − 𝜆) ⋅ 𝜖𝑡 , (15)

where 𝜆 and 𝜈 respectively consist of the weights of the selected
action and the inverse of sensitivity, which always expresses a positive
constant. We define 𝛥𝑒𝑟𝑟 as the difference between the optimal Q-values
obtained after and before the update, such that

𝛥𝑒𝑟𝑟 = 𝑄𝑝(ℎ𝑡, 𝑎∗) −𝑄𝑝−1(ℎ𝑡, 𝑎∗) , (16)

here 𝑝 = (0, 1,… , 𝑛) are the n-epochs of the neural network and 𝑎∗ is
he optimal action chosen at the current step.

.3. Bayesian model combination

Similar to VDBE, 𝜖-Bayesian Model Combination (BMC) is a data-
riven 𝜖-greedy strategy that dynamically updates the 𝜖 value based on
gent’s data acquired during the RL process. The approach, proposed

y Gimelfarb et al. [5], adopts a Bayesian perspective instead of relying

Knowledge-Based Systems 293 (2024) 111663V. Zangirolami and M. Borrotti

l
w
t

𝐺

T

t
u

E

E
D
t
E

E

S
t

e

𝑚

𝑣

T
c
g
a
c
e
u
f
t
w
E
t
e

w
r
T
f

6

p
d
g
t
s
i
p
o
s
u
i
o
G
P

on a heuristic approach, as seen in VDBE, for parameter tuning. 𝜖-BMC
everages the strengths of Bayesian Model Combination, allowing a
eighted combination of models. Specifically, such weights correspond

o 𝜖 and (1 − 𝜖), as follows

̃ = (1 − 𝜖) ⋅ 𝐺̃𝑄 + 𝜖 ⋅ 𝐺̃𝑈 , (17)

where 𝐺̃𝑄 e 𝐺̃𝑈 are, respectively, the two different models practiced in
𝜖-greedy strategy: greedy and uniform, represented by

𝐺̃𝑄 = 𝑟𝑡+1 + 𝛾 max
𝑎′∈𝐴

𝑄𝑡(ℎ𝑡+1, 𝑎′) , (18)

𝐺̃𝑈 = 𝑟𝑡+1 + 𝛾 1
|𝐴|

∑

𝑎′∈𝐴
𝑄𝑡(ℎ𝑡+1, 𝑎′). (19)

Gimelfarb et al. [5] emphasized the distinction between the 𝜖-BMC
strategy and Bayesian Q-learning, wherein Q-values are modeled us-
ing Normal-Gamma priors. 𝜖-BMC strategy concentrates solely on the
variance distribution, employing Normal-Gamma prior. This method
offers several advantages, including theoretical convergence guarantees
within Q-learning. Furthermore, it proves to be a robust and efficient
strategy for providing a good exploration balance.

Assuming a Normal distribution for return observations 𝑄ℎ,𝑎, ex-
pressed as

𝑄ℎ,𝑎|𝑚, 𝜏 ∼ 𝑁(𝐺̃𝑚
𝑡 , 𝜏

−1) , (20)

where 𝑚 denotes the model chosen (greedy or uniform) and 𝜏−1 rep-
resents the precision, alongside adopting a Normal-Gamma model for
these parameters, results in the derivation of a Normal-Gamma pos-
terior distribution. As mentioned earlier, this approach specifically
centers on the prior distribution of return variance. By marginalizing
the Normal-Gamma posterior, the resulting marginal distribution of 𝜏,
with parameters 𝑎𝑡 and 𝑏𝑡, corresponds to

𝜏|𝐷 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑎𝑡, 𝑏𝑡) , and (21)

𝑎𝑡 = 𝑎0 +
𝑡
2
, 𝑏𝑡 = 𝑏0 +

𝑡
2
(

𝜎̃2𝑡 +
𝜏0

𝜏0 + 𝑡
(𝜇̂𝑡 − 𝜇0)2

)

. (22)

he parameters 𝜇̂𝑡 and 𝜎̃2𝑡 are calculated as the mean and the variance
of the data of previously observed returns 𝐷 = {𝑄ℎ𝑖 ,𝑎𝑖 ,𝑖, 𝑖 = 1,… , 𝑡 −
1} [5]. Consequently, in order to obtain the distribution of 𝑄ℎ,𝑎|𝑚,𝐷
by marginalizing over 𝜏, it is possible to obtain t-distributed likelihood
function as

𝑃 (𝑄ℎ,𝑎|𝑚,𝐷) = ∫

∞

0
𝑃 (𝑄ℎ,𝑎|𝑚, 𝜏)𝑃 (𝜏|𝐷) 𝑑𝜏. (23)

