
Journal of Geometry and Physics 186 (2023) 104773
Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/geomphys

Poisson quasi-Nijenhuis deformations of the canonical PN 

structure

G. Falqui a,d,e, I. Mencattini b, M. Pedroni c,e,∗
a Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, Italy
b Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Brazil
c Dipartimento di Ingegneria Gestionale, dell’Informazione e della Produzione, Università di Bergamo, Italy
d SISSA, via Bonomea 265, 34136 Trieste, Italy
e INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 May 2022
Received in revised form 4 January 2023
Accepted 31 January 2023
Available online 6 February 2023

Keywords:
Poisson quasi-Nijenhuis manifolds
Integrable systems
Toda lattices

We present a result which allows us to deform a Poisson-Nijenhuis manifold into a Poisson 
quasi-Nijenhuis manifold by means of a closed 2-form. Under an additional assumption, 
the deformed structure is also Poisson-Nijenhuis. We apply this result to show that the 
canonical Poisson-Nijenhuis structure on R2n gives rise to both the Poisson-Nijenhuis 
structure of the open (or non periodic) n-particle Toda lattice, introduced by Das and 
Okubo [7], and the Poisson quasi-Nijenhuis structure of the closed (or periodic) n-particle 
Toda lattice, described in our recent work [8].

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The notion of Poisson-Nijenhuis (PN) manifold [16,12] was introduced in connection with the theory of integrable sys-
tems. Such a manifold is endowed with a Poisson tensor π and with a tensor field N of type (1, 1), sometimes called 
“recursion operator”, which is torsionless and compatible (see Section 2) with π . It is a bi-Hamiltonian manifold, and the 
traces Hk of the powers of N are in involution with respect to both Poisson brackets induced by the Poisson tensors. A 
Poisson-Nijenhuis structure for the open (or non periodic) n-particle Toda lattice (see [20] and references therein) was 
presented in [7] (see also [6,17,19]).

A generalization of PN manifolds was introduced in [21], where a Poisson quasi-Nijenhuis (PqN) manifold was defined 
to be a Poisson manifold with a compatible tensor field N̂ of type (1, 1), whose torsion need not vanish but is controlled 
by a suitable 3-form φ. Since, in general, the traces Ĥk of the powers of N̂ are not in involution, no application of PqN 
manifolds to finite-dimensional integrable systems was found until the paper [8], where we obtained a rather stringent 
sufficient condition to transform, by means of a 2-form �, a PN manifold (M, π, N) into a PqN manifold (M, π, ̂N, φ), and 
we found suitable compatibility conditions between π , N and � entailing that the functions Ĥk are in involution. Then we 
applied these results to interpret the well known integrability of the closed Toda lattice in the PqN framework, showing 
that its integrals of motion are the traces of the powers of a suitable tensor field N̂ of type (1, 1), which is a deformation 
of the Das-Okubo recursion operator N of the open Toda lattice.

In this paper we give a stronger result than the above mentioned deformation scheme, in the sense that the only 
condition on the 2-form �, to obtain a PqN manifold, is d� = 0. Under an additional assumption, the deformed structure 
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is a PN manifold. Then we apply this result to show that the “canonical” PN structure on R2n (corresponding to the free-
particle case) gives rise to both the PN structure [7] of the open Toda lattice and the PqN structure [8] of the closed Toda 
lattice.

The organization of this paper is the following. In Section 2 we recall the definitions of PN and PqN manifold. Section 3
is devoted to the (improved version of the) above mentioned deformation theorem, with further considerations on the case 
where π is non degenerate. This result is applied in Section 4 to a wide class of mechanical systems, including the open and 
closed n-particle Toda systems, whose PN and PqN structures are interpreted as deformations of the canonical PN structure 
on R2n .

Acknowledgments. We thank Giovanni Ortenzi for useful discussions. MP thanks the Department of Mathematics and 
Applications of the University of Milano-Bicocca for its hospitality. This project has received funding from the European 
Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant no. 778010 IPaDEGAN. 
All authors gratefully acknowledge the auspices of the GNFM Section of INdAM under which part of this work was carried 
out, and the anonymous referee for suggesting some improvements in the presentation.

