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Abstract. A famous theorem by Reifenberg states that closed subsets of Rn that look sufficiently
close to k-dimensional at all scales are actually C0,γ equivalent to k-dimensional subspaces. Since
then a variety of generalizations have entered the literature. For a general measure µ in Rn, one
may introduce the k-dimensional Jones’ βk-numbers of the measure, where βk(x, r) quantifies
on a given ball Br(x) how closely the measure is to being the k-dimensioanl Hausdorff measure
supported on an affine subspace. Recently, it has been proven that if these β-numbers satisfy the
uniform summability estimate

∫ 2
0 βk(x, r)2 dr

r < M, then µ must be rectifiable with uniform mea-
sure bounds. Note that one only needs the square of the βk-numbers to satisfy the summability
estimate, this power gain has played an important role in the applications, for instance in the
study of singular sets of geometric equations. One may also weaken these pointwise summabil-
ity bounds to bounds which are more integral in nature.

The aim of this article is to study these effective Reifenberg theorems for measures in a Hilbert
or Banach space. For Hilbert spaces, we see all the results from Rn continue to hold with no
additional restrictions. For a general Banach spaces we will see that the classical Reifenberg
theorem holds, and that a weak version of the effective Reifenberg theorem holds in that if one
assumes a summability estimate

∫ 2
0 βk(x, r)1 dr

r < M without power gain, then µ must again be
rectifiable with measure estimates. Improving this estimate in order to obtain a power gain turns
out to be a subtle issue. For k = 1 we will see for a uniformly smooth Banach space that if∫ 2

0 β1(x, r)α dr
r < Mα/2, where α is the smoothness power of the Banach space, then µ is again

rectifiable with uniform measure estimates.
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1. Introduction

A famous theorem by Reifenberg [Rei60] states that a closed subset of Rn that looks suffi-
ciently close to a k-dimensional plane at all scales is C0,γ-equivalent to a k-plane. Easy examples
show that in general Hölder cannot be improved to Lipschitz – in fact there are examples satis-
fying Reifenberg’s theorem that have dimension > k. A set satisfying Reifenberg’s theorem is
often called Reifenberg flat.

This theorem is closely related to other interesting problems in mathematics, like the “ana-
lyst traveling salesman” problem. An important contribution in this field was given by Jones’
in [Jon90], where the author proves a simple necessary and sufficient condition for a set to
lie in a rectifiable curve in R2 (later this theorem has been extended to arbitrary codimension
by [Oki92]). Some of the techniques used in this theorem can be adapted to the context of
Reifenberg’s theorem.

In particular, Jones [Jon90] and David-Semmes [DS91, DS93] introduced various quantities
now called Jones β-numbers, which give a quantitative Lp-notion of how k-dimensional a mea-
sure is (in this paper we shall deal almost exclusively with the L2 β-numbers). Let us define
them here: given a Borel-regular measure µ on a normed linear space X, the k-dimensional
β-number in Br(x) is

βk
µ(x, r)2 = inf

p+Vk
r−k−2

∫
Br(x)

d(z, p + V)2dµ(z) , (1.1)
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where the infimum is taken over all affine k-planes p + Vk. [DS93] used the β-numbers to
demonstrate very strong structural results for “Ahlfors-regular” measures.

Building on the ideas introduced by Toro in [Tor95], the work [DT12] by David and Toro
gives very direct extensions of Reifenberg’s theorem. In particular, the authors show that
Reifenberg flat sets satisfying the summability condition∫ ∞

0
βk
HkxS (x, r)2 dr

r
≤ M2 , forH k-a.e. x ∈ S (1.2)

are actually bi-Lipschitz to a k-plane. Notice that it suffices to assume summability of the
squared β-numbers. This extra power gain in Rn is loosely speaking a consequence of the
Pythagorean theorem.

Azzam-Tolsa [AT15] and Tolsa [Tol15] further generalized Reifenberg’s theorem to say that
a measure µ is countably k-rectifiable (see Definition 2.5) if and only if

0 < Θ∗,k(µ, x) < ∞ ,

∫ ∞

0
βk
µ(x, r)2 dr

r
< ∞ at µ-a.e. x , (1.3)

here Θ∗,k being the upper-density. Recently in [Tol], the author shows that one can weaken the
previous assumption and insist just on bounds on the lower density Θk

∗(µ, x) < ∞.
In the recent article [ENV], we demonstrated effective measure/packing bounds and Lipschitz

structure for (possibly infinite) measures satisfying the condition∫ ∞

0
βk
µ(z, r)2 dr

r
≤ M2 for µ-a.e. x , (1.4)

without any additional assumption of µ. Toy examples show that, in general, one must split
spt µ into a “low-density” region of bounded measure, and a rectifiable piece of “high-density”
which admits packing bounds.

Let us also mention the works of [AS], proving a k-dimensional version of the Jones’ trav-
eling salesman problem for lower content regular sets; and [BS15], [BS17], where the authors
characterize the 1-dimensional rectifiability in the sense of Federer of 1-dimensional measures
(i.e., the rectifiability of their support up to a measure zero set) in terms of lower-density and
appropriate normalizations of β-numbers.

Some generalizations of Reifenberg-type theorems to infinite-dimensional spaces are also
available in literature. In his thesis [Sch07b] Schul proved a direct analogue in Hilbert spaces
of Jones’ original traveling salesman theorem for curves, and Li-Schul [LS16a, LS16b] have
demonstrated the 1-dimensional traveling salesman theorems in the Heisenberg group, where
interestingly in this case the critical power gain is 4. Hahlomaa [Hah08] extended Jones’ the-
orem to metric spaces, using Menger curvature in place β numbers, and David and Schul in
[DS17] study the analyst’s travelling salesman problem and quantitative rectifiability in Laakso
spaces. We recommend the excellent survey article [Sch07a] for a more comprehensive expo-
sition of these and other results.

This paper is concerned with studying effective Reifenberg theorems on Banach spaces. We
are particularly interested in when one can expect a power gain in the summability condition,
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like in (1.2). We shall demonstrate measure/packing bounds and Lipschitz structure for a mea-
sure µ in a Banach space X, under the assumption∫ ∞

0
βk
µ(x, r)α

dr
r
≤ Mα/2 for µ-a.e. x , (1.5)

where α ∈ [1, 2] is some exponent depending on X and k. Clearly, a bigger αwill give a stronger
result.

The value of α is intimately tied with the existence of a Pythagorean-type theorem, and
relatedly a good notion of projection. Fundamentally, we need to be able to say that if a unit
vector v is pushed “perpendicularly” by an amount δ, then the length of v changes by ≈ δα. In
practice this manifests itself in an improved bi-Lipschitz estimate for graphs, which says that if
f : V → X is a “graph” over some plane V , with Lip( f ) ≤ ε, then∣∣∣∣||(x + f (x)) − (y + f (y))||2 − ||x − y||2

∣∣∣∣ ≤ cεα||x − y||2 ∀x, y ∈ L . (1.6)

We will find that in any Hilbert space α = 2, as there are natural notions of orthogonality
and the Pythagorean theorem holds. In particular, given two mutually orthogonal unit vectors
v,w, then ‖v + tw‖2 ≈ 1 + t2. With this property, essentially the same proof of the Reifenberg
theorem in [ENV] carries over, although some care must be taken to ensure that the estimates
depend only on k, and not on the dimension of the ambient space (which can be infinity).

In a general Banach space we only have α = 1. One can only construct crude notions of
projection, and no Pythagorean-type estimate holds. Indeed, it is easy to construct examples
where the best estimate possible for unit vectors v,w is ||v + tw|| ≤ 1 + t, i.e. the triangle
inequality, see the example in Section 5.1.

The situation becomes more interesting when X is a smooth Banach space. In general the
modulus of smoothness attached to any Banach space, denoted ρX(t), roughly measures the
regularity of the unit sphere at scale t. More precisely,

ρX(t) = sup
‖x‖=1, ‖y‖=t

(
‖x + y‖ + ‖x − y‖

2

)
− 1 . (1.7)

The faster ρX(t) decays with t → 0, the more regular the space. The triangle inequality always
gives the crude bound ρX(t) ≤ t, while the best bound ρX(t) ≤

√
1 + t2 − 1 is achieved only by

Hilbert spaces (see [Nor60] and [LT79, Proposition 1e2 p 61]). In Lp spaces we have

ρLp(t) ≤
{

p−1tp (1 < p ≤ 2)
(p − 1)t2 (2 < p < ∞) (1.8)

X is called smooth if ρX(t) = o(t). See Section 3.25 for details and references.
It turns out that when k = 1, and X is smooth, then we have a good notion of projection,

and a related Pythagorean theorem which says that when v, w are “orthogonal” unit vectors,
then ||v + tw|| ≈ 1 + ρX(t). In this case we can take α to be the power of smoothness, which is
basically the largest number for which ρX(t) = O(tα). The example in Section 5.1 provides a
good intuition for this case.

We shall see in Example 5.5 that even in finite dimensions the power gain of (1.6) breaks
when k ≥ 2 and X is not Hilbert. The lack of an improved estimate (1.6) shows that the
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bi-Lipschitz bound of Theorem 2.9 fails when k ≥ 2, and strongly suggests that the mea-
sure/packing bounds of Theorem 2.1 do not admit a power gain α > 1 for general smooth
X and k ≥ 2.

2. Main theorems

Our main theorem is a combination measure and packing estimate for µ satisfying a summa-
bility condition like (1.5). The theorem effectively splits B1(0) into a region of “low-density”
with measure bounds, and a region of “high-density” with packing bounds. Without further
assumptions on µ easy examples show this kind of decomposition is necessary.

Theorem 2.1. Let X be a Banach space, and µ be a finite Borel measure with µ(X \ B1(0)) = 0.
Take S ⊂ B1(0) a set of full µ-measure, and rs : S → R+ a radius function satisfying 0 < rs < 1.
Assume µ satisfies ∫ 2

rs

βk
µ(s, r)α

dr
r
≤ Mα/2 ∀s ∈ S , (2.1)

where α is the critical exponent for our problem. Precisely:

i. if X is a generic Banach space, then α = 1,
ii. if X is a Hilbert space, then α = 2,

iii. if X is a smooth Banach space, and k = 1, then α is the smoothness power of the Banach
space X.

Then there is a subcollection S′ ⊂ S, so that we have the packing/measure estimate

µ

B1(0) \
⋃
s′∈S′

Brs′ (s′)

 ≤ c(k, ρX)M , and
∑
s′∈S′

rk
s′ ≤ c(k, ρX) . (2.2)

Remark 2.2. Note that by standard measure theory arguments, a finite Borel measure on a
metric space is Borel-regular, see [Par05, theorem II, 1.2, pag 27].

Recall from (1.7) the modulus of smoothness ρX(t) and the smoothness power α for a Banach
space X. We will recall the precise definitions of these objects in Section 3.25, here we simply
remind the reader that α ∈ [1, 2] and its “best” value α = 2 is achieved by any Hilbert space. For
a general Banach space we have α ≥ 1; and for X = Lp we have α = min{p, 2}when 1 ≤ p < ∞,
and α = 1 when p = ∞.

As a corollary, when µ is discrete or has a priori density control, we obtain a measure bound
directly. Moreover, we can easily weaken the pointwise assumption (2.1) to an weak-L1 type
assumption. Precisely, we have the following theorem.

Corollary 2.3 (Discrete- and Continuous-Reifenberg). Let X be a Banach space, and let µ be a
Borel measure with µ(X \ B1(0)) = 0. Suppose µ satisfies

µ

(
z ∈ B1(0) :

∫ 2

0
βk
µ(z, r)α

dr
r
> Mα/2

)
≤ Γ , (2.3)

where α is the critical exponent for our problem as defined in Theorem 2.1.
Suppose additionally one of the following:
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A) µ is a packing measure of the form

µ =
∑
s∈S

asrk
sδs , (2.4)

where {Brs(xs)}s are a collection of disjoint balls centered in B1(0) with as ∈ (0, b] and
0 < rs < 1; or

B) Θk
∗(µ, x) ≤ b for µ-a.e. x; or

C) µ ≤ bH kxS for some subset S .

Then

µ(B1(0)) ≤ c(k, ρX)(M + b) + Γ . (2.5)

Remark 2.4. Notice that no a priori finiteness of µ is necessary in Corollary 2.3.

Similarly to the Euclidean setting, our methods give not just measure/packing bounds but also
a rectifiable structure. Let us first recall the notion of rectifiability in a general metric space.

Definition 2.5. Let µ be a Borel-regular measure in a metric space X. We say µ is countably
k-rectifiable if there are Lipschitz mappings { fi : B1(0) ⊂ Rk → X}∞i=1 so that

µ

X \
∞⋃

i=1

fi(B1(0))

 = 0 , (2.6)

and µ is absolute continuous w.r.t. H k. We say a subset S of X is countably k-rectifiable if
H kxS is countably k-rectifiable.

I changed the definition to “countably k-rectifiable,” and commented out the remark. if that’s
the standard definition it seems silly to use a different one.

We obtain the following analogue of [AT15, theorem 1.1] and [NV17] in the Hilbert-Banach
space setting, see also the recent preprint [Tol].

Theorem 2.6. Let X be a Banach space, and let µ be a Borel measure in X with µ(X\B1(0)) = 0.
Suppose for µ-a.e. x we have the bounds∫ 2

0
βk
µ(x, r)α

dr
r
< ∞ , Θk

∗(µ, x) < ∞ , Θ∗,k(µ, x) > 0 , (2.7)

where α is the critical exponent as in Theorem 2.1. Then µ is countably k-rectifiable.

In particular, we have the corollary

Corollary 2.7. Let X be a Banach space, and S ⊂ B1(0). Suppose we have∫ 2

0
βk
HkxS (x, r)α

dr
r
< ∞ forH k-a.e. x ∈ S , (2.8)

where α is the critical exponent as in Theorem 2.1. Then S is countably k-rectifiable.
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2.8. Reifenberg-flat sets. Finally, let us consider the special case when S is a Reifenberg-flat
set. In n-dimensional Euclidean ambient spaces, this problem has been extensively studied
in literature. The main references for this are [Tor95, DT12] for generic k. For k = 1, this
problem is closely related to the analyst’s traveling salesman problem, and has been studied
in [Jon90, Oki92]. A nice generalization of this last result in Hilbert spaces has been recently
obtained in [Sch07b]. As mentioned in the introduction, some results on this are available also
in the Heisenberg group setting, see [FFP07, LS16a, LS16b], and in the metric space setting, see
[Hah08]. A recent survey on these results is available in [Sch07a]. Our aim is to extend these
results, and in particular [Tor95, main theorem] to the general Hilbert-Banach space setting.

For Reifenberg flat sets, as in Reifenberg’s original theorem, we can gain topological infor-
mation on S . Let us recall that a set S ⊂ X is called (k, δ)-Reifenberg flat on B1 (p) the following
holds:

inf
Vk

dH(S ∩ Br(x), (x + V) ∩ Br(x)) ≤ δr ∀x ∈ S ∩ B2 (p) and ∀0 < r ≤ 2 , (2.9)

where the infimum is taken over all k-dimensional linear subspaces Vk ⊂ X.
Let us further define the β∞ numbers, which in the case of Reifenberg-flat sets are perhaps

more natural to work with than the L2-β numbers above. We set

βk
S ,∞(x, r) = inf

Vk
{δ : S ∩ Br(x) ⊂ Bδr(x + V)} . (2.10)

When S is sufficiently Reifenberg flat in a Banach space, as a corollary to the proof of Theo-
rem 2.1, we can deduce the S is bi-Hölder to a k-disk. If we additionally assume a summability
condition on the β∞-numbers like (1.5), then S is bi-Lipschitz to a k-disk.

Proposition 2.9. Let X be a Banach space, and take γ ∈ (0, 1). There is a constant δ1(k, ρX, γ) >
0 so that the following holds. Let S be a closed, (k, δ)-Reifenberg-flat subset of X, with 0 ∈ S ,
and δ ≤ δ1. Then we can find a k-plane Vk ⊂ X, and mapping φ : Vk → X, so that φ ≡ id
outside B3/2(0), and S ∩ B1(0) = φ(V) ∩ B1(0), and φ has the bi-Hölder bound

(1 − c(k)δ)||x − y||1/γ ≤ ||φ(x) − φ(y)|| ≤ (1 + c(k)δ)||x − y||γ ∀x, y ∈ V . (2.11)

If additionally we have a bound of the form∫ 2

0
βk

S ,∞(x, r)α
dr
r
≤ Qα ∀x ∈ S , (2.12)

where α is the critical exponent for our problem as in Theorem 2.1, then φ is a bi-Lipschitz
equivalence with

e−c(k,ρX)Qα

||x − y|| ≤ ||φ(x) − φ(y)|| ≤ ec(k,ρX)Qα

||x − y|| . (2.13)

3. Preliminaries

In this section, we collect some basic preliminary estimates that will be useful for our main
construction. Throughout this paper X will always denote a Banach space. Any additional
properties that we may assume will be made explicit.
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We make repeated use of the following elementary principle. If f : A ⊂ X → X is a mapping
satisfying

`−1||x − y|| ≤ || f (x) − f (y)|| ≤ `||x − y|| ∀x, y ∈ A (3.1)

for some ` ≥ 1, then f is a bijection onto its image, with Lipschitz inverse. We will refer to f
satisfying (3.1) as a bi-Lipschitz equivalence, with bi-Lipschitz constant bounded by `. We note
that, trivially, (3.1) is implied by the much stronger condition

||( f (x) − x) − ( f (y) − y)|| ≤ ε ||x − y|| (ε < 1) . (3.2)

Given a Lipschitz function f : A ⊂ X → X, we write

Lip( f ) = sup
x,y∈A

|| f (x) − f (y)||
||x − y||

. (3.3)

Typically script letters like G, B, S, etc. will denote collections of ball centers. We will
generally denote elements of such a G by the corresponding lower-case letter g, and write rg for
the radius function. So, e.g. {Brs(s)}s∈S will be the balls indexed by S.

We will reserve χ < 1 for the scale parameter, and we shall write ri = χi for shorthand.

We require the following truncated partition of unity. Its construction is standard but for the
reader’s convenience we detail it here.

Lemma 3.1. There is an absolute constant γ so that the following holds. Let {B3r(xi)}i∈I be a
collection of balls in X with overlap bounded by Γ, i.e., so that for all x ∈ X:

#{i ∈ I : x ∈ B3r(xi)} ≤ Γ . (3.4)

Then there exist Lipschitz functions φi : X → [0, 1] satisfying:

spt φi ⊂ B3r(xi) ,
∑

i

φi = 1 on
⋃

i

B2.5r(xi) , Lip(φi) ≤ γΓ/r . (3.5)

We may call φi the truncated partition of unity subordinate to {B3r(xi)}i.