Solving Eq. (23), the kernel of a T-Student with three parameters
(𝐺̃𝑚

𝑡 ,
𝑎𝑡
𝑏𝑡
, 2𝑎𝑡) is identified. Given the last result in Eq. (23), Gimelfarb

et al. [5] computed the equation for obtaining the expected return
E[𝑄ℎ,𝑎|𝐷] which involves the posterior distribution of 𝑤|𝐷. This dis-
ribution characterizes the weights assigned to the greedy (18) and
niform model (19). The expected return is given by

[𝑄ℎ,𝑎|𝐷] = ∫

1

0
E[𝑄ℎ,𝑎|𝑤,𝐷]P(𝑤|𝐷) 𝑑𝑤. (24)

q. (24) combines the estimates of Q-values, derived from the Double
ueling Deep Recurrent Q-Network model and the uniform model, and

he weights, which could be used to find a value for 𝜖. Consequently,
q. (24) can be reformulated as

[𝑄ℎ,𝑎|𝐷] = (1 − E[𝑤|𝐷])𝐺̃𝑄
𝑡 + E[𝑤|𝐷]𝐺̃𝑈

𝑡 . (25)

ubsequently, the study proceeds to determine the posterior distribu-
ion of the weights to establish a rule for updating 𝜖. Since the Eq. (25),
𝜖 can be expressed as 𝜖𝑡 = E[𝑤|𝐷]. Based on this result, Gimelfarb et al.
[5] used a technique (i.e. Dirichlet Moment-Matching) to approximate
the posterior distribution for finding out the expected value of 𝑤|𝐷,
such that

𝜖𝐵𝑀𝐶 ≈ 𝐸𝐵𝑒𝑡𝑎(𝛼 ,𝛽)[𝑤|𝐷] =
𝛼𝑡 . (26)
6

𝑡 𝑡 𝑡 𝛼𝑡 + 𝛽𝑡 u
Beta parameters (i.e. 𝛼𝑡 and 𝛽𝑡) are obtained by the following system of
quations

𝑡 =
𝛼𝑡

𝛼𝑡 + 𝛽𝑡 + 1
𝑒𝑈𝑡 (𝛼𝑡 + 1) + 𝑒𝑄𝑡 𝛽𝑡

𝑒𝑈𝑡 𝛼𝑡 + 𝑒𝑄𝑡 𝛽𝑡
, (27)

𝑡 =
𝛼𝑡

𝛼𝑡 + 𝛽𝑡 + 1
𝛼𝑡 + 1

𝛼𝑡 + 𝛽𝑡 + 2
𝑒𝑈𝑡 (𝛼𝑡 + 2) + 𝑒𝑄𝑡 𝛽𝑡

𝑒𝑈𝑡 𝛼𝑡 + 𝑒𝑄𝑡 𝛽𝑡
, (28)

𝑟𝑡 =
𝑚𝑡 − 𝑣𝑡
𝑣𝑡 − 𝑚2

𝑡
, (29)

𝛼𝑡+1 = 𝑚𝑡 ∗ 𝑟𝑡 , (30)

𝛽𝑡+1 = (1 − 𝑚𝑡) ∗ 𝑟𝑡 , (31)

where 𝑒𝑈𝑡 and 𝑒𝑄𝑡 are the evidence of a return under the distribution of
𝑄ℎ,𝑎|𝑚,𝐷 [5].

5.4. Max-Boltzmann Exploration

The fundamental idea behind Max-Boltzmann Exploration (MBE) is
to leverage the Softmax policy for exploring actions, so as to balance
exploration–exploitation trade-off with 𝜖-greedy to take advantage of
the strengths of both strategies. This approach was proposed by Wiering
[35] and it integrates 𝜖-greedy strategy with a difference in action
sampling in the exploration phase, where actions are sampled over
Boltzmann probability distribution as in Softmax policy. Indeed, at each
time step, the action can be selected according to the following rule

𝑎𝑡 =

{

argmax𝑎 𝑄𝑡(ℎ𝑡, 𝑎), with probability 1 − 𝜖
Softmax policy, with probability 𝜖

. (32)

he Max-Boltzmann policy effectively addresses a limitation of 𝜖-greedy
oncerning the exploration probability distribution. The classical 𝜖-
reedy exploration assigns equal probabilities to all actions, thereby
ssigning too large probabilities to explore worse actions [35]. In
ontrast, including a Softmax policy into the 𝜖-greedy method, can
stablish a probability distribution that deviates significantly from a
niform distribution, thereby avoiding a substantial decline in per-
ormance. The degree of separability from the uniform distribution is
ied to the temperature parameter: with a high 𝜏, the Softmax policy
ill converge to a random policy. On the other hand, Max-Boltzmann
xploration considers a probability of exploration by 𝜖 that overcomes
he Softmax method, providing the flexibility to choose the extent of
xploration.

