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ABSTRACT: Multicomponent systems consisting of lead halide ©

perovskite nanocrystals (CsPbX;-NCs, X = Br, I) grown inside Ra dioluminescenc?é« ®

mesoporous silica nanospheres (NSs) with selectively sealed pores ‘® 302_ 8
combine intense scintillation and strong interaction with ionizing ®" % £
radiation of CsPbX; NCs with the chemical robustness in aqueous Secondary ¥ % T
environment of silica particles, offering potentially promising carmers 18 5 9
candidates for enhanced radiotherapy and radio-imaging strat- 2 8 g
egies. We demonstrate that CsPbX; NCs boost the generation of N o) ~
singlet oxygen species ('0,) in water under X-ray irradiation and e 5 -

that the encapsulation into sealed SiO, NSs guarantees perfect
preservation of the inner NCs after prolonged storage in harsh
conditions. We find that the 'O, production is triggered by the

X-Rays

electromagnetic shower released by the CsPbX; NCs with a striking correlation with the halide composition (I; > I;_,Br, >
Br;). This opens the possibility of designing multifunctional radio-sensitizers able to reduce the local delivered dose and the
undesired collateral effects in the surrounding healthy tissues by improving a localized cytotoxic effect of therapeutic
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treatments and concomitantly enabling optical diagnostics by radio imaging.

biomedical field experienced a rapid growth due to the

tunability of their physical and chemical properties and
their rich surface chemistry that enables specific functionaliza-
tion by design."” Different classes of functional nanoparticles,
including metals, semiconductors,” metal/lanthanide ox-
ides,”® and organic or hybrid systems,7'8 have found successful
application in several medical branches, such as nanotherapy,
diagnostics, and imaging.()_11 Today, one of the most advanced
biomedical uses of nanoparticles is offered by their strong
interaction with ionizing radiation, which makes it possible to
improve the effectiveness of conventional cancer treatments'>
and imaging techniques."® In oncological therapies, one of the
most adopted medical treatments is radiotherapy (RT, ca. 50%
of total cases),'"” a noninvasive technique typically consisting
of the local release of the energy of X-rays via photoelectric
effect and/or Compton scattering to stop tumor cell
proliferation, either directly by damaging their DNA or
indirectly by forming cytotoxic free radicals—such as singlet
oxygen ('0,), superoxide (O>7) or hydrogen peroxide
(H,0,)—commonly termed reactive oxygen species (ROS),
upon interaction with the cellular aqueous environment.'®
Currently, in order to achieve significant therapeutic effects,
patients are exposed to high doses of X-ray radiation (typically

In the last decades, interest in nanoparticles in the
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40—60 Gy in a complete RT treatment) that carry a high risk
of damaging surrounding healthy areas, due to the difficulty of
finely focusing the radiotherapy exclusively on the region of
interest.'” In order to reduce X-ray exposure, several strategies
have been proposed to increase the local ROS production,
such as radio-stimulated photodynamic therapy and radiation
catalysis.”'® The first is based on activating a photosensitizer
responsible for the energy transfer to O, molecules promoting
ROS production, whereas the second takes advantage of the
chemical and catalytic activities of nanoparticle surfaces to
enhance the generation of radiation-induced radicals by, for
example, water radiolysis."”

Metal halide nanocrystals (NCs),°"* both in their most
common lead-based inorganic or hybrid perovskite form
(APbX;, with A = Cs, methylammonium, formamidinium, X
= Cl, Br, 1)26_28 or in lead-free alternatives,” ' have recently
attracted substantial attention for ionizing radiation detec-
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Figure 1. (a) TEM images of CsPbBr;—Si0O,, CsPbBr, I, ;—SiO,, and CsPbL;—SiO, NSs. (b) HAADF-STEM images and elemental mappings
on the same samples highlighting the presence of Cs (green), Pb (purple), Br (gray), and I (yellow) inside the NSs. (c) Photographs of
CsPbBr;—Si0,, CsPbBr, (I, ;—SiO,, and CsPbI;—SiO, in aqueous solution taken under ambient illumination (top pictures) and under UV
illumination (bottom pictures). (d) XRD patterns of CsPbBr;—SiO, (green line), CsPbBr, (I, ;—SiO, (red line), and CsPbI,—SiO, (purple
line). The diffraction patterns of cubic CsPbBr; (ICSD 97852, green), orthorhombic y-phase (ICSD 434338, violet line), and orthorhombic
&-phase (ICSD 250744, black line) of CsPbl, are also reported as references. (e) Normalized PL (solid lines) and RL (dashed lines) spectra
of the same samples in dry powder form (excitation wavelength, 40S nm for PL; X-ray irradiation at 20 kV for RL).