2. Poisson quasi-Nijenhuis manifolds

Let N : TM → TM be a (1, 1) tensor field on a manifold M. It is well known that its Nijenhuis torsion is defined as

T N(X, Y ) = [N X, NY ] − N ([N X, Y ] + [X, NY ] − N[X, Y ]) . (1)

We also recall that, given a p-form α, with p ≥ 1, one can construct another p-form iNα as

iNα(X1, . . . , Xp) =
p∑

i=1

α(X1, . . . , N Xi, . . . , Xp), (2)

and that iN is a derivation of degree zero (if iN f = 0 for all functions f ).
If π is a Poisson bivector on M and π� : T ∗M → TM is defined by 〈β, π�α〉 = π(α, β), then π and N are said to be 

compatible [16] if

Nπ� = π�N∗ , where N∗ : T ∗M → T ∗M is the transpose of N;

Lπ�α(N)X − π�L X (N∗α) + π�LN Xα = 0, for all 1-forms α and vector fields X .
(3)

In [21] a Poisson quasi-Nijenhuis (PqN) manifold was defined as a quadruple (M, π, N, φ) such that:

• the Poisson bivector π and the (1, 1) tensor field N are compatible;

• the 3-forms φ and iNφ are closed;

• T N (X, Y ) = π� (i X∧Y φ) for all vector fields X and Y , where i X∧Y φ is the 1-form defined as 〈i X∧Y φ, Z〉 = φ(X, Y , Z).

A slightly more general definition of PqN manifold was recently proposed in [2].
If φ = 0, then the torsion of N vanishes and M becomes a Poisson-Nijenhuis manifold (see [12] and references therein). In 

this case, the bivector field πN defined by π�
N = Nπ� is a Poisson tensor compatible with π , so that M is a bi-Hamiltonian 

manifold. Moreover, the functions

Hk = 1

2k
Tr(Nk), k = 1,2, . . . , (4)

satisfy dHk+1 = N∗dHk , entailing their involutivity with respect to both Poisson brackets induced by π and πN .
In [8] we called involutive a PqN manifold such that the traces (4) of the powers of N are in involution (with respect to 

the unique Poisson bracket defined on M, i.e., the one associated with π ) and we observed that there are non involutive 
PqN manifolds. Moreover, we found some hypotheses (see Remark 3) to be added to obtain a class of involutive PqN 
manifolds, and we gave an application to the closed Toda lattice, whose PqN structure has been defined as a suitable 
deformation (see next section) of the PN structure [7] of the open Toda lattice.

3. Deformations of PN manifolds

In this section we first present a few basic facts about the theory of PN and PqN manifolds from the view-point of 
differential graded Lie algebras. Then we prove a result which gives a sufficient condition to deform a PN structure into a 
PqN one.
2
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First of all, we recall that, given a tensor field N : TM → TM, the usual Cartan differential can be modified as follows,

(dNα)(X0, . . . , Xq) =
q∑

j=0

(−1) j LN X j

(
α(X0, . . . , X̂ j, . . . , Xq)

)
+

∑
i< j

(−1)i+ jα([Xi, X j]N , X0, . . . , X̂i, . . . , X̂ j, . . . , Xq),

(5)

where α is a q-form, the Xi are vector fields, and [X, Y ]N = [N X, Y ] + [X, NY ] − N[X, Y ]. Note that dN f = N∗d f for all 
f ∈ C∞(M). Moreover,

dN = iN ◦ d − d ◦ iN , (6)

where iN is given by (2), and consequently d ◦ dN + dN ◦ d = 0. Finally, d2
N = 0 if and only if the torsion of N vanishes.

We also remind that one can define a Lie bracket between 1-forms on a Poisson manifold (M, π) as

[α,β]π = Lπ�αβ − Lπ�βα − d〈β,π�α〉, (7)

and that this Lie bracket can be uniquely extended to all forms on M in such a way that, if η is a q-form and η′ is a 
q′-form, then [η, η′]π is a (q + q′ − 1)-form and

(K1) [η, η′]π = −(−1)(q−1)(q′−1)[η′, η]π ;

(K2) [α, f ]π = iπ�α d f = 〈d f , π�α〉 for all f ∈ C∞(M) and for all 1-forms α;

(K3) [η, ·]π is a derivation of degree q − 1 of the wedge product, that is, for any differential form η′′ ,