Proof. Let b : R+ → R+ be the piece-wise-linear function b(t) = (3 − t)+, and define the
Lipschitz functions

ψi(x) = b(||x − xi||/r) . (3.6)

ψi have the following properties:

sptψi ⊂ B3r(xi) , 0 ≤ ψi ≤ 3 , Lip(ψi) ≤ 1/r , ψi ≥ 1/2 on B2.5r(xi) . (3.7)

These are our local cutoff functions.
Let

s(x) =
∑

i

ψi(x) . (3.8)

By the finiteness assumption, s is well-defined and Lipschitz, and satisfies

spt s ⊂ ∪iB3r(xi) , 0 ≤ s ≤ 3Γ , Lip(s) ≤ Γ/r , s ≥ 1/2 on ∪i B2.5r(xi) . (3.9)
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We define the global cut-off. Let h : R+ → R+ be the piece-wise linear function

h(t) =


0 t ∈ [0, 1/4]
4t − 1 t ∈ [1/4, 1/2]
1 t ∈ [1/2,∞)

, (3.10)

so that if we set f (x) = h(s(x)), then f satisfies:

spt f ⊂ {s ≥ 1/4}, 0 ≤ f ≤ 1 , Lip( f ) ≤ 4Γ/r , f ≡ 1 on ∪i B5r/2(xi) . (3.11)

For each i we now define

φi(x) = f (x)
ψi(x)
s(x)

. (3.12)

Since spt ( fψi/s) ⊂ {s ≥ 1/4} one can verify directly this satisfies the required estimates. �

3.2. Beta numbers. We first recall some standard properties of the β numbers.

Lemma 3.3. β is monotone wrt µ, in the sense that if µ′ ≤ µ, then

βk
µ′(x, r) ≤ βk

µ(x, r) . (3.13)

Moreover, from the definition it follows immediately that if Br(x) ⊂ BR(y), then

βk
µ(x, r) ≤ (R/r)k+2βk

µ(y,R) . (3.14)

As an immediate corollary, we have the inequalities

βk
µ(x, r) ≤ c(k)

?
Br(x)

βk
µ(y, 2r)dµ(y), and βk

µ(x, r) ≤ c(k)
∫ 2r

r
βk
µ(x, s)

ds
s
. (3.15)

In particular, if µ(X \ B1(0)) = 0, then∫ ∞

0
βk
µ(x, r)

dr
r
≤ c(k)

∫ 2

0
βk
µ(x, r)

dr
r
∀x ∈ B1(0) . (3.16)

Finally, we point out that β is scale-invariant in the following sense. If we set µx,r = r−kµ(x+rA),
then βk

µx,r
(0, 1) = βk

µ(x, r).

We also record this easy measure-theoretical lemma about integral bounds on beta number
vs pointwise bounds.

Lemma 3.4. Let µ be a Borel measure with µ (X \ B1 (0)) = 0 and with upper Ahlfors bounds

µ(Br(x)) ≤ Γrk ∀x ∈ B1(0), 0 < r < 1 . (3.17)

For all δ1, δ2 > 0 fixed, if ∫
B1(0)

∫ 2

0
βk
µ(z, s)α

dr
r

dµ(z) < ∞ , (3.18)

then for µ-a.e. x ∈ B1(0), there exists Rx > 0 such that

µ

{
z ∈ Br(x) :

∫ 2r

0
βk
µ(z, s)α

ds
s
> δ1

}
≤ δ2rk ∀0 < r < Rx . (3.19)
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Proof. Let F be the set of points for which (3.19) does not hold. Fix any 0 < R < 1/4 arbitrarily
small. By definition, for all x ∈ F, there exists some positive sx < R such that

sk
x <

1
δ2
µ

{
z ∈ Bsx(x) :

∫ 2sx

0
βk
µ(z, s)α > δ1

}
. (3.20)

Choose a Vitali subcovering {Bsi(xi)}i of {Bsx(x)}x∈F , so that {Bsi(xi)}i are pairwise disjoint and

F ⊆
⋃

i

B5si (xi) . (3.21)

Notice that by (3.20) and the finiteness of µ, this covering is at most countable. Then we
calculate

µ(F) ≤
∑

i

µ(B5si(xi)) ≤ 5kΓ
∑

i

sk
i

≤ c(k)
Γ

δ2

∑
i

1
δ1

∫
Bsi (xi)

∫ 2si

0
βk
µ(z, s)α

dr
r

dµ(z) (3.22)

≤ c(k)
Γ

δ2δ1

∫
B1(0)

∫ 2R

0
βk
µ(z, s)α

dr
r

dµ(z) .

By dominated convergence, and since R is arbitrarily small, µ(F) = 0. �

3.5. General position. A concept that will be essential for us is the concept of points/vectors
in general position. This definition, in one form or another, is already present in literature, but
we recall it here for the reader’s convenience.

Given a set of vectors {v1, · · · , vk}, these vectors are linearly independent if and only if for
all i, vi , 0 and vi < span(v1, · · · , vi−1). Here we recall a quantitatively stable notion of linear
independence that will have two main applications: one is to provide us with a notion of “basis
with estimates” in a Banach space, something resembling an orthonormal basis in the Hilbert
case. One other important application will be given in the definition of good and bad balls in
Section 3.41.

Definition 3.6. We say that v1, . . . , vk are in τ-general position if for each i we have τ ≤ ‖vi‖ ≤

τ−1, and

vi+1 < Bτ(span(v1, · · · , vi)) . (3.23)

Equivalently

d(vi+1, span(v1, · · · , vi)) ≥ τ . (3.24)

In the following lemma, we see that a choice of basis in general position for a finite di-
mensional (sub)space V ⊂ X induces a linear isomorphism between V and Rk with uniform
estimates.

Lemma 3.7. Let v1, . . . , vk be vectors in τ-general position in X, and let V be its k-dimensional
span. Then for any v ∈ V, we can write (uniquely)

v =
∑

i

λivi, (3.25)
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where

c1(k, τ)−1||v|| ≤
∑

i

|λi| ≤ c1(k, τ)||v|| . (3.26)

Remark 3.8. In this lemma, we are basically saying that if we identify V with Rk via the basis
vi, then the l1 norm in this base is equivalent to the original norm ‖·‖. It is clear that, up to
enlarging the constant by another c(k), this statement is true also for all lp norms in Rk. To me
more precise, there is a constant c(k, τ) so that if V is identified with Rk via the basis vi, then for
any p ∈ [1,∞] we have

c(k, τ)−1||v||`p ≤ ||v||X ≤ c(k, τ)||v||`p ∀v ∈ V � Rk . (3.27)

Proof. The bound ||v|| ≤ τ−1 ∑
i |λi| follows trivially from the triangle inequality. We prove the

other bound.
We proceed by induction. The Lemma is obvious for k = 1. Suppose now the Lemma holds

for k − 1, and take v ∈ V with

v =

k∑
i=1

λivi , (3.28)

and without any loss of generality we can assume ||v|| = 1.
We claim that |λk| ≤ 2/τ. Otherwise, we could write

vk =
1
λk

v −
k−1∑
i=1

λi

λk
vi ≡

1
λk

v + w , (3.29)

for w ∈ span(v1, . . . , vk−1). In particular, we would have

d(vk, span(v1, . . . , vk−1)) ≤ ||vk − w|| ≤
||v||
|λk|
≤ τ/2 , (3.30)

contradicting τ-general position of the vi.
Therefore, |λk| ≤ 2/τ, and we can write

v − λkvk =

k−1∑
i=1

λivi , (3.31)

where ||v − λkvk|| ≤ 1 + 2τ−2. By our inductive hypothesis, we have

k−1∑
i=1

|λi| ≤ c(k, τ)(1 + 2τ−2) , (3.32)

which proves the Lemma for k. In fact, the inductive argument shows that |λi| ≤ (1+2τ−2)k−i+1||v||.
�

Lemma 3.7 implies the following crucial fact: up to linear transformation with uniform es-
timates, any two norms on a finite-dimensional space are equivalent with a constant depending
only on dimension.
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Lemma 3.9. Let V be a k-dimensional plane in a Banach space X. Then for any τ ∈ (0, 1), we
can find unit vectors vi ∈ V lying in τ-general position. In particular, if we take τ = 2/3, and
define the linear map φ : (V, || · ||)→ (Rk, || · ||2) by

φ(v) = (λi)i, v =
∑

i

λivi, (3.33)

(so that φ identifies V with Rk via the basis vi), then φ is a bi-Lipschitz equivalence, with ||φ|| +
||φ−1|| ≤ c(k).

Proof. We construct the vi. For v1 take any vector in V of length 1. By inductive hypothesis,
suppose we have constructed v1, . . . , vi. Now by Riesz lemma we can pick vi+1 ∈ V with ||vi+1|| =

1, and d(vi+1, span(v1, . . . , vi)) > τ. By induction we obtain the required vi. The Lipschitz bound
on φ follows immediately from Lemma 3.7. �

Here are some important corollaries of this equivalence. First, almost-disjoint balls lying
close to a k-plane in a Banach space admit a k-dimensional packing bound.

Lemma 3.10. Let p + V be an affine k-dimensional plane in a Banach space X, and
{
Bri (xi)

}
i∈I

be a family of pairwise disjoint balls with ri ≤ R, xi ∈ BR(p), and d(xi, p + V) < ri/2. Then∑
i

rk
i ≤ c2(k)Rk . (3.34)

Proof. We can suppose for convenience that p = 0. For each i, choose x′i ∈ V with ||x′i − xi|| <
ri/2. Then Bri/2(x′i) ∩ V ⊂ Bri(xi). Take φ as in the previous Lemma 3.9. Then we get

Bri/c(k)

(
φ(x′i) ∈ R

k
)
⊆ φ

(
Bri/2

(
x′i ∈ V

))
⊆ Bc(k)ri

(
φ(x′i) ∈ R

k
)
, (3.35)

and the Euclidean balls {Bri/c(k)(φ(x′i) ∈ R
k)}i∈I are pairwise disjoint and all contained in the ball

Bc(k)R

(
0 ∈ Rk

)
. The estimate now follows from standard Euclidean volume arguments. �

Second, balls in a k-plane in X admit uniform upper and lower Hausdorff bounds.

Lemma 3.11. Let V be a k-dimensional plane in some Banach space X. Then for all x ∈ V,

c(k)−1rk ≤ H k(Br (x) ∩ V) ≤ c(k)rk . (3.36)

Proof. Direct from the existence of φ in Lemma 3.9, and the behavior of Hausdorff measure
under Lipschitz mappings. �

Third, disjoint balls close to a k-plane, and clustered reasonably near a (k − 1)-plane, admit a
(k − 1)-dimensional packing bound.

Lemma 3.12. Let V be a k-plane in the Banach space X, and take L a (k − 1)-plane in V. Let
{xi}i∈I be a 2χr/5-separated set in

Br(0) ∩ Bχr/10(Vk) ∩ B10χr(Lk−1) . (3.37)

Then for χ ≤ 1 we have that #I ≤ cB(k)χ1−k.

Proof. For each i choose x′i ∈ V with ||xi − x′i || < χr/10. Then the balls {Bχr/10(x′i)}i are disjoint,
and contained in V ∩ B2r(0) ∩ B11χr(L). Take φ : V → Rk as in Lemma 3.9. By the same logic
as in the proof of Lemma 3.10, we get that the balls{

Bχr/c(k)

(
φ(x′i) ∈ R

k
)}

i
(3.38)
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are pairwise disjoint, and contained in set Bc(k)r

(
0 ∈ Rk

)
∩Bc(k)χr

(
φ(L) ⊂ Rk

)
. The result follows

by a standard volume argument. �

We close this section by observing the following stability property for vectors in τ-general
position.

Lemma 3.13. Suppose v1, . . . , vk are vectors in τ-general position, and vectors wi are chosen
so that

‖wi − vi‖ < ε , (3.39)

then wi are in (τ − c(k, τ)ε)-general position.
Similarly, if x0, . . . , xk are points so that {xi − x0}

k
i=1 are in τ-general position, and yi are

chosen so that ||xi − yi|| < ε, then the vectors {yi − y0}
k
i=1 are in (τ − 2c(k, τ)ε)-general position.

Proof. We need to show that ∥∥∥∥∥∥∥wi+1 −

i∑
j=1

λ jw j

∥∥∥∥∥∥∥ ≥ τ − c(k, τ)ε , (3.40)

for any collection λ1, . . . , λi of real numbers.
There is no loss in assuming ε ≤ 2−1c1(k, τ)−1 (c1 being the constant from Lemma 3.7), by

requiring c ≥ 2c1. First, suppose
∑

j |λ j| ≥ 2c1(τ + τ−1). Then we have by Lemma 3.7 and our
hypothesis:∥∥∥∥∥∥∥wi+1 −

i∑
j=1

λ jw j

∥∥∥∥∥∥∥ ≥
∥∥∥∥∥∥∥

k∑
j=1

λ jv j

∥∥∥∥∥∥∥ −
∥∥∥∥∥∥∥

k∑
j=1

λ j(v j − w j)

∥∥∥∥∥∥∥ − ||wi+1|| ≥ (c−1
1 − ε)

i∑
j=1

|λ j| − τ
−1 ≥ τ .

(3.41)

Now suppose
∑

j |λ j| ≤ 2c1(τ + τ−1). Then using our hypothesis we obtain∥∥∥∥∥∥∥wi+1 −

i∑
j=1

λ jw j

∥∥∥∥∥∥∥ ≥
∥∥∥∥∥∥∥vi+1 −

i∑
j=1

λ jv j

∥∥∥∥∥∥∥ − ||wi+1 − vi+1|| −

∥∥∥∥∥∥∥
i∑

j=1

λ j(v j − w j)

∥∥∥∥∥∥∥ ≥ τ − ε(1 + 2c1(τ−1 + τ)) .

(3.42)

This establishes the required bound. The second assertion follows directly. �

3.14. Distance to subspaces. Here we recall the notion of Hausdorff distance between sets
and Grassmannian distance between linear subspaces, and prove some basic estimates on these
two. We shall see how effective bases give us good estimates over nearby spaces.

Definition 3.15. Given two sets A, B ⊂ X, the Hausdorff distance between dH(A, B) is defined
as

dH(A, B) = inf {δ ≥ 0 s.t. A ⊆ Bδ (B) and B ⊆ Bδ (A)} . (3.43)

Note that dH(A, B) = dH(A, B), and in particular the Hausdorff distance is a full-blown distance
only between closed sets.

It is clear that the Hausdorff distance by itself cannot provide a reasonable notion of distance
between linear subspaces. Indeed, dH(V,W) , ∞ only if V = W. For this reason, we introduce
the Grassmanian distance in the next definition.
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Definition 3.16. Given two linear subspaces L,V ⊆ X, we define the Grassmannian distance
between these two as

dG(L,V) = dH(L ∩ B1 (0) ,V ∩ B1 (0)) ≡ dH(L ∩ B1 (0),V ∩ B1 (0)) , (3.44)

Note that if dim(L) , dim(V), then dG(L,V) = 1.

In the next lemma, we recall a basic fact about linear and affine subspaces. While for two
general sets it is highly non true that A ⊆ Bδ (B) implies B ⊆ Bcδ (A), for affine subspaces of the
same dimension something similar to that is true.

Lemma 3.17. Let p+V and q+W be k-dimensional affine subspaces in X, with (p+V)∩B1/2(0) ,
∅. Suppose

(p + V) ∩ B1(0) ⊂ Bδ(q + W) . (3.45)

Then we have

dH((p + V) ∩ B1(0), (q + W) ∩ B1(0)) ≤ c(k)δ , (3.46)

and in particular, dG(V,W) ≤ c(k)δ.

Proof. As it is self-evident, the requirement that V and W have the same dimension is crucial
for the lemma. This suggests that the proof is based on some argument involving affine basis
for p + V and q + W and comparisons between the two. We can take δ ≤ δ0(k) by ensuring
c(k) ≥ δ−1

0 .
Let p0 ∈ p + V be a point of minimal distance from the origin, so that ‖p0‖ ≤ 1/2. Take

p1, · · · , pk ∈ (p + V) ∩ B9/10(0) a sequence of points such that

‖pi − p0‖ = 1/3 and pi < p0 + B2/9
(
span(p1 − p0, · · · , pi−1 − p0)

)
. (3.47)

One can find the pi using the Riesz lemma as in Lemma 3.9. In particular, this implies that
{(pi − p0)}ki=1 are vectors in 2/9-general position in V . By hypothesis, we can pick qi ∈ q + V
such that ‖qi − pi‖ ≤ 2δ. From Lemma 3.13 the {qi − q0}

k
i=1 are in 1/9-general position provided

δ0(k) is sufficiently small.
Take some y ∈ (q + W) ∩ B1(0). Then by Lemma 3.7 there are numbers αi = αi(y) so that

y = q0 +

k∑
i=1

αi(qi − q0), |αi| ≤ c(k) . (3.48)

If we let x = x(y) ∈ p + V be the point defined by

x = p0 +

k∑
i=1

αi(pi − p0) , (3.49)

then

||y − x|| ≤ ||q0 − p0|| +

k∑
i=1

|αi|
[
||pi − qi|| + ||p0 − q0||

]
≤ c(k)δ . (3.50)

Therefore we have (q + W) ∩ B1(0) ⊂ Bc(k)δ(p + V).
One can easily check that, since max{||p||, ||q||} ≤ 3/4, we have

Bε((p + V) ∩ B1+ε) ⊂ B10ε((p + V) ∩ B1(0)) , (3.51)

and the same for q + W. The lemma now follows directly. �
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3.18. Almost-projections, Graphs. In this section, we recall some basic definition and prop-
erties of linear bounded projections in Banach spaces, and use this notion to define graphs over
finite dimensional subsets. Before beginning, we mention the fact that bounded linear projec-
tions over Banach spaces behave differently than in Hilbert spaces. In a Hilbert space H, all
closed subspaces V have a linear projection πV of norm 1 and such that V ⊕ π−1

V (0) = H. In
Banach spaces norm-one linear projections are very rare objects. Indeed, if a Banach space X
of dimension ≥ 3 admits a norm-one linear projection for all of its two dimensional subspaces,
then X is a Hilbert space. This is a classical result in Banach spaces, see the recent survey
[Ran01, section 3].

In order to distinguish the nice Hilbert space projections from their rougher Banach counter-
parts, we are going to call a linear projection on a Banach space with norm bounded (but not by
1) “almost projections”.

We start by recalling an easy consequence of Hahn-Banach theorem.

Lemma 3.19. Let L : A → V be a continuous linear operator from a linear subspace A ⊂ X
to a k-dimensional Banach space V. Then there exists a bounded linear extension L̃ : X → V
satisfying

||L̃|| ≤ c(k)||L|| . (3.52)

Proof. Let {wi} be a unit basis for V lying in 2/3 general position, see Lemma 3.9, and identify
V with Rk via this basis. By Lemma 3.7, we know that ‖·‖L∞(Rk) is uniformly equivalent to
the original Banach norm on V . In other words, for all w ∈ V , we have that the components
φi : V → R given by φi(w) = φi (

∑
i λiwi) = λi are uniformly bounded linear maps with

‖φi‖ ≤ c(k) . (3.53)

Define ψi : V → R by setting

ψi(v) = φi(L(v)) . (3.54)

Then we have ‖ψi‖ ≤ c(k) ‖L‖, and by Hahn-Banach, for each i there exists a norm preserving
extension ψ̃i of ψi to the whole space X. Set

L̃(x) =
∑

i

ψ̃i(x)wi . (3.55)

We have

||L̃(x)||V ≤ c(k) ‖L(x)‖L∞(Rk) ≤ c(k) ‖L‖V ||x||V . (3.56)

�

We can use this lemma to give a trivial proof of the following:

Lemma 3.20. For any linear k-space V, there is a linear map πV : X → V satisfying the
following:

A) πV(v) = v for all v ∈ V,
B) ||πV || ≤ c3(k),
C) given any W with dG(V,W) < ε, then ||πV(w) − w|| ≤ c3(k)ε ||w||.

Proof. If we let L : V → V be the identity operator, then take πV to be the linear extension of L
from Lemma 3.19.
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Now given w ∈ W, where dG(W,V) < ε, we can by assumption find a v ∈ V with ||w − v|| ≤
ε ||w||. Then we have

||πV(w) − w|| ≤ ||πV(w) − πV(v)|| + ||πV(v) − v|| + ||v − w|| (3.57)
≤ (1 + c(k))||v − w|| (3.58)
≤ c(k)ε ||w|| . (3.59)

�

Definition 3.21. We shall call any linear map π : X → V satisfying the conditions A)-B)-C) of
Lemma 3.20 an almost-projection for V . Given any almost-projection π, we abuse notation and
write π⊥ := Id − π.

Given an affine k-space p + V , we define πV in terms of the associated linear space V . An
affine space p + V admits a notion of almost-affine-projection

Π(x) := p + πV(x − p) ≡ π⊥V (p) + πV(x) , (3.60)

which is independent of choice of p ∈ p + V .

An important but easy consequence of the definition of almost projections is the following.