tion,” prized for their high average atomic number (Z) that
enhances the interaction probability with ionizing radiation (P
~ Z", with n = 1-5 depending on the type of radiation and
interaction),*® efficient scintillation,** ¢ and strong robust-
ness to prolonged exposure to ionizing radiation.”> Impor-
tantly, the easy tuning of their emission spectrum from UV to
NIR further makes them interesting candidates as biological
markers for radio-imaging, naturally overcoming the limitations
of common fluorophores to fit the near-infrared transparency
window of biological tissues.””*® This opens up perspectives
for the simultaneous application of LHP NCs in diagnostics
and therapeutics, acting as X-ray biological markers to identify
and target diseased areas and simultaneously as sensitizers for
enhanced radiotherapy.”

Despite such promise, very few examples of medical
diagnostic and therapeutic strategies based on metal halide
NCs have been proposed,w_42 mostly because of their low
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stability in aqueous environment® resulting in their rapid
dissolution and further consequent release of potentially
harmful Pb** ions. Recently, innovative strategies for the
realization of high-quality CsPbX; NCs inside impermeable
host matrixes have been proposed,”* ™" including mesoporous
Sio, particles,54761 semiconducting shells,*>** metal—organic
frameworks,®* glasses and metal oxides,>> ™" which preserve
the luminescence properties of the host NCs even in harsh
environments and prevent Pb dispersion in the surround-
ings,”””*7® effectively removing the constraints for the
application of this class of materials in biological environments.
To date, however, no study has approached the use of metal
halide NCs for radiotherapy.

In this work, we aim to contribute to this endeavor by
demonstrating that CsPbX; (X = Br, I) NCs directly
synthesized inside mesoporous silica nanospheres (SiO,—
NSs) behave as effective X-ray sensitizers for the generation of

https://doi.org/10.1021/acsenergylett.3c00234
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Figure 2. (a) Sketch of the experimental setup for the measurement of 'O, production under X-ray irradiation. (b) RL spectra of CsPbBr;—
$i0,, CsPbBr, ;I; ;—Si0,, and CsPbI;—SiO, NSs before (lines) and after (shaded areas) exposure to 20 Gy dose of X-rays. The same color
code is applied to all panels. (c) SOSG PL intensity (excited at 473 nm) normalized for the initial value for pristine SiO, NS (black circles),
CsPbBr;—SiO, (green circles), CsPbBr, (I, s—SiO, (red circles), and CsPbI;—SiO, (purple circles) as a function of X-ray exposure time.
Inset: Sketch of ROS production mechanism. (d) SOSG PL intensity excited at 473 nm during the full X-ray irradiation sequence in the
presence (X-ray ON) and in the absence of simultaneous X-ray irradiation (X-ray OFF) for a solution containing CsPBL;—SiO, NSs. (e) 'O,
production rate calculated from the linear fitting of the data in panel c. (f) X-ray mass attenuation coefficient of the investigated material
systems based on the NIST database.”® In the inset the enlargement of the mass attenuation coefficient in linear scale in the energy range of

the X-rays used in our experiments is reported.

'0, species, boosting the effect of bare SiO, NSs by over 10-
fold. Interestingly, we found that the 'O, sensitization effect is
largely due to the release of secondary electrons by the
CsPbX;—SiO, NSs without quenching their radioluminescence
(RL) and that neither the RL nor the photoluminescence (PL)
are affected by high radiation doses or by prolonged storage in
an aqueous environment (even in highly acid solutions). These
results, combined with the inhibition of Pb*" cation leakage
outside the NS, made possible by the perfect sealing of the
pores, open up the future possibility of implementing
CsPbX;—SiO, NSs as radio-stimulated markers and therapeu-
tic agents.