[η,η′ ∧ η′′]π = [η,η′]π ∧ η′′ + (−1)(q−1)q′
η′ ∧ [η,η′′]π . (8)

This extension is a graded Lie bracket, in the sense that (besides (K1)) the graded Jacobi identity holds:

(−1)(q1−1)(q3−1)[η1, [η2, η3]π ]π + (−1)(q2−1)(q1−1)[η2, [η3, η1]π ]π + (−1)(q3−1)(q2−1)[η3, [η1, η2]π ]π = 0 (9)

where qi is the degree of ηi . It is sometimes called the Koszul bracket — see, e.g., [10] and references therein. We warn the 
reader that the Koszul bracket we used in [8] is the opposite of the one used here, since a minus sign in (K2) was inserted. 
For future reference, we remark that (K2) holds for any differential form η and for all f ∈ C∞(M). More precisely,

[ f , η]π = iπ�d f η. (10)

Indeed, [ f , ·]π and iπ�d f coincide on 0-forms (they both vanish) and on 1-forms (thanks to (K1) and (K2)), and they are 
derivations of degree −1 with respect to the wedge product.

It was proved in [11] that the compatibility conditions (3) between a Poisson tensor π and a tensor field N : TM → TM
hold if and only if dN is a derivation of [·, ·]π , that is,

dN [η,η′]π = [dNη,η′]π + (−1)(q−1)[η,dNη′]π (11)

if η is a q-form and η′ is any differential form. In particular, taking N = Id, one has that the Cartan differential d is always 
a derivation of [·, ·]π .

Remark 1. It is worth noting that (K2) is a consistency requirement. In fact, for f , g ∈ C∞(M) one has that

d[dg, f ]π (11)= [dg,d f ]π (7)= d{g, f }. (12)

On the other hand,

d[dg, f ]π (K2)= d
(
iπ�dg(d f )

) = d{g, f }. (13)

The following result generalizes Theorem 3 in [8].

Theorem 2. Let (M, π, N) be a PN manifold and let � be a closed 2-form. If ̂N = N + π� �	 , where �	 : TM → T ∗M is defined as 
usual by �	(X) = i X�, and

φ = dN� + 1

2
[�,�]π , (14)

then (M, π, ̂N, φ) is a PqN manifold. In particular, if
3
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dN� + 1

2
[�,�]π = 0, (15)

then (M, π, ̂N) is a PN manifold.

Proof. First we prove the compatibility between π and N̂ . If dN̂ = dN + dπ� �	 is the differential defined by N̂ = N + π� �	 , 
we observe that

dπ� �	 = [�, ·]π . (16)

Indeed, both the left and the right-hand side of the previous formula are graded derivations with respect to the wedge 
product, anti-commuting with d (since d� = 0), and coinciding on 0-forms. To prove the last assertion, we first notice that, 
for all f ∈ C∞(M),

dπ� �	 f = (π� �	)∗(d f ) = �	(π� d f ) = iπ� d f � = [�, f ]π ,

where we used (10) and (K1) in the last equality. Hence, since dN and [�, ·]π are both derivations of [·, ·]π , it follows at 
once that dN̂ is also a derivation of [·, ·]π , yielding the compatibility between N̂ and π . The closedness of φ easily follows 
from that of �, recalling that d ◦ dN = −dN ◦ d and that d is a derivation of [·, ·]π . Moreover,

dN̂φ = dNφ + [�,φ]π (14)= dN

(
dN� + 1

2
[�,�]π

)
+

[
�,dN� + 1

2
[�,�]π

]
π

= 1

2
[�, [�,�]π ]π = 0 (17)

thanks to d2
N = 0, the Leibniz rule (11) for dN , the commutation rule (K1), and the graded Jacobi identity (9). Then it follows 

from (6) and dφ = 0 that iN̂φ is closed. Finally, with the same argument used to show (16), we can prove that d2
N̂

= [φ, ·]π . 
Indeed, using again d2

N = 0, we obtain

d2
N̂

f = (dN + [�, ·]π )2 f = (dN + [�, ·]π )(dN f + [�, f ]π )

= d2
N f + dN [�, f ]π + [�,dN f ] + [�, [�, f ]π ]π

(11)= [dN�, f ]π −�����[�,dN f ]π +�����[�,dN f ]π + [�, [�, f ]π ]π
(9)= [dN�, f ]π + 1

2
[[�,�]π , f ]π = [φ, f ]π .