Proposition 3.22. Let V, W be linear k-spaces, with almost-projections πV , πW . Suppose
dG(V,W) ≤ δ. Then

||π⊥V (πW(x))|| ≤ c3(k)2δ||x||. (3.61)

Proof. We have by Lemma 3.20 part C):

||π⊥V (πW(x))|| = ||πW(x) − πV(πW(x))|| ≤ c3δ||πW(x)|| ≤ c2
3δ||x|| . (3.62)

�

Almost projections allow us to define a tractable notion of graph in a Banach space.

Definition 3.23. Given an affine k-space p + V , and almost-projection πV , we say a set G is a
graph over (V, πV) if there is a domain Ω ⊂ p + V , and function g : Ω→ X, so that

G = {x + g(x) : x ∈ Ω}, and πV(g(x)) ≡ 0 . (3.63)

For short we will often write G = graphΩ,πV
(g).

Remark 3.24. Lemma 4.4 demonstrates that graphicality is “well-defined,” in the sense that
whenever G is a (small) graph with respect to some almost-projection π, then G is a graph with
respect to any other almost-projection (although with a slightly worse bound).

3.25. Modulus of smoothness. The norm in a Banach space is evidently a Lipschitz function,
but in general nothing more can be said. For example in L∞[0, 1] it is easy to see that the sup
norm is not C1.

The modulus of smoothness of a Banach space (X, ‖·‖) measures in a quantitative way how
smooth the norm of this space is. Here we briefly recall its definition and main properties,
for more on this topic we refer the reader to some standard reference for Banach spaces (see
[LT77, LT79]), and to some specific important articles related to this subject (see [Cla36, Alb96,
Alb98, Han56]). Needless to say, since this topic has been extensively studied in literature,
these references are not exhaustive. Moreover, this notion is intimately related via duality to the
perhaps more standard notion of modulus of convexity.
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Definition 3.26. Given a Banach space X, we set ρX : [0,∞) → [0,∞) to be its modulus of
smoothness, defined by

ρX(t) = sup
‖x‖=1 ‖y‖=t

(
‖x + y‖ + ‖x − y‖

2

)
− 1 . (3.64)

We say that X is uniformly smooth if limt→0 t−1ρX(t) = 0, and we say that is of smoothness
power-type α ∈ [1, 2] if

lim sup
t→0

t−αρX(t) < ∞ . (3.65)

An easy consequence of the convexity of ‖·‖ is that ρX is a convex function.

Remark 3.27. Note that 0 ≤ ρ(t) ≤ t by the triangle inequality, and that for any Hilbert space
H, ρH(t) =

√
1 + t2 − 1. In fact Hilbert spaces are the “smoothest” possible Banach spaces, in

the sense that for any Banach space X, we have ρX(t) ≥ ρH(t) (see [LT79, Nor60]).

Example 3.28. As a first example, we recall that when X = Lp, we have

ρLp(t) ≤
{

p−1tp + o(tp) (1 < p ≤ 2)
(p − 1)t2 + o(t2) (2 < p < ∞) . (3.66)

This follows from Hanner’s inequality (see [Han56], [LT79, pag 63]).

If X is smooth, then its norm is continuously differentiable away from the origin. In such a
space, the gradient of ‖x‖2 /2 is equal to the functional J(x), where J is the normalized duality
mapping between X and its dual X∗. Since this mapping is going to play an important role in
the following, we recall its definition and some of its properties here.

Definition 3.29. Given any Banach space X, let X∗ be its dual. A normalized duality mapping
J : X → X∗ is a mapping satisfying

‖J(x)‖X∗ = ‖x‖X , 〈J(x), x〉 = ‖x‖2 , (3.67)

where 〈φ, x〉 = φ(x) is the natural pairing between a functional φ ∈ X∗ and an element x ∈ X.

Example 3.30. The easiest example of mapping J is given in a Hilbert space (H, 〈·, ·〉H), where
the Riesz representation theorem states that J(x) = 〈x, ·〉H is a normalized duality mapping, and
actually it is the unique map with these properties.

For the reader’s convenience, we also recall what the mapping J is in the real Banach spaces
lp. For p ∈ (1,∞), there exists a unique J determined by

J
(
{xi}

∞
i=1

)
=

 ∞∑
i=1

|xi|
p


2−p

p {
|xi|

p−2 xi

}∞
i=1
∈ l∗p = lq . (3.68)

On l1, we can write

J
(
{xi}

∞
i=1

)
=

 ∞∑
i=1

|xi|

 {sign(xi)
}∞
i=1 ∈ l∗1 = l∞ , (3.69)

where sign(x) is the sign function for x ∈ R \ {0}, and it can be any number in [−1, 1] if x = 0
(thus J is not uniquely determined on l1).

The most important property of J for us is the following effective continuity:
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Lemma 3.31 ([Alb96, equation 7.7]). If X is a uniformly smooth Banach space, then

||J(x) − J(y)||X∗ ≤ 8R
ρX(4||x − y||/R)

4||x − y||/R
, (3.70)

where R =
√

(||x||2 + ||y||2)/2.

As a direct Corollary of Lemma 3.31, and the definition of J, we obtain the following
Pythagorean-type theorems (similar to [Alb96, theorem 7.5], [Alb98, theorem 2.11])

Lemma 3.32. Let X be a uniformly smooth Banach space, then∣∣∣∣||x + y||2 − ||x||2
∣∣∣∣ ≤ 2| 〈Jx, y〉 | + 4(||x||2 + ||y||2)ρX

 4||y||√
||x||2 + ||y||2

 . (3.71)

In particular, we mark two special cases. Let Vk be a k-dimensional space in X. If π(x) is an
almost-projection to V, then for every x:∣∣∣∣||x||2 − ||π(x)||2

∣∣∣∣ ≤ 2|
〈
Jπ(x), π⊥(x)

〉
| + 8c3(k)2||x||2ρX(||π⊥(x)||/||x||). (3.72)

If f : V → X is a Lipschitz mapping, with Lip( f ) ≤ ε ≤ 1, then∣∣∣∣||(x + f (x)) − (y + f (y))||2 − ||x − y||2
∣∣∣∣ ≤ | 〈J(x − y), f (x) − f (y)〉 | + 8ρX(4ε)||x − y||2, (3.73)

for every x, y ∈ V.

Proof. Let γ(t) = x + ty. Then we compute∣∣∣∣||x + y||2 − ||x||2
∣∣∣∣ =

∣∣∣∣∣∣
∫ 1

0
2 〈Jγ(t), γ′(t)〉 dt

∣∣∣∣∣∣ (3.74)

≤ 2| 〈Jx, y〉 | +
∫ 1

0
2| 〈J(x + ty) − Jx, y〉 |dt. (3.75)

If we define

R(t) =
√

(||x + ty||2 + ||x||2)/2 ≤
√
||x||2 + ||y||2, (3.76)

then using Lemma 3.31 and the convexity of ρX, we bound

2| 〈J(x + ty) − Jx, y〉 | ≤ 2 · 8R(t)
ρ(4||y||/R(t))

4||y||/R(t)
||y|| (3.77)

= 4R(t)2ρ(4||y||/R(t)) (3.78)

≤ 4R(t)
√
||x||2 + ||y||2ρ(4||y||/

√
||x||2 + ||y||2) (3.79)

≤ 4(||x||2 + ||y||2)ρ(4||y||/
√
||x||2 + ||y||2). (3.80)

This establishes (3.71).
To prove (3.72) replace x with π(x) and y with π⊥(x) in (3.71), and use the bound ||π|| ≤ c3(k).

To prove (3.73), replace x with x + f (x), and y with y + f (y). �

Remark 3.33. Notice that if
〈
J|V , π⊥

〉
≡ 0 (so that π is an “orthogonal” projection), then (3.72)

becomes ∣∣∣∣||x||2 − ||π(x)||2
∣∣∣∣ ≤ c(k)||x||2ρX(||π⊥(x)||/||x||). (3.81)
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3.34. Canonical projections. In certain cases we have a canonical notion of projection, which
admits better bounds than a generic almost-projection.

3.34.1. Hilbert spaces. If X is a Hilbert space, and V is a k-plane, then V admits a unique
orthogonal projection πV : X → V , with the property that

||πV(x)||2 + ||x − πV(x)||2 = ||x||2 . (3.82)

Correspondingly, in a Hilbert space we have a canonical notion of orthogonal complement
V⊥ = ker(πV), for which π⊥V ≡ πV⊥ , in the notation of Definition 3.21. Moreover, from the
Pythagorean relation (3.82),

d(x,V) = ||πV⊥(x)|| ≡ ||π⊥V (x)|| . (3.83)

Finally, let us remark that trivially, the orthogonal projection is an almost-projection.

The fact that projections in Hilbert spaces are canonical allow us to give a different definition
of distance between subspaces. In particular, given V,W to linear subspaces in H, we could
define a distance between V and W by taking the operator norm ‖πV − πW‖. As it is not difficult
to see, this notion is equivalent to dG(V,W). Here we recall a standard lemma needed to show
this equivalence, that will be stated in more generality later on in Lemma 3.38.

Lemma 3.35. Let V,W be linear subspaces of a Hilbert space. Then dG(V,W) = dG(V⊥,W⊥).

Proof. By symmetry, it is sufficient to prove that dG
(
V⊥,W⊥

)
≤ dG (V,W).

Take x ∈ V⊥ such that ‖x‖ = 1, and consider that d(x,W⊥ ∩ B1 (0)) = ‖πW(x)‖. Let z = πW(x)
and y = πV(z). We want to show that if dG(V,W) ≤ ε < 1, then ‖z‖ ≤ ε. We can limit our
study to the space spanned by x, y, z, and assume WLOG that x = (1, 0, 0), y = (0, b, 0) and
z = (a, b, c). By orthogonality between z and z − x, we have

a2 + b2 + c2 + (1 − a)2 + b2 + c2 = 1 =⇒ a = a2 + b2 + c2 , (3.84)

and since z ∈ W, we also have ‖z − y‖ ≤ ε ‖z‖, which implies

a2 + c2 ≤ ε2
(
a2 + b2 + c2

)
=⇒ a2 + c2 ≤

ε2

1 − ε2 b2 . (3.85)

Since the function f (x) = x2/(1 − x2) is monotone increasing for x ≥ 0, we can define α ≥ 0 in
such a way that

a2 + c2 =
α2

1 − α2 b2 , a = a2 + b2 + c2 =
1

1 − α2 b2 . (3.86)

Note that necessarily we will have α ≤ ε. Now we have

1
(1 − α2)2 b4 = a2 ≤

α2

1 − α2 b2 (3.87)

=⇒ b2 ≤ α2
(
1 − α2

)
(3.88)

=⇒ ‖z‖2 = a2 + b2 + c2 ≤ α2 ≤ ε2 . (3.89)

This proves that V⊥ ∩ B1 (0) ⊂ Bε

(
W⊥ ∩ B1 (0)

)
. In a similar way, one proves the opposite

direction. �

With this easy lemma, we can show as promised that
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Lemma 3.36. Let V,W be linear subspaces of a Hilbert space H. Then for every x ∈ H,

‖πV(x) − πW(x)‖ ≤ dG(V,W)||x|| . (3.90)

In the converse direction we have

dG(V,W) ≤ sup
‖x‖=1
{‖πV(x) − πW(x)‖} . (3.91)

Proof. Let x be such that ‖x‖ = 1, and set x = πV(x) + πV⊥(x) := y + z. Then

‖πV(x) − πW(x)‖2 = ‖y − πW(y) − πW(z)‖2 = ‖y − πW(y)‖2 + ‖z − πW⊥(z)‖2 = d(y,W)2 + d(z,W⊥)2 .
(3.92)

Since y ∈ V , then d(y,W) ≤ ‖y‖ dG(V,W), and similarly d(z,W⊥) = ‖z‖ d(V⊥,W⊥). Since
‖y‖2 + ‖z‖2 = 1, by the previous lemma we get

‖πV(x) − πW(x)‖2 ≤ ‖y‖2 dG(V,W)2 + ‖z‖2 dG(V⊥,W⊥)2 = dG(V,W)2 . (3.93)

This proves (3.90). (3.91) is an easy consequence of the definition of dG(V,W). �

3.36.1. Curves in smooth Banach spaces. If X is uniformly smooth, then the normalized duality
mapping between X and X∗ provides us with a canonical (norm one) projection onto one dimen-
sional subspaces, as described in the next Definition. Moreover, thanks to the results [Alb96,
theorem 7.5], [Alb98, theorem 2.11] we have a generalized Pythagorean theorem in uniformly
smooth Banach spaces that is going to be crucial for the power gain in the Reifenberg theorem.

Definition 3.37. Given a 1-dimensional subspace V of X, spanned by the unit vector v, we call
the map πV : X → V defined by πV(x) = 〈J(v), x〉 v the J-projection, or canonical projection,
onto V .

Of course any J-projection is trivially an almost-projection, and it is easy to see that in a
Hilbert space this coincides with the orthogonal projection onto V . Moreover, it is easy to see
that this almost projection has operator norm 1, since |〈J(v), x〉| ≤ ‖x‖ for all x and 〈J(v), v〉 = 1.

3.37.1. Summary. Let us summarize the two key properties we need of orthogonal and J-
projections.

Lemma 3.38. Let V,W be two k-spaces in X, with associated almost-projections πV , πW . Sup-
pose either X is Hilbert, and πV , πW are orthogonal; or X is uniformly smooth, k = 1, and πV ,
πW are J-projections.

If dG(V,W) < δ, then

||πV − πW || ≤ 2ρX(4δ)/δ . (3.94)

Proof. If X is Hilbert, this is a corollary of Lemma 3.36. Suppose now that X is a uniformly
smooth Banach space, k = 1, and that πV , πW are J-projections. We can choose unit vectors v,w
spanning V,W, with ||v − w|| < δ, and then πV(x) = 〈J(v), x〉 v, and πW(x) = 〈J(w), x〉w. We
estimate therefore that

||πV(x) − πW(x)|| ≤ (||J(v) − J(w)|| + ||v − w||)||x|| ≤ (2ρX(4δ)/δ + δ)||x|| . (3.95)

In the last inequality we also used the convexity of ρX(t). �
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Lemma 3.39. Take V a k-plane in X. If either X is Hilbert, and πV is the orthogonal projec-
tion, or X is uniformly smooth, k = 1, and πV is the J-projection, then we have the following
improvements on (3.72), (3.73): for any x,∣∣∣∣||x||2 − ||π(x)||2

∣∣∣∣ ≤ 8||x||2ρX(||π⊥(x)||/||x||). (3.96)

If f : V → X is a Lipschitz mapping, with Lip( f ) ≤ ε ≤ 1, then for every x, y ∈ V,∣∣∣∣||(x + f (x)) − (y + f (y))||2 − ||x − y||2
∣∣∣∣ ≤ 2||x − y||||π( f (x) − f (y)|| + 8ρX(4ε)||x − y||2. (3.97)

Of course these estimates are far from sharp when X is Hilbert.

Proof. By Lemma 3.32, it suffices to show that < J|V , π⊥V >= 0. When X is Hilbert, this follows
immediately from the fact J(x) = 〈x, ·〉H. When X is uniformly smooth, and k = 1, we can
verify: given unit vector v spanning V , then〈

J(v), π⊥V (x)
〉

= 〈J(v), x − 〈J(v), x〉 v〉 = 0. (3.98)

�

Improved orthogonality estimates like (3.96) give improved Lipschitz bounds on graph pro-
jections, which at a very basic level is why we can expect improved estimates on the Reifenberg
maps.

Proposition 3.40. Take V a k-plane in X. Suppose either X is Hilbert, and πV is the orthogonal
projection, or X is uniformly smooth, k = 1, and πV is the J-projection. Let

G = graphΩ,πV
(g), Lip(g) ≤ ε ≤ 1, Ω ⊂ V . (3.99)

Then we have the estimate∣∣∣∣||(x + g(x)) − (y + g(y))||2 − ||x − y||2
∣∣∣∣ ≤ 8ρX(4ε)||x − y||2 ∀x, y ∈ Ω . (3.100)

In particular, πV : G → V is a bi-Lipschitz equivalence, with Lipschitz constant bounded by
1 + 8ρX(4ε).

Proof. Immediate from Lemma 3.39 and the definition of graph. �

3.41. Tilting control. We study the tilting between best planes at different scales, and try to
control the tilting using the β numbers.

First of all, we give a definition of “approximate best subspace” for the measure µ on any ball
in X.

Definition 3.42. Given a finite measure µ in a Banach space X, and given a ball Br (x), we set
p(x, r) + V(x, r) to be an affine k-dimensional subspace (with p(x, r) ∈ Br(x)) such that

r−k−2
∫

Br(x)
d(y, p(x, r) + V(x, r))2dµ(y) ≤ 2βk

µ(x, r)2 . (3.101)

The definition if obviously well-posed if β(x, r) > 0. For β = 0, we have the following easy
lemma.

Lemma 3.43. Let βk
µ(x, r) = 0, then there exist a k-dimensional affine subspace p + V such that

the µ(Br(x) \ (p + V)) = 0.
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Remark 3.44. Note that we don’t claim simply that the support of the measure µ is contained in
p + V . Although this is equivalent to our claim when X is separable (and thus it has a countable
base for the topology), our claim is a priori stronger in general Banach spaces.

Proof. In infinite dimensional Banach spaces, we don’t have compactness for the Grassmannian
of k-dimensional affine subspaces, thus we need a different argument. For convenience, we
assume that x = 0 and r = 1 and that µ(X \ B1 (0)) = 0 (otherwise we replace µ with µxB1 (0)).
Consider for all i ∈ N a sequence of affine subspaces pi + Vi such that∫

B1(0)
d(y, pi + Vi)2dµ(y) ≤ 3−i , (3.102)

so that by Chebyshev inequality

µ(X \ Bi−1(pi + Vi)) ≤ 2−i , (3.103)

Thus we get that for all j:

µ

X \
⋂
j≥i

B j−1(p j + V j)

 ≤ 2−i+1 , (3.104)

and in turn

µ

X \
⋃

i

⋂
j≥i

B j−1(p j + V j)

 = 0 , (3.105)

We claim that there is an affine k-space q + W so that⋂
j≥i

B j−1(p j + V j) ⊂ q + W ∀i . (3.106)

This would clearly finish the proof.
Now obviously

⋂
j≥i B j−1(p j +V j) is a convex set. Take x0 ∈

⋂
j≥i B j−1(p j +V j) be any point (if

no such x0 exists then we have nothing to prove), and assume by contradiction that there exist
x1, · · · , xk+1 ∈

⋂
j≥i B j−1(p j + V j) such that {x1 − x0, · · · , xk+1 − x0} are linearly independent. Fix

a τ > 0 so these points are in τ-general position.
By Lemma 3.13, there exists j sufficiently large such that if {yi}

k+1
i=0 are such that ||yi−xi|| ≤ j−1,

then {yi − y0}
k+1
i=1 lie in τ/2 general position, and in particular are linearly independent. Thus we

can find a k+1 dimensional affine subspace that is contained in the k-dimensional affine subspace
p j + V j, for j sufficiently large, and we reach our contradiction. �

Now that we have a definition for V(0, 1), we turn to the tilting control. The idea is the
following: given two balls one containing the other, say for example B1 (0) and B1/10 (0), we
want to be able to say that β(0, 1) controls the distance between V(0, 1) and V(0, 1/10). The
following example shows that in general this is not possible.

Example 3.45. Let k = 1 and µ be the sum of 5 Dirac masses in the Euclidean R2

µ = δ0 + δ(1,0) + δ(−1,0) + δ(0,t) + δ(0,−t) . (3.107)

For 0 < t ≤ 1/10, it is easy to see that V(0, 1) is the x-axis, while V(0, 1/10) is the y-axis, and
this is independent on the choice of t.
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Moreover, we have

βµ(0, 1/10)2 = 0 , βµ(0, 1)2 = 2t2 . (3.108)

As t approaches 0, the beta numbers clearly don’t control the distance between V(0, 1) and
V(0, 1/10) (which is constant in t and equal to 1). So the geometry of the measure µ is essential
to obtain the bound we want.