CsPbX;—SiO, NSs of different halide composition (namely,
CsPbBr;, CsPbBr, I, and CsPbl,) were synthesized using
SiO, NS as templates by a solid-state confined growth
technique in the presence of potassium salt as sintering
agent, which promotes complete collapse of the porous
structure, isolating the inner CsPbX; NCs from the outer
environment and maintaining good solubility of the NSs in
water. Specifically, spherical SiO, NSs with diameter ~200 nm
and even distribution of internal pore dimensions were
dispersed in a distilled water solution containing a proper
proportion of the NC precursors (see Methods in the
Supporting Information for details) and kept under stirring
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to favor the soaking of ions inside the pores. CsPbX; NCs were
subsequently synthesized inside the pores by drying at 80 °C
to remove excess solvent followed by heating at 600 °C in the
presence of potassium salt (K,COj; and KI, respectively) to
trigger the calcination reaction (details of the effects of the
calcination temperature and conditions are reported in ref 54).
Besides prompting the formation of CsPbX; NCs, the high
temperature also favors the full collapse of the SiO, pores,
which encloses the NCs inside the NSs and protects them from
oxidation and ripening fusion. After cooling to room
temperature, the CsPbX;—SiO, NSs were washed with
ultrapure water several times to remove unreacted precursors
and possible products formed outside the NSs, collected via
centrifugation, dried at 60 °C, and finally redispersed in water
for further studies.

Transmission electron microscopy (TEM) images of
CsPbX;—SiO, NSs are reported in Figure la and show
spherical nanoparticles comparable to the original template
NSs (see Figure S1) with a slight reduction in size due to pore
collapse and subsequent shrinkage during calcination (see
Figure S2), without any aggregation due to interparticle cross-
linking. High-angle annular dark-field scanning transmission
electron microscopy (HAADF-STEM) images and the
corresponding elemental mappings (Figure 1b) of CsPbBr;,
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CsPbBr; I, 5, and CsPbl; show that all constituent elements
(Cs, Pb, Br, and I) are detected only at the NS structure,
indicating that no NC remained outside the particles. Also
importantly, the adopted calcination procedure maintains high
particle solubility in aqueous solvent, which is a fundamental
aspect to allow their applicability (as shown in Figure 1c). The
crystal structure of the as-synthesized CsPbX; NCs inside the
SiO, NSs and respective size distributions were studied via X-
ray diffraction (XRD) and TEM, as reported in Figures 1d and
S3, respectively. The XRD patterns show, in every case, a
broad diffraction peak at 23° due to the contribution of
amorphous SiO,. The diffraction peaks of the CsPbBr;—SiO,
NSs at 21.36° 26.32°, and 30.42° match cubic CsPbBr;
structure. Consistent with their mixed halide composition,
the XRD pattern of CsPbBrl;s—SiO, NSs shows the
coexistence of cubic CsPbBr;, the emissive y-phase of CsPbl,
(peaks at 20.09°, 28.48°, and 28.92°) together with traces of
the optically passive orthorhombic CsPbBr, I, d-phase
(peaks at 27.21° 25.70° and 31.31°); this is expected
considering the thermodynamically favored crystalline tran-
sition of the CsPbl, y-phase into the 5-phase below 150 °C.”*
Finally, the spectrum of CsPbl;—SiO, NSs shows the y-phase
peaks and a more prominent contribution by the d-phase. The
emission properties of the CsPbX;—SiO, NSs were studied
using optical and X-ray excitation, and the corresponding PL
and RL spectra are reported in Figure le. Consistent with
previous results, both the PL and RL spectra progressively shift
from the green to the NIR spectral regions with increasing
iodine content.”' In all three samples, the PL spectra show the
narrow peak due to excitonic emission, indicating the absence
of side products or emitting defect states introduced by the
confined growth in the SiO, NS templates. The PL quantum
efficiency was found to be 55 + 5%, 21 + 4%, and 12 + 3% for
CsPbBr;, CsPbBr, ¢l 5, and CsPbl,, respectively.

The PL decay time of all NSs reported in Figure S4 is
consistent with previous reports and features a dominant
radiative fast component followed by a minor contribution due
to delayed fluorescence by back-transfer from shallow traps.*®
The RL spectra are slightly red-shifted compared to the
respective PL, which possibly originates from the radiative
recombination of shallow emissive defect states in the
proximity of energy bands typically due to halide surface
vacancies as already observed in colloidal CsPbBr; NCs.*>”*

