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We present analytical and numerical progress on black-hole binary spin precession at second
post-Newtonian order using multi-timescale methods. In addition to the commonly used effective
spin which acts as a constant of motion, we exploit the weighted spin difference and show that such
reparametrization cures the coordinate singularity that affected the previous formulation for the
case of equal-mass binaries. The dynamics on the precession timescale is written down in closed
form in both coprecessing and inertial frames. Radiation reaction can then be introduced in a
quasi-adiabatic fashion such that, at least for binaries on quasi-circular orbits, gravitational inspirals
reduce to solving a single ordinary differential equation. We provide a broad review of the resulting
phenomenology and rewrite the relevant physics in terms of the newly adopted parametrization.
This includes the spin–orbit resonances, the up–down instability, spin propagation at past time
infinity, and new precession estimators to be used in gravitational-wave astronomy. Our findings
are implemented in version 2 of the public Python module precession. Performing a precession-
averaged post-Newtonian evolution from/to arbitrarily large separation takes ≲ 0.1 s on a single
off-the-shelf processor —a 50× speedup compared to our previous implementation. This allows for a
wide variety of applications including propagating gravitational-wave posterior samples as well as
population-synthesis predictions of astrophysical nature.

I. Introduction

Black-hole (BH) binary spin precession is a distinctive
feature of the general relativistic two-body problem [1].
Two Kerr BHs in a bound system are subject to inter-
actions between their spins and the orbital angular mo-
mentum of the binary. The motion resulting from such
spin–orbit and spin–spin couplings is a superposition of
precession and nutation. This is somewhat analogous to
that of Earth’s axis, though with a key difference. For
the Earth, precession happens on a much longer timescale
(∼ 2.5× 104 yr) than nutation (∼ 18 yr) and with a larger
amplitude, such that one can think of a toplike azimuthal
motion perturbed by small polar oscillations. In the
BH case, precession and nutation happen on comparable
timescales and can have comparable amplitudes, leading
to a more complex phenomenology. While the spins evolve,
the system dissipates energy via gravitational-wave (GW)
emission, ultimately leading to the merger of the two BHs.

Timescale considerations are crucial to shed light on the
dynamics of BH binaries, at least in the post-Newtonian
(PN) regime. The orbital motion takes place on a
timescale1 torb ∝ (r/M)3/2 (by Kepler’s law), the spins
precess on tpre ∝ (r/M)5/2 [1], and radiation reaction
takes place on trad ∝ (r/M)4 (by the quadruple formula).

∗ davide.gerosa@unimib.it
1 Unless specified otherwise, we use natural units where c = G = 1.

At sufficiently large separations r ≫M one has

torb ≪ tpre ≪ trad . (1)

The first inequality torb ≪ tpre, trad has been used since
the early foundation of GW physics [2], resulting in the
popular orbit-averaged formulation of the BH dynamics:
sources evolve on quasi-Newtonian orbits and the orbit
itself evolves quasi-adiabatically. More recently [3, 4],
some of us started investigating the consequences of the
second inequality tpre ≪ trad. The strategy is the same:
we compute the “shape” of the precession cones on the
short timescale (in this case tpre) and then implement radi-
ation reaction in a quasi-adiabatic fashion. This approach
allows for extremely efficient evolutions of BH binaries
along their long inspirals before merger, which we first im-
plemented in the numerical code precession [5]. When
studying BH-binary inspirals, one can now time step over
the longer timescale trad of the problem while the dynam-
ics on both torb and tpre is dealt with analytically. This
is, at present, the only feasible strategy to evolve BH
binaries from the (infinitely) large separations where they
form down to the smaller separations where they enter
the sensitivity windows of GW detectors.

Such a “multi-timescale” approach to the binary dynam-
ics led to an explosion of new predictions and applications.
This includes investigations on the phenomenology of BH
binaries [6–15], waveform development [16–21], astrophys-
ical modeling [22–30], and interpretation of current GW
data [31–38]. The precession code itself [5] was used
in over 60 publications to date. Most notably, (i) the
analytic treatment of the binary dynamics on the preces-
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sion timescale is now part of the standard “twisting up”
strategy used in state-of-the-art phenomenological wave-
form models [18, 19], and (ii) the latest GW catalogs and
population analyses developed by LIGO/Virgo now quote
spin directions that are back-propagated to infinitely large
separations using precession-averaged equations [39, 40].

In this paper, we present a full reinvestigation of BH-
binary spin precession using multi-timescale methods.
We exploit and expand upon some recent analytical ad-
vances [20] which allow us to write the entire dynam-
ics on the precession timescale tpre in closed form us-
ing Legendre elliptic integrals and Jacobi elliptic func-
tions (Sec. II). This new formulation cures a coordinate
singularity that impacted the previous parametrization
for equal-mass BHs [7, 15]. While the dynamics on the
radiation-reaction timescale still needs to be integrated
numerically (Sec. III), this operation is ≳ 50 times faster
compared to our previous implementation [5] —BH bi-
naries can now be evolved all the way from/to past time
infinity in ≲ 0.1 s on a single processor. We then re-
view the broader phenomenology of spin precession in
BH binaries and rewrite the relevant equations in terms
of the new regularized quantities (Sec. IV). We provide
some additional ingredients that are often necessary to
interface the precession-averaged formalism with other
results in BH physics (Sec. V). Our findings are imple-
mented in v2 of the precession code, which has been
rewritten from scratch. The code is publicly available at
github.com/dgerosa/precession [41], where we also pro-
vide documentation, tutorials, and various PN coefficients
in machine-readable format. Here we briefly report on the
performance of the new code as well as some profiling re-
sults (Sec. VI). We conclude with a roadmap for the future
development of the precession-averaged approach to the
BH binary spin precession problem (Sec. VII). Lengthy
PN expression, details on our algorithm, and some math-
ematical expressions are postponed to the Appendixes.

II. Precession dynamics

A. Looking for an optimal parametrization

Let us consider a BH binary with masses m1 ≥ m2,
orbital angular momentum L, and spins S1,2. These are
combined into the total spin S = S1 + S2 and the total
angular momentum J = L + S1 + S2. The total mass
M = m1+m2 is a free scale of the problem and can thus be
treated as a unit (indeed, in our numerical implementation
we simply set M = 1 and measure all other quantities
accordingly; cf. Sec. VI). We then define the mass ratio
q = m2/m1 ∈ (0, 1] and the Kerr parameters χ1,2 =
Si/m

2
i ∈ [0, 1] such that the spin magnitudes are given by

S1 =
χ1

(1 + q)2
M2 , (2)

S2 =
q2χ2

(1 + q)2
M2 . (3)

We restrict to sources on quasi-circular orbits; a gener-
alization to eccentric orbits is under active development
and will be presented elsewhere. The magnitude of the
(Newtonian) orbital angular momentum can be expressed
in terms of either the orbital separation r, via

L =M2 q

(1 + q)2

√
r

M
, (4)

or the compactified coordinate [4]

u =
1

2L
=

(1 + q)2

2qM2

√
M

r
, (5)

such that u→ 0 as r → ∞.
In a frame that co-precesses with the binary [42–44], the

mutual orientations of L, S1 and S2 are fully described
by three angles [45]. These are often chosen to be the
polar angles θ1,2 ∈ [0, π] between the spin and orbital
angular momentum,

cos θ1 = Ŝ1 · L̂ , (6)

cos θ2 = Ŝ2 · L̂ , (7)

(where a hat denotes a unit vector) and the azimuthal
angle ∆Φ ∈ [−π, π] between the projections of the two
spins onto the orbital plane,2

cos∆Φ =
Ŝ1 × L̂

|Ŝ1 × L̂|
· Ŝ2 × L̂

|Ŝ2 × L̂|
, (8)

sgn∆Φ = sgn{L · [(S1 ×L)× (S2 ×L)]}. (9)

From these, one can obtain the angle θ12 between the two
spins within the plane they generate:

cos θ12 = Ŝ1 · Ŝ2 = cos θ1 cos θ2 + cos∆Φ sin θ1 sin θ2 .
(10)

Following the notation first introduced in Ref. [6], we
refer to spinning but non-precessing binaries as “up–up”
for θ1 = θ2 = 0, “up–down” for θ1 = 0 and θ2 = π,
“down–up” for θ1 = π and θ2 = 0, and “down–down” for
θ1 = θ2 = π.

While intuitive, parametrizing the spin evolution using
θ1, θ2, and ∆Φ significantly complicates the dynamics
because all three angles vary on the same timescale tpre.
Instead, the evolution of GW sources can be greatly sim-
plified by identifying quantities that respect the timescale
hierarchy of Eq. (1). Racine [46] first realized that the
effective spin [47]

χeff =
χ1 cos θ1 + qχ2 cos θ2

1 + q
(11)

is a constant of motion at 2PN. This is also the spin quan-
tity that is commonly regarded as best measured from

2 Other works in the literature use the symbol ϕ12 for ∆Φ.

https://github.com/dgerosa/precession
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LIGO/Virgo observations [39, 48, 49]. Both the separa-
tion r and the magnitude of the total angular momentum

J = [L2 + S2
1 + S2

2 + 2LS1 cos θ1 + 2LS2 cos θ2

+ 2S1S2(cos θ1 cos θ2 + cos∆Φ sin θ1 sin θ2)]
1/2 (12)

change solely because of GW emission. These parameters
are therefore constant on the precession timescale and vary
only on the radiation-reaction timescale. The direction Ĵ
is approximately constant even on this longer timescale,
with the notable exception of cases where the magnitude
J approaches zero [1]; see also Ref. [8] for a quantitative
analysis on this point.

With these considerations, some of the authors [3, 4] re-
alized that entire dynamics on the precession timescale can
be reduced to the evolution of a single quantity. This is
analogous to the effective potentials in Kepler’s two-body
problem, where energy and angular momentum conserva-
tion reduce the motion to that of an equivalent particle in
one dimension. In particular, previous work parametrizes
BH-binary spin precession using the magnitude of the
total spin

S = [S2
1+S

2
2+2S1S2(cos θ1cos θ2+cos∆Φsin θ1sin θ2)]

1/2.
(13)

Using (χeff , J, S) instead of (θ1, θ2,∆Φ) reflects the nat-
ural separation of timescale that governs the BH binary
dynamics in the PN regime.

However, this parametrization is still suboptimal for
two reasons. First, the magnitude of the total angular
momentum J diverges at large separations r → ∞, mak-
ing a numerical implementation impractical. This can be
cured by instead using

κ =
J2 − L2

2L
(14)

which was proved to converge in the large separation
limit [4]. We refer to κ as the “asymptotic angular mo-
mentum.” The precise expression of Eq. (14) has been
chosen such that κ reduces to S ·L̂ in the large-separation
limit, see Sec. IV A.

Second, the magnitude of the total spin S is a constant
of motion for equal-mass binaries [46], which implies one
cannot rely on S to parametrize the precession cycle when
q = 1 [7]. This mathematical quirk is analogous to that of
a coordinate singularity in general relativity, which does
not affect the underlying physics but breaks the formalism.
As we explore at length in this paper, the quantity

δχ =
χ1 cos θ1 − qχ2 cos θ2

1 + q
(15)

first identified by Klein [20] correctly regularizes the q → 1
limit. We refer to δχ as “weighted spin difference.” An
alternative, approximate regularization scheme was re-
cently proposed in Ref. [15]. While Eqs. (11) and (15)
are formally similar and only differ by a single sign, the
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FIG. 1. Magnitude of the total spin S as a function of the
weighted spin difference δχ. We consider a set of binaries with
χ1 = χ2 = 0.9, χeff = 0.3, κ̃ = 0.5, and a range of values
of q ∈ (0, 1] as indicated in the color bar. The dotted black
curves mark the locations of the two turning points δχ±. The
solid black line indicates the q = 1 limiting case where the S
parametrization becomes degenerate. The δχ± configurations
with q = 0, 1 are indicated with round markers.

dynamical properties of χeff and δχ are crucially differ-
ent. The former is a constant of motion for the 2PN
spin problem while the latter varies on the smaller pre-
cession timescale. The conversion between the S and δχ
parametrizations is given by

S2

M4
=

q

(1 + q)2

√
r

M

(
2
κ

M2
− χeff − 1− q

1 + q
δχ

)
. (16)

Indeed, the precession-timescale variation encoded by δχ
disappears for q → 1 such that S tends to a constant.
This is shown in Fig. 1 for a representative set of sources:
for q = 1, the curve S(δχ) becomes horizontal, signaling
the breakdown of the S parametrization.