We will see in the following that we have “tilting control” as long as µ is sufficiently spread
over something k-dimensional on the small ball. In order to be more precise, we give the
following definition of “good balls”.

Definition 3.46. Take µ a finite Borel-regular measure, and χ ∈ (0, 1/10). We say a ball Br(x)
is a good ball w.r.t the measure µ and parameter χ if for any affine subspace q + L of dimension
≤ k − 1, there exists a point z such that

i) µ(Bχr(z) ∩ Br(x)) ≥ 10−1c−1
2 (χr)k, and

ii) z < B7χr (q + L)
Here c2(k) is the constant from Lemma 3.10. If k = 0 then good is simply the requirement that
some z exists satisfying i). If Br(x) is not good, we say Br(x) is a bad ball w.r.t. µ and χ.

The next lemma shows that on good balls we have good tilting control.

Lemma 3.47. Let µ be a finite Borel-regular measure, and consider Br(x) ⊂ B1/2(0). If Br(x) is
a good ball w.r.t. µ and χ, then we have

dH(
[
p(x, r) + V(x, r)

]
∩ B1(0),

[
p(0, 1) + V(0, 1)

]
∩ B1(0)) ≤ c(k, r, χ)βk

µ(0, 1) , (3.109)

and in particular

dG(V(x, r),V(0, 1)) ≤ c(k, r, χ)βk
µ(0, 1) . (3.110)

An immediate corollary is the following comparability between any two good balls.

Lemma 3.48. Suppose Br′(x′) and Br(x) are good balls w.r.t. µ and χ. If we have Br′(x)∪Br(x) ⊂
BR/2(y), then

dH(
[
p(x, r) + V(x, r)

]
∩ BR(y),

[
p(x′, r′) + V(x′, r′)

]
∩ BR(y)) ≤ c(k, r/R, r′/R, χ)β(y,R)R ,

(3.111)

and

dG(V(x, r),V(x′, r′)) ≤ c(k, r′/R, r/R, χ)β(y,R). (3.112)

Proof of Lemma 3.47. We assume y = 0 and R = 1 for simplicity. By enlarging c as necessary
we can also assume wlog that

β(0, 1) ≤ δ0(k, r, χ) . (3.113)

In the following c denote a generic constant depending only on k, r, χ.
We claim we can inductively find points x̂0, . . . , x̂k ∈ Br(x) such that

(1) the vectors {x̂i − x̂0}
k
i=1 are in 5χr-general position

(2) we have the estimates

d(x̂i, p(x, r) + V(x, r))2 ≤ cβ(0, 1)2, d(x̂i, p(0, 1) + V(0, 1))2 ≤ cβ(0, 1)2 . (3.114)
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Let us see how this claim completes the proof. Choose yi in p(x, r) + V(x, r) with ‖x̂i − yi‖ ≤

cβ(0, 1). By the triangle inequality, d(yi, p(0, 1) + V(0, 1)) ≤ cβ(0, 1) as well.
Provided δ0(k, r, χ) is sufficiently small, by Lemma 3.13 the vectors {yi − y0}

k
i=1 lie in 3χr-

general position. Now given any y ∈ (p(x, r) + V(x, r)) ∩ B1(0), we write by Lemma 3.7

y = y0 +

k∑
i=1

αi(yi − y0), ||αi|| ≤ c , (3.115)

and thereby deduce

d(y, p(0, 1) + V(0, 1)) ≤ cβ(0, 1) . (3.116)

The proof of Lemma 3.47 is completed by an application of Lemma 3.17.
We are left to prove the inductive claim. To construct our base case x̂0, in the following let us

set j = −1 and interpret q + L−1 = ∅. Otherwise, suppose by induction that we have a collection
{x̂i}

j
i=0 with the desired properties for some j ≤ k − 1, and let q + L j be the j dimensional affine

subspace given by

q + L j = x̂0 + span{x̂1 − x̂0, · · · , x̂ j − x̂0} . (3.117)

By assumption, there exists a point x j+1 < B7χr(q + L j) such that

µ(Bχr(x j+1) ∩ Br(x)) ≥ 10−1c−1
2 (χr)k . (3.118)

Set for simplicity µ̄ = µx(Bχr(x j+1) ∩ Br(x)), and define for z ∈ X and s > 0 the set

Qz,s =

{
y ∈ X s.t. d(y, p(z, s) + V(z, s)))2 ≤ 3

?
d(w, p(z, s) + V(z, s))2dµ̄(w)

}
. (3.119)

By Chebyshev inequality, we have trivially that

µ̄(Qx,r) ≥
2
3
µ̄(X) , µ̄(Q0,1) ≥

2
3
µ̄(X) . (3.120)

Thus there exists a point x̂ j+1 ∈ spt µ̄ ∩ Qx,r ∩ Q0,1. Since spt µ̄ ⊆ Bχr(x j+1), by the triangle
inequality we get x̂ j+1 < B5χr(q + L j). Moreover, we have by (3.118) and the inclusion Br(x) ⊂
B1(0) that

d(x̂ j+1, p(x, r) + V(x, r))2 ≤ 3µ(Br(y) ∩ Bχr(x j+1))−1rk+2β(x, r)2 ≤ cβ(0, 1)2 , (3.121)

d(x̂ j+1, p(0, 1) + V(0, 1))2 ≤ 3µ(Br(y) ∩ Bχr(x j+1))−1β(0, 1)2 ≤ cβ(0, 1)2 . (3.122)

This complete the proof of the inductive claim, and in turn the proof of the lemma. �

4. Reifenberg estimates in Banach spaces

Our fundamental tool is the Reifenberg map σ, which is essentially an interpolation of pro-
jection mappings. We shall use the Reifenberg maps to construct approximating manifolds
by “gluing” together nearby planes. This section establishes important basic estimates on these
maps. We are not defining the actual Reifenberg maps we use at this stage; the estimates require
only the basic structure.
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In this section we shall suppose we have a fixed k-plane V , with almost-projection π as in
Definition 3.21, and a point p. Let xi be a 2r/5-separated set in X, and take pi ∈ Br(xi) with
k-planes Vi and associated almost-projections πi.

Assume the following tilting and closeness control:

d(0, p + V) < r/10, d(xi, p + V) < r/10, d(pi, p + V) < δr, dG(Vi,V) < δ . (4.1)

4.1. The map σ. Suppose σ : B3r → X is a mapping of the form

σ(x) = x −
∑

i

φi(x)π⊥i (x − pi) , (4.2)

where φi is the truncated partition of unity subordinate to the B3r(xi), as per Lemma 3.1. Notice
that, by Lemma 3.10 and our hypothesis on xi, the overlap of the {B3r(xi)}i is bounded by some
uniform constant c(k). So in particular the φi satisfy:

0 ≤ φi ≤ 1, spt φi ⊂ B3r(xi), Lip(φi) ≤ c(k)/r . (4.3)

We are ready to state and prove the main lemma (the “Banach squash lemma”) regarding the
properties of the map σ. This Lemma proves that, provided a set G is reasonably well-behaved
to start with (i.e. is a graph with small Lipschitz norm), then σ|G has good Lipschitz bounds
(parts A, D), and the image σ(G) has good graphical properties (parts B, C).

There are two subtle points. First, where
∑

i φi = 1 the map σ is entirely an interpolation of
affine projections, and in these regions the resulting graph geometry of σ(G) depends only on
the geometry of affine the planes p + V , pi + Vi (and not on G!). Here is a baby example for
illustration: take X = Rn, the planes pi + Vi to be a single p1 + V1, and for simplicity set φ1 ≡ 1.
Then σ becomes to the affine projection onto p1 + V1, and σ(G) = p1 + V1 for any graph G
over p + V . In general, in part C) we show that wherever

∑
i φi = 1, σ(G) has graphical bounds

independent of G.
Outside the region where

∑
i φi = 1, the map σ starts to “remember” the geometry of G. For

example, in the extreme, when
∑

i φi = 0, the σ is simply the identity, and σ(G) = G in there
regime. In part B) we show the graphical bounds on σ(G) will generally depend both on bounds
for G, and the tilting between the various planes p + V , pi + Vi.

Second, when we have some reasonable notion of orthogonality (e.g. when X is Hilbert, or
k = 1 and X is smooth), we get improved estimates on σ|G. This is because σ is pushes G
“almost orthogonally” to G’s plane of graphicality. Part D of Lemma 4.2 shows a power gain in
the “tangential” movement and Lipschitz bounds of σ.

Various forms of this lemma are present in literature, for example in [Tor95, DT12, ENV]. Up
to technical details, the proof of this lemma is standard. However, since this lemma is crucial
for our estimates and we are going to use special properties of the J-projections on Banach
spaces, we write a complete proof of this lemma.

Lemma 4.2 (Banach Squash Lemma). There are constants ε1(k), c4(k) so that the following
holds. In the notation above, and with the assumptions (4.1), let G be a closed set so that

G ∩ B3r = graphΩ,πV
(g), r−1||g|| + Lip(g) ≤ ε, B5r/2 ∩ (p + V) ⊂ Ω . (4.4)

Then provided δ + ε ≤ ε1(k), we have
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A) For x, y ∈ G ∩ B3r, σ is a bi-Lipschitz equivalence between G ∩ B3r and σ(G ∩ B3r),
satisfying the estimates

r−1||σ(x) − x|| ≤ c4(δ + ε), and ||(σ(x) − σ(y)) − (x − y)|| ≤ c4(δ + ε)||x − y|| . (4.5)

B) We have

σ(G) ∩ B2r = graphΩ̃,πV
(g̃), r−1||g̃|| + Lip(g̃) ≤ c4(δ + ε), B3r/2 ∩ (p + V) ⊂ Ω̃, (4.6)

C) If
∑

i φi = 1 on B(2+c4(δ+ε))r, then in part B) we in fact have the bound

r−1||g̃|| + Lip(g̃) ≤ c4δ . (4.7)

D) Suppose either of the following scenarios: X is a Hilbert space, and each π, πi are
orthogonal; or X is a uniformly smooth Banach space, k = 1, and each π, πi is a J-
projection. Then we have the improved estimates: for all x, y ∈ G ∩ B3,

r−1||π(σ(x) − x)|| ≤ c4ρX(c4(δ + ε)), and
∣∣∣∣||σ(x) − σ(y)||2 − ||x − y||2

∣∣∣∣ ≤ c4ρX(c4(δ + ε))||x − y||2

(4.8)

Proof. In the following c denotes a generic constant depending only on k. We will assume ε1(k)
is chosen sufficiently small so that we always have cε1 ≤ 1/100. By scaling we can assume
r = 1.

Given x, y ∈ p + V , for ease of notation we shall write x+ = x + g(x), and y+ = y + g(x). For
each i, choose p̃i ∈ V so that || p̃i − pi|| < δ. We can without loss of generality assume ||p|| < δ.

If φi(x+) > 0 and x+ ∈ B3, then ||x+ − xi|| < 3, and therefore ||xi|| < 6, and ||pi|| < 7. For such
an i, we have

||π⊥i (x + g(x) − pi)|| ≤ ||π⊥i (x − p̃i)|| + ||π⊥i (g(x))|| + ||π⊥i (pi − p̃i)|| (4.9)
≤ c(k)δ||x − p̃i|| + c(k)||g(x)|| + c(k)δ (4.10)
≤ c(k)(δ + ε). (4.11)

Remember that x − p̃i ∈ V .
Since #{i : xi ∈ B6} ≤ c(k) by Lemma 3.10, we obtain

||σ(x+) − x+|| ≤
∑

i

|φi(x+)|||π⊥i (x+ − pi)|| ≤ c(k)(δ + ε) . (4.12)

Similarly, we have

||(σ(x+) − x+) − (σ(y+) − y+)|| ≤
∑

i

|φi(x+) − φi(y+)|||π⊥i (x+ − pi)|| +
∑

i

|φi(y+)|||π⊥i (x+ − y+)|| ,

(4.13)

where the first term on the right is bounded by∑
i

|φi(x+) − φi(y+)|||π⊥i (x+ − pi)|| ≤ c(||x − y|| + ||g(x) − g(y)||)c(k)(δ + ε) (4.14)

≤ c(k)(δ + ε)(1 + ε)||x − y|| , (4.15)

and the second term is bounded by∑
i

|φi(y+)|||π⊥i (x+ − y+)|| ≤ c(k)||π⊥i (x − y)|| + c(k)||g(x) − g(y)|| (4.16)

≤ c(k)δ||x − y|| + c(k)ε||x − y|| . (4.17)
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This proves part A).
In order to prove B), we write

σ(x + g(x)) = x + π(σ(x + g(x)) − x) + π⊥(σ(x + g(x))) (4.18)

=: x + e(x) + π⊥(σ(x + g(x))) (4.19)

where we define e : B5/2 ∩ (p + V)→ V by

e(x) = π(σ(x + g(x)) − x) + π⊥(p) ≡ π(σ(x+) − x+) (4.20)

Recall that x+ = x + g(x). Moreover, since ε1(k) < 1/10 we have

{x + g(x) : x ∈ B5/2 ∩ (p + V)} ⊂ G ∩ B3 . (4.21)

By part A) and (4.21) we have for any x ∈ B5/2 ∩ (p + V),

||e(x)|| ≤ c(k)(δ + ε), ||e(x) − e(y)|| ≤ c(k)(δ + ε)||x+ − y+|| ≤ c(k)(δ + ε)||x − y|| . (4.22)

Therefore, provided δ + ε ≤ ε1(k), we deduce the map

x 7→ x + e(x) : B5/2 ∩ (p + V)→ U , (4.23)

is a bi-Lipschitz equivalence, with Lipschitz inverse

Q : U → B5/2 ∩ (p + V), ||Q(x) − x|| ≤ c(k)(δ + ε), Lip(Q) ≤ 2 . (4.24)

Moreover, from our bounds (4.22) on e, we have U ⊃ B2(0)∩(p+V) provided ε1(k) is sufficiently
small.

If we define

g̃(y) = π⊥(σ(Q(y) + g(Q(y)))) , (4.25)

then from (4.19) and the definition of Q we have

σ(Q(y) + g(Q(y))) = y + g̃(y) . (4.26)

And so

σ({x + g(x) : x ∈ B5/2 ∩ V}) = graphU,π(g̃), U ⊃ B2(0) ∩ (p + V) . (4.27)

Since

g̃(y) = π⊥
[
σ(Q(y) + g(Q(y))) −

[
Q(y) + g(Q(y))

]]
+ g(Q(y)) , (4.28)

we have from part A) the bounds

||g̃(y)|| ≤ c(k)δ||Q(y) + g(Q(y))|| + ||g(Q(y))|| + c(k)δ ≤ c(k)(δ + ε), (4.29)

and

||g̃(y) − g̃(z)|| ≤ c(k)(δ + ε)||(Q(y) − g(Q(y))) − (Q(z) − g(Q(z)))|| + ||g(Q(y)) − g(Q(z))|| (4.30)
≤ c(k)(δ + ε)||y − z|| , (4.31)

for any y, z ∈ U.
To finish proving B), it remains to show that

σ({x + g(x) : x ∈ B5/2 ∩ V}) ⊃ σ(G) ∩ B2(0) ⊃ {y + g̃(y) : y ∈ B3/2 ∩ V} . (4.32)

First, suppose σ(x + g(x)) ∈ B2(0). Then

||x|| ≤ ||(x + g(x)) − σ(x + g(x))|| + ||σ(x + g(x))|| + ||g(x)|| ≤ c(k)(ε + δ) + 2 < 5/2 . (4.33)
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Conversely, if y ∈ B3/2 ∩ V , then

||σ(Q(y) + g(Q(y)))|| = ||y + g̃(y)|| ≤ 3/2 + c(k)(ε + δ) < 2 , (4.34)

again provided ε1(k) is small. This completes the proof of part B).
Let us prove part C). For ease of notation write x++ = Q(x) + g(Q(x)), and y++ = Q(y) +

g(Q(y)). By estimates (4.24) and part B), x++ ∈ B2+c(k)(δ+ε) whenever x ∈ Ω̃. Therefore, we can
write

g̃(x) = −π⊥(p) +
∑

i

φi(x++)π⊥(pi + πi(x++ − pi)) . (4.35)

For any x with φi(x++) > 0, we can estimate using Proposition 3.22:

||π⊥(π⊥i (pi) + πi(x++))|| ≤ c(k)||π⊥i (pi − p̃i)|| + c(k)||π⊥i (p̃i)|| + ||π⊥(πi(x++))|| (4.36)

≤ c(k)δ + c(k)δ|| p̃i|| + c(k)δ||x++|| (4.37)
≤ c(k)δ . (4.38)

Using Lemma 3.10, and the definition of xi, we deduce that

||g̃(x)|| ≤ c(k)δ for x ∈ Ω̃ . (4.39)

Similarly, we can estimate

||g̃(x) − g̃(y)|| ≤
∑

i

|φi(x++) − φi(y++)|||π⊥(π⊥i (pi) + πi(x++))|| +
∑

i

|φi(y++)|||π⊥(πi(x++ − y++))||

(4.40)

≤ c(k)δ||x++ − y++|| + c(k)δ||x++ − y++|| (4.41)
= c(k)δ||Q(x) − Q(y) + g(Q(x)) − g(Q(y))|| (4.42)
≤ c(k)δ||x − y|| , (4.43)

using the estimates (4.24). This completes the proof of part C).
Finally, we show D). From part A), we have the coarse bounds

1
2
||x − y|| ≤ ||σ(x+) − σ(y+)|| ≤ 2||x − y||,

1
2
||x − y|| ≤ ||x+ − y+|| ≤ 2||x − y|| , (4.44)

and

||π⊥(σ(x+) − σ(y+))|| ≤ c(δ + ε)||x − y|| . (4.45)

We claim that

||π(σ(x+) − σ(y+)) − (x − y)|| ≤ c(ρ(c(δ + ε)) + (δ + ε)2)||x − y|| . (4.46)

To see this, write

π(σ(x+) − σ(y+)) = (x − y) +
∑

i

(φi(x+) − φi(y+))π(π⊥i (x+ − pi)) +
∑

i

φi(y+)π(π⊥i (x+ − y+))

(4.47)
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Then, similar to part A), but making use of Lemma 3.38, we can estimate∥∥∥∥∥∥∥∑i

(φi(x+) − φi(y+))π(π⊥i (x+ − pi))

∥∥∥∥∥∥∥ ≤ c(k)||x+ − y+||

(
sup

xi∈B6(0)
||π − πi||||π

⊥
i (x+ − pi)||

)
(4.48)

≤ c(k)
(
ρ(cδ)
δ

+ δ

)
(δ + ε)||x − y|| (4.49)

≤ c(k)(ρ(c(δ + ε)) + (δ + ε)2)||x − y|| , (4.50)

where in the last inequality we used the convexity of ρX. Similarly,∥∥∥∥∥∥∥∑i

φi(y+)π(π⊥i (x+ − y+))

∥∥∥∥∥∥∥ ≤ c(k)
(

sup
xi∈B6(0)

||π − πi||||π
⊥
i (x+ − y+)||

)
≤ c(k)(ρ(c(δ + ε)) + (δ + ε)2)||x − y||.

(4.51)

This establishes our claim. By an essentially verbatim proof, we have also

||π(σ(x+) − x+)|| ≤ cρ(c(δ + ε))||x − y|| . (4.52)

Using (4.46), and (3.97) with the bounds of part A), we get∣∣∣∣|σ(x+) − σ(y+)||2 − ||x+ − y+||2
∣∣∣∣ ≤ 4ρX(c(δ + ε))||x+ − y+||2 + ||π(σ(x+) − σ(y+) − (x+ − y+))||||x − y||

(4.53)

≤ cρX(c(δ + ε))||x+ − y+||2. (4.54)

�

4.3. Regraphing. We demonstrate that graphs in the sense of Definition 3.23 (with small
norm) over a given affine plane p + V , can be written as graphs over slightly tilted/shifted
affine planes q + W, with small norm also. This lemma is very intuitive in Euclidean spaces,
although its proof is not so short. Here we present a Banach space version.