An improvement of MBE could be drafted by VDBE-Softmax,
herein the 𝜖 probability is adjusted using the VDBE method, thus

esulting in a heuristic strategy grounded in a data-driven approach [4].
he 𝜖 update is regulated like Eq. (15), totally integrated in MBE
ramework.

. Experimental settings and simulation platform

In this section, we describe the experimental settings of our pro-
osed method using AirSim as a simulation platform for autonomous
riving. Specifically, our emphasis is on evaluating exploration strate-
ies with both deterministic and adaptive approaches while controlling
he performance in terms of collision avoidance. To conduct our analy-
is, at the beginning of the process, we position the car at specific points
n the environment by randomly drawing out the coordinates from a
redefined set of starting points. Hence, we assess the performance
f RL agents in terms of learning, employing a set of ten training
tarting points. Additionally, we evaluate the predictive capabilities
sing another set of ten starting points (test set). The RL processes
nvolve 1 million steps and each episode ends when a collision event
ccurs. The experiments were executed on a virtual machine with two
PUs Tesla M60 and Linux OS. AirSim simulator has been connected to
ython. TensorFlow Compact V2, OpenAI, and OpenCV packages were

sed.

Knowledge-Based Systems 293 (2024) 111663V. Zangirolami and M. Borrotti
Fig. 3. AirSim NH environment. The neighborhood environment is shown through the
AirSim simulation platform.

Table 1
Hyper-parameters of Double Dueling Deep Recurrent Q-Network.

Hyper-parameter Range Unit

Buffer size {1000; 2000} Episode
Batch size 10 Episode
Update rate 4 Step
Trace length 10 Step
Error masked 7 Step
State updated 3 Step
Starting update 999 Episode
End process 1,000,000 Step

6.1. AirSim simulator: Neighborhood environment

As previously mentioned, we use AirSim simulator to train and
test Deep Double Dueling Recurrent Q-Learning models for learning
self-driving cars. AirSim is an open-source program based on Unreal
Engine, which offers various environments with several landscapes.
With the aim of learning models for collision avoidance, we chose
the AirSim NH environment. This environment represents a small,
simplified, urban neighborhood with a rectangular shape. AirSim NH
features a main street connected with side streets, including elements
such as trees, parked cars, shadows, and lights, mimicking real-world
scenarios (see Fig. 3). Shah et al. [36] provided an extensive analysis of
AirSim highlighting its provision of realistic environments both in terms
of physical and visual attributes. For executing Airsim, we employed
OpenGL drivers and established a connection with Python. Within
the environment, we set a single car, called PhysicXCar, along with
specifying a single weather condition.

6.2. Models experimental setup

To facilitate a comprehensive comparison and evaluation of explo-
ration strategies, we considered a predefined set of parameters based
on Riboni et al. [24] results.

In Table 1 the parameter settings for the Double Dueling Deep
Recurrent Q-Network algorithm1 are shown. We varied the buffer size
with two assigned values to assess the impact of experience buffer
size changes on neural network optimization. Additionally, we opted
for a soft update for the Target Network, where, at each updating
step, the weights of the Target Network are updated with 0.1% of the
main network weights. Furthermore, we initiated a completely random
process for the first Starting update episodes.

6.2.1. Exploration strategies
We tested seven different exploration strategies, as detailed in Sec-

tion 5, with a singular setting for each strategy. Table 2 shows all
parameter settings used in the respective fourteen tests.

In particular, the parameters of BMC method align with those con-
sidered by Gimelfarb et al. [5] in their experimental settings. Similarly,
the parameters of VDBE and VDBE-Softmax are based on experiments

1 The code is available at https://github.com/ValentinaZangirolami/DRL.
7

Table 2
Hyper-parameters of Exploration strategies.

Strategy Hyper-parameter Value

Constant, MBE 𝜖 0.05
Decreasing 𝜖-greedy 𝜖𝑠𝑡𝑎𝑟𝑡 1
Decreasing 𝜖-greedy 𝜖𝑙𝑎𝑠𝑡 0.1
Decreasing 𝜖-greedy 𝜖𝑒𝑛𝑑 0.01
VDBE, VDBE-Softmax 𝜈 1
VDBE, VDBE-Softmax 𝜆 0.2
BMC 𝛼0 , 𝛽0 25
BMC 𝑎0 , 𝑏0 250
BMC 𝜇0 0
BMC 𝜏0 1
Softmax, MBE, VDBE-Softmax 𝜅 0.1