We will now use Eq. (16) to rewrite and expand upon
the entire formalism of Refs. [3, 4], thus regularizing the
q = 1 behavior. The explicit expressions for the spin
angles in terms of χeff , κ, and δχ are given by

cos θ1 =
1 + q

2χ1
(χeff + δχ) , (17)

cos θ2 =
1 + q

2qχ2
(χeff − δχ) , (18)



4

cos∆Φ =
1

q

{
2q(1 + q)

√
r/M [2(1 + q)κM−2

− (1 + q)χeff − (1− q)δχ]− 2(χ2
1 + χ2

2q
4)

− q(1 + q)2(χ2
eff − δχ2)

}

×
[
4χ2

1 − (1 + q)2(χeff + δχ)2
]−1/2

×
[
4χ2

2q
2 − (1 + q)2(χeff − δχ)2

]−1/2
, (19)

cos θ12 =
1

2χ1χ2q2

{
q(1 + q)

√
r/M [2(1 + q)κM−2

− (1 + q)χeff − (1− q)δχ]− (χ2
1 + χ2

2q
4)
}
.

(20)

Note that, unlike the analogous Eqs. (20) in Ref. [4], these
equations are manifestly finite when q = 1.

In summary, we parametrize BH binaries on quasi-
circular orbits using q, χ1, χ2, χeff , u, κ, and δχ. In
particular:

• The mass ratio q, the spin magnitudes χ1,2 [50],
and the effective spin χeff [46] are all constants of
motion at the PN order we consider.

• The compactified orbital separation u and the
asymptotic angular momentum κ vary only on the
radiation-reaction timescale and are asymptotically
regular at large separations.

• The weighted spin difference δχ varies on the pre-
cessional timescale and is regular in the equal-mass
limit.

B. Dynamics in a co-precessing frame

The evolution of the spins and the orbital angular
momentum is set by the coupled precession equations [46,
51–54]

dS1

dt
= ω1 × S1 , (21)

dS2

dt
= ω2 × S2 , (22)

dL

dt
= ωL ×L+

dL

dt
L̂ , (23)

where the frequencies at 2PN are given by

ω1 =
1

2r3

{[
4 + 3q − 3(1 + q)χeff√

r/M

]
L+ S2

}
, (24)

ω2 =
1

2r3

{[
4 +

3

q
− 3(1 + q)χeff

q
√
r/M

]
L+ S1

}
, (25)

ωL =
1

2r3

{[
4 + 3q − 3(1 + q)χeff√

r/M

]
S1

+

[
4 +

3

q
− 3(1 + q)χeff

q
√
r/M

]
S2

}
. (26)

The derivative dL/dtmodels radiation reaction and can be
neglected when studying the dynamics on the precession
timescale. In this approximation, the motion of a binary
in a non-inertial, co-precessing frame is entirely encoded
in the evolutionary equation of δχ. From Eqs. (21)-(26)
one gets

M
dδχ

dt
=

3q

(1 + q)2
χ1χ2

( r

M

)−3
(
1− χeff√

r/M

)

× sin θ1 sin θ2 sin∆Φ , (27)

where the prefactor on the first line of Eq. (27) is always
positive because |χeff | ≤ 1 and r > M . In particular, the
squared time derivative of δχ is given by

Σ(δχ) ≡
(
M

dδχ

dt

)2

= σ̄(σ3δχ
3 + σ2δχ

2 + σ1δχ+ σ0) ,

(28)

which is a third-degree polynomial. Some representative
examples are shown in the left panel of Fig. 2. The
coefficients σ̄ and σi are functions of q, χ1, χ2, χeff , κ, and
r, as reported in Appendix A. In particular, factorizing
the equation in this form allows us to avoid divisions by
zero in both the equal-mass (q → 1) and large-separation
(u→ 0) limits; cf. Sec. IV A.

The equation Σ(δχ) = 0 admits either one or three
real roots. Spin precession requires the existence of two
turning points in the evolution δχ(t); a formal proof
using the Jordan curve theorem is provided in Ref. [4].
This implies that, for physical configurations to exist,
the equation Σ(δχ) = 0 must admit three roots, with
two of them acting as the turning points that define spin
precession. The third root is spurious and was introduced
when squaring the derivative d δχ/dt to obtain Eq. (28)
from Eq. (27). In particular, it is useful to write [20]
(
M

dδχ

dt

)2

= A2(δχ− δχ−)(δχ+ − δχ)[δχ3 − (1− q)δχ] ,

(29)

where δχ−, δχ+, and δχ3/(1− q) are the roots of Σ2(δχ).
The prefactor A =

√
σ̄σ3/(1− q) is given by

A =
3

2

1√
(1 + q)

( r

M

)−11/4
(
1− χeff√

r/M

)
≥ 0 . (30)

The conditions σ̄ ≥ 0 and σ3 ≥ 0 imply that the only
bounded region where Σ2(δχ) ≥ 0 lies between the two
smaller roots δχ− and δχ+ while the spurious solution
δχ3/(1−q) must necessarily be the largest of the three (see
Fig. 2). Physical values of δχ describing spin precession
must satisfy

δχ− ≤ δχ ≤ δχ+ ≤ δχ3

1− q
. (31)

Crucially, in this formulation the quantities δχ−,+,3 do
not have hidden divergences and remain finite when q → 1
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FIG. 2. The left panel shows the normalized cubic equation Σ/σ̄ for the derivative (dδχ/dt)2 as reported in Eq. (28). Spin
precession takes place in the bounded and positive intervals highlighted with the shaded areas. The left and right edges of
these intervals correspond to δχ− and δχ+, respectively. The spurious, largest root (which is absent for q = 1) corresponds to
δχ3/(1− q). The right panel shows the discriminant ∆ of the Σ/σ̄ equation normalized to a positive coefficient δ̄; see Eq. (40).
Spin precession can only take place in the bounded, positive intervals highlighted with the shaded areas. The edges of these
intervals are the spin–orbit resonances κ±. In both panels, we consider binaries with χ1 = 0.9, χ2 = 0.9, χeff = 0.5, r = 15M ,
and three values of the mass ratio q = 0.4 (blue), 0.7 (orange), and 1 (green). For the left panel, we further impose κ̃ = 0.5. The
corresponding values of κ are indicated with dashed lines in the right panel.

(see Sec. IVA). For some of the following expressions, it
is useful to perform an affine transformation and identify
a binary with the parameter

δχ̃ =
δχ− δχ−

δχ+ − δχ−
∈ [0, 1] . (32)

A fast and accurate determination of δχ−, δχ+ and δχ3

from the coefficients σi is crucial for a successful numeri-
cal implementation. While the solution of a third-degree
polynomial is analytical, the resulting algebraic expres-
sions are convoluted and a standard numerical algorithm
based on the eigenvalues of the companion matrix [55, 56]
appears to perform better (see Appendix B). This is a con-
siderable improvement compared to our previous imple-
mentation [5], where the turning points were determined
with a custom root finder based on effective potentials [3].
The exploitation of the algebraic properties of dδχ/dt is a
key element of the computational speedup achieved with
the current version of our code (Sec. VI). More specifically,
we solve the cubic polynomial twice. We first solve Σ = 0
in δχ and retain the two smaller roots. We then solve
(1 − q)2Σ = 0 in δχ′ = (1 − q)δχ and retain the larger
root. Because σ3 ∝ (1− q), this allows us to compute the
three quantities δχ−,+,3 regularly for all values of q ≤ 1.

We can integrate Eq. (29) in time, setting δχ(t = 0) =
δχ− as the initial condition. The formal solution is (cf. [16,

17, 20])

δχ = δχ− + (δχ+ − δχ−)

× sn2
[A
2

√
δχ3 − (1− q)δχ−

t

M
,
(1− q)(δχ+ − δχ−)

δχ3 − (1− q)δχ−

]
,

(33)

where sn(ψ,m) is the Jacobi elliptic sine [57]. In a nutshell,
sn(ψ,m) ∈ [−1, 1] is a periodic function with ψ-period
4K(m), where K(m) is the complete elliptic integral of
the first kind. The elliptic sine is qualitatively similar to
the standard trigonometric sine and reduces exactly to it
for m = 0. In our case, the elliptic parameter is

m =
(1− q)(δχ+ − δχ−)

δχ3 − (1− q)δχ−
. (34)

The period of sn2 is 2K(m), which implies that the
weighted spin difference δχ oscillates from δχ− to δχ+

and back to δχ− in a time given by

τ

M
=

4K(m)

A
√
δχ3 − (1− q)δχ−

. (35)

The variable τ in Eq. (35) is the spin nutational period
as in Refs. [3, 4].
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FIG. 3. Evolution of the weighted spin difference δχ as a
function of time on the precession timescale (i.e. neglecting
radiation reaction). All three binaries have the same values of
q = 0.8, χ1 = 0.5, χ2 = 0.9, χeff = −0.1, and r = 10M , but
three different values of κ̃ = 0.3 (blue, top panel), 0.5 (orange,
middle panel), and 0.7 (green, bottom panel). Solid curves
show the full solution which is provided in terms of Jacobi
elliptic functions. Dotted curves show approximate solutions
where we set m = 0. Dashed curves show approximate solu-
tions where we use standard trigonometric functions but keep
the period of the oscillation as derived from the full solution.

Using the rescaling put forward in Eq. (32), one can
rewrite Eq. (33) as

δχ̃ = sn2
[
2K(m)

t

τ
,m

]
. (36)

This expression can then be inverted to obtain

t = ± τ

2

F
(
arcsin

√
δχ̃,m

)

K(m)
, (37)

where F (φ,m) is the incomplete elliptic integral of the
first kind [57], whose definition implies that F (π/2,m) =
K(m). The ± sign in front refers to the two halves
of the cycle, δχ− → δχ+ and δχ+ → δχ−. One has
t(δχ−) = 0 and t(δχ+) = ±τ/2, such that a full oscilla-
tion takes a time τ . Equation (37) can also be derived
directly from Eq. (29) using some of the standard inte-
grals reported in Appendix C. When tackled this way, the
oscillation period is most naturally given by the integral

τ = 2
∫ δχ+

δχ−
(dδχ/dt)−1dδχ, which is the calculation that

was performed numerically in our previous implementa-
tion [5].

Some of the resulting solutions are shown in Fig. 3
for a set of three binaries that share the same values of
the constants of motion. In particular, we show the full
solution of Eqs. (33) and (36) together with two possible
approximations (see e.g. Ref. [21]). Setting m = 0 in
both Eqs. (35) and (36) results in very large deviations,
with the spin going several radians out of phase in just a
few cycles. One can instead set m = 0 only in Eq. (36)
and not in Eq. (35), i.e., approximate sn(ψ,m) ≃ sin(ψ)
for the shape of the function but ensure that the period
τ is the same. For the binaries considered in Fig. 3, we
find this procedure results in errors on δχ that are ≲ 0.2.
We anticipate this second approximation could be useful
in waveform construction, though one should first explore
its accuracy more extensively in the parameter space.

Precession-averaged evolutions require a final resam-
pling of the precessional phase (see Sec. III B). This task
is now straightforward: instead of relying on inverse-
transform sampling as in Ref. [5], one can simply gener-
ate a random number t uniformly in [0, τ ] and evaluate
Eq. (33) to obtain δχ.

C. Parameter boundaries and spin–orbit resonances

The various parameters describing BH-binary spin pre-
cession are bounded by several constraints. We discuss
their limits starting from the constants of motion, then
moving on to quantities that vary on the long and short
timescales of the problem.

1. Mass ratio

We use a convention where labels “1” and “2” indicate
the heavier and lighter BHs, respectively. The mass ratio
q = m2/m1 is defined in (0, 1].

2. Spin magnitudes

The Kerr geometry imposes χ1,2 ∈ [0, 1]. More conser-
vatively, the spins of astrophysical BHs are not expected
to exceed the Thorne limit χ1,2 ≲ 0.998 [58].

3. Effective spin

From Eq. (11), the effective spin χeff is strictly de-
fined in [−1, 1]. Fixing q, χ1, and χ2 further restricts the
allowed range of χeff to

−χ1 + qχ2

1 + q
≤ χeff ≤ χ1 + qχ2

1 + q
. (38)
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4. Orbital separation

A conservative threshold for the PN approximation
to be valid is r > 10M , or equivalently u ≤ (1 +

q)2/(2q
√
10) [59–61]. While astrophysical binaries form

at some large but finite separation [15], considering the
asymptotic behavior at r → ∞ has key applications in
GW population studies [34].

5. Asymptotic angular momentum

From Eq. (14), the geometrical constraint J = L+S1+
S2 translates into




κ

M2
≥ q

√
r/M

2(1 + q)2

{
max

[
0,

(
1− χ1 + q2χ2

q
√
r/M

)∣∣∣∣∣1−
χ1 + q2χ2

q
√
r/M

∣∣∣∣∣ ,
(
|χ1 − q2χ2|
q
√
r/M

− 1

)∣∣∣∣∣
|χ1 − q2χ2|
q
√
r/M

− 1

∣∣∣∣∣

]
− 1

}
,

κ

M2
≤ χ1 + q2χ2

(1 + q)2

(
χ1 + q2χ2

2q
√
r/M

+ 1

)
,

(39)

where the first condition corresponds to J = 0, the
second condition corresponds to cos θ1 = cos θ2 = −1
(down–down), the third condition corresponds to cos θ1 =
− cos θ2 = ±1 (either up–down or down–up), and the
fourth condition corresponds to cos θ1 = cos θ2 = 1 (up–
up).