Lemma 4.4. Let V, W be k-spaces, with almost-projections πV , πW , and take points p, q ∈ B2r.
Suppose we know

d(q, p + V) < δr, dG(V,W) < δ . (4.55)

Suppose G is such that

G ∩ B2r = graphΩ,πV
(g), r−1||g|| + Lip(g) < ε, B7r/5 ∩ (p + V) ⊂ Ω ⊂ (p + V) . (4.56)

Then provided δ + ε ≤ ε2(k), we have a region U ⊂ q + W, and Lipschitz g : U → X, so that

G ∩ Br = graphU,πW
(h), r−1||h|| + Lip(h) ≤ c(k)(ε + δ), B3r/5 ∩ (q + W) ⊂ U ⊂ (q + W) .

(4.57)

Remark 4.5. If W = V and p = q, then this demonstrates the “well-definition” of graphicality
in the sense of Definition 3.23: if G is a sufficiently small graph with respect to some almost-
projection, then it is a graph with respect to any almost-projection. Unfortunately, in a general
Banach space, regraphing G over a different almost-projection will always pick up a factor of
c(k), even in the special case of W = V .
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Proof. In the following we denote by c a generic constant depending only on k, and always
assume ε2(k) is chosen so that ε2c ≤ 1

100 . Again by scaling we can assume r = 1.
First, there is no loss in assuming ||p − q|| < δ. This follows because we can choose p̃ ∈ V

with ||q − p̃|| < δ, and then p + V = (p − p̃) + V . Let

ΠV(x) ≡ π⊥V (p) + πV(x), ΠW(x) ≡ π⊥W(q) + πW(x) (4.58)

be the associated almost-affine projections to p + V , q + W (recall that ΠV is independent of
choice of p ∈ p + V). We have

||ΠV || ≤ c(k), ||ΠW || ≤ c(k) . (4.59)

Observe that ΠV : (q + W)→ (p + V) is a bi-Lipschitz equivalence, with estimates

||ΠV(y) − y|| ≤ cδ(1 + ||y||), ||(ΠV(y) − y) − (ΠV(z) − z)|| ≤ cδ||y − z|| , (4.60)

whenever y, z ∈ q + W. This follows because, using Proposition 3.20,

||ΠV(y) − y|| = ||π⊥V (p − q) + π⊥V (y − q)|| ≤ c||p − q| + cδ||y − q|| . (4.61)

Similarly, we have

||(ΠV(y) − y) − (ΠV(z) − z)|| = ||π⊥V (y − z)|| ≤ cδ||y − z|| . (4.62)

Define the map f : B6/5 ∩ (q + W)→ (q + W) by

f (y) = ΠW(ΠV(y) + g(ΠV(y))) . (4.63)

Since ΠV(B6/5 ∩ (q + W)) ⊂ B6/5+cδ ∩ V , we see that f is well-defined and Lipschitz.
We estimate, for y, z ∈ B6/5 ∩ (q + W),

|| f (y) − y|| = ||ΠW(ΠV(y) − y + g(ΠV(y)))|| ≤ c(δ + ε) , (4.64)

and

||( f (y) − y) − ( f (z) − z)|| = ||ΠW(π⊥V (y − z) + g(ΠV(y)) − g(ΠV(y)))|| ≤ c(δ + ε)||y − z|| . (4.65)

Therefore, by our restriction on ε2(k), f has a Lipschitz inverse

f −1 : U ⊂ (q + W)→ B6/5 ∩ (q + W) , (4.66)

with || f −1|| + Lip( f −1) ≤ 3.
Let us define g̃ : U → X by

g̃(y) = π⊥W(ΠV( f −1(y)) + g(ΠV( f −1(y)))) − π⊥W(q) . (4.67)

Then, for y ∈ U, we have

ΠV( f −1(y)) + g(ΠV( f −1(y))) = y + g̃(y) , (4.68)

and so

{x + g(x) : x ∈ ΠV(B6/5 ∩ (q + W))} = graphU,πW
(g̃) . (4.69)

Let us demonstrate the correct estimates on g̃. For y, z ∈ U, we have

||g̃(y)|| ≤ c||(πV( f −1(y) − q))|| + c||q|| + c||p|| + c||g(ΠV( f −1(y)))|| ≤ c(δ + ε) , (4.70)
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and

||g̃(y) − g̃(z)|| ≤ c||πV( f −1(y) − f −1(z))|| + c||g(ΠV( f −1(y))) − g(ΠV( f −1(z)))|| (4.71)

≤ c(δ + ε)|| f −1(y) − f −1(z)|| (4.72)
≤ c(δ + ε)||y − z|| . (4.73)

Therefore, it remains only to show

{x + g(x) : x ∈ ΠV(B6/5 ∩ (q + W))} ⊃ G ∩ B1(0) ⊃ {y + g̃(y) : y ∈ B3/5 ∩ (q + W)} . (4.74)

On the one hand, if x + g(x) ∈ B1(0), then writing Π−1
V : V → W we have

||Π−1
V (x)|| ≤ (1 + cδ)||x + g(x) − g(x)|| < 1 + cδ + cε < 6/5 . (4.75)

On the other hand, if y ∈ B3/5 ∩ (q + W), then

||y + g̃(y)|| < 3/5 + c(δ + ε) < 1 . (4.76)

This completes the proof of Lemma 4.4. �

5. Power gain: examples

Before moving to the proof in general, we show here some examples illustrating the behavior
we can and cannot expect. In particular, we want to see what kind of estimates on the bi-
Lipschitz constant we can expect in equation (4.8) (or equivalently (1.6)). The examples that
follow illustrate two phenomena: the first is that we cannot improve (4.8) to∣∣∣∣||σ(x) − σ(y)||2 − ||x − y||2

∣∣∣∣ ≤ c4 f (ε)||x − y||2 (5.1)

for any f (ε) ≤ cεα
′

with α′ < α, where α is the power type of the ambient Banach space X
defined in (3.65).

The second is that in a general Banach space X and for k ≥ 2, the improved bi-Lipschitz
estimate of (4.8) is wrong, and the best one can hope for is (4.5).

5.1. Power gain in R2 with Banach norms. Our first example is an easy example of a curve
in R2 equipped with different lp norms for 1 ≤ p ≤ 2. Recall that the lp norm on R2 is defined
by

‖(x, y)‖p =

(|x|p + |y|p)1/p for p ∈ [1,∞) ,
max {|x| , |y|} for p = ∞ .

(5.2)

We will denote by e1, e2 the standard vector basis of R2.
Let γ1 : [0, 1]→ R2 be the curve given by γ1(t) = te1. For all p, this curve has a well-defined

length, which is ∫ 1

0
‖γ̇1‖lp dt = 1 . (5.3)
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For all |ε| ≤ 1, define the curve γ2 : [0, 1]→ R2 by

γ2(t) =


te1 for t ∈ [0, 1/3] ,
te1 + (t − 1/3) εe2 for t ∈ [1/3, 1/2] ,
te1 + (2/3 − t) εe2 for t ∈ [1/2, 2/3] ,
te1 for t ∈ [2/3, 1] .

(5.4)

For those familiar with fractals, this curve is the first step of a snowflake construction with step
ε. Clearly γ2 is a Lipschitz curve which is C1 away from the points (1/3, 2/3). Its speed as a
function of p is given by

‖γ̇2(t)‖lp =


1 for t ∈ [0, 1/3) ,
(1 + |ε |p)1/p for t ∈ (1/3, 2/3) ,
1 for t ∈ (2/3, 1] .

(5.5)

Consider the projection map π : R2 → R2 given by

π(x, y) = (x, 0) . (5.6)

This is the standard orthogonal projection in R2, and it is easy to verify that for all 1 ≤ p ≤ 2
this is a generalized projection with ‖π‖ = 1. Moreover, for 1 < p ≤ 2 this is the J-projection
(recall Definition 3.37 and (3.68)) onto the subspace V = span(e1).

Clearly, for all 1 ≤ p ≤ 2, the curve γ2 is a generalized graph (recall Definition 3.23) over the
subspace V with projection π, and this projection π(γ2(t)) = γ1(t) is a bi-Lipschitz equivalence
with bi-Lipschitz constant (1 + |ε |) for all 1 ≤ p ≤ 2.

However, for 1 < p ≤ 2, the bi-Lipschitz constant can be improved to

(1 + |ε |p)1/p
≤ 1 + cρ(R2,lp)(ε) ∼ε→0 1 +

1
p
|ε|p , (5.7)

where we used the estimate (3.66) for the modulus of smoothness ρ(R2,lp). In particular, this
implies that for all points z,w ∈ γ2, we have∣∣∣‖π(z) − π(w)‖2 − ‖z − w‖2

∣∣∣ ≤ cρ(R2,lp)(ε) ‖z − w‖2 . (5.8)

In the language of the Banach Squash Lemma 4.2, we can rephrase this example in the
following terms. We consider the Banach space X = (R2, lp) and the mapping σ = π. In other
words, we have a single 1-dimensional affine space V = span(e1) and a single projection π onto
this subspace, thus we do not need any partition of unity {λi} to define the map σ.

G = γ2 is a generalized graph over the segment ([0, 1] × {0}) ⊂ V , and the graphing function
g satisfies

‖g‖∞ = ε , Lip(g) = ε . (5.9)

The projection map σ = π is an explicit bi-Lipschitz equivalence between G and ([0, 1] × {0}) ⊂
V , with bi-Lipschitz constant equal to (1 + |ε |p)1/p, which shows that we cannot improve (4.8) to∣∣∣∣||σ(x) − σ(y)||2 − ||x − y||2

∣∣∣∣ ≤ c4 f (ε)||x − y||2 (5.10)

for any f (ε) ≤ cεα for α < p.
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5.2. Infinite dimensional snowflake. An instructive example to look at is the classical exam-
ple of the snowflake. In particular, we recall the following standard construction in R2 (see for
example [BP17, Exercise 10.16]).

The construction of a snowflake of parameter η > 0 is well known
(see for example [Mat95, section 4.13]). Take the unit segment [0, 1] ×
{0} ⊆ R2, and replace the middle part [1/3, 2/3] × {0} with the top
part of the isosceles triangle with base [1/3, 2/3] × {0} and of height
η·lenght([1/3, 2/3]×{0}). In other words, you are replacing the segment
[1/3, 2/3] × {0} with the two segments joining (1/3, 0) to (1/2, η/3),
and (1/2, η/3) to (2/3, 0). Then repeat this construction inductively on
each of the 4 straight segments in the new set. Here on the left hand
side you can see the very classical picture of the first three steps in the

construction of the standard snowflake, with η =
√

3/2.
It is clear that the length of the curve at step i is equal to the length at step i − 1 times

2/3 +
√

1 + η2/3, so the length of the snowflake will be infinity for any η > 0. This is a simple
application of the Pythagorean theorem, and the extra square power on η comes from the fact
that at each step we are adding some length η to the curve, but in a direction perpendicular to it.

However, if we replace the fixed parameter ηwith a variable parameter ηi, we see immediately
that the length of the limit curve will be finite if and only if

∑
η2

i < ∞. This suggests that in R2

a curve γ is of finite length if for all x ∈ γ,
∫ 1

0
β2

1(x, r)dr
r < ∞.

Snowflake in Lp spaces Here we try to produce a similar example in infinite dimensions, and
we will see that the finiteness of the length of the curve depends on the summability of

∑
ηαi ,

where α depends on the space.
Consider the space L∞[0, 1], and let ei ∈ L∞[0, 1] be the Rademacher’s functions. In other

words, we set e1 = 1[0,1] = 1, e2 = 1[0,1/2] − 1(1/2,1], e3 = 1[0,1/4] − 1(1/4,1/2] + 1(1/2,3/4] − 1(3/4,1], ...
ei(t) = sign[sin(2πit)].

Now consider the curve γ1 : [0, 1] → L∞([0, 1]) given by γ1(t) = te1. This curve has a
well-defined length, which is

∫ 1

0
‖γ̇1‖L∞ dt = 1 . (5.11)

We build a sequence of curves γn similar to snowflakes with parameter ηn, but developed over
an infinite dimensional space instead of R2. In particular, take γ1, split it into 3 pieces of equal
length, and modify the middle piece by “bumping” it in the direction of e2. In particular:

γ2(t) =


te1 for t ∈ [0, 1/3] ,
te1 + (t − 1/3) η1e2 for t ∈ [1/3, 1/2] ,
te1 + (2/3 − t) η1e2 for t ∈ [1/2, 2/3] ,
te1 for t ∈ [2/3, 1] .

(5.12)

Then we repeat this process inductively on i, and apply the previous construction on each of the
straight segment in γi by bumping it in the direction of ei.
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For each i, γi : [0, 1] → L∞[0, 1] is a Lipschitz function which is C1 away from the points
k · 3−i. The speed of γ2 and γ3 is given by

‖γ̇2(t)‖L∞ =


1 for t ∈ [0, 1/3) ,
1 + |η1| for t ∈ [1/3, 2/3) ,
1 for t ∈ [2/3, 1] .

(5.13)

‖γ̇3(t)‖L∞ =




1 for t ∈ [0, 1/9) ,
1 + |η2| for t ∈ [1/9, 2/9) ,
1 for t ∈ [2/9, 1/3) ,
1 + |η1| for t ∈ [1/3, 4/9) ,
1 + |η1| + |η2| for t ∈ [4/9, 5/9) ,
1 + |η1| for t ∈ [5/9, 2/3) ,
1 for t ∈ [2/3, 7/9) ,
1 + |η2| for t ∈ [7/9, 8/9) ,
1 for t ∈ [8/9, 1] ,

(5.14)

It is easy to see that for a generic i the length of the curve obtained in this fashion is then

L(γi) =

∫ 1

0
‖γ̇i‖L∞ = 1 +

1
3

i−1∑
k=1

|ηk| . (5.15)

This implies that the pointwise limit γ∞ = limi γi is a curve of finite length if and only if∑∞
k=1 |ηk| < ∞.

Notice that the same family of curves γi seen as curves in L2([0, 1]) behaves in a different
way. Indeed, in order to compute the speed ‖γ̇(t)‖ notice that in L2 we have the identity∥∥∥∥∥∥∥e1 +

∑
i≥2

ηiei

∥∥∥∥∥∥∥
2

= 1 +
∑

i

η2
i , (5.16)

since ei are orthonormal vectors in L2. Thus it is easy to see that as curves in L2, γi have
uniformly bounded length if and only if

∑
i η

2
i < ∞. Thus, there is a strong difference in

behaviour between L2 and L∞ from this point of view.

Similar computations can be carried out in Lp[0, 1], and using the standard inequalities for Lp

norms (see Hanner inequality, [Han56, theorem 1]), it is possible to prove the following lemma.

Lemma 5.3. The curves in the family γi : [0, 1] → Lp[0, 1] have uniformly bounded length if
supi |ηi| ≤ 1/10 and 

∑
i |ηi|

p < ∞ for 1 ≤ p ≤ 2 ,∑
i |ηi|

2 < ∞ for 2 ≤ p < ∞ ,∑
i |ηi| < ∞ for p = ∞ .

(5.17)

Note that for p ∈ [2,∞) fixed, the lengths of γi are uniformly bounded if
∑

i |ηi|
2 < ∞, but this

bound is not uniform in p.
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Remark 5.4. Given the bounds on the modulus of smoothness for Lp given by (3.66), this
behavior suggests a link between the modulus of smoothness of the space X and the Reifenberg
theorem.

5.5. Failure of sharp bi-Lipschitz bound. We give an example demonstrating the failure of
the improved bound (1.6) when k ≥ 2, and X is not Hilbert. In particular, we show that if X is
a Banach space, even if its modulus of smoothness of this space is of power type α > 1, then a
Lipschitz graph over some 2 dimensional space L with Lipschitz constant ε need not be (1+cεα)
bi-Lipschitz equivalent to its base.

We consider the space X = R3 with the `4 norm

||(x1, x2, x3)||`4 = (|x1|4 + |x2|4 + |x3|4)1/4. (5.18)

This space is smooth, with modulus of smoothness α = 2, so the improved estimate (1.6) would
imply ∣∣∣∣||(x + f (x)) − (y + f (y))||2 − ||x − y||2

∣∣∣∣ ≤ cε2||x − y||2 ∀x, y ∈ L ∩ B1(0) , (5.19)

for every 2-plane L2 ⊂ X, and every ε-Lipschitz graph function f : L ∩ B1(0)→ X.
However, we shall demonstrate the following failure, precluding (5.19) for any notion of

graph.

Proposition 5.6. Let X = (R3, ‖·‖4). There is a 2-plane L2 ⊂ X, and absolute constants c, ε0,
with the following property: Given any function f : L ∩ B1(0) → X, with Lip( f ) = ε ≤ ε0, then
we can find a pair x, y ∈ L ∩ B1(0) admitting a lower bound∣∣∣∣||(x + f (x)) − (y + f (y))||2 − ||x − y||2

∣∣∣∣ ≥ ε/c||x − y||2 . (5.20)

Remark 5.7. In fact, the proof shows (5.20) for an open neighborhood of 2-planes. So this
failure is generic, in the sense that you cannot just “choose a better plane” or “choose a better
notion of graph.”

Remark 5.8. Any finite, n-dimensional Banach space is c(n)-equivalent to a Hilbert space,
and any Hilbert structure does admit an improved bound (5.19). However, in passing between
Banach and Hilbert norms you lose the sharpness of the inequality (i.e. 1 + cε2 would become
c(n)(1 + cε2)). Moreover, and more importantly, the comparability between norms depends on
the ambient dimension n, so even for non-sharp estimates like those in 2.1, one cannot hope to
use a “comparable” Hilbert structure to gain a power.

The failure of the improved estimate (5.19) is fundamentally a consequence of the non-
linearity of J : L→ X∗. We explain. Consider momentarily a general uniformly smooth Banach
space X, with modulus of smoothness α, a k-space Lk, and an ε-Lipschitz map f : Lk → X. By
the same argument as Lemma 3.32, we have

||(x + f (x)) − (y + f (y))||2 − ||x − y||2 = 〈J(x − y), f (x) − f (y)〉 + O(εα)||x − y||2 ∀x, y ∈ L.
(5.21)

The obstacle to obtaining an improved bi-Lipschitz estimate like (5.19) is then the quantity

〈J(x − y), f (x) − f (y)〉 . (5.22)

When J|L is linear, then L admits an “orthogonal complement” L⊥ satisfying

L ⊕ L⊥ = X, and
〈
J|L, L⊥

〉
= 0. (5.23)
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For example, if {vi}i is a basis for L, then take L⊥ = ∩i ker J(vi). When L⊥ exists, we can define
graphs over L to be maps into L⊥, and then (5.22) vanishes for all such graphs f : L→ L⊥. This
is the origin of the improved bi-Lipschitz estimate (1.6).

In both exceptional cases (when X is Hilbert or k = 1), J|L is linear, and we correspondingly
get both a natural notion of graph and an improved bi-Lipschitz estimate. When X is Hilbert,
the inner product structure gives a natural isomorphism X � X∗, and so J : X → X∗ � X is
the just the identity mapping. When k = 1, J is trivially linear on 1-spaces since J is always
1-homogenous.

In fact, these are the only cases when J|L is linear. A deep theorem of Banach spaces (see
[HWS08, theorem 3.8]) says that X is Hilbert if and only if every closed subspace admits an
orthogonal complement L⊥ satisfying (5.23). If J|L2 were linear for every 2-plane, then J would
be linear on X, and by the argument above we could thereby find an orthogonal complement to
every closed L.