(18)

To conclude the proof of the first assertion in the theorem, it suffices to use the fact (see [21]) that, for any 3-form φ,

d2
N̂

= [φ, ·]π if and only if

{
T N̂(X, Y ) = π� (i X∧Y φ) for all vector fields X, Y

i(π�α)∧(π�β)∧(π�γ )(dφ) = 0 for all 1-forms α,β,γ
(19)

The proof of the second assertion simply follows, recalling that a PqN manifold (M, π, ̂N , φ) whose 3-form φ vanishes is a 
PN manifold. �

We remark that in a similar way one can prove the following result (see [8]): If (M, π, N, φ) is a PqN manifold, � is a 
closed 2-form such that

−φ = dN� + 1

2
[�,�]π ,

and N̂ = N + π� �	 , then (M, π, ̂N) is a PN manifold.
We also notice that, in the case where N = Id, equation (15) was studied in [14], in the framework of the theory of 

Manin triples for Lie algebroids. Starting from a Poisson manifold (M, π), it was shown that every solution of

d� + 1

2
[�,�]π = 0 (20)

defines a Dirac subbundle �� ⊂ T ∗M ⊕ TM transversal to T ∗M, and that every solution of

d� = 0 and [�,�]π = 0 (21)

defines a PN structure on M. As we will see in Corollary 8, the latter result becomes an equivalence under the further 
hypothesis that π is non degenerate.

Remark 3. The involutivity problem of a PqN structure, that is, the possible involutivity of the functions Ĥk = 1
2k Tr(N̂k), 

where N̂ is obtained as in Theorem 2, is, in our opinion, an open question that deserves further attention. A preliminary 
result was obtained in [8], where it was shown that this happens if the following conditions hold:
4
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1. [�, �]π = 0;

2. dN� = dĤ1 ∧ �;

3. iYk � = 0, where Yk = N̂k−1 X1 − Xk and Xk = π� dĤk;

4. {Ĥ1, ̂Hk} = 0 for all k ≥ 2.

Then this result was applied to the PqN structure of the closed Toda lattice (see Example 12), seen as a deformation of the 
PN structure of the open Toda lattice.

3.1. Deformations of symplectic-Nijenhuis manifolds

In this subsection we consider the important, though particular, case of a PN manifold (M, π, N) whose Poisson tensor 
is non degenerate, i.e., such that π� is invertible, so that it defines a symplectic form ω via the identity

π�ω	 = −Id. (22)

The relevance of this case stems from the theory of classical integrable systems, where M is a cotangent bundle endowed 
with its canonical symplectic structure.

Remark 4. The defining relation (22) is the same chosen in [23], but we alert the reader that it is not universally adopted. 
For example, the authors of [21] chose π�ω	 = +Id.

Following [21,23], we introduce the notion of a symplectic-Nijenhuis manifold, which is a Poisson-Nijenhuis manifold 
(M, π, N) whose Poisson tensor π is non degenerate. Hereafter a symplectic-Nijenhuis manifold will be denoted by a 
triple (M, ω, N) where ω is the symplectic form defined in (22). In this more specialized framework, the properties of the 
PN structure find a covariant analogue. In particular, the bilinear form ωN : TM × TM →R defined by

ωN(X, Y ) = ω(N X, Y ),

where X, Y are vector fields on M, is skew-symmetric; hence it defines a 2-form on M , called the associated 2-form of 
(M, ω, N). The following result provides a characterization of the associated 2-forms, see [23, Theorem 2.1].

Proposition 5. The associated 2-form of a symplectic-Nijenhuis manifold (M, ω, N) satisfies the conditions

dωN = 0 and [ωN ,ωN ]π = 0, (23)

where π is the Poisson tensor corresponding to ω. On the other hand, if a 2-form ωN on a symplectic manifold (M, ω) satisfies (23), 
then ωN is the associated 2-form of the symplectic-Nijenhuis manifold (M, ω, N), where N = (

ω	
)−1

ω
	
N = −π�ω

	
N .