Next, we proceeded with validating the potential of
CsPbX;—SiO, NSs as X-ray sensitizer by studying the
production of the singlet oxygen ('O,) species in aqueous
environment under X-ray irradiation. In these experiments,
schematically depicted in Figure 2a, we dispersed identical
concentrations of CsPbX;—SiO, NSs (2 mg/mL) with
different halide composition in a phosphate buffer solution
(PBS) to artificially mimic the physiological pH conditions; the
same experiment was performed with bare SiO, NS as
reference. The commercially available fluorescent probe singlet
oxygen sensor green (SOSG) was used to monitor in situ the
!0, evolution. In its unoxidized form, SOSG is nonemissive,
whereas its endoperoxide derivative formed upon oxidation by
'0, exhibits a characteristic PL band at 530 nm (Figure SS).
Therefore, the SOSG PL intensity can be used to quantify the
'0, concentration during X-ray irradiation. The PL spectra of
SOSG excited at 473 nm with a cw laser in PBS solutions of
CsPbX;—SiO, NSs were collected during 10 min of
continuous exposure to soft X-rays (E,,,, = 20 keV) with 0.5
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Gy/s dose rate. The X-ray excitation of CsPbX;—SiO, NSs
simultaneously triggers the sensitization of 'O, production and
the NSs RL. In fact, the ability to emit RL while simultaneous
sensitizing ROS production represents an important feature of
our systems with respect to common radio-activated photo-
sensitizers such as porphyrin-based assemblies that produce
'0, via energy transfer to the triplet states of molecular O, at
the expense of their luminescence. Such a feature, combined
with preserving their RL emission after significant amount of
radiation (as shown in Figure 2b), offers the possibility of using
CsPbX;—SiO, NSs also as efficient radio-stimulated bio
markers for in vitro or in vivo radio-imaging.

In Figure 2c we report the integrated intensity of the SOSG
PL during the scan for the CsPbX;—SiO, NSs as well as for the
control solution containing bare SiO, NS; on the right axis we
report the respective 'O, concentrations as extracted via the
calibration procedure described in the Supporting Information.
Notably, all solutions containing CsPbX;—SiO, NSs exhibit
systematically higher 'O, production with respect to bare SiO,
NSs, with a 3-fold, 10-fold, and 13-fold enhancement along the
series CsPbBr;—Si0O,, CsPbBr, I, ;—SiO,, and CsPbl;—SiO,
NSs, which indicates the substantial effect of the CsPbX; NCs
on the 'O, generation.

Importantly, as shown in Figure 2d for the CsPbl;—SiO,
NSs (the other samples are reported in Figure S7), when the
X-ray irradiation was momentarily interrupted and the solution
was excited solely by the 473 nm laser, no additional 'O, was
created, and the trend proceeded identically only after the X-
irradiation was reestablished. This is relevant since the PL of
CsPbI;—SiO, NSs at 685 nm (1.81 eV) excited by the 473 nm
laser source is partially resonant to the triplet state of O, (1.62
eV”’) and could, in principle, produce 'O, via nonradiative
energy transfer, similar to what occurs with common radio-
activated photosensitizers.”””” The absence of 'O, production
without X-rays therefore indicates that the process is a direct
result of the interaction of ionizing radiation with the CsPbI;—
SiO, NSs with negligible mediation by its excitonic states; we
note that the absence of ET despite the energy resonance
could be due to the relatively large distance between the NCs
and the particle surfaces imposed by the calcination procedure,
as well as by the relatively fast decay time of the NC PL (4—8
ns) with respect to the micro-to-millisecond PL of sensitizer
phosphorescence.””®" Consistent with the 'O, production
being dominated by the interaction probability between the
CsPbX;—SiO, NSs and the X-rays, we found remarkably good
correlation between the 'O, production rate and the halide
composition. Specifically, as shown in Figure 2e, in which we
report the 'O, production rate extracted from the linear fitting
of the curves in Figure 2¢, the NSs containing iodine-based
NCs, namely CsPbBr, I, ;—SiO, and CsPbI;—SiO,, exhibited
a substantially higher 'O, generation rate compared to the
CsPbBr;—SiO,. This trend correlates well with the mass
attenuation coeflicient of the systems reported in Figure 2f
(calculated using the NIST database’® and EDX analysis
reported in Figure S8) in the energy range of the soft X-rays
used in our experiments, which is a direct consequence of their
halide composition (with the other constituents being
identical). As expected based on the higher Z of I with respect
to Br (53 vs 35), the mass attenuation coefficient of the NCs
monotonically grows with increasing iodine content, which
results in increasing release of energy in the surrounding
environment and subsequently larger 'O, generation rate. In
fact, in the case of X-rays, the primary interactions occur by
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Figure 3. (a) Residual concentration of Pb** in 2 mg/mL solution of CsPbBr;—MSN (green plot), CsPbBr, ;I, ;—MSN (red plot), and
CsPbI;—MSN (violet plot) in water as a function of soaking time. The concentrations were measured through inductively coupled plasma—
optical emission spectrometry (ICP-OES). (b) PL intensity of CsPbBr;—MSN (green markers), CsPbBr, (I, ;—MSN (red markers), and
CsPbI;—MSN (violet markers) as a function of time in different storage conditions: in air (filled circles), in water solution (triangles up), in
strong acid solution (HCI 1M, triangles down). PL emission was excited with a 405 nm laser. (c) Representative PL spectra of CsPbBr;—
MSN (green plot), CsPbBr, I, ;—MSN (red plot), and CsPbI;—MSN (violet plot) at different soaking time in acid solution (pH 1) showing

no modification of emission profile.