The interval reported in Eq. (39) corresponds to the
bounds on κ for given values of q, χ1, χ2, and r. However,
this range is not available to each binary in its entirety,
as that depends on the additional constant of motion χeff .
Section II B illustrated that spin precession can only take
place when the cubic Σ(δχ) admits three roots, i.e., when
its discriminant is positive. More precisely, we indicate
the discriminant of Σ/σ̄ with ∆. This turns out to be a
fifth-degree polynomial in κ [11]:

∆(κ) = σ2
2σ

2
1 − 4σ3σ

3
1 − 4σ3

2σ0 − 27σ2
3σ

2
0 + 18σ3σ2σ1σ0

(40)

= δ̄

[
δ5

( κ

M2

)5
+ δ4

( κ

M2

)4
+ δ3

( κ

M2

)3

+ δ2

( κ

M2

)2
+ δ1

( κ

M2

)
+ δ0

]
, (41)

where the coefficients δ̄ and δi are lengthy but algebraic
expression involving q, χ1, χ2, χeff , and r; see Appendix A.
For convenience, we collect a positive term δ̄ and isolate
the leading-order coefficient δ5 = −uM2. A few examples
of ∆ as a function of κ are shown in the right panel of
Fig. 2.

The roots of the equation ∆(κ) = 0 correspond to lo-
cations in the parameter space where δχ− = δχ+. Phys-
ically, these are cases where the relative orientation of
the spins and the orbital angular momentum is fixed
on the precession timescale. These configurations are
the so-called “spin–orbit resonances” first discovered by
Schnittman [45] and later explored at length by several
authors [3, 4, 11, 32, 54, 62–69]. In particular, Ref. [11]
formally proved that there are always two spin–orbit reso-
nances κ± for each set of (q, χ1, χ2, r, χeff), as previously
suggested by extensive numerical explorations [4, 45].

Spin precession takes place in a compact interval

κ− ≤ κ ≤ κ+ , (42)

where ∆(κ) ≥ 0 (see Fig. 2). The quintic equation ∆(κ) =
0 admits either one, three, or five real roots. We can
discard the case with a single real root because there
must always be two resonances [11]. Because δ5 < 0, if
there are three real roots, the only bounded and positive
interval is located between the two greater roots. These
are indeed the resonances κ± while the third, smaller
root is spurious. The occurrence of five real roots instead
provides two bound intervals where ∆(κ) ≥ 0; if the
roots are ordered in κ, there are two pairs of candidate
resonances, namely the second and third roots as well
as the fourth and fifth roots. Knowing that only one of
such pairs can correspond to κ± [11], we calculate the
corresponding ranges in δχ and select among them by
imposing the constraint of Eq. (45).

To compare binaries with different values of the con-
stant of motions (see e.g. Fig. 1 where we vary q), it is
useful to define

κ̃ =
κ− κ−
κ+ − κ−

∈ [0, 1] . (43)

With an analogous calculation to that we just presented,
one can also expand ∆ as a function of χeff to obtain the
limits of χeff constrained to q, χ1, χ2, r, and κ. This is less
relevant because χeff is a constant of motion and should
be imposed before κ, not vice versa.

6. Weighted spin difference

From Eq. (15), one has δχ ∈ [−1, 1]. Fixing q, χ1, χ2

imposes

−χ1 + qχ2

1 + q
≤ δχ ≤ χ1 + qχ2

1 + q
. (44)

For a given value of χeff , the geometrical conditions
cos θ1,2 ∈ [−1, 1] further restricts the range of δχ to





δχ ≥ max

(
−χeff − 2χ1

1 + q
, χeff − 2qχ2

1 + q

)
,

δχ ≤ min

(
−χeff +

2χ1

1 + q
, χeff +

2qχ2

1 + q

)
.

(45)
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The resulting constraints are illustrated in Fig. 4 for two
representative cases. The allowed region in the δχ− χeff

plane is a rectangle whose orientation depends on the sign
of χ1 − qχ2.

If one also fixes κ in addition to q, χ1, χ2, and χeff , the
evolution of δχ can be further confined to the interval

δχ− ≤ δχ ≤ δχ+ , (46)

or equivalently δ̃χ ∈ [0, 1], as discussed in Sec. II B. These
intervals are shown in Figs. 1 and 2 for a representative set
of binaries. Equation (46) is more restrictive than Eq. (45),
which implies that physical regions when spin precession
occurs must lie inside one of the rectangles of Fig. 4 but
do not occupy them fully. In particular, Fig. 4 shows the
region in the δχ− χeff parameter space that is available
to binaries with different values of κ̃. Binaries with κ̃ = 0
or κ̃ = 1 (i.e., the spin–orbit resonances) are confined to
one-dimensional curves because δχ− = δχ+. On the other
hand, binaries with generic values of κ̃ ∈ (0, 1) occupy a
wider, non-degenerate portion of the parameter space.

D. Dynamics in an inertial frame

While most astrophysical applications only require the
mutual orientations of the spins and the orbital angular
momentum, tracking the dynamics in an inertial frame is
crucial to construct waveforms for GW data analysis.

The direction of J is constant on the precession
timescale, which implies one can use this vector to define
an inertial frame and describe the dynamics accordingly.
In this frame, the direction of the orbital angular momen-
tum L is defined by a polar angle given by

cos θL = L̂ · Ĵ (47)

and an azimuthal angle

ΦL =

∫
ΩLdt (48)

which is measured in the plane orthogonal to J . The latter
can be found by integrating the precession frequency

ΩL =
dL̂

dt
· Ĵ × L̂∣∣∣Ĵ × L̂

∣∣∣
2 (49)

while neglecting GW emission (i.e., setting dL/dt = 0).
All these quantities can be expressed using the

parametrization adopted in Sec. II A. One has [3, 4, 8, 14]

cos θL =

[
1 + (1 + q)

(1− q)δχ+ (1 + q)χeff

2q
√
r/M

]

×
[
1 +

2(1 + q)2

q

κ/M2

√
r/M

]−1/2

(50)

and

ΩLM = C0


1−

∑

i={+,−}

Ci
Ri − (1− q)δχ

√
M/r


 , (51)

where the following coefficients do not depend on δχ but
only on quantities that are constant on the precession
timescale:

C0 =
q

2(1 + q)2

(
M

r

)5/2
√
1 +

2(1 + q)2

q

κ/M2

√
r/M

, (52)

C± = ±3

(
1− χeff

r/M

)[
(1 + q)

(
1 +

χeff

r/M

)

×
(
1±

√
1+

2(1+q)2

q

κ/M2

√
r/M

)
+
(1+q)3

q

κ/M2

√
r/M

− 1− q

2q2
χ2
1 − q4χ2

2

r

](
1 +

2(1 + q)2

q

κ/M2

√
r/M

)−1/2

,

(53)

R± = − 2q

1 + q

(
1±

√
1 +

2(1+q)2

q

κ/M2

√
r/M

)

− (1 + q)
χeff√
r/M

. (54)

One can then integrate Eq. (51) to obtain

ΦL = ±C0
τ

2MK(m)

[
F
(
arcsin

√
δχ̃,m

)

−
∑

i={+,−}

C ni
δχ+− δχ−

Π
(
ni (1−q)

√
M/r, arcsin

√
δχ̃,m

)]
,

(55)

where

ni =
δχ+ − δχ−

Ri − δχ−(1− q)
√
M/r

, (56)

and Π(n, φ,m) is the incomplete elliptic integral of the
third kind [57]; cf. Appendix C. The total angle spanned
during a nutation period τ is given by

α = C0
τ

M



1−

∑

i={+,−}

Ci ni
δχ+−δχ−

Π
[
ni(1−q)

√
M/rm

]

K(m)



,

(57)

where Π(n,m) is the complete elliptic integral of the third
kind. Much like in Eq. (37), we have assumed an initial
condition such that ΦL(δχ−) = 0 and ΦL(δχ+) = ±α/2,
where the ± sign refers to the two halves of the nutation
cycle.

The direction of J is approximately constant also on
the longer radiation-reaction timescale (see, e.g., [54, 70,
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FIG. 4. Available region in the δχ−χeff parameter space for two sets of binaries with fixed values of q, χ1, χ2, and r. The black
rectangles indicate the bounds from Eq. (45). Each edge corresponds to one of the four aligned conditions, cos θ1,2 = ±1. The
rectangles themselves are inscribed in wider squares (gray dotted lines) corresponding to Eqs. (38) and (44). The parameters
used in the left (right) panel have been chosen such that χ1 − qχ2 > 0 (χ1 − qχ2 < 0), which sets the orientation of the rectangle.
The white circles at the vertices correspond to the four aligned configurations up–up, up–down, down–up, and down–down
(where “U” stands for up and “D” stands for down). The dashed red and blue curves indicate binaries with κ̃ = 0 and κ̃ = 1,
respectively, which are the spin–orbit resonances. The gray areas indicate the parameter space available to binaries with κ̃ = 0.5.
For these same binaries, the gray dashed curves mark the turning points δχ− (left edge) and δχ+ (right edge).

71]). Exceptions include the so-called “nutational reso-
nances” [8], where α = 2πn for integer n. It turns out that
for n > 1 the resulting tilts in J are as small as O(10−3)
rad. The n = 0 nutational resonance corresponds to the
“transitional precession” phenomenon [1] where J ∼ 0 and
tilts are of O(1) rad.

III. Precession-averaged inspiral

A. Precession averaging

The solutions of Sec. II B allow us to define the “pre-
cession average” operation. The precession average of a
generic quantity X is given by

⟨X⟩ =

∫ δχ+

δχ−

X(δχ)

(
dδχ

dt

)−1

dδχ

∫ δχ+

δχ−

(
dδχ

dt

)−1

dδχ

, (58)

where the denominator is also equal to τ/2. In words,
we weight each contribution entering X using the “speed”
dδχ/dt. Imagine taking snapshots of the dynamics over a
period τ , one is more (less) likely to measure a given value
X(δχ) if the variation of δχ is slow (fast). Note that we

can safely integrate only over the first half of a precession
cycle δχ− → δχ+ because the second half δχ+ → δχ− is
identical up to a sign change of the derivative dδχ/dt. If
the quantity X is constant on the precession timescale
(i.e., dX/dδχ = 0), one obviously has ⟨X⟩ = X.

Using this notion of average, the first two moments
of δχ̃ can be elegantly reduced to special functions; see
Appendix C. We find

⟨δχ̃⟩ = 1

m

[
1− E(m)

K(m)

]
, (59)

⟨δχ̃2⟩ = 1

3m2

[
2 +m− 2(1 +m)

E(m)

K(m)

]
, (60)

where m is given by Eq. (34) and K(m) and E(m)
are the complete elliptic integrals of the first and sec-
ond kind, respectively (cf. analogous expressions in
Ref. [20]). These quantities are shown in Fig. 5. As
m increases from 0 to 1, both moments increase monoton-
ically from limm→0⟨δχ̃⟩ = 1/2 and limm→0⟨δχ̃2⟩ = 3/8
to limm→1⟨δχ̃⟩ = limm→1⟨δχ̃2⟩ = 1.

B. Binary inspiral

The notion of precession average allows us to connect
different quantities that vary on the radiation-reaction
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FIG. 5. Moments of the weighted spin difference δχ̃ rescaled
using the turning points and averaged over a precession cycle.
Solid and dashed lines show ⟨δχ̃⟩ and ⟨δχ̃2⟩, respectively, as a
function of the elliptic parameter m; cf. Eqs. (59) and (60).

timescale. The parametrization of Sec. IIA reveals that,
at least for quasi-circular binaries, there are only two
such variables: the asymptotic angular momentum κ and
the orbital separation r (or equivalently the compactified
coordinate u). The only ingredient one needs to evolve
binaries along the inspiral is an ordinary differential equa-
tion (ODE) for dκ/du.

As first shown in Refs. [3, 4], the derivation is straight-
forward when restricting to the angular-momentum flux
at 1PN [51] and yields

dκ

du
= ⟨S2 ⟩ . (61)

The right-hand side can be evaluated using Eqs. (16) and
(32) and by considering that δχ̃ is the only variable that
evolves on the precession timescale:

⟨S2⟩ = M2

2u

{
2
κ

M2
− χeff

− 1− q

1 + q

[
δχ− + ⟨δχ̃⟩(δχ+ − δχ−)

]}
. (62)

The average ⟨δχ̃⟩ is given by Eq. (59) and it depends on
m from Eq. (34).