carried out by Tokic [3] and Tokic and Palm [4]. While considering
an exploration strategy involving an update regulated by the VDBE
equation, the 𝜆 parameter was set equal to the inverse of the number
of actions, and 𝜈 was assigned to a value within the range, avoiding
extremes, as recommended by the authors. For Softmax, we assigned a
moderate value for 𝜅, following the results obtained by Tokic and Palm
[4]. Consequently, we extended this value to MBE and VDBE-Softmax.
Differently, the 𝜖 value assumed in constant 𝜖-greedy is based on the
values derived from the results of stochastic 𝜖-greedy methods. The
Decreasing 𝜖-greedy method required a change in the updated struc-
ture of D3RQN model, since dependents on steps instead of episodes.
Specifically, in Table 1 we set the starting point of the update to 999
episodes. In Decreasing 𝜖-greedy, this parameter is adjusted in steps
format (𝑛𝑠𝑡𝑎𝑟𝑡) in Eqs. (10) and (13). We assigned a value of 50,000
steps to the 𝑛𝑠𝑡𝑎𝑟𝑡 parameter and 400,000 steps for 𝜖𝑎𝑛𝑛. The remaining
parameters of the Decreasing 𝜖-greedy strategy are based on Riboni
et al. [24].

Furthermore, we standardized the management of 𝜖 across all meth-
ods. According to the Decreasing 𝜖-greedy strategy, we set 𝜖 equal to 1
to fill the experience buffer until the agent update starts.

6.3. Results and comparison

In this section, we present the results derived from the fourteen
Double Dueling Deep Recurrent Q-Network models (as the settings
outlined in Section 6) using the AirSim simulator, to evaluate the
impact of the seven exploration strategies and the two buffer capacities
on agent learning.

Fig. 4 illustrates the trends in terms of Reward values during the
training process. All models exhibit an increasing trend, indicative
of effective policy learning. However, deterministic strategies reach
lower average rewards than other strategies. An intriguing observa-
tion is the notable contrast between 𝜖-greedy strategies and those
employing the Softmax method for exploration, such as Softmax, MBE,
and VDBE-Softmax, which perform exceptionally well, reaching signifi-
cantly higher values in the final steps. This effect might be attributed to
the use of a different distribution function for exploration. As discussed
in Section 5, the 𝜖-greedy random policy may induce wrong actions,
thereby leading to a substantial worsening of performance and, thus,
the results obtained from the training may be misleading.

As illustrated in Fig. 5, stochastic strategies for 𝜖-greedy exhibit
very low values, even close to zero, whereas the deterministic method
consists of much higher values throughout the learning process. Despite
the VDBE-Softmax strategy being characterized by a Boltzmann distri-
bution function with 𝜏 equal to 0.1, thus being very far from uniform
distribution, the oscillation of 𝜖 is very similar to VDBE.

In Fig. 6, we analyze the spline of the loss differences for each
model. It should be noted that, in Deep Reinforcement Learning tasks,
the loss function is based on the difference between target values and
prediction values. It can be generally observed that the gap between
loss values before and after the update is too high with a larger size of

https://github.com/ValentinaZangirolami/DRL

Knowledge-Based Systems 293 (2024) 111663

8

V. Zangirolami and M. Borrotti

Fig. 4. Comparison of the exploration strategies with D3RQN agent. The training curves show the average reward per 100 episodes for each value of the buffer size. The horizontal
axis and the vertical axis indicate, respectively, the number of episodes and the average reward.

Fig. 5. Comparison of 𝜖 values for 𝜖-greedy and Max-Boltzmann methods. The horizontal axis and the vertical axis indicate, respectively, the number of environment steps and the
𝜖 value. Figure (a) shows 𝜖 values per steps for deterministic 𝜖-greedy strategies. Figure (b) shows 𝜖 values per step for adaptive 𝜖-greedy strategies (BMC and VDBE) distinguished
by buffer size. Figure (c) shows 𝜖 values per step for Max-Boltzmann Exploration methods (constant and VDBE) distinguished by buffer size.

Fig. 6. Comparison of training loss differences for each exploration strategy and buffer size. The vertical axis denotes spline values of the absolute difference between the previous
and the next loss. The horizontal axis indicates the training epochs.

Knowledge-Based Systems 293 (2024) 111663V. Zangirolami and M. Borrotti

M
E
a
b
f
a
t
𝜖
𝜖
n
t
m
T
r
t
a
k
t
t
p
I
p
t

Table 3
Training set evaluation. Performance of the agent over the training set with a buffer
size equal to 2000. The agent was evaluated with 30 trials for each of the 10 training
starting points. The agent performance is based on summary statistics of episode length
and the collision-free rate (CFR).