photoelectric effect or by inelastic Compton scattering,
resulting in an avalanche of highly energetic secondary carriers
that release their energy while traveling through a medium
resulting in its ionization/excitation. Since the free path of
secondary carriers is typically longer than the NS size, a
substantial fraction of energy effectively escapes from the
nanoparticle and is released for long distances along the
ionization track, leading, in our case, to the observed strong
sensitization of 'O, production.19

Notably, recent studies®"** demonstrated that a significant
fraction of energy is deposited within the nanoparticles despite
the primary interaction being shared between the nanoparticles
themselves and the surrounding aqueous media. Indeed,
energetic secondary charges exhibit migration ranges in most
cases larger than the small nanoparticle size; consequently, a
fraction of energy escapes from the nanoparticle and is released
for long distances along the ionization track, directly activating
the ROS production in water and the direct DNA cell damage.

Based on the promising 'O, sensitization rate of CsPbl;—
SiO, NSs, we further assessed their radiation resistance after 60
Gy, corresponding to the total dose that an RT patient
cumulates in the entire RT treatment, as reported in Figure S9,
in which the RL spectra collected before and after irradiation
show that CsPbl;—SiO, retained more than 80% of its initial
RL emission intensity.

Finally, to further corroborate the potential suitability of
CsPbX;—SiO, NSs for X-ray stimulated applications, we
assessed the risk related to the potential contamination of
the environment by leakage of Pb atoms.

For this purpose, we monitored the concentration of Pb** in
a water solution containing CsPbX;—SiO, NSs (0.5 mg/mL)
for 42 days by means of inductively coupled plasma—optical
emission spectrometry (ICP-OES). The results, reported in
Figure 3a, highlight that the concentration of Pb** was close to
the sensitivity of ICP-OES, which settles a detection limit of 10
ug/L for the Pb** concentration. Considering the initial
concentration of our CsPbX;—SiO, NSs, we estimate that the
amount of released Pb** in the monitored period is well below
the 5 pg/g threshold established by the World Health
Organization. To offer an illustrative comparison, if we
consider a radiotherapy treatment involving the use of 10 mg
of CsPbX;—Si0, for a period of time comparable to our test,
the total amount of lead introduced into the body would be
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equal to that which would be obtained by consuming 250 g of
white rice.

Finally, we monitored the optical properties of our CsPbX;—
SiO, NSs in ambient atmosphere (55% humidity), water, and
acid solution (1 M HC], pH 1) in order to assess their long-
time stability in conditions of potential biological interest. As
shown in Figure 3b,c, nearly identical trends are observed in
any condition, with nearly complete retention of the PL
intensity for the CsPbBr;—SiO, and CsPbBr, I, ;—SiO, NSs
and a slight (ca. 10%) loss for the CsPbl;—SiO, NSs, and the
spectral properties are perfectly retained by all systems
(complete spectra are reported in Figure S10).

In summary, we synthesized and studied ultrastable
CsPbX;—SiO, NSs combining the strong interaction proba-
bility and scintillation features of lead halide NCs with the
robustness of silica. We demonstrated that such CsPbX;—SiO,
NSs dramatically sensitize the production of 'O, in water
under X-ray stimulation and that the generation rate correlates
well with their halide composition that leads to marked
differences in their mass attenuation coefficient. Our data
further indicate that the 'O, production is a direct result of the
release of highly energetic secondary carriers in the environ-
ment and does not require quenching of their radio-
luminescence, thus potentially enabling their use as both
therapeutic agents and radio-markers. Finally, we proved that
our NSs retain their optical properties in aqueous and harsh
pH conditions and under prolonged exposure to ionizing
radiation. These results offer guidelines for the design of high-
Z radio-sensitizers for enhancing the localized therapeutic
effect of RT, reducing the delivered dose and consequent
damage toward healthy tissues and thus potentially improving
the quality of life of patients during and after radiological
treatments.
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