In summary, a precession-averaged binary inspiral is de-
termined by a single ODE of the form dκ/du = RHS(κ, u)
that needs to be evolved from some initial condition
(u0, κ0). The quantities δχ−,+,3 (and hence m) enter-
ing the right-hand side all depend on both κ and u in

a non-trivial fashion. While we were not able to find
an analytic solution, numerically integrating this Cauchy
problem does not present a significant computational chal-
lenge. Some examples are shown in Fig. 6. The solutions
κ(r) are smooth and lie between the spin–orbit resonances
κ±. A less trivial behavior appears when considering the
evolution of κ̃(r), with binaries approaching and depart-
ing from the resonances κ̃ = 0, 1 as they inspiral toward
merger.

Previous literature, including by some of us (e.g.
Ref. [64]), have referred to the spin–orbit resonances as
attractors because of their impact on the angle ∆Φ (see
Sec. IV B). We now believe that this attribute is, to some
extent at least, misplaced. When pictured in terms of
parameters that respect the timescale separation of the
dynamics, BH binaries do not generically approach the
spin–orbit resonances as they inspiral toward merger.

The workflow of a precession-averaged inspiral is the
following:

• Assume one is provided an initial binary configu-
ration in terms of the mass ratio q and the initial
conditions of the three momenta Li, S1i, S2i.

• From the magnitudes of the momenta, compute χ1

and χ2 (which are constant of motions; we thus
drop the initial condition subscript i) and ri (or
equivalently ui) from Eqs. (2)-(5).

• Compute the angles θ1i, θ2i, and ∆Φi from Eqs. (6)-
(9).

• Convert these three angles into χeff , κi, and δχi

from Eqs. (11)-(15). If the binary is provided at
infinitely large separation, only θ1,2 (and not ∆Φ)
enter this conversion.

• Retain only χeff (which is a constant of motion) and
κi (which provides the initial condition for the ODE
integration); δχi is not necessary.

• Integrate dκ/du from Eq. (61) to the desired final
separation rf , resulting in κf .

• At the final separation, extract a random value of
t ∈ [0, τ ] and evaluate δχf from Eq. (33). Also
extract a random sign ε = {−1,+1}.

• Convert q, χ1, χ2, χeff , rf , κf , and δχf into the an-
gles θ1f , θ2f , and ∆Φf using Eqs. (17)-(19). While
performing this conversion, assume ∆Φf = ε ×
arccos(cos∆Φf ) ∈ [−π, π]. This reflects the under-
lying symmetry of the two halves of a precession
cycle.

Note how, in this scheme, one explicitly loses memory
of the initial value of δχ and resamples it at the very
end. In other words, one does not track the evolution
of the spins along their precession cones but only the
“shape” of those cones along the inspiral. The uncertainty
introduced via the precession-averaging procedure can
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FIG. 6. Representative integrations of the inspiral dynamics using a precession-averaged approach. The left panel shows the
evolution of the asymptotic angular momentum κ. The right panel shows the same results rescaled to [0, 1] using κ̃; see Eq. (43).
The gray curves represent binaries with q = 0.9, χ1 = 0.8, χ2 = 1, χeff = −0.2, and a set of equally spaced initial values of
κ̃. These are evolved from r = 104M to r = 10M . The spin–orbit resonances κ± are shown with red and blue dashed curves,
respectively.

be captured by resampling many final values of δχ and
construct distributions of quantities at rf , rather than
point estimates (see, e.g., Ref. [12]).

IV. Phenomenology of spin precession

A. Some notable limits

We now consider some notable limits of the dynamics,
namely those at equal masses and large separations.

1. Equal masses: q → 1

Parametrizing the precession dynamics using δχ allows
us to seamlessly study equal-mass systems —a task that
had previously required a separate formulation [7].

In particular, for q = 1 one has σ3 = 0 such that the
cubic polynomial (dδχ/dt)2 from Eq. (28) reduces to a
parabola; see Fig. 2. This is consistent with Eq. (31), with
the largest root δχ3/(1 − q) approaching +∞ as q → 1.
The discriminant ∆(κ) reduces to a cubic polynomial
for which the spin–orbit resonances are the two largest

solutions:

lim
q→1

κ−
M2

= max

[
(χ1 − χ2)

2

8
,
χ2
eff

2

]√
M

r
+
χeff

2
, (63)

lim
q→1

κ+
M2

=
(χ1 + χ2)

2

8

√
M

r
+
χeff

2
. (64)

From Eq. (34), the condition q = 1 implies m = 0. In this
case, the time evolution of the BH spins is substantially
simpler because sn(ψ, 0) = sin(ψ) and K(0) = π/2. In
particular, the nutation period is given by

lim
q→1

τ =
4π

3

( r

M

)11/4(
2
κ

M2
−χeff

)−1/2
(
1− χeff√

r/M

)−1

M

(65)

and the total nutation angle is given by

lim
q→1

α =
π

6

( r

M

)1/4
(
7− 6

χeff√
r/M

)(
1− χeff√

r/M

)−1

(
1 + 8

κ/M2

√
r/M

)1/2 (
2
κ

M2
− χeff

)−1/2

. (66)

Using Eqs. (21)-(26), it is immediate to prove [7] that
q = 1 implies dS/dt = 0, i.e., the magnitude of the to-
tal spin S is a constant of motion on all timescales; as
highlighted in Sec. IIA, this is the reason behind the
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coordinate singularity that affected our previous formu-
lation [3, 4]. From Eq. (16), the value of this constant
is

lim
q→1

S2

M4
=

1

4

√
r

M

(
2
κ

M2
− χeff

)
. (67)

One has ⟨S⟩ = S, such that Eq. (61) reduces to

lim
q→1

dκ

du
=

1

u

(
κ− χeff

2
M2
)
. (68)

This can be solved analytically from some initial condition
κ(u0) = κ0:

lim
q→1

κ(r)

M2
=
χeff

2
+

√
r0
r

( κ0
M2

− χeff

2

)
, (69)

where we have expressed the results in terms of the or-
bital separation for clarity. The q = 1 evolutionary flow,
therefore, corresponds to the following conservation law

lim
q→1

( κ

M2
− χeff

2

)√ r

M
= const. (70)

Equations (63) and (64) indicate that the spin–orbit reso-
nances κ± obey the same conservation law. This implies
that the rescaled quantity κ̃ from Eq. (43) remains con-
stant on the inspiral timescale. For the case of equal-mass
binaries, curves like those shown in the right panel of
Fig. 6 would be straight, horizontal lines.

2. Large separations: r → ∞

Considering sources at infinitely large separations (i.e.,
r → ∞ or u→ 0) is useful to provide a consistent reference
point to label the binary inspiral and combine GW events
at the population level [15, 34, 40]. In this limit, spin–spin
couplings can be neglected relative to spin–orbit couplings,
which implies that spins precess about L tracing cones
with fixed opening angles. That is, both angles θ1 and
θ2 are asymptotically constant as r → ∞, and so is δχ
because of Eq. (15).

Plugging the definition J = L+ S1 + S2 into Eq. (14)
yields [4]

lim
r→∞

κ

M2
= S · L̂ =

χ1 cos θ1 + q2χ2 cos θ2
(1 + q)2

, (71)

which implies that the asymptotic angular momentum
κ is also constant in the large-separation limit and it is
equal to the projection of the total spin along the binary
orbital angular momentum. Indeed, this property is the
very reason why we picked κ instead of J in Sec. IIA.
From Eqs. (11) and (71) one has

lim
r→∞

cos θ1 =
(1 + q)[κM−2(1 + q)− qχeff ]

(1− q)χ1
, (72)

lim
r→∞

cos θ2 =
(1 + q)[χeff − κM−2(1 + q)]

(1− q)qχ2
. (73)

The large-separation limit is therefore that peculiar lo-
cation in the parameters space where all three variables
χeff , κ, and δχ are constant. In particular, combining
Eqs. (11), (15), and (71) returns

lim
r→∞

δχ =
1 + q

1− q

(
2
κ

M2
− χeff

)
. (74)

The latter expression can also be found using Eq. (28):
for r → ∞, one has σ3 → 0 such that (dδχ/dt)2 becomes
a quadratic polynomial with two coincident roots given
by Eq. (74). The scaling with the separation is important
here. In particular, the difference between the right-
and left-hand sides of Eq. (74) is equal to the term in
parentheses in Eq. (16) and is related to the magnitude
of the total spin S. The magnitude S ≤ |S1 + S2| must
remain finite at any separation, including r → ∞, which
implies

lim
r→∞

(
2
κ

M2
− χeff − 1− q

1 + q
δχ

)
= O

(√
M

r

)
. (75)

From this expression, one can make sense of the cosines
in Eqs. (19) and (20), which indeed do not diverge as
r → ∞.

For the same reason, in the large-separation limit one
cannot naively evaluate Eq. (62) to compute ⟨S2⟩ and in-
tegrate dκ/du. The right-hand side, however, can be com-
puted directly from the geometrical definition of Eq. (13).
At large separations, the two spins move along cones of
constant opening angles given by Eqs. (72) and (73) with
different angular velocities (at least in the generic case
where q ≠ 1). The only parameter that varies on the
precession timescale is therefore ∆Φ, which can be used
to parametrize the precession cycle (this is not possible
at finite values of r). One has ⟨cos θ1⟩ = const., ⟨cos θ2⟩
= const., and ⟨cos∆Φ⟩ =

∫ π

−π
cos∆Φd∆Φ/2π = 0. Plug-

ging these estimates and Eqs. (72-73) into Eq. (13) returns

lim
r→∞

⟨S2⟩ = S2
1 + S2

2 + 2S1S2 cos θ1 cos θ2 (76)

=
χ2
1 + q4χ2

2

(1 + q)4
M4 − 2q

(1− q)2(1 + q)2

×
[
(1 + q)κ− χeffM

2
] [
(1 + q)κ− qχeffM

2
]
.

(77)

In our numerical implementation, we rely on this analytic
expression whenever the dκ/du ODE solver attempts a
step with u ≤ 0.

For binaries at infinitely large separations, the bound-
aries of the asymptotic angular momentum for fixed values
of q, χ1, and χ2 can be found by extremizing Eq. (71):

−χ1 + q2χ2

(1 + q)2
≤ lim

r→∞

κ

M2
≤ χ1 + q2χ2

(1 + q)2
, (78)

which is indeed the r → ∞ limit of Eq. (39). The spin–
orbit resonances can then be computed by extremizing κ
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under the constrained values of q, χ1, χ2, and χeff . From
Eqs. (71) and (11), one has

lim
r→∞

κ±
M2

= min
max

[
q(1 + q)χeff ± (1−q)χ1

(1 + q)2
,

(1 + q)χeff ± q(1− q)χ2

(1 + q)2

]
, (79)

where min and max refer to + and −, respectively. Equiv-
alently, taking the r → ∞ limit of the discriminant ∆(κ)
returns a quartic polynomial where the four roots are
those listed in Eq. (79); the resonances are then found by
excluding the smallest and the largest of the four, which
correspond to the min/max operation in front.

The leading-order expression for the period τ and the
angle α were computed in Refs. [8, 14] using a geometrical
argument similar to the one above. Their result, which
we verified with the new formulation, reads

lim
r→∞

τ =
4π

3

( r

M

)5/2 1 + q

1− q
, (80)

lim
r→∞

α =





2πq(4 + 3q)

3(1− q2)
if Y ≥ 0 ,

2π(4q + 3)

3(1− q2)
if Y < 0 ,

(81)

where

Y = 2q(1+q)3
κ

M2
χeff − (1+q)5

κ2

M4
+ (1−q)(χ2

1−q4χ2
2) .

(82)

3. Equal masses and large separations

The case of binaries with equal masses at infinitely
large separations is delicate. Taking the r → ∞ limit
of Eq. (16) returns S2 → ∞ and taking the q → 1 limit
of Eq. (74) returns δχ → ∞; both results are clearly
unphysical.

The key point here is that, while both κ and χeff are
constant for r → ∞, they are not necessarily independent
of each other. Equation (69) reveals that

lim
r→∞

lim
q→1

κ

M2
=
χeff

2
, (83)

where the order of the limits is important (we consider
equal-mass binaries and propagate them back to large
separations). The same result can be found from Eqs. (11)
and (71), and Eq. (79) indicates that the spin–orbit res-
onances also tend to the same value. The condition of
Eq. (83) keeps the r → ∞ limit of Eq. (67) regular, en-
suring that S remains constant.

The unfortunate consequence of Eq. (83) is that the
formalism presented in this paper cannot accommodate
q = 1 binaries at r → ∞. For instance, all the σi from
Eq. (27) tend to zero (see Appendix A). Consider the
Cauchy problem described in Sec. III B where, for a given

set of constants of motion (q, χ1, χ2, χeff), one needs to
prescribe an initial condition κ0 at u0. If u0 = 0, there
is only one consistent value of κ0 as determined by the
constant of motion χeff from Eq. (83). Physically, bina-
ries can have different spin orientations, but the labeling
strategy we use (i.e., χeff and κ) becomes degenerate.
This is a similar issue to that addressed (and solved) in
Sec. IIA, where using δχ instead of S cures the q = 1
coordinate singularity on the precessional timescale. On
the radiation-reaction timescale, this coordinate singular-
ity is still present but only at infinitely large separations.
Regularizing the joint limits of q → 1 and r → ∞ requires
the identification of an inspiral parameter that, unlike κ,
is not uniquely determined by the constants of motion.
This investigation is postponed to future work.