Remark 6. For future reference, we notice that (16) entails

[ω, ·]π = dπ�ω	 = d−Id = −d, [ωN , ·]π = d
π�ω

	
N

= −dN . (24)

Now we show that the sufficient condition contained in the PN part of Theorem 2 is also necessary when π is non 
degenerate.

Proposition 7. Let (M, ω, N) be a symplectic-Nijenhuis manifold, ̂N a (1,1) tensor field, and � the (0,2) tensor field defined by

N̂ = N + π��	, (25)

where π is given by (22). Then ̂N is torsionless and compatible with π if and only if � is a closed 2-form such that

dN� + 1

2
[�,�]π = 0. (26)

Proof. If the above mentioned conditions on � hold, then Theorem 2 implies that (M, π, ̂N) is a PN manifold.
Viceversa, multiplying (25) on the left by the inverse of π� and considering the associated 2-forms ωN and ωN̂ , one obtains

� = ωN − ωN̂ , (27)

showing that � is a closed 2-form thanks to Proposition 5. Moreover, from (18) and d2
N = d2

N̂
= 0 we have that φ =

dN� + 1
2 [�, �]π satisfies [φ, f ]π = 0 for all functions f . Then (10) implies that iπ�d f φ = 0, so that φ = 0 follows from the 

fact that π is non degenerate. �

5
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Putting N = Id, we obtain the following corollary, to be compared with the results of [14], Section 6, and those of [3], 
Section 4.4.

Corollary 8. Let (M, ω) be a symplectic manifold and let π be the Poisson tensor defined by ω, see (22). A tensor field ̂N of type (1,1) 
is torsionless and compatible with π if and only if the (0, 2) tensor field � defined by

N̂ = Id + π��	 (28)

is a 2-form satisfying the conditions

d� = 0 and [�,�]π = 0. (29)

In the next section we will deform the so called canonical PN structure, i.e., the symplectic-Nijenhuis manifold (R2n, π, N), 
where π = ∑n

i=1 ∂pi ∧ ∂qi is the canonical Poisson tensor and

N =
n∑

i=1

pi(∂qi ⊗ dqi + ∂pi ⊗ dpi) (30)

is easily seen to be torsionless and compatible with π . It was shown in [22] that this is the local form of any 2n-
dimensional symplectic-Nijenhuis manifold, provided that the eigenvalues of the recursion operator are n independent 
functions p1, . . . , pn . In this context, (q1, . . . , qn, p1, . . . , pn) were called Darboux-Nijenhuis coordinates and used as sep-
aration variables in [9]. In the following example we show that N itself can be seen as a deformation.

Example 9. The above mentioned symplectic-Nijenhuis manifold (R2n, π, N) can be obtained, using Corollary 8, as a de-
formation of the symplectic manifold (R2n, ω), where ω = ∑n

i=1 dpi ∧ dqi is the canonical symplectic form, i.e., the one 
corresponding to π . Indeed, let us consider the 2-form

� =
n∑

i=1

dpi ∧ dqi −
n∑

i=1

pidpi ∧ dqi . (31)

Then N = Id +π� �	 , and � can be checked to be a solution of (29). Moreover, observe that, according to (27), � = ω −ωN , 
where ωN = ∑n

i=1 pidpi ∧ dqi is the 2-form associated to N .

The final part of this section is devoted to two remarks on Corollary 8.

Remark 10. If (M, ω, N) is a symplectic-Nijenhuis manifold, then the 2-form � defined by N = Id + π��	 satisfies (29). 
One can show that the pair (π, �) endows M with a P� structure (see [16,13]), in the sense that π is a Poisson tensor, 
� is closed, and �	π��	 is closed too. Indeed, (M, ω, π��	) is also a symplectic-Nijenhuis manifold, so that the same is 
true for (M, ω, (π��	)2). But the 2-form associated to this latter is −�	π��	 , and this is closed by Proposition 5.
Since �	π��	 is closed, one can easily check that the pair (�, N) endows M with an �N structure [15], in the sense that 
� and �	N are both closed, and �	N = N∗�	 . It follows that (�Nk , N) is an �N structure too, where 

(
�Nk

)	 = �	Nk . In 
particular, all the 2-forms �Nk are closed.
Considering the symplectic-Nijenhuis manifold (M, ω, Nk), one can introduce the closed 2-form �k defined by Nk = Id +
π��

	

k and check that, for all k ≥ 1,

�k =
k−1∑
l=0

�Nl .

