

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab Resource: Single Cell Line

Generation of the CSSi020-A (14437) iPSC line from a patient carrying a copy number variation (CNV) in the 17p11.2 chromosome region

Angela Maria Giada Giovenale^{a,b,1}, Elisa Maria Turco^{a,1}, Martina Mazzoni^a, Ilaria Ferrone^a, Barbara Torres^e, Laura Bernardini^e, Edvige Vulcano^b, Daniela Ferrari^b, Roberta Onesimo^g, Stefano D'Arrigo^f, Giuseppe Zampino^{g,h}, Maria Pennuto^{c,d}, Alessandro De Luca^e, Angelo Luigi Vescovi^a, Jessica Rosati^{a,*}

^a Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013 San Giovanni Rotondo, FG Italy

^b Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy

Veneto Institute of Molecular Medicine (VIMM), via Orus 2, 35129 Padova, Italy

^e Medical Genetics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013 San Giovanni Rotondo, Italy

^f Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria, 11, 20133 Milano, Italy

⁸ Rare Diseases and Birth Defects Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy

h Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del S. Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy

ABSTRACT

Smith-Magenis syndrome (SMS) is a complex neurodevelopmental disorder with a birth incidence of 1:25,000. SMS is caused by haploinsufficiency of the retinoic acid-induced retinoic acid1 (RAI1) gene, determined by an interstitial deletion of ~ 3.7 Mb (17p11.2, including the RAI1 gene) in 90 % of cases and a mutation on the RAI1 gene in only 10 % of cases. We generated and characterized a human pluripotent stem cell line (hIPSCs) derived from primary fibroblasts of a 17-year-old woman carrying a 17p11.2 deletion including the RAI1 gene.

Resource Table:

		Unique stem cell line identifier	CSSi020-A (14437)		
Unique stem cell line identifier	CSSi020-A (14437)	Gene/locus	Chr17:16761815–20462723 x1, build hg19		
Alternative name(s) of stem cell line	SMSdel1 cl Q	Date archived/stock date	October 2021		
Institution	Fondazione IRCCS Casa Sollievo della	Cell line repository/bank	https://hpscreg.eu/cell-line/CSSi020-A		
	Sofferenza	Ethical approval	Casa Sollievo della Sofferenza Ethical		
Contact information of distributor	Jessica ROSATI; j.rosati@css-mendel.it		Committee, approval number: 136/CE		
Type of cell line	iPSC				
Origin	human				
Additional origin info requiredfor human ESC or iPSC	Age: 17 Sex: femaleEthnicity : Caucasian				
Cell Source	Dermal Fibroblasts				
Clonality	Clonal				
Method of reprogramming	Non integrating episomal vectors	1 Decourses utility			
Genetic Modification	NO	1. Resource utility			
Type of Genetic Modification	NO				
Evidence of the reprogramming	qRT-PCR	Smith-Magenis syndrome (S	SMS) is a neurodevelopmental disorder		
transgene loss (including genomic		characterized by cognitive and b	ehavioral symptoms, obesity and sleep dis-		
copy if applicable)		orders. We generated an iPSC line from fibroblasts of a patient with SMS			
Associated disease	Smith-Magenis Syndrome				
	(continued on next column)				

* Corresponding author.

- E-mail address: j.rosati@css-mendel.it (J. Rosati).
- ¹ These two authors contribute equally to the work.

https://doi.org/10.1016/j.scr.2024.103544

Received 4 July 2024; Received in revised form 5 August 2024; Accepted 25 August 2024 Available online 4 September 2024

1873-5061/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/bync/4.0/).

(continued)

-	
Unique stem cell line identifier	CSSi020-A (14437)
Gene/locus	Chr17:16761815–20462723 x1, build hg19
Date archived/stock date	October 2021
Cell line repository/bank	https://hpscreg.eu/cell-line/CSSi020-A
Ethical approval	Casa Sollievo della Sofferenza Ethical
	Committee, approval number: 136/CE

for studying the disease.

^d Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy

Table 1

Characterization and validation.