Let us note that this parameter degeneracy only affects
evolutions from infinitely large separation. Integrating
dκ/du with q = 1 backward to past time infinity is a
sound operation and simply returns the limit of Eq. (83).
However, one cannot then convert the result to θ1,2; cf.
Eqs. (72) and (73), which diverge.

B. ∆Φ morphologies

The binary dynamics on the precession timescale can be
classified into the so-called “spin morphologies,” according
to the behavior of the angle ∆Φ. These were identified in
Refs. [3, 4] and used extensively afterward [7, 9, 10, 12,
24, 25, 29, 35, 38].

Binaries with either δχ = δχ− or δχ = δχ+ correspond
to configurations where the three vectors L, S1 and S2

are coplanar. From Eq. (8), this implies either ∆Φ = 0
or ∆Φ = π. We refer to binaries as “librating” (L) if
∆Φ(δχ−) = ∆Φ(δχ+) and “circulating” (C) if ∆Φ(δχ−) ̸=
∆Φ(δχ+). There are four possible cases:

• L0: ∆Φ(δχ−) = ∆Φ(δχ+) = 0;

• Lπ: ∆Φ(δχ−) = ∆Φ(δχ+) = π;

• C+: ∆Φ(δχ−) = 0 and ∆Φ(δχ+) = π;

• C−: ∆Φ(δχ−) = π and ∆Φ(δχ+) = 0.

Previous studies on the subject have grouped together the
C− and C+ morphologies into a single C class, though
early hints of this distinction can be found in Ref. [9].

The spin morphology depends on κ, χeff , r, q, χ1, and χ2,
but not on δχ: it is therefore constant on the precession
timescale while radiation reaction can cause transitions
between the different classes. We refer the reader to
Ref. [4] for an extensive exploration of these transitions. In
a nutshell, morphological transitions take place whenever
either S1 or S2 are aligned with L at any point during the
precession cycle. Much like the longitude at the Earth’s
North Pole, the angle ∆Φ is instantaneously ill defined
if one spin is aligned, allowing for a discontinuous jump
between 0 and π at either δχ− or δχ+. In general, all
binaries with q < 1 belong to the C+ class at r → ∞ and
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tend to transition to the L classes as they inspiral toward
merger. Further transitions from the L classes to C− are
possible but much rarer [4].

The ∆Φ morphologies are also intimately related to
the spin–orbit resonances described in Sec. II C. These
are the locations κ± where δχ− = δχ+. One can show [4]
that ∆Φ = π at κ− and ∆Φ = 0 at κ+. The resonances
are therefore the limits of the two librating morphologies
when the libration amplitude goes to zero. A more careful
investigation of this limit with a formal Taylor expansion
is an interesting avenue for future work.

C. Up–down instability

The spin-aligned configurations first mentioned in
Sec. II A, where cos θ1,2 = ±1, are all equilibrium configu-
rations of the equations of motion (21)-(26) —though not
all of them are stable. Reference [6] first showed that up
–down binaries —in which the primary BH spin is aligned
with the orbital angular momentum (θ1 = 0) and the
secondary BH spin is antialigned (θ2 = π)— are unstable
to spin precession beyond a critical orbital separation in
their inspirals [11, 13, 72]. In such cases, perturbations to
the spin directions leads to wide precession cycles rather
than small-amplitude oscillations about alignment. Refer-
ence [11] further showed that unstable up–down sources
asymptote to a well-defined and predictable endpoint at
small separations, rather than dispersing in the available
parameter space.

Here we reinvestigate these results using the new
parametrization of the dynamics in terms of δχ. Let
δχ∗ denote the spin parameter for an aligned-spin con-
figuration and αi = cos θi = ±1 denote the spin–orbit
alignment of the two BHs (i = 1, 2). For the four aligned-
spin configurations one has

δχ∗ =
χ1α1 − qχ2α2

1 + q
, (84)

χ∗
eff =

χ1α1 + qχ2α2

1 + q
, (85)

κ∗

M2
=

1

2q(1 + q)2

[
2q(χ1α1 + q2χ2α2)+

+ (χ2
1 + q4χ2

2 + 2q2(1 + q)2χ1χ2α1α2)

√
M

r

]
. (86)

Taking a second time derivative in Eq. (28) and using
Eqs. (A3)-(A5) we therefore have, to leading order in a
perturbation δχ− δχ∗, that [11]

d2

dt2
(δχ− δχ∗) + ω2(δχ− δχ∗) ≃ 0 , (87)

where

M2ω2(r) = −σ̄(3σ3δχ∗ + σ2) (88)

=
9

4

[(
1− q

1 + q

)2
r

M
− 2

1− q

1 + q
δχ∗
√

r

M
+ χ∗

eff
2

]

×
(√

r

M
− χ∗

eff

)2(
M

r

)7

(89)

determines the oscillation frequency of the perturbed
state. An instability occurs when this frequency becomes
complex. Using Eq. (29) and Vieta’s formulas, ω = 0
corresponds to 3δχ∗ = δχ− + δχ+ + δχ3/(1− q) .

The repeated root r = χ2
effM from Eq. (89) is unphysi-

cal since |χeff | ≤ 1. The other two roots are

√
r±
M

=
1 + q

1− q

(
δχ∗ ±

√
δχ∗2 − χ∗

eff
2

)
(90)

=
χ1α1 − qχ2α2 ± 2

√−qχ1χ2α1α2

1− q
. (91)

It is straightforward to show that r± can only take real
and physical values for α1 = −α2 = 1, i.e., the up–down
configuration. In particular, unstable motion occurs at
orbital separations rUD+ ≥ r ≥ rUD−, where [6]

rUD±

M
=

(
√
χ1 ±√

qχ2)
4

(1− q)2
. (92)

From Eq. (89) one has limr→∞ ω2(r) ≥ 0 such that rUD+

marks the onsets of unstable spin precession. We also note
stability in the limits of equal masses (q → 1), extreme
mass ratios (q → 0), and zero spins (χ1,2 → 0).

After the instability is triggered, up–down binaries do
not disperse in parameter space but approach a well-
defined endpoint. For r > rUD+, one can show that up–
down binaries are in the κ+ spin–orbit resonance [6, 11].
Since resonant binaries remain so [11], the endpoint of the
up–down instability can be found using Eq. (40) as the
formal r → 0 limit of binary configurations with κ = κ+.

In this limit, the discriminant equation ∆ = 0 can be
solved analytically in κ/u to obtain

lim
r→0

κ−
uM4

= max

[
(χ1 − q2χ2)

2

(1 + q)4
,

1− q

(1 + q)4
(χ2

1 − q3χ2
2) +

qχ2
eff

(1 + q)2

]
, (93)

lim
r→0

κ+
uM4

=
(χ1 + q2χ2)

2

(1 + q)4
. (94)

According to Eq. (16), one has κ
√
r ∝ κ/u→ S2 as r → 0.

Using Eqs. (10) and (11), and considering that κ+ implies
∆Φ = 0 while κ− implies ∆Φ = π, we find
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lim
r→0,κ→κ−

cos θ1 =





1+q

χ1−qχ2
χeff if |χeff | ≤

|χ1−qχ2|
1+q

,

χ2
1 − q2χ2

2 + (1+q)2χ2
eff

2(1+q)χ1χeff
otherwise ,

(95)

lim
r→0,κ→κ−

cos θ2 =





1+q

qχ2−χ1
χeff if |χeff | ≤

|χ1−qχ2|
1+q

,

q2χ2
2 − χ2

1 + (1+q)2χ2
eff

2q(1+q)χ2χeff
otherwise ,

(96)

lim
r→0,κ→κ+

cos θ1 =
1 + q

χ1 + qχ2
χeff , (97)

lim
r→0,κ→κ+

cos θ2 =
1 + q

χ1 + qχ2
χeff . (98)

These are the generic limits of the two spin–orbit res-
onances as r → 0. We arrive to the specific case of
up–down binaries by setting χeff = (χ1 − qχ2)/(1 + q) in
Eqs. (97-98). The endpoint of the up-down instability is
a precessing configuration with [11]





cos θ1 =
χ1 − qχ2

χ1 + qχ2
,

cos θ2 =
χ1 − qχ2

χ1 + qχ2
,

∆Φ = 0 .

(99)

Because of such unstable behavior, we find that binaries
that cross the up–down instability onset are the most
challenging to evolve numerically. This includes binaries
with cos θ1 = 1 and cos θ2 = −1 evolved forward in time
as well as binaries close to the endpoint of Eq. (99) evolved
backward in time. Numerical challenges related to up–
down binaries were also reported for the independent
implementation described in Ref. [15].

D. Wide nutation

Reference [9] showed that, under specific conditions,
BH spins can oscillate from full alignment to full anti-
alignment within a single period τ . This phenomenon,
which we dubbed “wide nutation,” corresponds by defini-
tion to the largest possible nutational motion in BH binary
dynamics. Hints of these configurations were previously
found in Refs. [73, 74].

During the inspiral of a BH binary, wide nutation can
only occur for either the primary or the secondary BH,
not both, and only if the orbital separation is smaller
than the threshold

rwide

M
=

(
χ1 − qχ2

1− q

)2

. (100)

More specifically, the wide-nutation condition for the
primary BH corresponds to the constraints cos θ1(δχ−) =

−1 and cos θ1(δχ+) = +1. These are satisfied if [9]

r ≤ rwide , (101)
χ1 ≤ χ2 , (102)

χeff = −1− q

1 + q

√
r

M
, (103)

κ

M2
=
χ2
1 − 2qχ2

1 + q4χ2
2 − 2q2(1− q)(r/M)

2q(1 + q)2
√
r/M

. (104)

For the secondary BH, the relevant conditions are
cos θ2(δχ−) = 1 and cos θ2(δχ+) = −1 which can be
translated to [9]

r ≤ rwide , (105)
χ2 ≤ χ1 , (106)

χeff =
1− q

1 + q

√
r

M
, (107)

κ

M2
=
χ2
1 − 2q3χ2

2 + q4χ2
2 + 2q(1− q)(r/M)

2q(1 + q)2
√
r/M

. (108)

E. Estimators: χp

The most commonly used estimator to quantify spin
precession in GW data is the so-called χp parameter first
introduced by Schmidt et al. [75]

χ(heu)
p = max

(
χ1 sin θ1, q

3 + 4q

4 + 3q
χ2 sin θ2

)
. (109)

This expression was shown to be inconsistent in Ref. [33]
and generalized using a full timescale separation. Their
amended definition reads

χp =

[
(χ1 sin θ1)

2 +

(
q
3 + 4q

4 + 3q
χ2 sin θ2

)2

+ 2q
3 + 4q

4 + 3q
χ1χ2 sin θ1 sin θ2 cos∆Φ

]1/2
(110)

and, crucially, includes all variations that take place on
the precession timescale. It can thus be precession av-
eraged without ambiguities at the PN order considered
here (Sec. III A), resulting in a precession estimator ⟨χp⟩
that only varies on the radiation-reaction timescale; see
Refs. [28, 36, 37, 76] for applications and Refs. [14, 77, 78]
for alternative estimators.

While it is straightforward to estimate ⟨χp⟩ numerically
using our new formulation based on δχ, we were not
able to solve the resulting integral analytically. We note
however that the root mean square

√
⟨χ2

p⟩ can instead be
written down in closed form [20]. Using Eqs. (17)-(19) we
first write

χ2
p = λ̄(λ2δχ

2 + λ1δχ+ λ0) (111)
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where λ̄ and λi are coefficients that depend on κ, χeff , r,
q, χ1, and χ2, as provided in Appendix A. Using Eq. (32)
we obtain
√
⟨χ2

p⟩ =
√
λ̄
[
(δχ+ − δχ−)

2λ2⟨δχ̃2⟩+ (δχ+ − δχ−)

× (λ1 + 2δχ−λ2)⟨δχ̃⟩+ (δχ−λ1 + δχ2
−λ2 + λ0)

]1/2
,

(112)

where ⟨δχ̃⟩ and ⟨δχ̃2⟩ are given in Eqs. (59) and (60),
respectively, using elliptic integrals (see Fig. 5).

At infinitely large separations one has θ1,2 = const. and
⟨cos∆Φ⟩ = 0 (Sec. IVA). Plugging these into Eq. (110)
and computing the average returns3

lim
r→∞

⟨χp⟩ =
2

π

(
χ1 sin θ1 + q

3 + 4q

4 + 3q
χ2 sin θ2

)

× E

[(
4q

3 + 4q

4 + 3q
χ1χ2 sin θ1 sin θ2

)

×
(
χ1 sin θ1 + q

3 + 4q

4 + 3q
χ2 sin θ2

)−2
]

(113)

and

lim
r→∞

√
⟨χ2

p⟩ =
√
(χ1 sin θ1)2 +

(
q
3 + 4q

4 + 3q
χ2 sin θ2

)2

(114)

(recall that E is the complete elliptic integral of the second
kind). In the limit of single-spin binaries, both these
expressions reduce to the “heuristic” definition χ(heu)

p [75]
reported in Eq. (110); see Ref. [33] for details.