We mention a related, equally remarkable classification, which says that Banach space is X is
Hilbert if and only if every 2-dimensional space admits a norm-one projection (see for example
the recent survey [Ran01, section 3]). However we point out that nowhere in our paper do we
ever explicitly use that a projection has norm-one. The improved estimate is more directly a
consequence of the existence of orthogonal complements.

In our example space X = (R3, `4), J can be written explicitly as

J(x) = J(x1, x2, x3) = ||x||−2
`4 ((x1)3, (x2)3, (x3)3) , (5.24)

where we identify X∗ with (R3, `4/3) via the Euclidean inner product 〈·, ·〉. On any 2-space L,
J|L is non-linear. Notice that since 1-homogenous functions are linear on 1-spaces, k ≥ 2 is
necessary to see the non-linearity.

When J|L is non-linear, attempting to satisfy 〈J(x − y), f (x) − f (y)〉 = 0 for all x, y ∈ L∩B1(0)
should impose “too many” conditions on a non-constant f . Given N+1 points {xi}

N
i=0 ⊂ L∩B1(0),

then 〈
J(xi − x j), f (xi) − f (x j)

〉
= 0 0 ≤ i < j ≤ N (5.25)

represents N(N + 1)/2 linear conditions on only N + 1 vectors { f (xi)}Ni=0.
We will find that for a generic choice of L and xi, and after fixing the value of f (x0), the

conditions (5.25) are linearly independent, and so force f to be constant. (Some special 2-
planes, like the coordinate planes xi = 0, admit orthogonal complements in the sense of (5.23),
and for these planes conditions (5.25) are degenerate).

We make this precise and quantitative in the following Lemma, which is the key to proving
Proposition 5.6.

Lemma 5.9. Let X = (R3, || · ||4). There is a 2-plane L2 ⊂ X, and an absolute constant c, with
the following property: Given any Lipschitz f : L ∩ B1(0) → X, with Lip( f ) ≤ 1, then we can
find a pair x, y ∈ L ∩ B1(0), so that

c |〈J(x − y), f (x) − f (y)〉| ≥ Lip( f )||x − y||2 . (5.26)

The idea behind Lemma 5.9 is the following. If we take N = 5, and fix f (x0) = 0, then the
numbers 〈

J(xi − x j)/||xi − x j||, f (xi) − f (x j)
〉

0 ≤ i < j ≤ 5 (5.27)
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represent 15 separate linear combinations of the 15 ( = N×n) various coordinates of f (x1), . . . , f (x5).
So the numbers (5.27) can be expressed as a square matrix M times the vector ( f (x1), . . . , f (x5)).
We will show that for a good choice of L2, and “most” xi, this matrix is invertible, and so lower
bounds on the differences || f (xi) − f (x j)|| pass to lower bounds on the numbers (5.27).

First we show how Proposition 5.6 follows from Lemma 5.9, then we shall prove Lemma 5.9.

Proof of Proposition 5.6 given Lemma 5.9. We claim to have the following inequality, for any
x, y ∈ B1(0) ∩ L:∣∣∣∣||(x + f (x)) − (y + f (y))||2 − ||x − y||2

∣∣∣∣ ≥ 2| 〈J(x − y), f (x) − f (y)〉 | − cε2||x − y||2 , (5.28)

for some absolute constant c independent of f . It is clear that this inequality and (5.26) prove
Proposition 5.6.

In order to prove this claim, recall that since X is smooth, we have J(x) = grad||x||2/2. Define
the curve

γ(t) = x − y + t( f (x) − f (y)) . (5.29)

We can compute

||(x + f (x)) − (y + f (y))||2 − ||x − y||2 (5.30)

=

∫ 1

0
2 〈J(γ(t)), f (x) − f (y)〉 dt

= 2 〈J(x − y), f (x) − f (y)〉 +
∫ 1

0
2 〈J(γ(t) − γ(0)), f (x) − f (y)〉 dt . (5.31)

Using Lemma 3.38 and the estimate (3.66) for the modulus of smoothness of (R2, ‖·‖4), we have
the bound

| 〈J(γ(t) − γ(0)), f (x) − f (y)〉 | ≤ c|| f (x) − f (y)||2 ≤ cε2||x − y||2 . (5.32)

This establishes (5.28). �

Proof of Lemma 5.9. Take six points x0, x1, . . . , x5 ∈ L2 ∩ B1(0), off-putting for the moment our
specific choice of L. Since (5.26) is invariant under translations f 7→ f + const, we can and
shall assume f (x0) = 0.

Let us define X ∈ R15 to be the vector of components ( f (x1), . . . , f (x5)), and define Y ∈ R15

to be the vector with entries〈
J(xi − x j)/||xi − x j||, f (xi) − f (x j)

〉
0 ≤ i < j ≤ 5. (5.33)

(remember that f (x0) = 0!)
We can write each component Ya as the matrix product Ya =

∑15
b=1 MabXb, where Mab is a

15 × 15 matrix. Each entry of Mab is some component of ±J(xi − x j)/||xi − x j||, and permuting
the xi has the effect of permuting rows of M. Moreover, observe that Mab depends only on the
differences xi − x j, and hence there is no loss in assuming x0 = 0 when calculating det(M).

Fix some choice of norm || · || on R15. Since each entry |Mab| ≤ 1, we have

||Y || ≥ (| det(M)|/c)||X|| , (5.34)

for some absolute constant c. We wish to pick a good selection of xi, so that: det(M) is bounded
away from 0; || f (x0)− f (x1)|| ≈ Lip( f )||x0 − x1||; and ||xi − x j|| ≈ ||x0 − x1|| for every i < j. These
properties, combined with (5.34) and our definition of X, Y , will establish the Lemma.
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Towards this goal, we first verify that det(M) is bounded away from 0 for “most” choice of
xi, in a particular 2-plane. From the formula (5.24), and taking x0 = 0, we see that det(M) is a
0-homogenous function, and can be written

det(M) =
D(x1, . . . , x5)
Q(x1, . . . , x5)

(5.35)

where D is a 45-homogeneous polynomial in the entries of each xi, and Q is an analytic function
which vanishes only when some xi = x j. Up to sign, each D, Q is symmetric under permutations
of the xi.

Fix L to be the plane spanned by v1 = (1, 1, 0), and v2 = (0, 1, 1). We claim D|L is not the
zero polynomial. This follows by a straightforward but tedious calculation. If we let

x0 = 0, x1 = v1 + v2, x2 = 2v1 + 3v2 , (5.36)
x3 = 3v1 + 4v2, x4 = 2v1 − v2, x5 = −v1 + 3v2 , (5.37)

then one can compute directly that D(x1, . . . , x5) , 0.
By writing out

D|L =
∑
α

pα(x1)qα(x2, . . . , xn), (5.38)

where the pα are polynomials in the coordinates of x1 ∈ L, and qα are polynomials in coordinates
of x2, . . . , xn ∈ L, we see that

{x1 ∈ L : D(x1, ·)|L = 0} = {x1 ∈ L : pα(x1) = 0 for every α} (5.39)

is a dilation-invariant algebraic variety in L, and hence is a finite union of lines through the
origin. Repeating this, for x2, x3, . . . , x5, we arrive at the following statement: for all but finitely
many x1 ∈ S 1 ⊂ L, we can find an x2 . . . , x5 ∈ S 1 all distinct so that D(x1, . . . , x5) , 0, and
||x1 − xi|| < 1/100.

An obvious argument then gives the following. There is an absolute constant c (depending
only on our choice of plane L), and a finite, 1/100-dense subset I of S 1 ⊂ L (in the sense that
any point in S 1 is within distance 1/100 of I), so that for every x1 ∈ I, we can find x2, . . . , x5 ∈

S 1 ⊂ L, satisfying:

det(M)(x1, . . . , x5) ≥ 1/c, and ||x1 − xi|| < 1/100, ∀2 ≤ i ≤ 5. (5.40)

For ease of notation write ε = Lip( f ). Choose p, q so that || f (p) − f (q)|| > (ε/2)||p − q||. By
replacing ε/2 with ε/10, we can assume that

B||p−q||/5(q) ⊂ B1(0). (5.41)

Set x0 = p, and choose some x1 ∈ B||p−q||/50(q) ∩ (p + ||p − q||I). We then obtain x2, . . . , x5 ∈

B1(0) ∩ ∂B||p−q||(p), so that:

det(M)(x0, x1, . . . , x5) ≡ det(M)(x1 − x0, . . . , x5 − x0) ≥ 1/c. (5.42)

For this choice of x0, . . . , x5, we can form the vectors X, Y as at the start of the proof, and we
get

||Y || ≥ (1/c)||X|| ≥ (1/c)|| f (x1)|| = (1/c)|| f (x1) − f (x0)|| ≥ (ε/c)||p − q||. (5.43)

Therefore, for some 0 ≤ i < j ≤ 5, we must have have∣∣∣∣〈J(xi − x j)/||xi − x j||, xi − x j

〉∣∣∣∣ ≥ (ε/c)||p − q|| ≥ (ε/c)||xi − x j||, (5.44)
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which is the desired conclusion. �

6. Covering Lemma

In this section we present the main covering Lemma of this paper and use it to prove the main
Theorem, while we postpone the proof of this covering Lemma to Section 7. Before stating the
Lemma, we provide some intuition behind its statement and proof (see Section 7.1 for a more
detailed outline of the proof).

6.1. Intuition for the Covering Lemma. We will consider a finite, Borel measure satisfying
the following Dini bound: ∫ 1

rs

βk(s, r)α
dr
r
≤ δα, ∀s ∈ S, (6.1)

for some δ small. A simple scaling argument allows us to reduce to this case. The S is a set
of full µ-measure, and the rs : S → [0, 1) is a radius function, which can be unrelated to µ.
We break up S = Sz ∪ S+, where rs|Sz = 0, and rs|S+

> 0. One should think of rs and S as a
generalized partial covering of B1(0), consisting of open balls {Brs(s)}s∈S+

and a set Sz, with the
property that µ(B1(0) \ S) = 0. 1

The objective of the Covering Lemma is to build a new partial covering of B1(0), of the form

F = S′z ∪
⋃

s′∈S′+

Brs′ (s′) ∪
⋃
b∈B

Brb(b) , (6.2)

where S′z and S′+ are suitable subsets of Sz and S+ respectively, and the new extra balls in the
covering Brb(b)b∈B are carefully chosen “bad balls” according to Definition 3.46.

Since our final goal is to control the measure µ away from balls with packing estimates,
and obtain rectifiability information for this measure, we require our new covering to have the
following properties:

(1) F need not have full measure, but the discrepancy is controlled:

µ(B1 (0) \ F) ≤ cδα . (6.3)

(2a) The balls in the covering, {Brs′ (s′)}s′∈S′+ and {Brb(b)}b∈B, admit a uniform k-dimensional
packing bound ∑

s′∈S′+

rk
s′ +

∑
b∈B

rk
b ≤ c5(k) . (6.4)

(2b) The set S′z is contained in the image of a (1 + cδα)-Lipschitz map τ : V → X, where V
is a k-dimensional subspace. We will take S′z = Sz ∩ τ(V), and shall construct the map
τ during the proof (see also the outline in Section 7.1).

(2) The balls
{
Brb (b)

}
b∈B are bad according to Definition 3.46.

1We mention that since X is not assumed to be separable, the complement of the support of µ may not have
measure zero, so it’s better to talk about sets of full measure rather than supports.
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The reason F takes this structure is the following. Recall that good balls (according to Defi-
nition 3.46) had “big” measure spread out around a k-plane, and this allowed us to control the
tilting of L2-approximate-best-planes between nearby good balls via the β-numbers (Section
3.41). The vague strategy behind the Covering Lemma is to use this tilting control, and our
Dini condition (6.1), to construct inductively on smaller and smaller scales a sequence of Lip-
schitz manifolds that approximate the collection of good balls at a given scale. Regions which
are “far away” from the approximating manifolds have controlled measure (item 1). We can
iterate on smaller and smaller scales, but must stop if we hit a ball Brs(s), or some bad ball
Brb(b) (item 3) – in either case we loose tilting control. On these balls we get packing estimates
(items 2a). If in certain regions we can iterate infinitely far down, we end up with a Lipschitz
manifold covering a piece of Sz (item 2b).

Notice the packing estimates in item 2a are not small, regardless of δ. This is best illustrated
in the example when µ is supported entirely on a k-plane V: then δ = 0, but we have no control
over µxV . In general, the set F forms a cover of the “limiting” Lipschitz manifold, which is bi-
Lipschitz to a disk, and lives near L2-approximate-best-planes. F inherits good k-dimensional
packing/measure bounds, but the β-numbers give us no control over µ in this limiting manifold.

To obtain our Main Theorem 2.1, we must refine our cover inside the bad balls {Brb(b)}b∈B.
By definition of bad balls we know that, up to a set of small measure, µ inside a given bad ball
Brb(b) is concentrated around some k − 1 dimensional subspace. Thus we can cover most of
µxBrb(b) with a family of balls

{Bχrb

(
b′

)
}b′ with #{b′} ≤ c(k)χ1−k, (6.5)

where χ is chosen small. Thus we have small k-dimensional packing estimate on the balls
{Bχrb(b

′)}b′ . On each of these new balls Bχrb(b
′) we can then apply the Covering Lemma again

in an inductive fashion until we reach our final goal (that is, a covering not involving bad
balls). The smallness of the k-dimensional packing bounds in (6.5) ensures that the global
k-dimensional packing estimate of the new covering obtained in this fashion will remain uni-
formly controlled in each step of our inductive refinement (for the details, see Section 6.4.3).

We remark that the inductive application of the Covering Lemma is the reason we must in
(6.7) consider the restriction of bad balls Brb(b) to {s ∈ S : rs < rb}. We need to ensure that
in every new application of the Covering Lemma at some scale R (occurring inside a bad ball
produced from a previous application of the Lemma), we only see S with rs < R.

6.2. Covering lemma. Now we state precisely the main covering lemma.

Lemma 6.3 (Reifenberg covering). There are constants δ0(k, ρX, χ) and c5(k), so that the fol-
lowing holds. Let µ be a finite Borel-regular measure, and S = Sz ∪ S+ a set of full µ-measure.
Take rs : S → R+ a nonnegative radius function satisfying rs < 1, rs|Sz = 0 and rs|S+

> 0.
Assume that µ satisfies ∫ ∞

rs

β(s, r)α
dr
r
≤ δα ∀s ∈ S , (6.6)

where α = α(X) is the power of smoothness of X.
Then provided δ ≤ δ0, there is a subcollectionS′+ ⊂ S+, a collection of “bad-balls” {Brb(b)}b∈B,

and a mapping τ : p(0, 1) + V(0, 1) → X which is bi-Lipschitz onto its image, so that the fol-
lowing holds:



EFFECTIVE REIFENBERG THEOREMS IN HILBERT AND BANACH SPACES 41

A) measure control: if we let

F =
[
Sz ∩ τ(B3(0) ∩ (p(0, 1) + V(0, 1)))

]
∪

⋃
s′∈S′+

Brs′ (s′) ∪
⋃
b∈B

[
Brb(b) ∩ {s ∈ S : rs < rb}

]
,

(6.7)

then

µ(B1(0) \ F) ≤ c(k, χ)δα , (6.8)

B) packing control: τ is a (1 + c(k, ρX, χ)δα)-bi-Lipschitz equivalence, and we have∑
s′∈S′+

rk
s′ +

∑
b∈B

rk
b ≤ c5(k) , (6.9)

C) bad ball structure: for each b ∈ B, the ball Brb(b) is bad in the sense of Definition 3.46
with respect to µ, and hence is bad with respect to µx{s ∈ S : rs < rb} as well.

6.4. Proof of Theorem 2.1 given Lemma 6.3. Before proving the covering lemma, we show
that with it we can prove our main Theorem 2.1. We postpone the proof of Lemma 6.3 to
Section 7.

We first observe that if suffices to prove Theorem 2.1 when

M = δ2 = δ2
0(k) . (6.10)

For otherwise, if 0 , M , δ2
0(k), we can simply replace µ with the measure δ2

0µ/M, and use the
scaling of β. Of course what secretly happens by scaling is that we are changing our definition
of good/bad balls – instead of scaling µ one could instead incorporate M into Definition 3.46.
Note that the same idea has been used in the recent article [Mis18].

If M = 0, then Theorem 2.1 is trivial: By Lemma 3.43 we can find an affine k-plane p + V so
that µ(X \ (p + V)) = 0, and then we define S′ by the condition that {Brs′ (s′)}s′∈S′ covers µ-a.e.
B1(0) ∩ (p + V), while the balls {Brs′/5(s′)}s′∈S′ are disjoint. The required measure estimate is
vacuous, and the packing estimate follows from Lemma 3.10.

We observe second that, in the language of Lemma 6.3, we have S+ = S, and Sz = ∅.
We now demonstrate how the Reifenberg Covering Lemma 6.3 can be used to prove Theorem

2.1. The basic idea is that we can refine the covering on bad balls by applying inductively the
covering lemma in order to obtain a finer and finer coverings.

6.4.1. Inductive claim. We claim we can find for each i ≥ 0 a collection of bad balls Bi, and a
subcollection Si ⊂ S, with the following properties:

A) Measure estimate: if we let

Fi =
⋃
s∈Si

Brs(s) ∪
⋃
b∈Bi

[
Brb(b) ∩ {s ∈ S : rs < rb}

]
, (6.11)

then we have

µ(B1(0) \ Fi) ≤
i∑

j=0

2− j , (6.12)
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B) Packing estimates:∑
s∈Si

rk
s ≤ 3kc2(k)

i∑
j=0

2− j, and
∑
b∈Bi

rk
b ≤ 2−i , (6.13)

C) We have Si ⊂ Si+1, and
⋃

b∈Bi
B2rb(b) ⊃

⋃
b∈Bi+1

B2rb(b).
D) For each b ∈ Bi, we have rb ≤ χ

i and the ball Brb(b) is bad with respect to µx{s ∈ S :
rs < rb}.

Let us prove this claim by induction. If B1(0) is a bad ball then let B0 = {0} with correspond-
ing radius function r0 = 1, and let S0 = ∅. Conditions A)-D) are vacuous.

Otherwise, if B1(0) is good, we let B0 = S0 = ∅, and start from i = 1. To get B1,S1, we apply
the Covering Lemma 6.3 to B1(0) and µ, obtaining a Lipschitz k-manifold T1, a collection of
bad balls B1, and original balls S1 ⊂ S+. Conditions A)-D) are then immediate, since Sz = ∅.