Strategy Average Standard deviation Min CFR

Decreasing 𝜖-greedy 1452.02 688.11 29 53.36%
Constant 𝜖-greedy 1317.61 736.28 64 44.41%
VDBE 1795.24 474.16 86 80%
BMC 1769.24 532.5 34 80.47%
Softmax 1802.86 487.04 43 81.69%
VDBE-Softmax 1917.26 325.36 81 91.92%
MBE 1798.32 488.14 79 81.54%

Table 4
Training set evaluation. Performance of the agent over the training set with a buffer
size equal to 1000. The agent was evaluated with 30 trials for each of the 10 training
starting points. The agent performance is based on summary statistics of episode length
and the collision-free rate (CFR).

Strategy Average Standard deviation Min CFR

Decreasing 𝜖-greedy 1465.30 690.08 46 53.66%
Constant 𝜖-greedy 1608.84 612.48 114 62%
VDBE 1728.66 565.27 71 76.09%
BMC 1973.01 219.75 7 97.62%
Softmax 1942.69 285.46 16 94.59%
VDBE-Softmax 1949.84 259.87 14 95.31%
MBE 1947.92 243.59 17 94.28%

Table 5
Test set evaluation. Performance of the agent over the test set with a buffer size
equal to 2000. The agent was evaluated with 30 trials for each of the 10 test starting
points. The agent performance is based on summary statistics of episode length and
the collision-free rate (CFR).

Strategy Average Standard deviation Min CFR

Decreasing 𝜖-greedy 1232.26 818.09 69 44.48%
Constant 𝜖-greedy 1240.52 744.12 41 35.73%
VDBE 1593.84 700.01 40 68.64%
BMC 1604.47 718.93 40 72.47%
Softmax 1666.6 655.72 92 75.92%
VDBE-Softmax 1609.05 749.3 84 75.85%
MBE 1561.56 731.04 92 69.31%

buffer of experience. Furthermore, loss differences are too high when
the agent improves performance in the long term.

In order to evaluate the goodness of steering angle prediction, we
reported a summary of the performance gained from 300 episodes that
were evaluated on 10 training starting points and on 10 test starting
points respectively. We used different statistical indicators (among
others, average, standard deviation, and minimum) of episode length
and Collision-Free Rate (CFR) to evaluate the performance.

The results illustrated in Tables 3 and 4 show that all strategies,
except VDBE, perform better with a smaller buffer size. In general,
Collision-free rate and the average of steps have higher values to-
gether with a reduction in episode length variability, especially for the
Softmax, VDBE-Softmax, MBE and 𝜖-greedy BMC methods.

In Tables 5 and 6, the results obtained by 300 episodes for each
model are exhibited. Since a single initial car position may not be
sufficient to represent the performance and the generalization, ten
different starting points are considered during testing.

We observed that performance remains very high on the test set,
with a tiny discrepancy in comparison with the training set. The only
drawback lies in the increasing step variability, which may suggest less
stability. Generally, Softmax and related methods have better perfor-
mance than 𝜖-greedy strategies, except for the BMC method. Finally, in
Fig. 7 we analyzed the optimality related to the action choice in order
to understand which model was able to maximize the reward function
9

at each step. o
Table 6
Test set evaluation. Performance of the agent over the test set with a buffer size
equal to 1000. The agent was evaluated with 30 trials for each of the 10 test starting
points. The agent performance is based on summary statistics of episode length and
the collision-free rate (CFR).

Strategy Average Standard deviation Min CFR

Decreasing 𝜖-greedy 1316.54 789.73 59 48.95%
Constant 𝜖-greedy 1508.11 722.97 29 59.79%
VDBE 1483.31 755.27 87 61.77%
BMC 1821.72 509.57 86 86.71%
Softmax 1724.11 641.66 48 82.25%
VDBE-Softmax 1791.01 573.97 90 87.54%
MBE 1738.52 636.68 87 84.14%

In general, the strategies that achieve the best results above involve
more optimal actions. BMC, Softmax, MBE, and VDBE-Softmax strate-
gies have a higher frequency of observations in the last bin, which
contains the highest reward values. Furthermore, almost all of the
methods have higher frequencies in the last bins when the buffer size
equals 1,000. Particularly, Max-Boltzmann Exploration is the strategy
that is most successful in terms of optimal actions, as almost 50% of
the reward values are within the range [0.75,1].