It is important to stress that ⟨χp⟩ and
√
⟨χ2

p⟩ are two
different estimators and one is not an approximation of the
other. In particular, one necessarily has

√
⟨χ2

p⟩ ≥ ⟨χp⟩
for any BH binary (this can be proven using the Cauchy-
Schwarz inequality in the L2 Hilbert space). The domain
of both estimators is [0, 2], unlike the earlier definition of
Ref. [33] which is defined in [0, 1]. The additional region
[1, 2] is unique to binaries with two precessing spins and
can be exploited to probe the underlying physics [36].

Figure 7 shows the relative and absolute difference
between ⟨χp⟩ and

√
⟨χ2

p⟩. For this exercise, we generated

a sample of BH binaries with uniform values of
√

⟨χ2
p⟩ ∈

[0, 2]. This was obtained by numerically reweighting an
initial distribution where q, χ1, and χ2 are distributed
uniformly in [0.1, 1], the separation is kept fixed to r =
10M , and spin directions are isotropic. We find that the
largest relative (absolute) differences between the two are
∼ 0.12 (∼ 0.07) and take place for values of

√
⟨χ2

p⟩∼ 0.7.

3 Equation (113) is equivalent to Eq. (19) in Ref. [33] but written
in a more compact form.
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FIG. 7. Relative (blue) and absolute (red) differences between
the two precession estimators ⟨χp⟩ and

√
⟨χ2

p⟩. We consider a
sample of BH binaries where

√
⟨χ2

p⟩ is uniformly distributed in
[0, 2], as obtained from reweighting a base distribution where
q, χ1, and χ2 are uniformly distributed in [0.1, 1], r = 10M ,
and spin directions are isotropic. Shaded areas encompass
90% of the binaries in each bin. Dashed lines mark the median
error values.

The crucial difference between the two is that
√

⟨χ2
p⟩

is about 104 times faster to evaluate than ⟨χp⟩. For the
sources in Fig. 7, the average computational time on a
standard off-the-shelf laptop was ∼ 0.1 s for ⟨χp⟩ and
∼ 10−5 s for

√
⟨χ2

p⟩. This considerable speedup might
turn out to be useful when exploring the two-spin gener-
alization of χp for sampling purposes in GW parameter-
estimation pipelines (cf. Ref. [79] for current attempts
using rift).

F. Estimators: Five phenomenological parameters

A more phenomenological approach to quantify the
amount of spin precession in a BH binary includes exploit-
ing frequencies and angles that are directly related to the
timescale separation of Eq. (1) [14, 26, 35]. Considering
the joint precessional and nutational motion of L about
J , we define the following “geometric” estimators [14]:

1. the precession amplitude ⟨θL⟩, which is the average
of Eq. (50);

2. the precession frequency ⟨ΩL⟩ = α/τ , which is the
average of Eq. (51);
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3. the nutation amplitude ∆θL =
[θL(δχ−)− θL(δχ+)] /2 describing the variation of
θL during a cycle;4

4. the nutation frequency ω = 2π/τ from Eq. (35);

5. the variation of the precession frequency due to
nutation, ∆ΩL = [ΩL(δχ−)− ΩL(δχ+)] /2.

In the case where a single spin dominates the binary dy-
namics, the polar motion is suppressed and the nutational
parameters ∆θL and ∆ΩL become irrelevant. Similarly,
binaries do not nutate when q = 1 and in the case of the
spin–orbit resonances (because S is constant, see Ref. [14]
for details).

V. Interface with other investigations

A. Orbit-averaged inspirals

The precession-averaged approach is built on top of
the standard orbit-averaged formulation of the BH binary
dynamics, which is briefly presented here for completeness.
In short, an orbit-averaged PN integration requires solving
nine coupled ODEs given in Eqs. (21)-(26) for L(t),S1(t)
and S2(t). Equation (23) needs to be supplemented with
a prescription for dL/dt which encodes radiation reaction.
The momentum flux including (non-) spinning terms up
to (3.5PN) 2PN reads (see Refs. [46, 54, 80] and references
therein)

dL

dt
= −32

5

M8

L7

{
1− M4

L2
η2

743 + 924η

336
+
M6

L3
η3

[
4π − ηχ1 cos θ1

(
113

12q
+

25

4

)
− ηχ2 cos θ2

(
113q

12
+

25

4

)]
+
M8

L4
η4

×
[
34103

18144
+

13661

2016
η +

59

18
η2 +

ηχ2
1

96q
(719 cos2 θ1 − 233) +

ηqχ2
2

96

(
719 cos2 θ2 − 233

)
+
ηχ1χ2

48
(474 cos θ1 cos θ2

− 247 cos∆Φ sin θ1 sin θ2)

]
− M10

L5
η5π

4159 + 15876η

672
+
M12

L6
η6

[
16447322263

139708800
+

16

3
π2 − 1712

105

(
γE + ln

4ηM2

L

)

+

(
451

48
π2 − 56198689

217728

)
η +

541

896
η2 − 5605

2592
η3

]
+
M14

L7
η7π

[
− 4415

4032
+

358675

6048
η +

91495

1512
η2

]}
, (115)

where η = q/(1 + q)2 and γE ≃ 0.577 is Euler’s constant.
In particular, spins enter at 1.5PN, which is the reason
why the precession-averaged approach to radiation reac-
tion presented in Sec. III can only be extended up to 1PN
order. Orbit-averaged and precession-averaged integra-
tions have been extensively compared against each other
in Ref. [4].

B. Comparing to GW measurements

GW measurements are usually provided in the form
of samples from a posterior distribution, where the spin
directions are quoted at a reference emission frequency
fGW. For LIGO/Virgo, this is often (but not always [81])
set to 20 Hz [39, 48, 49]. When interpreting GW data
in light of our formalism, one needs to convert fGW into
a PN separation r. To this end, let us first write the
dimensionless orbital frequency

ω̃ =
πG

c3
MfGW ≃ 1.48× 10−5

(
M

M⊙

)(
fGW

Hz

)
, (116)

4 The signs of ∆θL and ∆ΩL as reported here are chosen for
consistency with Ref. [14].

where we reinstated physical units for clarity. At 2PN,
the conversion between ω̃ and r is given by [51]

r

M
=

1

ω̃2/3

{
1− ω̃2/3

[
1− q

3(1 + q)2

]

− ω̃

3(1 + q)2
[(2 + 3q)χ1 cos θ1 + q(3 + 2q)χ2 cos θ2]

+ ω̃4/3 q

2(1 + q)2

[
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2
+

2q

9(1 + q)2

+ χ1χ2 (2 cos θ1 cos θ2 − cos∆Φ sin θ1 sin θ2)

]}
,

(117)

while the inverse transformation is [51]

ω̃ =

(
M

r

)3/2{
1− M

r

[
3− q

(1 + q)2

]

−
(
M

r

)3/2
1

(1+q)2
[(2+3q)χ1 cos θ1 + q(3+2q)χ2 cos θ2]

+

(
M

r

)2 [
6 +

41q

4(1 + q)2
+

q2

(1 + q)4
+

3q

2(1+q)2

× χ1χ2 (2 cos θ1 cos θ2 − cos∆Φ sin θ1 sin θ2)

]}1/2

.

(118)



18

For current LIGO/Virgo observations of BH binaries,
fGW is only a few orbits away from merger, where tpre
is likely to be comparable with trad and the precession-
averaged formalism breaks down [4, 15]. A more solid
approach, therefore, is that of a hybrid evolution [5, 12],
where one first propagates LIGO samples backward using
an orbit-averaged integration (which is numerically ex-
pensive but keeps track of the precession phase) and then
switches to a precession-averaged formulation (which is
less accurate but can be easily be extended all the way
to r = ∞, i.e., fGW = 0).

The transition threshold rt between the orbit-averaged
and the precession-averaged approach is somewhat ar-
bitrary, but it has a negligible effect as long as it falls
in the regime where tpre ≪ trad. For a rule of thumb,
we find that switching between the two formulations at
rt = 1000M provides accurate results while maintain-
ing the computational cost under control [4, 12]. For a
deeper investigation of the transition between orbit- and
precession-averaged PN integrations see Ref. [15].

C. Remnant properties

Modeling the properties of remnant BHs left behind
following binary mergers has important applications in
both astrophysics and GW analyses (cf. Refs. [12, 82–85]
for a few, non-exhaustive examples). In line with previous
versions of precession [5], the new code presented in
Sec. VI includes fitting formulas to numerical-relativity
simulations that model the mass Mf , spin χf , and proper
velocity (or kick) vf of the post-merger remnant. In
particular, we implement phenomenological expressions
from Ref. [86] for the final mass, Ref. [71] for the final
spin, and Ref. [5] for the BH kick. These were assembled
using several NR simulations available at the time (see
references therein for details and credits to the various
NR runs). The direction of the final spin is approximated
using the total angular momentum before merger [71].

Those formulas provide estimates of Mf , χf , vf as a
function of q, χ1, χ2, θ1, θ2, and ∆Φ. More specifically,
the final-mass prescription we implement does not de-
pend on ∆Φ while the kick velocity has an additional
dependence on the orbital phase, which we assume to be
randomly distributed [5]. Crucially, these predictions are
inherently ill posed because they do not depend on the
orbital separation, even though r is a necessary coordinate
to specify the binary configuration (see Sec. IIA). The
rationale is that those expressions should only be applied
sufficiently close to merger (r ≃ 10M) where tpre∼ trad
and the spins do not precess much.

A more accurate approach to predicting the properties
of post-merger BHs relies on surrogate modeling tech-
niques first developed for waveform approximants [87, 88].
Remnant surrogates are data-driven fits to NR simula-
tions that do not assume a specific functional form. While
this solves the quoted ambiguity on the orbital separa-
tion, their predictions are limited to the region of the

parameter space where NR coverage is sufficiently dense.
Within their regime of validity, surrogate remnants are
more accurate than the simple expressions implemented
in precession and should be used [87].

VI. Numerical implementation

A. Distribution and documentation

A public implementation of our findings is distributed
in the precession module for the Python programming
language. Version v1 of precession was illustrated in
Ref. [5]. The code presented here is tagged v2 and has
been rewritten from scratch. In particular, we broke back-
ward compatibility because the mathematical formulation
presented in this paper could not be encapsulated into
the existing routines.

The source code is available at [41]

github.com/dgerosa/precession (source code).

The code documentation can be browsed at

dgerosa.github.io/precession (documentation)

and includes a detailed list of all functions together with
tutorials to perform some of the key operations. The code
is distributed via the Python Package Index (PyPI) and
can be installed with

pip install precession (installation).

Dependencies are limited to numpy [56] and scipy [89].
The general structure of the code is that of a tool-

box, namely a series of functions that can be chained by
the user to perform the desired calculation. In partic-
ular, we provide tools to (i) capture the BH dynamics
on the spin-precession timescale in closed form, (ii) aver-
age generic quantities over a precession period, (iii) nu-
merically integrate the BH binary inspiral using both
orbit- and precession-averaged approximations, (v) eval-
uate spin-precession estimators, and (vi) estimate the
remnant properties.

Code units are such that G = c =M = 1, where M is
the total mass of the binary. There are a few exceptions
where we interface our scale-free calculations with GW
detectors. In those cases, inputs and outputs are more
conveniently expressed in M⊙, Hz, etc. The order of
inputs and outputs respects the timescale hierarchy of
precessing BH binaries, with variables varying on tpre
listed first, then those varying on trad, and finally the
constants of motion.

Vectorization via numpy arrays is implemented when-
ever it is compatible with the adopted numpy and scipy
routines. For the case of polynomial root finding, we de-
veloped our own generalization as presented in Appendix
B. precession functions can digest inputs under the form
of numpy arrays and perform operations on an element-
by-element basis, in line with the numpy broadcasting

https://github.com/dgerosa/precession
https://dgerosa.github.io/precession
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FIG. 8. Distribution of the CPU time (in seconds) required to
perform precession-averaged evolutions. The blue histogram
reports timings obtained with the version of the code presented
in this paper (precession v2). The orange histogram reports
timings obtained for the same BH binaries evolved with the
version of the code presented in Ref. [5] (precession v1). The
unit on the y-axis is arbitrary.

rules. By convention, outputs are returned as arrays of
shape (M,N), where M is the number of features and
N is the number of binaries under study (as given in
the input arrays). For consistency, this convention also
applies to N = 1 such that studying a single GW source
returns two-dimensional arrays of shape (M, 1) and not
one-dimensional arrays of length M (this is somewhat
inspired by the convention adopted in the popular scikit-
learn Python package [90]).