Classification	Test	Result	Data
Morphology	Photography Bright field	Normal	Fig. 1 panel A
Phenotype	Immunocytochemistry	Staining of pluripotency markers: Oct4 and Tra1-60	Fig. 1 panel D
	Quantitative analysis	Expression of pluripotency	Fig. 1 panel E and panel F
	RT-qPCR	markers: OCT4, LIN28, L-MYC, SOX2	uni puter i
Genotype	Karyotype (G-banding) and resolution	46XX, Resolution 450–500	Fig. 1 panel B
Identity	STR analysis	All the 17 sites tested matched	submitted in archive with journal
Mutation analysis (IF APPLICABLE)	CNV analysis	SNP-array	Fig. 1 panel C
Microbiology and virology	Mycoplasma	Mycoplasma tested by N- Garde Mycoplasma PCR kit (EuroClone) is Negative	Fig. 1/ supplementary
Differentiation potential	Embryoid body formation and Teratoma formation	Embryoid bodies morphology, Genes expressed in embryoid bodies: SOX1, NESTIN, PAX6, EOMES, T, GATA4, FOXA2, SOX17 Proof of teratoma three germ layers formation.	Fig. 1 panel G, panel H and panel I
Donor screening (OPTIONAL)	HIV 1 + 2 Hepatitis B, Hepatitis C	N/A	
Genotype additional info (OPTIONAL)	Blood group genotyping HLA tissue typing	N/A N/A	
(OPTIONAL)	HLA tissue typing	N/A	

2. Resource details

Smith-Magenis syndrome (SMS, OMIM #182290) is a rare neurobehavioral disorder caused by haploinsufficiency of Retinoic Acid-Induced Gene 1 (RAI1) which is determined by 17p11.2 chromosomal deletion (90 %) or a point-mutation directly on RAI1 gene (10 %).

SMS phenotype shows mental and behavioral features, craniofacial and skeletal abnormalities, infant obesity and an alteration of circadian rhythm (Rinaldi et al. 2022). The primary fibroblast line, derived from skin biopsy, carries a heterozygous deletion of 3.7 MB (17p11.2) which starts from nucleotide position 16,761,815 and ends to position 20,426,723 including RAI1 gene. RAI1 is the causative gene of Smith-Magenis Syndrome but its roles are still largely unknown (Carmona-Mora and Walz 2010). Reprogramming was achieved through nonintegrative vectors containing factors as lin28, oct4, c-myc, klf4 and sox2. We selected and characterized iPSC colonies with a circular, uniform, stem cell-like shape (Fig. 1A). To confirm the absence of chromosomal rearrangements, we analyzed the karyotype of iPSCs, which was normal (46, XX) (Fig. 1B). The presence of the 3.3 Mb deletion was confirmed in both iPSCs and starting fibroblasts (Fig. 1C). We performed immunofluorescence staining with an antibody against the surface marker TRA-1-60 and the nuclear marker OCT4 (Fig. 1D). We verified the absence of exogenous reprogramming factors and the turn-on of endogenous ones (KLF4, LIN28, OCT4, L-MYC and SOX2) through qRT-PCR (Fig. 1E-F). Pluripotency was confirmed both in vitro and in vivo. In vitro, iPSCs spontaneously aggregated into embryoid bodies (EBs) that, after 14 days of differentiation, expressed genes belonging to all three embryonic layers (Fig. 1G-H). This analysis was performed using fibroblast cells as a negative control and a previously published hiPSCs line, CSSi013-A (9360) (D'Anzi et al., 2022), as a reference control. In vivo, hiPSCs, introduced into an immunodeficient mouse, formed a teratoma that was analyzed by immunohistochemical analysis that demonstrated the presence of the three embryonic layers (Fig. 1I). Finally, short tandem repeats (STR) analysis showed that the DNA profile of the parental fibroblasts was the same as that of the derived iPSCs (data available from the authors). All cells were periodically tested as negative for Mycoplasma contamination (Supplementary File 1).

3. Materials and methods

3.1. Fibroblast culture and reprogramming method

SMS fibroblasts were maintained in culture in High Glucose Dulbecco's Modified Eagle Medium supplemented with 20 % FBS, 1 % L-Glutamine, Penicillin-Streptomicin, Non-Essential Amino Acids (SigmaAldrich), at 37 °C and 5 % CO2. Fibroblasts (passage IV) were nucleofected with the following episomal plasmids pCXLE-hUL (Addgene #27080), pCXLE-hSK (Addgene #27078) and pCXLE-hOCT4-shp53 (Addgene #27077) using 4D-Nucleofector[™] X-unit (Lonza), FF113 program and P2 buffer. Then, fibroblasts were plated into a Matrigel-pretreated dish (Corning) and grown in NutristemXF medium (Biological-Industries). Colonies were picked and expanded. The hiPSCs were tested for the absence of mycoplasma contamination using N-grade Mycoplasma PCR kit.