7. Conclusions

This work investigates exploration strategies within a recurrent DRL
framework addressing the issue of dealing with a lack of information
about the state while finding a proper balance of the exploitation–
exploration trade-off to relieve the uncertainty about the estimates.
Partially observable systems have been less explored within the au-
tonomous driving context, although they might be particularly suitable.
In general, recurrent neural networks with Bootstrapped Random Up-
dates often exhibit slow convergence bringing low learning efficiency
within the DRL scenario. In an attempt to mitigate this issue, we
combined the D3RQN model, featuring a Convolutional Recurrent Neu-
ral Network for estimating Q-values related to five steering angles,
with a modified loss to speed up the learning during the process.
Subsequently, several exploration strategies were evaluated to address
the exploration–exploitation dilemma, employing both deterministic
and adaptive approaches, among other 𝜖-greedy and Softmax. While
𝜖-greedy has been extensively studied in autonomous driving scenarios
with its popular strategy of decreasing 𝜖 over time, Softmax and adap-
tive methods remain less explored. Indeed, we used a modified VDBE
method for this framework as an adaptive strategy for 𝜖-greedy and

BE, the so-called VDBE-Softmax, together with the 𝜖-BMC method.
xperimental results under deterministic approaches showed Softmax
nd MBE outperformed 𝜖-greedy. However, adaptive strategies better
alance exploration, enhancing collision avoidance. Notably, the uni-
orm distribution used for sampling actions in 𝜖-greedy exploration
ppeared to impair the agent learning in the training process, leading
o worsening performance. Despite that, using Bayesian inference for
-greedy updating yielded good results, even though the estimation of
was close to zero after a few epochs and mitigating the potential

egative impact of random sampling. In fact, the exploration drives
he agent and hence the car to perform new steering angles which
ay be worse bringing the episode to an end because of the collision.
his behavior can be especially emphasized by using a completely
andom policy during exploration, instead of using more sophisticated
echniques, such as Softmax, which can be set to explore suboptimal
ctions avoiding worst actions, depending on its hyperparameter. These
inds of consequences are more close to our framework and in general
o autonomous control systems, where the exploration can be helpful
o find the best action introducing the risk of instability while the ex-
loitation may achieve acceptable performance and maintain stability.
n conclusion, the combination of Boltzmann distribution and 𝜖-greedy
roved effective in leading exploration and facilitating learning in
he environment, outperforming other methods and achieving more
ptimal actions.

Knowledge-Based Systems 293 (2024) 111663V. Zangirolami and M. Borrotti
Fig. 7. Comparison of test reward values for each exploration strategy and buffer size. Each barplot shows the percentage of reward values falling within each range. The horizontal
axis indicates different intervals of reward values in ascending order. The last bin contains the maximum values of reward meaning the optimal choices.
7.1. Current limitation and potential future enhancements

Our proposed autonomous driving framework may face challenges
when subjected to testing in real-world environments. Although we
studied the impact of balancing exploration and exploitation with
different techniques on choosing the optimal steering angles to avoid
collisions, our approach was constrained by considering only a small
discrete set of actions. Real environments should demand a higher
granularity of steering angles for effective and secure navigation. Ad-
ditionally, we control the speed by setting deterministic thresholds.
However, our model can still be applicable in real scenarios by using
the estimated weights of our neural network. Alternatively, the net-
work can serve as a pre-trained model for transfer learning or feature
extraction techniques.

Future research could continue to explore Max-Boltzmann explo-
ration strategies. As proposed by Gimelfarb et al. [5], it would be in-
teresting to incorporate Bayesian inference for estimating 𝜖 probability,
as with 𝜖-greedy BMC method.

CRediT authorship contribution statement

Valentina Zangirolami: Writing – original draft, Validation,
Methodology, Conceptualization. Matteo Borrotti: Writing – review
& editing, Writing – original draft, Supervision, Methodology,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

We have shared the link to our data/code at the following link:
https://github.com/ValentinaZangirolami/DRL.

References

[1] P. Auer, Using confidence bounds for exploitation-exploration trade-offs, J. Mach.
Learn. Res. 3 (2002) 397–422.

[2] G. Lample, D.S. Chaplot, Playing FPS games with deep reinforcement learning,
in: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence
(AAAI-17), 2017, pp. 2140–2146.
10
[3] M. Tokic, Adaptive 𝜖-Greedy exploration in reinforcement learning based on
value differences, in: KI 2010: Advances in Artificial Intelligence, Springer Berlin
Heidelberg, 2010, pp. 203–210.

[4] M. Tokic, G. Palm, Value-difference based exploration: Adaptive control between
epsilon-Greedy and Softmax, in: KI 2011: Advances in Artificial Intelligence,
Springer Berlin Heidelberg, 2011, pp. 335–346.

[5] M. Gimelfarb, S. Sanner, C.-G. Lee, Epsilon-BMC: A Bayesian ensemble approach
to Epsilon-Greedy exploration in model-free reinforcement learning, in: Proceed-
ings of the 35th Uncertainty in Artificial Intelligence Conference, in: Proceedings
of Machine Learning Research, vol. 115, 2020, pp. 476–485.

[6] A. Ortiz, H. Al-Shatri, X. Li, T. Weber, A. Klein, Reinforcement learning for
energy harvesting point-to-point communications, in: 2016 IEEE International
Conference on Communications, ICC, 2016, pp. 1–6.