Lengthy equations have been generated using the
computer-algebra software Mathematica and exported
to Python. Our source Mathematica notebook is made
available in the precession repository [41].

B. Performance

We test the performance of our new implementa-
tion on a population of 105 BH binaries with q, χ1,
and χ2 distributed uniformly in [0.1, 1] and isotropic
spin orientations. We evolve these sources along their
precession-averaged inspiral from ri to rf = 10M , where
ri ∈ [106M, 10M) is distributed uniformly in log ri. We
record the execution times required to perform the entire
procedure outlined in Sec. III B, i.e., both an integration
of the dκ/du ODE as well as a resampling of the preces-
sional phase at rf . Tests were run on parallel threads
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FIG. 9. CPU time (in seconds) required to perform precession-
averaged evolutions in bins of initial separation ri (top panel,
green) and mass ratio q (bottom panel, purple). Dashed
(solid) lines indicate the median (90% interval) wall-clock time
recorded across a broad population of sources.

using two Intel Xeon Gold 5220R processors.
Figure 8 compares the performance of precession v2

against that of precession v1 from Ref. [5]. We report
wall-clock times tv2 = 0.06+0.09

−0.03 s for the new code com-
pared to tv1 = 2.75+10.38

−1.86 s obtained with the previous ver-
sion (where we quote medians and the 90% interval across
all simulated sources). This corresponds to a speedup of
tv1/tv2 = 49.6+104.4

−19.5 .
Figure 9 shows the execution times of the new code in

bins of ri and q. The scaling with ri is essentially constant
(or, more conservatively, logarithmic [4]). Binaries with
mass ratios close to unity take, on average, about a factor
of ≲ 3 longer to evolve compared to sources with q∼ 0.1.
This is expected because the importance of spin–spin
couplings scales as S2/S1 ∝ q2.

C. Profiling

Figure 10 shows code profiling results for a set of
precession-averaged evolutions from the same population
described above. In particular, the ODE integrator takes
about 96% of the time while the remaining ∼ 4% is spent
resampling the precessional phase at the final orbital sep-
aration. Within the integrator, the evaluation of the
right-hand side from Eq. (62) requires the vast majority
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FIG. 10. Code profiling of precession v2. The length of each colored bar indicates the fraction of the total CPU time spent on
a given operation, as indicated on the bottom x-axis. The top x-axis is rescaled to the mean CPU time per binary ∼ 0.064
s. Performing a precession-averaged evolution requires an ODE integration (blue) and a resampling of the precessional phase
at the final separation (yellow). In turn, the integrator requires multiple evaluations of the right-hand side (orange) and the
ODE stepper (cyan). In turn, evaluating the right-hand side requires finding the roots of the cubic polynomial Σ(δχ) (green),
computing the coefficients σi (red), and evaluating elliptic integrals (purple). Minor additional operations are marked in gray.

of the resources (about 95% of the total execution time)
while a minor fraction of the time is taken by the ODE
stepper. Deeper into the code, the computation of the
right-hand side requires three operations with a noticeable
computational footprint: the evaluation of the coefficients
from Eqs. (A3)-(A6), the root finder to evaluate δχ±,3,
and the evaluation of the elliptic integral from Eq. (59).
These tasks require ∼ 28%, ∼ 54%, and ∼ 11% of the to-
tal execution time. Possible computational improvements
include exploring just-in-time compilation for the eval-
uation of σi [91] as well as porting the polynomial root
finder to GPUs [92].

VII. Summary and future developments

The dynamics of precessing BH binaries is rich and
fascinating. This paper presents a complete reinvestiga-
tion of the related phenomenology using multi-timescale
methods. Our strategy relies on double averaging the
equations of motion over both the orbital and the preces-
sional timescale. Radiation reaction is then captured in a
quasi-adiabatic fashion.

Our previous approach [4] parametrized the dynamics
on the precession timescale using the magnitude of the
total spin S. While intuitive, it results in a coordinate
singularity when the two BHs have equal masses. On
the other hand, the formulation presented here uses the
weighted spin difference δχ which allows us to capture the
q → 1 limit, at least for finite orbital separations. The
joint limits of q → 1 and r → ∞ still need to be fully
understood, and we anticipate the solution will require
identifying a new radiation-timescale parameter to be
adopted instead of κ.

Using the new δχ formulation, we expanded upon pre-
vious results (most notably Ref. [20]) and expressed the
2PN spin-precession dynamics in closed form. While some
of the mathematical expressions presented in this paper
might appear convoluted, the entire evolution on tpre is

written down in terms of elliptic integrals and Jacobi
elliptic functions, which are extremely fast to evaluate
using standard numerical libraries.

Our numerical implementation is distributed in v2 of
the precession module for the Python programming
language; see github.com/dgerosa/precession [41]. Per-
forming precession-averaged binary BH inspirals from
(infinitely) large separations to the PN breakdown takes
≲ 0.1s on a standard, off-the-shelf chip. This increased
speedup has important applications in GW astronomy,
including:

(i) Post-processing long posterior chains describing GW
events. These are provided at separations where
BHs are visible and need to be propagated backward
to separations where they form (e.g., Refs. [15, 34]).

(ii) Evolve outputs from population-synthesis predic-
tions of astrophysical nature. These are provided
where BHs form and might need to be propagated
forward to small separations where they become
detectable (e.g., Refs. [23, 24]).

In this paper, we only tackled BHs on quasi-circular
orbits. A generalization of our formalism to eccentric
systems is under development; cf. Refs. [10, 20, 93] for
existing investigations. Further extensions include consid-
ering higher-order PN terms, as well as neutron stars (or
exotic compact objects) in addition to BHs [21, 94, 95].
These two lines of research might require a similar math-
ematical formalism as they both cause variations of χeff ,
which ceases to be a constant of motion. The dynamics
presented in this paper could provide the background
solution for a perturbative approach where χeff is allowed
to undergo small oscillations. Finally, some of the most
recent advances in PN theory include the identification of
constants of motion for the non-averaged problem, with-
out recursing to any adiabatic approximation [96–99]. A
detailed comparison of our predictions against theirs is
another promising avenue for future work.

https://github.com/dgerosa/precession
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A. Polynomial coefficients

In this Appendix we list some lengthy equations that
were omitted from the main body of the paper.

We first report the coefficients entering the polynomial

Σ = σ̄

3∑

i=0

σiδχ
i (A1)

of Eq. (28). These are:

σ̄ = 4608u10M20 q11

(1 + q)27
[
(1 + q)2 − 2uM2qχeff

]2
,

(A2)

σ3 = uM2(1− q) , (A3)

σ2 = − (1− q)2(1 + q)

2q
− uM2(1 + q)

(
2
κ

M2
− χeff

)

+ 2u2M4 (1− q)

(1 + q)3
(χ2

1 − q3χ2
2) (A4)

σ1 =
(1− q)(1 + q)2

q

(
2
κ

M2
− χeff

)

− uM2 1− q

q(1 + q)2
[
2(χ2

1 + q4χ2
2) + q(1 + q)2χ2

eff

]

+ 4u2M4 q

(1 + q)3
(χ2

1 − q2χ2
2)χeff , (A5)

σ0 = − (1 + q)3

2q

(
2
κ

M2
− χeff

)2

+
uM2

q(1+q)

(
2
κ

M2
− χeff

) [
2(χ2

1+q
4χ2

2) + q(1+q)2χ2
eff

]

− 2u2M4

q(1 + q)5
[
(χ2

1 − q4χ2
2)

2+ q(1 + q)3(χ2
1 + q3χ2

2)χ
2
eff

]
.

(A6)
We now list the coefficients entering the discriminant

in Eq. (40). We break the calculation down as follows:

∆ = δ̄

5∑

i=0

δi

( κ

M2

)i
= δ̄

5∑

i=0

6∑

j=0

δij

( κ

M2

)i
(uM2)j ,

(A7)

such that the indexes i and j indicate the degree of a
polynomial expansion in κ and u, respectively. We then
systematically expand each δij in powers of χ1, χ2, and
χeff . The resulting prefactors are all rational functions of
q. We obtain:

δ̄ = 64
(1 + q)6

q
u2M4 , (A8)

δ56 = δ55 = δ54 = δ53 = δ52 = 0 , (A9)
δ51 = −1 , (A10)
δ50 = 0 , (A11)
δ46 = δ45 = δ44 = δ43 = 0 , (A12)

δ42 =
5− 3q

(1 + q)4
χ2
1 −

q3(3− 5q)

(1 + q)4
χ2
2 +

q

(1 + q)2
χ2
eff , (A13)

δ41 =
5

2
χeff , (A14)

δ40 =
(1− q)2

16q
, (A15)
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δ36 = δ35 = δ34 = 0 , (A16)

δ33 = −10− 12q + 3q2

(1 + q)8
χ4
1 +

2q3(6− 11q + 6q2)

(1 + q)8
χ2
1χ

2
2 −

q6(3− 12q + 10q2)

(1 + q)8
χ4
2 −

2q(2− q)

(1 + q)6
χ2
1χ

2
eff +

2q4(1− 2q)

(1 + q)6
χ2
2χ

2
eff ,

(A17)

δ32 = −20− 3q − q2

2(1 + q)5
χ2
1χeff +

q3(1 + 3q − 20q2)

2(1 + q)5
χ2
2χeff − 2q

(1 + q)2
χ3
eff , (A18)

δ31 = − (1− q)2(1− 5q)

4q(1 + q)4
χ2
1 +

q2(1− q)2(5− q)

4(1 + q)4
χ2
2 −

2(1 + 3q + q2)

(1 + q)2
χ2
eff , (A19)

δ30 = − (1− q)2

8q
χeff , (A20)

δ26 = δ25 = 0 , (A21)

δ24 =
(1− q)(10− 8q + q2)

(1 + q)12
χ6
1 −

9q3(1− q)(2− 2q + q2)
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χ4
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2
2 +
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1χ

4
2
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χ6
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2
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(A22)
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δ22 =
(1− q)2(3− 30q − 4q2)

8q(1 + q)8
χ4
1 −

q2(1− q)2(15− 29q + 15q2)

4(1 + q)8
χ2
1χ

2
2 −

q5(1− q)2(4 + 30q − 3q2)

8(1 + q)8
χ4
2

+
12 + 2q + 11q2 − q3

2(1 + q)6
χ2
1χ

2
eff − q3(1− 11q − 2q2 − 12q3)

2(1 + q)6
χ2
2χ

2
eff +

q(1 + 4q + q2)

(1 + q)4
χ4
eff , (A24)

δ21 =
(1− q)2(3− 23q − 4q2)

8q(1 + q)5
χ2
1χeff − q2(1− q)2(4 + 23q − 3q2)

8(1 + q)5
χ2
2χeff +

1 + 8q + q2

2(1 + q)2
χ3
eff , (A25)

δ20 = − (1− q)4

16q(1 + q)4
χ2
1 −

q(1− q)4

16(1 + q)4
χ2
2 +

(1− q)2(1 + 4q + q2)

16q(1 + q)2
χ2
eff , (A26)

δ16 = 0 , (A27)

δ15 = − (1− q)2(5− 2q)

(1 + q)16
χ8
1 +

2q3(1− q)2(6− q + q2)

(1 + q)16
χ6
1χ

2
2 −

9q6(1− q)2(1 + q2)

(1 + q)16
χ4
1χ

4
2

+
2q9(1− q)2(1− q + 6q2)

(1 + q)16
χ2
1χ

6
2 +

q13(1− q)2(2− 5q)

(1 + q)16
χ8
2 −

2q(1− q)(2− q)

(1 + q)14
χ6
1χ

2
eff

+
2q4(1− q)(3− q + q2)

(1 + q)14
χ4
1χ

2
2χ

2
eff − 2q7(1− q)(1− q + 3q2)

(1 + q)14
χ2
1χ

4
2χ

2
eff − 2q11(1− q)(1− 2q)

(1 + q)14
χ6
2χ

2
eff , (A28)

δ14 = − (1− q)(20− 29q + 12q2)
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δ13 = − (1−q)2(1− 15q − 4q2)
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q(1− q)4(1− 12q + q2)

8(1 + q)8
χ2
1χ

2
2 +

q5(1− q)4

8(1 + q)8
χ4
2 −

(1− q)2(1− 18q − 7q2)

8q(1 + q)6
χ2
1χ

2
eff

+
q3(1− q)2(7 + 18q − q2)

8(1 + q)6
χ2
2χ

2
eff − q(1 + 3q + q2)

(1 + q)4
χ4
eff , (A32)

δ10 =
(1− q)4

8q(1 + q)5
χ2
1χeff +

q2(1− q)4

8(1 + q)5
χ2
2χeff − (1− q)2

8(1 + q)2
χ3
eff , (A33)

δ06 =
(1− q)3

(1 + q)20
χ10
1 − q3(1− q)3(3 + 2q)

(1 + q)20
χ8
1χ

2
2 +

q6(1− q)3(3 + 6q + q2)