3.2. Immunofluorescence staining

iPSCs were fixed using 4 % paraformaldehyde for 20 min at RT and blocked in PBS with 20 % Normal Goat Serum for TRA-1–60 staining and 0.1 % Triton X-100 for OCT4 staining, for 1 h at RT. Primary antibodies (Table 2), diluted in blocking buffer, were incubated O/N at 4 °C. Secondary antibodies were added for 1,5 h at RT. Cellular nuclei were stained with Hoechst. Images were taken using a Nikon C2 fluorescence microscope.

3.3. Karyotype analysis

iPSCs were cultured in Nutristem XF medium for 2–3 days and then treated with a 0.1 μ g/ml COLCEMID solution (ThermoFisher Scientific) for 60 min at 37 °C to obtain metaphases. Karyotype analysis was carried out on GTG-banding. Thirty metaphases were counted.

3.4. qPCR analyses

Total RNA was isolated using TRIzol reagent (Life Technologies). After acquisition of RNA integrity through RNA 6000 Nano LabChips (Agilent Technologies), we produced cDNA using High Capacity cDNA Reverse Transcription Kit (Applied-Biosystem). Specific primers for stemness, pluripotency and episomal genes (Table 2) were used to perform qPCR expression analysis, each reaction in triplicate with β -ACTIN gene as reference. For gene expression we adopted $2-\Delta\Delta CT$ method.

3.5. Embryoid bodies and teratoma formation assay

For the embryoid body formation, the hIPSCs were picked-up and transferred in floating conditions. Nutristem-XF was gradually switched into DMEM F-12, 20 % Knock-out serum replacement (Gibco), 0.1 mM β -mer-captoethanol, and 1 % of NEAA, Penicillin-Streptomicin, and l-glutamine in 3 days. After fourteen days, EBs were collected. For teratoma formation, about 1 million of hiPSCs, combined with Matrigel, were injected into immunodeficient mice. Once formed the teratomas were collected for

Fig. 1.

histological analysis.

3.6. STR analysis and CNV analysis

Dneasy blood and tissue kit (QIAGEN) was used for DNA extraction. Amplification of 17 distinct STRs was carried out using the QST*Rplusv2 kit (Elucigene Diagnostics), then PCR products were separated on an ABI Prism 3130 DNA sequencer and analyzed by GeneMapper version 4.0 (AppliedBiosystems) (Table STR). CNV analysis was performed using a SNParray platform (Cytoscan HD, ThermoFisher, USA) using 250 ng of genomic DNA hybridized for 16–18 h on the Cytoscan HD chip at 50 °C. The chips were washed, stained in GeneChip Fluidic Station 450 and scanned with Scanner 3000 7G. Data were analyzed with ChAS software (v4.3; ThermoFisher). Two hundred and seventy healthy controls of the International HapMap Project were used as a reference sample in the analysis (ThermoFisher).