6.4.2. Inductive step. Assume by induction our claim is true for i. Take b ∈ Bi. We know
Brb(b) is bad for µx{s ∈ S : rs < rb}. Let us first estimate the “bad ball excess.” Set p + V =

p(b, rb) + Vk
µ(b, rb), so that

µ(Brb(b) \ Bχrb/30(p + V)) ≤ [χrb/30]−2
∫

Brb (b)
d(z, p + V)2dµ(z) (6.14)

≤ c(k, χ)rk
bβ

k
µ(x, r)2 (6.15)

≤ c(k, χ)δ2rk
b , (6.16)

where in the last inequality we used the bound (2.1) along with (6.10) and the estimate (3.15).
By virtue of being bad there is an affine (k − 1)-plane p + Lk−1 ⊂ p + Vk so that, for any

y ∈ Brb(b) \ B10χrb(p + Lk−1), we have

µ({s ∈ S : rs < rb} ∩ Bχrb(y) ∩ Brb(b)) ≤ c−1
2 (χrb)k/10 . (6.17)

If k = 0 then we interpret p + Lk−1 = ∅. By choosing a maximal χrb/2-net in

S ∩ Brb(b) ∩ Bχrb/30(p + Vk) \ B10χrb(p + Lk−1) , (6.18)

and combining Lemma 3.10 with (6.17), we obtain

µ({s ∈ S : rs < rb} ∩ Brb(b) ∩ Bχrb/30(p + Vk) \ B10χrb(p + Lk−1)) ≤ rk
b/10 . (6.19)

We need now only estimate “lower-dimensional” neighborhood

{s ∈ S : rs < rb} ∩ Brb(b) ∩ Bχrb/30(p + Vk) ∩ B10χrb(p + Lk−1) . (6.20)

Let us define Sb ⊂ S by the conditions that, first:

Sb ⊂ {s ∈ S ∩ B2rb(b) ∩ Bχrb/30(p + Vk) such that χrb ≤ rs < rb} ; (6.21)

second: the balls {Brs(s)}s∈Sb cover⋃
{Brs(s) : s ∈ S ∩ B2rb(b) ∩ Bχrb/30(p + Vk) and χrb ≤ rs < rb} ; (6.22)

and third: the balls {Brs/5(s) : s ∈ Sb} are disjoint. One can construct Sb by the Vitali covering
theorem. By proximity to V and disjointness, we have by Lemma 3.10∑

s∈Sb

rk
s ≤ 2kc2(k)rk

b . (6.23)
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Now define Jb to be a maximal 2χrb/5-net in

S ∩ Brb(b) ∩ B10χrb(L
k−1) ∩ Bχrb/30(Vk) \

⋃
s∈Sb

Brs(s) . (6.24)

We observe that {Brx(x)}x∈Jb covers (6.24), that the balls {Brx/5(x)}x∈Jb are disjoint, and by
Lemma 3.12 that #Jb ≤ cB(k)χ1−k. Moreover, it is clear from construction that if x ∈ Jb

then

s ∈ {s′ ∈ S : rs′ < rb} ∩ Bχrb(x) \
⋃
s′∈Sb

Brs′ (s′) =⇒ rs < χrb . (6.25)

For each x ∈ Jb, apply the Covering Lemma 6.3 at scale Bχrb(x) to the measure µx{s ∈ S :
rs < χrb}, and cover {s ∈ S : rs < χrb} to obtain corresponding collections Sx, and Bx.

Now define

Si+1 = Si ∪
⋃
b∈Bi

Sb ∪
⋃
x∈Jb

Sx

 , Bi+1 =
⋃
b∈Bi

⋃
x∈Jb

Bx . (6.26)

6.4.3. Packing estimate. For each b ∈ Bi we estimate, using our inductive hypothesis,

∑
x∈Jb

∑
s∈Sx

rk
s +

∑
b′∈Bx

rk
b′

 ≤ c5

∑
x∈Jb

rk
x ≤ c5cBχrk

b . (6.27)

Choose χ(k) so that c5cBχ < 1/2. Then we have

∑
s∈Si+1

rk
s ≤

∑
s∈Si

rk
s + (2kc2 + c5cBχ)

∑
b∈Bi

rk
b ≤ 3kc2

i∑
j=0

2− j , (6.28)

and ∑
b∈Bi+1

rk
b ≤ c5cBχ

∑
b∈Bi

rk
b ≤ 2−i−1 . (6.29)

6.4.4. Measure estimate. By the Covering Lemma, and since Sz = ∅, for each b ∈ Bi and
x ∈ Jb we have

µ

{s : rs < χrb} ∩ Bχrb(x) \

⋃
s∈Sx

Brs(s) ∪
⋃

b′∈Bx

[
Brb′ (b

′) ∩ {s : rs < rb′}
]
 ≤ cδαrk

b . (6.30)
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Therefore, using our inductive hypothesis, bounds (6.14), (6.19), and ensuring δ(k, ρX, χ) is
sufficiently small, we obtain:

µ(B1(0) \ Fi+1) ≤
i∑

j=0

2− j +
∑
b∈Bi

µ(Brb(b) ∩ {s : rs < rb} \ Fi+1) (6.31)

≤

i∑
j=0

2− j +
∑
b∈Bi

(cδα + 1/10)rk
b +

∑
b∈Bi

∑
x∈Jb

µ(Bχrb(x) ∩ {s : rs < χrb} \ Fi+1)

(6.32)

≤

i∑
j=0

2− j + 2−i/5 +
∑
b∈Bi

∑
x∈Jb

cδαrk
x (6.33)

≤

i∑
j=0

2− j + 2−i/5 + c(k, χ)δαχ2−i (6.34)

≤

i+1∑
j=0

2− j . (6.35)

6.4.5. Finally. Take S′ = ∪iSi, and set

Z =
⋂

i

⋃
b∈Bi

[
B2rb(b) ∩ {s ∈ S : rs < rb}

]
. (6.36)

Then by the inclusions C) we have

µ

B1(0) \

⋃
s′∈S′

Brs′ (s′) ∪ Z

 ≤ ∞∑
j=0

2− j . (6.37)

But since Z ∩ S+ = ∅ we have µ(Z) = 0.

7. Proof of Covering Lemma 6.3

We build by induction on i a sequence of k-dimensional Lipschitz manifolds Ti, Lipschitz
mappings σi : X → X, and almost-coverings of S by “good,” “bad,” and “original” balls,
written as Gi, Bi, Si. We also define a sequence of “remainder sets” Ri, and “excess sets” Ei. It
will hold that Si ⊂ S, and Gi ∪ Bi ⊂ S \ (Ri ∪ Ei).

As opposed to the construction carried out in Section 6.4.2, where at every inductive step bad
balls were covered in a finer and finer way, here we will stop our construction at the bad and
original balls, and continue refining the construction inside good balls.

We shall prove that, for some fixed Λ = Λ(k, χ), our manifolds and coverings admit the
following properties for every i:

(1) T0 = p(0, 1) + V(0, 1).
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(2) Graphicality of Ti: for any y ∈ Ti, there is a k-dimensional affine plane p+V (depending
on y), so that for any choice of almost-projection πV to V , we have

Ti ∩ B2ri(y) = graphΩ,πV
( f ) , (2ri)−1|| f || + Lip( f ) ≤ Λδ , B1.5ri(y) ∩ (p + V) ⊂ Ω ⊂ (p + V) .

(7.1)

Moreover, if there exists some g ∈ Gi∩B10ri(y), then we can take p+V = p(g, ri)+V(g, ri).
(3) Each map τi = σi ◦ · · · ◦ σ1 : p(0, 1) + V(0, 1)→ Ti is a (1 + c(k, ρX, χ)δα)-bi-Lipschitz

equivalence:∣∣∣∣∣ ||τi(x) − τi(y)||
||x − y||

− 1
∣∣∣∣∣ ≤ c(k, ρX, χ)δα ∀x, y ∈ p(0, 1) + V(0, 1). (7.2)

(4) Ball control: The balls {Brs/5(s)}s∈Si ∪ {Brb/5(b)}b∈Bi ∪ {Bri/5(g)}g∈Gi are all pairwise-
disjoint. Moreover if x ∈ Bi ∪ Si, then d(x,Ti) ≤ rx/20. Similarly, if g ∈ G j for
1 ≤ j ≤ i, then d(g,Ti) ≤ r j/20.

(5) Radius control: If b ∈ Bi and s ∈ S∩ Brb(b) \ (Ei ∪ Ri), then rs < rb. Similarly, if g ∈ Gi

and s ∈ S ∩ Bri(g) \ (Ei ∪ Ri), then rs < ri.
(6) Packing control: we have∑

s∈Si⊂S

rk
s +

∑
b∈Bi

rk
b +

∑
g∈Gi

r
k
i ≤ c5(k) . (7.3)

(7) Covering control: we have

µ

B1(0) \

⋃
g∈Gi

[
Bri(g) ∩ {s ∈ S : rs < ri}

]
∪

⋃
s∈Si⊂S

Brs(s) ∪
⋃
b∈Bi

[
Brb(b) ∩ {s ∈ S : rs < rb}

]
 ≤ c(k, χ)δα .

(7.4)

An important consequence of Gi ⊂ S \ (Ei ∪Ri), item 5 “radius control,” and lemma 3.3 (and
our assumption (6.6)), is that: whenever y ∈ B20ri(Gi), and r ≥ ri, then

β(y, r) ≤ c(k)δ, and
∫ ∞

r
β(y, s)α

ds
s
≤ c(k)δα. (7.5)

7.1. Sketch of the proof. To aid the reader in navigating the proof and construction of the
Covering Lemma, we give a rough and imprecise outline of how the manifolds Ti+1 and new
covering at scale ri+1 are inductively built. The detailed proof is carried out in Section 7.

The basic idea is that we want to refine the covering at scale i only on the set of good balls
Gi, since only in these balls do we have tilting control. We leave the scale i bad and original
balls Bi and Si untouched.

Given a good ball Bri (g), we let p(g, ri) + V(g, ri) be one of its approximate best subspace
according to Definition 3.42, i.e., a k-dimensional subspace almost minimizing the integral∫

Bri (g)
d(x, p + V)2dµ. We define the sets

Ẽi+1 =
⋃
g∈Gi

Bri(g) \ Bri+1/30(p(g, ri) + V(g, ri)) , (7.6)

which are set of points that are scale-invariantly far from the approximating planes of the good
balls. Given the bounds on β given by (6.6), we can infer that the measure of these points is
small, see (7.67) for precise estimates. We do not refine our covering in the Ẽi+1 . Neither do
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we refine our covering over the set of bad and original balls Bi and Si, which for convenience
we denote by

Ri =
⋃
b∈Bi

Brb (b) ∪
⋃
s∈Si

Brs (s) . (7.7)

Thus we focus on the set⋃
g∈Gi

Bri(g) ∩ Bri+1/30(p(g, ri) + V(g, ri))

 \ Ri . (7.8)

We cover this set by a Vitali collection of balls of radius roughly ri+1, so that the balls with the
same centers and 1/5 of the radius are disjoint (see Section 7.2 for the precise construction).
We classify these balls into three types: original balls {Brs (s)}s∈S̃i+1

, bad balls {Brb (b)}b∈B̃i+1
and

good balls {Brg (g)}g∈G̃i+1
, and set

Si+1 = Si ∪ S̃i+1 , Bi+1 = Bi ∪ B̃i+1 , Gi+1 = G̃i+1 . (7.9)

In other words, we forget about the old good balls, while original and bad balls are cumulative
in i. Original balls are a subset of the original covering, and good and bad balls are chosen
according to Definition 3.46.

In this construction, some care is needed to ensure first, we don’t refine inside original balls
(item (5) “radius control” of our inductive hypothesis); and second, the balls

{Brs/5(s)}s∈Si+1 ∪ {Brb/5(b)}b∈Bi+1 ∪ {Bri+1/5(g)}g∈Gi+1 (7.10)

are pairwise-disjoint.

Now we define the map σi+1 and in turn the manifold Ti+1 = σi+1(Ti) using the constructions
and estimates of Section 4.

In particular, the map σi+1 is going to be an interpolation of projection maps πg onto the
approximating planes of Bri+1(g) with g ∈ Gi+1. These maps are glued together with a partition
of unity subordinate to {Bri+1(g)}g∈Gi+1 . We do not consider the planes associated to bad and
original balls.

Since all {Bri+1(g)}g∈Gi+1 are good balls, we can apply Lemma 3.47 to obtain tilting control over
the best planes p(g, ri+1) + V(g, ri+1) with g ∈ Gi+1. Plugging these estimates into the Squash
Lemma 4.2, we obtain that σi+1 is a bi-Lipschitz equivalence between Ti and σi+1(Ti) = Ti+1.

By analyzing these estimates carefully, we prove also that the map τi = σi ◦ σi−1 ◦ · · · ◦ σ1 :
T0 → Ti+1 has uniform bi-Lipschitz estimates, thus the limit map τ = limi τi is still a bi-
Lipschitz equivalence and T = τ(T0) is a Lipschitz manifold with uniform volume bounds.

The importance of the manifold Ti+1 is that it provides a link among all the balls in the cov-
ering, in the sense that all the disjoint balls in (7.10) have quantitatively nonempty intersection
with Ti+1 (see item (4) in the construction for a more precise statement). This allows us to turn
the uniform volume estimates into packing estimates for the covering.

As i→ ∞, the covering we constructed⋃
s∈Si

Brs(s) ∪
⋃
b∈Bi

Brb(b) ∪
⋃
g∈Gi

Bri(g) (7.11)

will have three pieces in the limit: the set ∪iSi of all original balls, the set ∪iBi of all bad balls,
and the set ∩iGi of limits of good balls. These pieces become S′+, B, and S′z (respectively) in
(6.7). The last part consists of the points where the refinement of the construction never stops.
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Since this piece is contained in Bri (Ti) for all i, its limit is contained in the manifold T = τ(T0)
(and thus it is rectifiable).

7.2. Construction. Recall that we write ri = χi. By scaling we can assume r = 1 and p = 0.
We can also assume B1(0) is a good ball w.r.t. µ, as otherwise simply take G = S′+ = ∅ and
B = {0}. Thus we start our inductive process by defining G0 = {0}, and S0 = B0 = ∅ (so, no
bad/original balls at scale r = 1), E0 = ∅, T0 = V(0, 1) and R0 = ∅.

Suppose we have defined good/bad/original balls down to scale ri. Let us detail the i+1 stage
of the construction. Let

Ẽi+1 =
⋃
g∈Gi

Bri(g) \ Bri+1/30(p(g, ri) + V(g, ri)) (7.12)

be the “excess set,” and define for convenience the cumulative excess set by Ei+1 = Ei ∪ Ẽi+1.
We define S̃i+1 by the following three conditions: first,

S̃i+1 ⊂

s ∈ S ∩
⋃
g∈Gi

[
B1.5ri(g) ∩ Bri+1/30(p(g, ri) + V(g, ri))

]
\ Ri and ri+1 ≤ rs < ri

 ; (7.13)

second, we ask that the balls {Brs(s)}s∈S̃i+1
cover the set

⋃Brs/5(s) : s ∈ S ∩
⋃
g∈Gi

[
B1.5ri(g) ∩ Bri+1/30(p(g, ri) + V(g, ri))

]
\ Ri and ri+1 ≤ rs < ri

 ;

(7.14)

and third, we require that the balls {Brs/5(s)}s∈S̃i+1
be disjoint. One can construct S̃i+1 by taking

an appropriate Vitali cover.
In order to define Gi+1 and Bi+1, let Ji+1 be a maximal 2ri+1/5-net inS ∩ B1(0) ∩

⋃
g∈Gi

[
Brg(g) ∩ Bri+1/30(p(g, ri) + V(g, ri))

] \
Ri ∪

⋃
s∈S̃i+1

Brs(s)

 . (7.15)

It is easy to see that

S ∩ B1(0) \ (Ei+1 ∪ Ri) ⊂
⋃

s∈S̃i+1

Brs(s) ∪
⋃

x∈Ji+1

Brx(x) , (7.16)

and the balls {Brx/5(x)}x∈Ji+1 are disjoint.
We split Ji+1 into G̃i+1 and B̃i+1 depending on whether Brx(x) is good or bad w.r.t. µ and χ

according to Definition 3.46. We set also

Ri+1 = Ri ∪
⋃

s∈S̃i+1

Brs(s) ∪
⋃

b∈B̃i+1

Bri+1(b) , (7.17)

and

Si+1 = Si ∪ S̃i+1, Gi+1 = G̃i+1, Bi+1 = Bi ∪ B̃i+1 . (7.18)
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Notice again that while the sets Si+1,Bi+1,Ri+1 are “cumulative” wrt i, the set Gi+1 is not. More-
over, it is easy to see that

B1(0) ⊂ Ei ∪ Ri ∪
⋃

g∈Gi+1

Bri+1(g) . (7.19)

We define σi+1 as follows. Let {φg}g∈Gi+1 be the truncated partition of unity subordinate to
{Bri+1(g)}g∈Gi+1 , as per Lemma 3.1. For a given g ∈ Gi+1, let pg + Vg = p(g, ri+1) + V(g, ri+1) be
the L2-approximate plane for Bri+1(g) of Definition 3.42.
Let also πg : X → Vg ≡ V(g, ri+1) be a choice of almost-projection. If X is a Hilbert space,
take πg to be the orthogonal projection; if X is uniformly smooth, and k = 1, take πg to be the
J-projection.

We now set

σi+1(x) = x −
∑

g∈Gi+1

φi(g)π⊥g (x − pg) , (7.20)

and let Ti+1 = σi+1(Ti).

This completes the inductive construction. In the following subsections we prove the induc-
tive properties asserted in 1)-7). On can easily check that all properties hold trivially when i = 0,
and therefore in the rest of this section we can assume by inductive hypothesis that properties
1)-7) hold for all scales between r0 and ri.

7.3. Item 2: Graphicality. Fix y ∈ Ti+1. If y < B10ri+1(Gi+1), then by construction σi+1 is the
identity on B2ri+1(y), and item 2 follows by induction. We can assume that y ∈ B10ri+1(g) for some
g ∈ Gi+1. In the following c denotes a generic constant depending only on (k, χ), and which is
independent of Λ, and we shall assume δ0(k, χ,Λ) is small enough so that c(1 + Λ)δ0 ≤ ε1 (the
constant from the squash Lemma 4.2).

First suppose i = 0, so that so that Ti ≡ T0 = p(0, 1) + V(0, 1) ≡ p0 + V0. By the tilting
Lemma 3.48, and by construction, we have for any g̃ ∈ G1 ∩ B9r1(g) the estimates

d(g̃, p0 + V0) < r1/10, r−1
1 d(pg̃, p0 + V0) + dG(V(g̃, r1),V0) ≤ c(k, χ)β(0, 5) ≤ cδ , (7.21)

where p0 + V0 = p(0, 1) + V(0, 1) is an approximating subspace on B1 (0). Set πg̃ to be a
projection onto p(g̃, r1) + V(g̃, r1), and observe that if x ∈ B6r1(y), then σ1(x) takes the form

σ1(x) = x −
∑

g̃∈G1∩B9r1 (y)

φg̃πg̃(x − pg̃) . (7.22)

In light of (7.21) and (7.22), σ1|B6r1 (y) satisfies the hypotheses of the squash lemma at scale
B2r1(y). Since T0 ≡ p0 + V0, we can apply the squash lemma part B) to deduce

T1 ∩ B4r1(y) = graphΩ,π′( f ) , r
−1
i || f || + Lip( f ) ≤ c(k, χ)β(0, 5) , B3r1(y) ∩ (p0 + V0) ⊂ Ω .

(7.23)

Finally, using estimates (7.21) we apply the regraphing Lemma 4.4 to (7.23) at scale B2r1(y) to
deduce item 2 when i = 0. Let us mention also that the squash lemma part A) gives the bound

||σ1(x) − x|| ≤ c(k, χ)δr1 ∀x ∈ T0 . (7.24)
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Now suppose i ≥ 1. By construction there is a g′ ∈ Gi so that g ∈ Bri(g
′), and a g′′ ∈ Gi−1 so

that g′ ∈ Bri−1(g
′′). Let us fix almost-projections π, π′, and π′′ to Vg, Vg′ , and Vg′′ respectively.

We have by induction d(g′,Ti−1) ≤ ri/30 + Λδri−1 ≤ ri−1/10, and by construction B3ri(g
′) ⊂

B1.1ri−1(g
′′), and therefore we can write

Ti−1 ∩ B3ri(g
′) = graphΩ,π′′( f ) , r

−1
i || f || + Lip( f ) ≤ cΛδ , B2.5ri(g

′) ∩ (pg′′ + Vg′′) ⊂ Ω .
(7.25)

From tilting Lemma 3.48 and construction we have for any g̃ ∈ B6ri(g
′) ∩ Gi the estimates:

d(g̃, pg′′ + Vg′′) ≤ ri/30 + cβ(g′′, 3ri−1)ri < ri/10 , (7.26)

and

r
−1
i d(pg̃, pg′′ + Vg′′) + dG(V(g̃, ri),Vg′′) ≤ cβ(g′′, 3ri−1) ≤ cδ . (7.27)

And similarly, for any g̃ ∈ B9ri+1(y) ∩ Gi+1:

d(g̃, pg′′ + Vg′′) < ri+1/10 , r
−1
i+1d(pg̃, pg′′ + Vg′′) + dG(V(g̃, ri+1),Vg′′) ≤ cβ(g′′, 3ri−1) ≤ cδ .