Indeed, a simple induction shows that

Nk = Id + π�

(
k−1∑
l=0

�	Nl

)
.

Remark 11. It is well known (see, e.g., [15,1]) that the closed 1-forms α on a symplectic-Nijenhuis manifold (M, ω, N) that 
fulfills dNα = 0 (or, equivalently, d(N∗α) = 0) play a fundamental role in the applications to integrable systems. Such forms 
coincide with the (closed) ones such that Lπ�α� = 0. Indeed,

Lπ�α� = d(iπ�α�) = d(�	π�α) = d(N∗α).

In the case discussed in and before Example 9, it can be easily checked that the closed 1-form such that Lπ�α� = 0 are the 
differentials of the functions depending only on p1, . . . , pn . The algebra of these functions is abelian (with respect to the 
Poisson bracket) and is generated by the traces of the powers of N .
6
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4. Deformations of the canonical PN structure

In this section we start from the canonical PN structure (R2n, π, N), described before Example 9, and we apply Theo-
rem 2 to recover the PN (respectively PqN) structure of the open (respectively closed) Toda lattice. The traces of the powers 
of N are simply Hk = 1

2k Tr(Nk) = ∑n
i=1 pk

i , so that from the physical point of view the starting point is nothing but the 
free-particle case. On the contrary, in [8] we used a preliminary version of Theorem 2 to construct the PqN structure of the 
closed Toda lattice out of the PN structure of the open one.

We consider the 2-form

� =
∑
i< j

(
V ij(qi − q j)dq j ∧ dqi + dp j ∧ dpi

)
, (32)

where V ij are C∞ functions of a single variable. One has that � = dθ , where

θ =
∑
i< j

(
−Ṽ i jdqi + p jdpi

)
(33)

and Ṽ i j is a primitive function of V ij . The deformed tensor field N̂ = N + π� �	 turns out to be

N̂ =
n∑

i=1

pi
(
∂qi ⊗ dqi + ∂pi ⊗ dpi

) +
∑
i< j

(
∂qi ⊗ dp j − ∂q j ⊗ dpi

) +
∑
i< j

V i j
(
∂p j ⊗ dqi − ∂pi ⊗ dq j

)
. (34)

We refer to Subsection 4.1 for the matrix form of N̂ in the case n = 2, from which the general expression is easily guessed. 
Theorem 2 entails that (R2n, π, ̂N, φ) is a PqN manifold, where φ = dN� + 1

2 [�, �]π . One can show that

dN� =
∑
i< j

V i jdqi ∧ dq j ∧ (
dpi + dp j

)
,

[�,�]π = 2
∑
i< j

V ′
i jdqi ∧ dq j ∧

∑
k<l

(
(δil − δ jl)dpk + (δ jk − δik)dpl

)
,

(35)

where δi j is the Kronecker delta. Notice that H2 = 1
4 Tr(N̂2) = 1

2

∑n
i=1 p2

i + ∑
i< j V i j(qi − q j) is the Hamiltonian of n inter-

acting particles (with unit mass) and that {H1, Hk} = 0 for all k, since N̂ depends only on the differences qi − q j . However, 
in general {H j, Hk} �= 0, i.e., the PqN structure is not involutive (see [8] and the Calogero example below).

Example 12. We consider the case where V i,i+1(x) = f i ex for all i = 1, . . . , n − 1 and V 1n(x) = fn e−x (where the f i are 
some constants), the other V ij vanishing. The deformed tensor field N̂ is given by

N̂ =
n∑

i=1

pi
(
∂qi ⊗ dqi + ∂pi ⊗ dpi

) +
∑
i< j

(
∂qi ⊗ dp j − ∂q j ⊗ dpi

)
+

n−1∑
i=1

f i eqi−qi+1
(
∂pi+1 ⊗ dqi − ∂pi ⊗ dqi+1

) − fn eqn−q1
(
∂p1 ⊗ dqn − ∂pn ⊗ dq1

)
,

(36)

while φ = 2 fn eqn−q1 dq1 ∧ dqn ∧ ∑n
i=1 dpi .