[7] F. Cruz, P. Wüppen, A. Fazrie, C. Weber, S. Wermter, Action selection methods
in a robotic reinforcement learning scenario, in: 2018 IEEE Latin American
Conference on Computational Intelligence (la-CCI), 2018, pp. 1–6.

[8] K. Minwoo, K. Jongyun, J. Minjae, O. Hyondong, Towards monocular vision-
based autonomous flight through deep reinforcement learning, Expert Syst. Appl.
198 (2022).

[9] C. Núñez Molina, J. Fernández-Olivares, R. Pérez, Learning to select goals in
automated planning with Deep-Q learning, Expert Syst. Appl. 202 (2022).

[10] H. Alavizadeh, H. Alavizadeh, J. Jang-Jaccard, Deep Q-learning based rein-
forcement learning approach for network intrusion detection, Computers 11 (3)
(2022).

[11] Y. Zhang, P. Sun, Y. Yin, L. Lin, X. Wang, Human-like autonomous vehicle speed
control by deep reinforcement learning with Double Q-Learning, in: 2018 IEEE
Intelligent Vehicles Symposium, IV, 2018, pp. 1251–1256.

[12] K. Min, H. Kim, K. Huh, Deep Q learning based high level driving policy
determination, in: 2018 IEEE Intelligent Vehicles Symposium, IV, 2018, pp.
226–231.

[13] H. Xuefeng, H. Hongwen, W. Jingda, P. Jiankun, L. Yuecheng, Energy manage-
ment based on reinforcement learning with double deep Q-learning for a hybrid
electric tracked vehicle, Appl. Energy 254 (2019) 113708.

[14] M. Hausknecht, P. Stone, Deep recurrent q-learning for partially observable mdps,
in: 2015 Aaai Fall Symposium Series, (6) 2015.

[15] C. Romac, V. Béraud, Deep recurrent Q-learning vs deep Q-learning on a simple
partially observable Markov decision process with minecraft, 2019.

[16] J. Zeng, J. Hu, Y. Zhang, Adaptive traffic signal control with deep recur-
rent Q-learning, in: 2018 IEEE Intelligent Vehicles Symposium, IV, 2018, pp.
1215–1220.

[17] J. Ou, X. Guo, M. Zhu, W. Lou, Autonomous quadrotor obstacle avoidance
based on dueling double deep recurrent Q-learning with monocular vision,
Neurocomputing 441 (2021) 300–310.

[18] Y. Xu, J. Yu, R. Buehrer, Dealing with partial observations in dynamic spectrum
access: Deep recurrent Q-networks, in: MILCOM 2018 - 2018 IEEE Military
Communications Conference, MILCOM, 2018, pp. 865–870.

[19] Y. Wu, S. Liao, X. Liu, Z. Li, R. Lu, Deep reinforcement learning on autonomous
driving policy with auxiliary critic network, IEEE Trans. Neural Netw. Learn.
Syst. (2021) 1–11.

[20] A. Santara, S. Rudra, S.A. Buridi, M. Kaushik, A. Naik, B. Kaul, B. Ravindran,
MADRaS: Multi agent driving simulator, J. Artificial Intelligence Res. 70 (2021)
1517–1555.

https://github.com/ValentinaZangirolami/DRL
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb1
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb1
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb1
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb2
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb2
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb2
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb2
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb2
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb3
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb3
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb3
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb3
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb3
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb4
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb4
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb4
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb4
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb4
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb5
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb5
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb5
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb5
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb5
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb5
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb5
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb6
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb6
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb6
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb6
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb6
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb7
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb7
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb7
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb7
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb7
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb8
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb8
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb8
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb8
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb8
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb9
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb9
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb9
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb10
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb10
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb10
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb10
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb10
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb11
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb11
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb11
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb11
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb11
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb12
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb12
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb12
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb12
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb12
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb13
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb13
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb13
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb13
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb13
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb14
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb14
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb14
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb15
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb15
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb15
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb16
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb16
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb16
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb16
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb16
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb17
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb17
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb17
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb17
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb17
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb18
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb18
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb18
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb18
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb18
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb19
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb19
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb19
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb19
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb19
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb20
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb20
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb20
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb20
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb20

Knowledge-Based Systems 293 (2024) 111663V. Zangirolami and M. Borrotti
[21] Y. Xiao, F. Codevilla, A. Gurram, O. Urfalioglu, A.M. López, Multimodal end-
to-end autonomous driving, IEEE Trans. Intell. Transp. Syst. 23 (1) (2022)
537–547.