(1 + q)20
χ6
1χ

4
2 −

q9(1− q)3(1 + 6q + 3q2)

(1 + q)20
χ4
1χ

6
2

+
q13(1− q)3(2 + 3q)

(1 + q)20
χ2
1χ

8
2 −

q17(1− q)3

(1 + q)20
χ10
2 +

q(1− q)2

(1 + q)18
χ8
1χ

2
eff − 2q4(1− q)2

(1 + q)17
χ6
1χ

2
2χ

2
eff

+
q7(1− q)2(1 + 4q + q2)

(1 + q)18
χ4
1χ

4
2χ

2
eff − 2q11(1− q)2

(1 + q)17
χ2
1χ

6
2χ

2
eff +

q15(1− q)2

(1 + q)18
χ8
2χ

2
eff , (A34)

δ05 =
(1− q)2(5− 8q)

2(1 + q)17
χ8
1χeff − q3(1− q)2(1− 4q)(1 + 3q)

2(1 + q)17
χ6
1χ

2
2χeff − q6(1− q)2(4 + q + 4q2)

2(1 + q)16
χ4
1χ

4
2χeff

+
q10(1− q)2(4− q)(3 + q)

2(1 + q)17
χ2
1χ

6
2χeff − q14(1− q)2(8− 5q)

2(1 + q)17
χ8
2χeff +

2q(1− q)(1− 2q)

(1 + q)15
χ6
1χ

3
eff

+
2q4(1− q)(1− q + 3q2)

(1 + q)15
χ4
1χ

2
2χ

3
eff − 2q8(1− q)(3− q + q2)

(1 + q)15
χ2
1χ

4
2χ

3
eff +

2q12(1− q)(2− q)

(1 + q)15
χ6
2χ

3
eff , (A35)

δ04 =
(1−q)2(1− 20q − 8q2)

16q(1 + q)16
χ8
1 −

q2(1−q)2(5− 27q + 3q2 − 8q3)

4(1 + q)16
χ6
1χ

2
2 −

q5(1− q)2(4 + 6q + 61q2 + 6q3 + 4q4)

8(1 + q)16
χ4
1χ

4
2

+
q9(1− q)2(8− 3q + 27q2 − 5q3)

4(1 + q)16
χ2
1χ

6
2 −

q13(1− q)2(8 + 20q − q2)

16(1 + q)16
χ8
2 +

(1− q)(4− 18q + 11q2)

2(1 + q)14
χ6
1χ

2
eff

− q3(1− q)(1− 4q − 14q2 + 8q3)

2(1 + q)14
χ4
1χ

2
2χ

2
eff +

q7(1− q)(8− 14q − 4q2 + q3)

2(1 + q)14
χ2
1χ

4
2χ

2
eff

− q11(1−q)(11− 18q + 4q2)

2(1 + q)14
χ6
2χ

2
eff +

q(1− 6q + 6q2)

(1 + q)12
χ4
1χ

4
eff − 2q5(3− 5q + 3q2)

(1 + q)12
χ2
1χ

2
2χ

4
eff +

q9(6− 6q + q2)

(1 + q)12
χ4
2χ

4
eff ,

(A36)

δ03 =
(1− q)2(1− 25q − 12q2)

8q(1 + q)13
χ6
1χeff − q2(1− q)2(4− 29q + 21q2 − 32q3)

8(1 + q)13
χ4
1χ

2
2χeff

+
q6(1− q)2(32− 21q + 29q2 − 4q3)

8(1 + q)13
χ2
1χ

4
2χeff − q10(1− q)2(12 + 25q − q2)

8(1 + q)13
χ6
2χeff +

1− 14q + 20q2 − 5q3

2(1 + q)11
χ4
1χ

3
eff

− q4(2− 3q + 2q2)

(1 + q)10
χ2
1χ

2
2χ

3
eff − q8(5− 20q + 14q2 − q3)

2(1 + q)11
χ4
2χ

3
eff − 2q2(1− 2q)

(1 + q)9
χ2
1χ

5
eff +

2q6(2− q)

(1 + q)9
χ2
2χ

5
eff , (A37)

δ02 = − (1− q)4

16q(1 + q)12
χ6
1 −

q(1− q)4(1− 24q − 10q2)

16(1 + q)12
χ4
1χ

2
2 +

q5(1− q)4(10 + 24q − q2)

16(1 + q)12
χ2
1χ

4
2 −

q9(1− q)4

16(1 + q)12
χ6
2

+
(1− q)2(1− 40q − 23q2)

16q(1 + q)10
χ4
1χ

2
eff +

q3(1− q)2(11− 24q + 11q2)

8(1 + q)10
χ2
1χ

2
2χ

2
eff − q7(1− q)2(23 + 40q − q2)

16(1 + q)10
χ4
2χ

2
eff

− q(4− 7q − q2)

2(1 + q)8
χ2
1χ

4
eff +

q5(1 + 7q − 4q2)

2(1 + q)8
χ2
2χ

4
eff +

q3

(1 + q)6
χ6
eff , (A38)

δ01 = − (1− q)4

8q(1 + q)9
χ4
1χeff +

5q2(1− q)4

8(1 + q)8
χ2
1χ

2
2χeff − q6(1− q)4

8(1 + q)9
χ4
2χeff − (1− q)2(5 + 3q)

8(1 + q)7
χ2
1χ

3
eff

− q4(1− q)2(3 + 5q)

8(1 + q)7
χ2
2χ

3
eff +

q2

2(1 + q)4
χ5
eff , (A39)

δ00 =
q(1− q)6

16(1 + q)8
χ2
1χ

2
2 −

(1− q)4

16q(1 + q)6
χ2
1χ

2
eff − q3(1− q)4

16(1 + q)6
χ2
2χ

2
eff +

q(1− q)2

16(1 + q)4
χ4
eff . (A40)
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The coefficients entering the expansion

χ2
p = λ̄

2∑

i=0

λiδχ
i (A41)

of Eq. (111) are

λ̄ =
1 + q

4q(4 + 3q)2uM2
, (A42)

λ2 = −q(1− q)2(1 + q)uM2 , (A43)

λ1 = −2(1− q)(1 + q)2
[
(4 + 3q)(3 + 4q) + 7qχeffuM

2
]
,

(A44)

λ0 = 2(1 + q)3(4 + 3q)(3 + 4q)
(
2
κ

M2
− χeff

)

− uM2
{
12(1− q)

[
(4 + 3q)χ2

1 − q3(3 + 4q)χ2
2

]

+ 49q(1 + q)3χ2
eff

}
. (A45)

B. Polynomial root finding

Accurately determining roots of polynomials is a cru-
cial ingredient for the successful implementation of our
formalism and dominates the overall computational cost
(Sec. VI C). Most notably, this is needed to compute δχ±,3

and κ±. We find that the implementation readily avail-
able in numpy.roots [56] provides the necessary accuracy.
However, it is not vectorized and can only handle one
root-finding problem at a time.

The mathematical problem is the following: we wish
to solve N equations of the kind





M∑

j=0

cijx
M−j = 0





N

i=1

, (B1)

where M is (larger than) the largest degree of all the
equations. The input is provided by the N ×M matrix
C with elements cij .

Array vectorization can be achieved by appropriately
inserting new array axes in the numpy.roots code [100].
This, however, requires all equations in the array to be
of the same degree as values ci0 = 0 cannot be accommo-
dated by the adopted companion-matrix algorithm [55].
The public version of numpy.roots addresses this issue by
stripping all trailing zeros from the input rank-1 array c1j
before performing the required linear-algebra operations.
This is not viable when considering N > 1 equations
because the number of trailing zeros could be different in
each row of the coefficient matrix C. For instance, this is
the case when considering binaries with both q < 1 and
q = 1, such that some of the resulting equations Σ(δχ) = 0
are cubic and others are quadratic; cf. Sec. IV A.

We solve this issue by identifying the number of trailing
zeros in each row and applying a suitable permutation

to the element of that row such that those zeros end up
in the last columns. The resulting equations are all of
the same degree and present a number of additional null
roots equal to the number of trailing zeros in the original
problem. These spurious solutions can then be easily
filtered out or masked.

This is best explained with an example. Consider the
set of equations





x3 − 6x2 + 11x− 6 = 0 ,

x2 − 3x+ 2 = 0 ,

x4 − 10x3 + 35x2 − 50x+ 24 = 0 ,

(B2)

with solutions




x = 1, 2, 3 ,

x = 1, 2 ,

x = 1, 2, 3, 4 .

(B3)

The coefficient matrix from Eqs. (B2) is

C =



0 1 −6 11 −6
0 0 1 −3 2
1 −10 35 −50 24


 . (B4)

The number of trailing zeros in each row is nt0 = (1, 2, 0).
We cycle the coefficient of each row a number of times
given by nt0. This results in a modified coefficient matrix,

C ′ =



1 −6 11 −6 0
1 −3 2 0 0
1 −10 35 −50 24


 , (B5)

that can be easily digested by the vectorized version of
numpy.roots [100]. The corresponding equations are




x′4 − 6x′3 + 11x′2 − 6x′ = x′(x′3 − 6x′2 + 11x′ − 6) = 0 ,

x′4 − 3x′3 + 2x′2 = x′2(x′2 − 3x′ + 2) = 0 ,

x′4 − 10x′3 + 35x′2 − 50x′ + 24 = 0 ,

(B6)

with solutions




x′ = 0, 1, 2, 3 ,

x′ = 0, 0, 1, 2 ,

x′ = 1, 2, 3, 4 .

(B7)

Masking a number of zeros equal to nt0 = (1, 2, 0) in
each set returns the solutions of the original problem; cf.
Eq. (B3).

In short, our algorithm provides an array-compatible
generalization of numpy.roots that can handle multiple
equations of different degrees.

C. Useful integrals

In this Appendix, we report some standard integrals
that are used in this paper.
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Let us first recall the definition of the elliptic integrals
in their Legendre form; see Ref. [57] for a complete intro-
duction. Given 0 ≤ φ ≤ π/2 and 0 ≤ m ≤ 1, one defines
the following special functions.

• Incomplete elliptic integral of the first kind:

F (φ,m) =

∫ φ

0

dθ√
1−m sin2 θ

. (C1)

• Complete elliptic integral of the first kind:

K(m) = F
(
φ =

π

2
,m
)
. (C2)

• Incomplete elliptic integral of the first kind:

E(φ,m) =

∫ φ

0

√
1−m sin2 θ dθ . (C3)

• Complete elliptic integral of the second kind:

E(m) = E
(
φ =

π

2
,m
)
. (C4)

• Incomplete elliptic integral of the third kind:

Π(n, φ,m) =

∫ φ

0

dθ

(1− n sin2 θ)
√
1−m sin2 θ

. (C5)

• Complete elliptic integral of the third kind:

Π(n,m) = Π
(
n, φ =

π

2
,m
)
. (C6)

Let us assume a < x < b ≤ c. The following integrals
involving the cubic function (x− a)(b− x)(c− x) > 0 can
be reduced as follows:
∫

1√
(x− a)(b− x)(c− x)

dx

=
2√
c− a

F

(
arcsin

√
x− a

b− a
,
b− a

c− a

)
, (C7)

∫ b

a

1√
(a− x)(b− x)(c− x)

dx =
2√
c− a

K

(
b− a

c− a

)
,

(C8)

∫
x√

(x− a)(b− x)(c− x)
dx

=
2√
c− a

[
cF

(
arcsin

√
x− a

b− a
,
b− a

c− a

)

− (c− a)E

(
arcsin

√
x− a

b− a
,
b− a

c− a

)]
, (C9)

∫ b

a

x√
(x− a)(b− x)(c− x)

dx

=
2√
c− a

[
cK

(
b− a

c− a

)
− (c− a)E

(
b− a

c− a

)]
,

(C10)
∫

x2√
(x− a)(b− x)(c− x)

dx

=
2

3
√
c− a

{√
(c− a)(x− a)(b− x)(c− x)

+ [b(c− a) + c(a+ 2c)]F

(
arcsin

√
x− a

b− a
,
b− a

c− a

)

− 2(c− a)(a+ b+ c)E

(
arcsin

√
x− a

b− a
,
b− a

c− a

)}
,

(C11)
∫ b

a

x2√
(x− a)(b− x)(c− x)

dx

=
2

3
√
c− a

{
[b(c− a) + c(a+ 2c)]K

(
b− a

c− a

)

− 2(c− a)(a+ b+ c)E

(
b− a

c− a

)}
, (C12)

∫
1

(k − x)
√

(x− a)(b− x)(c− x)
dx

=
2√

c− a(k − a)
Π

(
b− a

k − a
, arcsin

√
x− a

b− a
,
b− a

c− a

)
,

(C13)
∫ b

a

1

(k − x)
√
(x− a)(b− x)(c− x)

dx

=
2√

c− a(k − a)
Π

(
b− a

k − a
,
b− a

c− a

)
. (C14)
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