Table 2

Reagents details

	Antibody	Dilution	Company Cat #	RRID
Stemness Markers	Rabbit anti-	1:100	Life	RRID: AB
	OCT4;	1:100	technologies	2534182;
	Mouse anti-		(A13998);	RRID:
	TRA-1–60		Life technologies	AB_2533494
			(411000)	
Secondary	Anti-Rabbit	1:1000	Invitrogen	RRID:
antibodies	AlexaFluor	1:1000	(A11034); Invitrogen	AB_25/621/;
	400, Anti-Mouse		(A21422)	AB 2535844
	AlexaFluor		(1121 (22)	10_2000011
	555			
	Primers			
SYBR green	Target	Size of	Forward/Rev	erse primer (5'-
Primers used for qPCR		band	3′)	
Episomal plasmid	eOCT4	83 bp	Fwd: CAT TCA AAC TGA GG AAG GG	
genes (qPCR)		-		
		205 bp	Rev: TAG CGT	AAA AGG AGC
	eLIN28		AAC ATA G	
	eL-MYC	80 bp	Fwd: AGC CAT ATG GTA GC	
	e30X2	66 hr	TCA TGT CCG C	
		00 <i>0</i> p	AAC ATA G	AUG AUG
			Fwd: GGC TGA	GAA GAG GAT
	eKLF4		GGC TAC	
		112 bp	Rev: TTT GTT	TGA CAG GAG
			CGA CAA T	mam 0000 : -
			Fwd: TTC ACA	TGT CCC AGC
			Rev. TTT CTT	
			CGA CAA T	10/10/07/0
			Fwd: CCA CCT	CGC CTT ACA
			CAT GAA GA	
			Rev: TAG CGT	AAA AGG AGC
C	0074	170 h-	AAC ATA G	040 AAC TCC
Stemness Markers	0014	179 бр	Fwd: TIG CIG	CAG AAG TGG
(qPCK)	LIN28		Rev. TGG CTG	ATC TGC TGC
		169 bp AGT G		
	L-MYC	*		
			Fwd: TGA GAG	GCG GCC AAA
		142 bp	AGG AA	
	SOX2		Rev: CAG CGG	ACA TGA GGC
			TAC CA	
	KI FA	80 bp		
	ALL'7		Fwd: GCG AAC	CCA AGA CCC
			AGG CCT GCT	CC
		166 bp	Rev: CAG GGG	GTC TGC TCG
			CAC CGT GAT	G
			Fwd: TTC ACA	TGT CCC AGC
			ACT ACC AGA	
			CAT GGG AGA	GC
			Fwd: TCT CAA	GGC ACA CCT
			GCG AA	
			Rev: CCT GGA	AAA TGC TCG
			GTC GC	
House-Keeping	β -ACTIN	203 bp	Fwd: GGC ATC	CTC ACC
Genes (qPCR)			CIGAAG TA	
			GTCTCA AA	IIIG AAG
TaqMan	Target		Probe	
primers used				
for qPCR				
Pluripotency	SOX1		Hs01057642_s	1
markers	NESTIN		Hs04187831_g	1

Table 2 (continued)

Antibodies used for immunocytochemistry/flow-cytometry			
Antibody	Dilution	Company	RRID
		Cat #	
PAX6		Hs00240871_m1	
Т		Hs00610080_m1	
EOMES		Hs00172872_m1	
GATA4		Hs00171403_m1	
FOXA2		Hs00232764_m1	
SOX17		Hs00751752_s1	
β -ACTIN		Hs 99999903_m	1

CRediT authorship contribution statement

Angela Maria Giada Giovenale: Writing – original draft, Data curation. Elisa Maria Turco: Data curation. Martina Mazzoni: Data curation. Ilaria Ferrone: Data curation. Barbara Torres: Data curation. Laura Bernardini: Data curation. Edvige Vulcano: Data curation. Daniela Ferrari: Data curation. Roberta Onesimo: Data curation. Stefano D'Arrigo: Data curation. Giuseppe Zampino: Data curation. Maria Pennuto: Data curation. Alessandro De Luca: . Angelo Luigi Vescovi: Supervision. Jessica Rosati: Writing – review & editing, Supervision, Funding acquisition, Data curation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank Smith-Magenis Italia Association for its support. This work was supported by a grant from the Italian Ministry of Health, R24-5 \times 1000 to JR; a grant from Fondazione Prosolidar, 508-2021_IT to ALV and JR, a grant from Fondazione Just Italia to MP.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scr.2024.103544.

References

Carmona-Mora, P., Walz, K., 2010. Retinoic Acid Induced 1, RAI1: A Dosage Sensitive Gene Related to Neurobehavioral Alterations Including Autistic Behavior. Current Genomics 11 (8), 607–617.

D'Anzi, A., Perciballi, E., Ruotolo, G., Ferrari, D., Notaro, A., Lombardi, I., Gelati, M., et al., 2022. Production of CSSi013-A (9360) iPSC Line from an Asymptomatic Subject Carrying an Heterozygous Mutation in TDP-43 Protein. Stem Cell Research 63 (August), 102835.

Rinaldi, B., Villa, R., Sironi, A., Garavelli, L., Finelli, P., Bedeschi, M.F., 2022. "Smith-Magenis Syndrome-Clinical Review. Biological Background and Related Disorders". *Genesgenes* 13 (2). https://doi.org/10.3390/genes13020335.