If f i = 1 for all i = 1, . . . , n, then we obtain the PqN structure of the closed Toda lattice, see [8]. The Hk can be shown to be 
in involution since the PqN manifold is involutive. For example,

H1 = 1

2
Tr(N̂) =

n∑
i=1

pi, H2 = 1

4
Tr(N̂2) = 1

2

n∑
i=1

p2
i +

n−1∑
i=1

eqi−qi+1 + eqn−q1 (37)

are respectively the total momentum and the energy.
If fn = 0, then

φ = dN� + 1

2
[�,�]π = 0, (38)

and we obtain the PN structure introduced in [7] to study the open Toda lattice (with generic values of the constants f i , for 
i = 1, . . . , n − 1).
7
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Remark 13. Using the notations of Example 9, we note that one can recover the Das-Okubo (1, 1) tensor field

N̂ =
n∑

i=1

pi
(
∂qi ⊗ dqi + ∂pi ⊗ dpi

) +
∑
i< j

(
∂qi ⊗ dp j − ∂q j ⊗ dpi

)
+

n−1∑
i=1

f i eqi−qi+1
(
∂pi+1 ⊗ dqi − ∂pi ⊗ dqi+1

)
,

(39)

which is simply (36) with fn = 0, by deforming the identity with the 2-form �̂ = � + �1, where � is given by (31) and

�1 =
n−1∑
i=1

eqi−qi+1 dqi+1 ∧ dqi +
∑
i< j

dp j ∧ dpi, (40)

see (32). This means that N̂ = Id + π� �̂	 and

d�̂ + 1

2
[�̂, �̂]π = 0.

Note that since �̂ is closed, one should have [�̂, ̂�]π = 0. To double check the latter, we recall that � = ω−ωN is a solution 
of (29), so that

[�̂, �̂]π =����[�,�]π + 2[�,�1]π + [�1,�1]π =�����2[ω,�1]π − 2[ωN ,�1]π + [�1,�1]π , (41)

where [ω, �1]π = 0 since [ω, ·]π = −d, providing the required identity thanks to [ωN , ·]π = −dN (see Remark 6) and the 
fact that �1 solves (38).

Example 14. Another interesting particular case of (32) and (34) is V ij(x) = x−2 for all i, j. We have that

H2 = 1

4
Tr(N̂2) = 1

2

n∑
i=1

p2
i +

∑
i< j

(qi − qi+1)
−2

is the Hamiltonian of the rational Calogero system. However, one can check that the corresponding PqN manifold is involu-
tive for n = 3 but not for n = 4. In other words, the powers of the traces of N̂ give the integral of motions of the Calogero 
system only for n = 3. The question whether the general rational Calogero system can be framed within the theory of PqN 
manifolds is still open.

4.1. The case n = 2

In this subsection we present some explicit formulas for the trivial case n = 2. We first notice that, given a bivector π
and a coordinate system (x1, . . . , xn) on a manifold M, we have that X = π�α if and only if Xi = π i jαi . Since we prefer to 
use column rather than row vectors, whenever we write π� = A and A is a matrix, we mean that the (i, j) entry of A is 
π ji . Also, if � is a 2-form and �	 = A, then Aij = � ji . For the same reason, when N is a (1,1) tensor field and we write 
N = A, we mean that the (i, j) entry of A is Ni

j .

We start with the canonical PN structure on R4, defined by

π� =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ , N =

⎛⎜⎜⎝
p1 0 0 0
0 p2 0 0
0 0 p1 0
0 0 0 p2

⎞⎟⎟⎠ . (42)

Then we consider the 2-form � = V (q1, q2)dq2 ∧ dq1 + dp2 ∧ dp1, where V is any C∞ function of two variables. One has 
that � = dθ , where θ = Ṽ dq1 + p2dp1 and Ṽ is any function such that ∂q2 Ṽ = V . The deformed tensor field turns out to be

N̂ = N + π� �	 =

⎛⎜⎜⎝
p1 0 0 1
0 p2 −1 0
0 −V p1 0
V 0 0 p2

⎞⎟⎟⎠ .