[22] R. Michelmore, M. Wicker, L. Laurenti, L. Cardelli, Y. Gal, M. Kwiatkowska,
Uncertainty quantification with statistical guarantees in end-to-end autonomous
driving control, in: 2020 IEEE International Conference on Robotics and
Automation, ICRA, 2020, pp. 7344–7350.

[23] C. Pilz, G. Steinbauer, M. Schratter, D. Watzenig, Development of a scenario
simulation platform to support autonomous driving verification, in: 2019 IEEE
International Conference on Connected Vehicles and Expo, ICCVE, 2019, pp. 1–7.

[24] A. Riboni, A. Candelieri, M. Borrotti, Deep autonomous agents comparison for
Self-Driving Cars, in: Proceedings of the 7th International Conference on Machine
Learning, Optimization and Big Data - LOD, 2021, pp. 201–213.

[25] N. Deshpande, D. Vaufreydaz, A. Spalanzani, Behavioral decision-making for
urban autonomous driving in the presence of pedestrians using Deep Recurrent
Q-Network, in: 2020 16th International Conference on Control, Automation,
Robotics and Vision, ICARCV, 2020, pp. 428–433.

[26] J. Liao, T. Liu, X. Tang, X. Mu, B. Huang, D. Cao, Decision-making strategy
on highway for autonomous vehicles using deep reinforcement learning, IEEE
Access 8 (2020) 177804–177814.

[27] L. Rodman, On the many-armed Bandit problem, Ann. Probab. 6 (3) (1978)
491–498.

[28] P. Whittle, Multi-armed bandits and the gittins index, J. R. Stat. Soc. Ser. B Stat.
Methodol. 42 (2) (1980) 143–149.
11
[29] S. Bubeck, N. Cesa-Bianchi, Regret analysis of stochastic and nonstochastic
multi-armed bandit problems, Found. Trends® Mach. Learn. 5 (1) (2012) 1–122.

[30] L.P. Kaelbling, M.L. Littman, A.W. Moore, Reinforcement learning: A survey, J.
Artificial Intelligence Res. 4 (1) (1996) 237–285.

[31] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, The MIT Press,
2014.

[32] M. Hauskrecht, Value-function approximations for partially observable Markov
decision processes, J. Artificial Intelligence Res. 13 (2000) 33–94.

[33] S. Ross, J. Pineau, B. Chaib-draa, P. Kreitmann, A Bayesian approach for learning
and planning in partially observable Markov decision processes, J. Mach. Learn.
Res. 12 (48) (2011) 1729–1770.

[34] M. Spryn, A. Sharma, D. Parkar, M. Shrimal, Distributed deep reinforcement
learning on the cloud for autonomous driving, in: IEEE/ACM 1st International
Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS),
2018, pp. 16–22.

[35] M. Wiering, Explorations in Efficient Reinforcement Learning (Ph.D. thesis),
University of Amsterdam, 1999.

[36] S. Shah, A. Kapoor, D. Dey, C. Lovett, AirSim: High-fidelity visual and physical
simulation for autonomous vehicles, Field Serv. Robot. (2017) 621–635.

http://refhub.elsevier.com/S0950-7051(24)00298-3/sb21
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb21
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb21
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb21
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb21
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb22
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb22
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb22
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb22
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb22
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb22
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb22
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb23
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb23
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb23
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb23
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb23
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb24
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb24
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb24
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb24
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb24
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb25
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb25
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb25
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb25
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb25
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb25
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb25
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb26
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb26
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb26
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb26
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb26
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb27
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb27
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb27
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb28
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb28
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb28
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb29
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb29
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb29
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb30
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb30
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb30
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb31
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb31
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb31
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb32
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb32
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb32
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb33
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb33
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb33
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb33
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb33
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb34
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb34
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb34
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb34
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb34
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb34
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb34
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb35
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb35
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb35
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb36
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb36
http://refhub.elsevier.com/S0950-7051(24)00298-3/sb36

	Dealing with uncertainty: Balancing exploration and exploitation in deep recurrent reinforcement learning
	Introduction
	Related literature
	Exploration strategies
	Function gradient-based RL
	Autonomous driving

	Background and preliminaries
	Multi-Armed Bandits and Contextual Bandits
	Reinforcement Learning
	Exploration strategies
	Recurrent Reinforcement Learning

	Deep Recurrent Q-Learning for autonomous driving
	Observation space
	Action space and Reward
	Agent's architecture

	Exploration strategies for recurrent learning
	Deterministic ε-greedy
	Value-Difference Based Exploration
	Bayesian Model Combination
	Max-Boltzmann Exploration

	Experimental settings and simulation platform
	AirSim simulator: Neighborhood Environment
	Models experimental setup
	Exploration strategies

	Results and comparison

	Conclusions
	Current limitation and potential future enhancements

	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