One can check that

dN� = V dq1 ∧ dq2 ∧ (dp1 + dp2) , [�,�]π = 2dq1 ∧ dq2 ∧ (
(∂q2 V )dp1 − (∂q1 V )dp2

)
, (43)
8
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and apply Theorem 2 to show that (R4, π, ̂N, φ) is a PqN manifold, where φ = dN� + 1
2 [�, �]π . Notice that φ = 0 (i.e., the 

manifold is PN) if and only if V = f1eq1−q2 for some constant f1, corresponding to the 2-particle Toda system.
It is immediate to check that this PqN manifold is involutive if and only if V (q1, q2) depends only on the difference 

q1 − q2. However, as seen in Remark 3, one of the hypotheses of the involutivity Theorem 6 in [8] is that [�, �]π = 0, 
and one can see from the second of (43) that this is true if and only if V is constant. Similar considerations hold for the 
other hypotheses. Hence this theorem cannot be applied to the very simple example V = V (q1 − q2). In particular, the well 
known integrability of the Toda lattice associated to the simple Lie algebra B2, whose potential is V (q1, q2) = eq1−q2 + eq2 , 
cannot be interpreted with the help of the PqN manifold (R4, π, ̂N, φ). We leave for future investigations how to suitably 
modify the 2-form �, and we close our paper with an application of Proposition 7 to the case of the so called orthogonal 
Toda systems.

Example 15. A bi-Hamiltonian formulation for the open orthogonal Toda systems was described in [18], see also [5,4]. In 
particular, the authors of the (first) above cited reference found a Poisson tensor π̂ which, together with the canonical one 
π , forms a PN structure for the Toda systems whose Hamiltonians are

H(p,q) = 1

2

n∑
i=1

p2
i +

n−1∑
i=1

eqi−qi+1 + ekqn , (44)

where k = 1 (respectively, k = 2) for the Lie algebras Bn (respectively, Cn). The framework of [18] is the same of Propo-
sition 7. More precisely, this result guarantees that the 2-form � defined by N̂ = N + π��	 , where N is as in (30) and 
N̂ = π̂ �π�−1

, is closed. Said differently, one can think that the Poisson tensor π̂ described in [18] can be obtained as a 
deformation of the tensor N by a suitable closed 2-form �. For the reader convenience, we will compute below the 2-form 
� providing this deformation in the B2 case.

To this end, first we recall [18, equation (38)] that

π̂ � =

⎛⎜⎜⎝
0 2p2 −p2

1 − 2eq1−q2 eq1−q2 − 2eq2

−2p2 0 −eq1−q2 −p2
2 − 2eq2

p2
1 + 2eq1−q2 eq1−q2 0 eq1−q2(p1 + p2)

2eq2 − eq1−q2 p2
2 + 2eq2 −eq1−q2(p1 + p2) 0

⎞⎟⎟⎠ ,

which entails that

N̂ =

⎛⎜⎜⎝
−p2

1 − 2eq1−q2 eq1−q2 − 2eq2 0 −2p2

−eq1−q2 −p2
2 − 2eq2 2p2 0

0 eq1−q2(p1 + p2) −p2
1 − 2eq1−q2 −eq1−q2

−eq1−q2(p1 + p2) 0 eq1−q2 − 2eq2 −p2
2 − 2eq2

⎞⎟⎟⎠ .

Hence we obtain

�	 =

⎛⎜⎜⎝
0 −eq1−q2(p1 + p2) p2

1 + 2eq1−q2 + p1 eq1−q2

eq1−q2(p1 + p2) 0 2eq2 − eq1−q2 p2
2 + 2eq2 + p2

−p2
1 − 2eq1−q2 − p1 eq1−q2 − 2eq2 0 −2p2

−eq1−q2 −p2
2 − 2eq2 − p2 2p2 0

⎞⎟⎟⎠
or, equivalently,

� =eq1−q2(p1 + p2)dq1 ∧ dq2 − (p2
1 + 2eq1−q2 + p1)dq1 ∧ dp1 − eq1−q2 dq1 ∧ dp2

+ (eq1−q2 − 2eq2)dq2 ∧ dp1 − (p2
2 + 2eq2 + p2)dq2 ∧ dp2 + 2p2dp1 ∧ dp2,

that a simple computation shows to be closed.

Data availability

No data was used for the research described in the article.
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