(7.28)

We now observe that for x ∈ B3ri(g
′) we have

σi(x) = x −
∑

g̃∈Gi∩B6ri (g
′)

φg̃π
⊥
g̃ (x − pg̃) and

∑
g̃∈Gi∩B6ri (g

′)

φg̃ ≡ 1 on B2.5ri(g
′) . (7.29)

Therefore, by estimates (7.26) and (7.27), σi|B3ri
(g) satisfies the hypothesis of the squash Lemma

4.2 at scale Bri(g). We are justified in applying the squash lemma parts B), C) to deduce

Ti ∩ B2ri(g
′) = graphΩ,π′′( f ) , r

−1
i || f || + Lip( f ) ≤ c(k, χ)β(g′′, 3ri−1) , B1.5ri(g

′) ∩ (pg′′ + Vg′′) ⊂ Ω ,
(7.30)

with c independent of Λ.
Since B6ri+1(y) ⊂ B1.1ri(g

′) we can use (7.30) to write

Ti ∩ B6ri+1(y) = graphΩ,π′′( f ), r
−1
i+1|| f || + Lip( f ) ≤ c(k, χ)β(g′′, 3ri−1), B5ri+1(y) ∩ (pg′′ + Vg′′) ⊂ Ω .

(7.31)

As above, by construction for x ∈ B6ri+1(y), the map σi+1 takes the form

σi+1(x) = x −
∑

g̃∈Gi+1∩B9ri+1 (y)

φg̃πg̃(x − pg̃) , (7.32)

though notice we do not anymore have equality
∑

g̃ φg̃ = 1 in the partition of unity. By estimates
(7.28) we can apply the squash lemma part B) at scale B2ri+1(y) to obtain

Ti+1 ∩ B4ri+1(y) = graphΩ,π′′( f ), r
−1
i+1|| f || + Lip( f ) ≤ c(k, χ)β(g′′, 3ri−1), B3ri+1(y) ∩ (pg′′ + Vg′′) ⊂ Ω .

(7.33)

Finally, again from estimates (7.28) we can apply the regraphing Lemma 4.4 at scale B2ri+1(y) to
prove item 2.

Let us observe further that, by applying the squash lemma part A) to (7.30) at scale B2ri+1(y)
we can obtain the estimate

||σi+1(x) − x|| ≤ c(k, χ)δri+1 ∀x ∈ Ti . (7.34)
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7.4. Item 3: bi-Lipschitz estimates. The bi-Lipschitz estimates are the core of the covering
lemma, and they basically follow from the corresponding estimates in the squash lemma. First,
let us remark that from the uniform estimate (7.34), we immediately obtain

||τ`(y) − τ j(y)|| ≤ c(k, χ)δr j ∀0 ≤ j < ` ≤ i + 1, ∀y ∈ p(0, 1) + V(0, 1) . (7.35)

Fix any x, y ∈ B3(0) ∩ (p(0, 1) + V(0, 1)). Note that wlog we can suppose x ∈ B3(0) since
every σ j is the identity outside B3(0).

Choose a maximal, non-negative m ≤ i + 1 so that 6r j > ||τ j(x) − τ j(y)|| for all j ≤ m, and
τ j(x) ∈ B10r j+1(G j+1) for all j ≤ m − 1. Notice that when τm(x) ∈ B10rm+1(Gm+1), then since
necessarily ||τm+1(x) − τm+1(y)|| ≥ 6rm+1, we have for δ(k, χ) sufficiently small that

||τm(x) − τm(y)|| ≥ 6rm+1 − cδrm+1 ≥ χrm . (7.36)

If no such non-negative m exists, take m = 0, and then (7.36) trivially holds.
We claim that for each j ≤ m − 1, we have∣∣∣∣∣∣ ||τ j+1(x) − τ j+1(y)||

||τ j(x) − τ j(y)||
− 1

∣∣∣∣∣∣ ≤ c(k, ρX, χ)β(τ j(x), 5r j−1)α . (7.37)

It will then follow, by (7.5) and for δ(k, ρX, χ) sufficiently small, that for any j ≤ m we have
the bounds

||τ j(x) − τ j(y)|| ≤
j∏

`=1

(1 + cβ(τ j(x), 10r`−1)α)||x − y|| ≤ exp
(
c
∫ 10

r j

β(τ j(x), r)α
dr
r

)
||x − y||, and

(7.38)

||τ j(x) − τ j(y)|| ≥
j∏

`=1

(1 − cβ(τ j(x), 10r`−1)α)||x − y|| ≥ exp
(
−c

∫ 10

r j

β(τ j(x), r)α
dr
r

)
||x − y||,

(7.39)

for c = c(k, ρX, χ) independent of j and m.
We shall see that claim (7.37) is a direct consequence of the graphical estimates from Section

7.3, and the squash Lemma 4.2. Take j ≤ m − 1. Like in the proof of item 2, we can find a
g′′ ∈ G j−1 with τ j(x) ∈ B1.1r j−1(g

′′), and

T j ∩ B6r j(τ j(x)) = graphΩ,πV
( f ) , r

−1
j || f || + Lip( f ) ≤ c(k, χ)β(g′′, 3r j−1) , B2.5r j(τ j(x)) ∩ (pg′′ + Vg′′) ⊂ Ω ,

(7.40)

for some choice of almost-projection π′′ to Vg′′ (if j = 0, then (7.40) vacuously holds with
g′′ = 0). Using estimates (7.28) and relation (7.32) (respectively (7.21), (7.22) when j = 0),
σ|B6r j+1 (τ j(x)) satisfies the hypotheses of the squash Lemma 4.2 at scale B2r j+1(τ j(y)). Therefore,
since τ j(y) ∈ B6r j+1(τ j(x)) by definition of m, we can apply the squash Lemma 4.2 part D) if X
is uniformly smooth, or part A) for general X, in order to deduce∣∣∣∣∣∣ ||σ j+1(τ j(x)) − σ j+1(τ j(y))||

||τ j(x) − τ j(y)||
− 1

∣∣∣∣∣∣ ≤ cβ(g′′, 3r j−1)α ≤ c(k, χ)β(τ j(x), 5r j−1)α . (7.41)

This proves (7.37).
We now prove the following estimate: for any j ≥ m, we have∣∣∣∣∣∣ ||τ j(x) − τ j(y)||

||τm(x) − τm(y)||
− 1

∣∣∣∣∣∣ ≤ c(k, ρX, χ)δα , (7.42)
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with c independent of j, m, as before. This clearly completes the bi-Lipschitz estimates.

First, we notice that if τm(x) < B10rm+1(Gm+1), then σ j is the identity on τm(x), τm(y) for all
j ≥ m + 1, and hence there is nothing to show. We henceforth assume that (7.36) holds.

For α = 1 (i.e., if X is a generic Banach space), the estimate is straightforward. Indeed, using
(7.35) and (7.36) we get:∣∣∣∣||τ j(x) − τ j(y)|| − ||τm(x) − τm(y)||

∣∣∣∣ ≤ ||τ j(x) − τm(x)|| + ||τ j(y) − τm(y)|| (7.43)

≤ cδrm (7.44)
≤ c(k, χ)δ||τm(x) − τm(y)|| . (7.45)

For α > 1 we proceed as follows. Let us fix pm + Vm and πm a choice of plane and almost-
projection so that, as per (7.40), we have

Tm ∩ B6rm(τm(x)) = graphΩ,πm
( f ) , r−1

m || f || + Lip( f ) ≤ c(k, χ)δ , (pm + Vm) ∩ B2.5rm(τm(x)) ⊂ Ω .
(7.46)

We first prove the auxiliary estimate

Lemma 7.5. For any z ∈ B6rm(τm(x)) ∩ Tm, and j > m, we have

||πm(τ j(z) − z)|| ≤ c(k, ρX, χ)δαrm . (7.47)

Proof. If α = 1 then this follows trivially from (7.34). Let us assume α > 1. We can assume
wlog that τt(z) ∈ B5rt+1(Gt+1) for all t ≤ j.

For each t with m < t ≤ j, choose a plane pt + Vt, and almost-projection πt to Vt, so that
Tt ∩ B2rt(τt(z)) is graphical over pt + Vt as per item 2. Moreover, we can choose Vt = V(gt, rt)
for some gt ∈ Gt ∩ B2rt(τt(z)).

From the squash lemma part D) we have

||πt(σt(τt−1(z)) − τt−1(z))|| ≤ c(k, ρX, χ)δαrt , (7.48)

and by the tilting Lemma 3.48 and Lemma 3.38, we have

||πt − πt−1|| ≤ c(k, ρX, χ)δα−1 . (7.49)

Now for each such t we compute

||πm(τt(z) − τt−1(z))|| ≤ ||πt(σt(τt−1(z)) − τt−1(z))|| +

 t∑
`=m+1

||πt − πt−1||

 ||σt(τt−1(z)) − τt−1(z)||

(7.50)
≤ cδαrt + ctδαrt , (7.51)

and therefore
j∑

t=m+1

||πm(τt(z) − τt−1(z))|| ≤
j∑

t=m+1

cδαtrt ≤ c(k, ρX, χ)δαrm . (7.52)

This proves (7.47). �
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We proceed to prove (7.42). We use Lemma 7.5 to bound∣∣∣||πm(τ j(x) − τ j(y))|| − ||πm(τm(x) − τm(y))||
∣∣∣ ≤ ||πm(τ j(x) − τm(x)|| + ||πm(τ j(y) − τm(y))|| (7.53)
≤ cδαrm (7.54)
≤ cδα||τm(x) − τm(y)||, (7.55)

and Proposition 3.40 and (7.36) to bound∣∣∣||πm(τm(x) − τm(y))|| − ||τm(x) − τm(y)||
∣∣∣ ≤ cδα||τm(x) − τm(y)||. (7.56)

These together imply∣∣∣∣||πm(τ j(x) − τ j(y))||2 − ||τm(x) − τm(y)||2
∣∣∣∣ ≤ c(k, ρX, χ)δα||τm(x) − τm(y)||2. (7.57)

By (7.35) and our choice of m, we have the coarse bound

||τ j(x) − τ j(y)|| ≤ 10rm (7.58)

for small δ(k, χ). Therefore, by the Pythagorean theorem 3.39, we obtain∣∣∣∣||τ j(x) − τ j(y)||2 − ||πm(τ j(x) − τ j(y))||2
∣∣∣∣ ≤ c(k, ρX, χ)||π⊥m(τ j(x) − τ j(y))||αr2−αm . (7.59)

Finally, using (7.46), and estimates (7.36), (7.34), we have

||π⊥m(τ j(x) − τ j(y))||αr2−αm ≤
(
||τ j(x) − τm(x)|| + ||τ j(x) − τm(x)|| + ||π⊥(τm(x) − τm(y))||

)α
r

2−α
m

(7.60)

≤ c(k, χ)δαr2m (7.61)

≤ c(k, χ)δα||τm(x) − τm(y)||2 , (7.62)

which completes the proof of 7.42, and thus the proof of item 3.

7.6. Item 4: Ball control. It is clear that {Brs/5(s)}s∈S̃i+1
∪ {Bri+1/5(x)}x∈Ji+1 are pairwise-disjoint,

since for each such s we have rs ≥ ri+1. Now take some x ∈ S̃i+1 ∪ Ji+1 and y ∈ Si ∪ Bi. By
construction we have (S̃i+1 ∪ Ji+1) ∩ Bry(y) = ∅, and ry ≥ ri, and rx < ri. It is then immediate
that Brx/5(x) ∩ Bry/5(y) = ∅.

Let us prove the second assertion. Given x ∈ B̃ j∪S̃ j∪G j, for j ≥ 1, then by construction and
item 2 “graphicality” there exists an x′(x) ∈ Ti−1 so that ‖x′(x) − x‖ ≤ r j/30 + c(k, ρX, χ)δr j−1.
The uniform estimates (7.34) on the σi imply that x′′ = σi+1 ◦ σi ◦ · · · ◦ σ j(x′) ∈ Ti+1 satisfies
‖x′′(x) − x‖ ≤ r j/30 + cδr j−1. Therefore, for δ(k, ρX, χ) sufficiently small we obtain d(x,Ti+1) ≤
r j/20 ≤ rx/20.

7.7. Item 5: Radius control. Since Ri∪Ei ⊂ Ri+1∪Ei+1, by our inductive hypothesis it suffices
to prove “radius control” when rb = ri+1. Suppose s ∈ S ∩ Brb(b) and rs ≥ rb ≡ ri+1. If rs ≥ ri,
then by induction s ∈ Ei ∪ Ri and we are done. Otherwise, ri+1 ≤ rs < ri, and we can WLOG
assume s < Ei+1.

By construction, b ∈ Brg(g) for some g ∈ Gi−1, and therefore s ∈ Brb(b) ⊂ B1.5rg(g). Therefore
by definition (7.14) and our assumptions on s, we must have s ∈

⋃
s′∈Si+1

Brs′ (s′) ⊂ Ri+1.
This establishes item 5, since the proof for good balls is verbatim.



EFFECTIVE REIFENBERG THEOREMS IN HILBERT AND BANACH SPACES 53

7.8. Item 6: Packing control. For the packing control, we are going to use the bi-Lipschitz
estimates on the manifolds T j and the disjointness properties of balls in our construction. In
particular, we know that Ti+1 is (1 + c(k, ρX, χ)δα) bi-Lipschitz to V(0, 1). Moreover, since we
have the uniform estimates (7.34), we also know that Ti+1 ∩ B1 (0) is bi-Lipschitz to a subset of
V(0, 1) ∩ B2 (0).

For all s ∈ Si+1, let s′(s) ∈ Ti+1 be a point satisfying ‖s′(s) − s‖ ≤ rs/20, and in a similar
way b′(b) ∈ Ti+1 satisfies ‖b′ − b‖ ≤ rb/20, and g′(g) ∈ Ti+1 satisfies ‖g′ − g‖ ≤ ri+1/20. By
construction, all the balls in the collection{

Brs/7
(
s′(s)

)}
s∈Si+1

∪
{
Brb/7

(
b′(b)

)}
b∈Bi+1

∪
{
Bri+1/7

(
g′(g)

)}
g∈Gi+1

(7.63)

are pairwise disjoint.
Using the map τ−1

i+1 and its bi-Lipschitz estimates, we obtain that all the balls in the collection{
Brs/10

(
τ−1

i+1(s′(s))
)}

s∈Si
∪

{
Brb/10

(
τ−1

i+1(b′(b))
)}

b∈Bi
∪

{
Bri+1/10

(
τ−1

i+1(g′(g))
)}

g∈Gi
(7.64)

are pairwise disjoint inside the k-dimensional affine ball T0∩B3(0), and now the desired packing
control is a corollary of Lemma 3.10.

7.9. Item 7: Covering control. It is clear from item “radius control” that

B1(0) ∩ S ⊂ Ei ∪ Ri ∪
⋃
g∈Gi

[
Bri(g) ∩ {s : rs < ri}

]
. (7.65)

To prove item “covering control” it will therefore suffice to establish

µ(Ei) ≤ c(k, χ)δα . (7.66)

First of all, note that by definition (1.1) of β, we get that for all j ≥ 0:

µ
(
Ẽ j+1

)
≤ c(k, χ)rkj

∑
g∈G j

β(g, r j)2 . (7.67)

We want to control the RHS with an integral wrt theH k Hausdorff measure on Ti+1. For each
fixed 0 ≤ j ≤ i, using item 4 “ball control” we know the balls {Br j/5(g)}g∈G j are pairwise disjoint,
and for each g ∈ G j we have a g′(g) ∈ Ti+1 with ‖g′(g) − g‖ ≤ r j/20. Therefore, the collection{
Bri/7 (g′(g))

}
g∈G j

are pairwise disjoint also.
Since Ti+1 is (1 + cδα)-bi-Lipschitz to a k-dimensional plane, and by Lemma 3.11, we have

that for all g ∈ G j

c(k)−1
r

k
j ≤ H

k
(
Br j/7

(
g′(g)

)
∩ Ti+1

)
≤ c(k)rkj . (7.68)

Moreover, by (3.14), we know that for all y ∈ Bri/7 (g′(g)) ⊂ Bri/5 (g)

βk
µ(g, r j) ≤ c(k)βk

µ(y, 2r j) . (7.69)

Summing up all of these estimates, we get that

µ
(
Ẽ j+1

)
≤ c(k, χ)

∫
⋃

g∈G j Br j/7(g′(g))∩Ti+1

β(y, 2r j)2dH k(y) ≤ c(k, χ)
∫

B2r j (G j)∩Ti+1

β(y, 2r j)2dH k(y) .

(7.70)
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Take a y ∈ B2(0), and let m be the maximal integer ≤ i for which y ∈ B2rm(Gm). Since
B2r0(G0) = B2(0), m ≥ 0. Then from (7.5) and our assumption (6.6) we have

i∑
j=0

1B2r j (G j)(y)β(y, 2r j)2 ≤ c(k, χ)
∫ ∞

rm

β(y, s)2 ds
s
≤ c(k, χ)

∫ ∞

rm

β(y, s)α
ds
s
≤ c(k, χ)δα. (7.71)

We can use (7.71) to sum contributions to Ei+1 over scales, and end up with

µ (Ei+1) ≤
i∑

j=0

µ
(
Ẽ j+1

)
≤ c(k, χ)

∫
Ti+1∩B2(0)

 i∑
j=0

1B2r j (G j)(y)β(y, 2r j)2

 dH k(y) (7.72)

≤ c(k, χ)δαH k(Ti+1 ∩ B2 (0)) . (7.73)

Using that Ti+1 is (1 + cδα)-bi-Lipschitz to V(0, 1), and Lemma 3.11, we conclude (7.66). This
establishes item “covering control.”

7.10. Finishing the proof of Lemma 6.3. The proof of the lemma is now just a corollary of
the inductive covering. We can define

S′+ =

∞⋃
i=0

Si , B =

∞⋃
i=0

Bi , τ = lim
i
τi , (7.74)

where the last limit exists as the τi are uniformly Cauchy (by e.g. (7.35)). We obtain that τ is
a bi-Lipschitz map with the desired estimates because the bi-Lipschitz estimates in item (3) are
independent of i, and packing control of (6.9) follows directly from the estimate (7.3) of item
(6). The bad ball structure is simply the definition of a bad ball in 3.46.

We just need to establish the measure bound (6.7). By “ball control” (item (4)), we know that
for all i, ⋃

g∈Gi

[
Bri(g) ∩ {s ∈ S : rs < ri}

]
⊆ B2ri (Ti) ∩ {s ∈ S : rs < ri} . (7.75)

Therefore, by “covering control” (item (7)), we get for every i:

µ

B1(0) \

[B2ri(Ti) ∩ {s ∈ S : rs < ri}
]
∪

⋃
s∈Si⊂S

Brs(s) ∪
⋃

b∈Bi⊂B

[
Brb(b) ∩ {s ∈ S : rs < rb}

]
 ≤ c(k, χ)δα .

(7.76)

Since this estimate is independent of i, and
∞⋂

i=0

B2ri (Ti) ⊂ τ(B3(0) ∩
[
p(0, 1) + V(0, 1)

]
) ,

∞⋂
i=0

{s ∈ S : rs < ri} = Sz , (7.77)

we get the desired result.

8. Corollaries

In this Section we complete the proofs of the various corollaries of the Main Theorem 2.1.
We start with Corollary 2.3. Here we basically choose the radius function rs for the covering

S+ in a clever way and apply the Main Theorem.
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Proof of Corollary 2.3. Fix an r ∈ (0, 1). For case A) define Sr = {s : rs ≥ r} and µr = µxSr.
We claim that µr is finite. From the definition of βk

µ we have a k-plane p + Vk so that

µr(B1(0) \ Br/20(p + V)) ≤ c(r, k)M . (8.1)

On the other hand, using the definition of Sr we have by Lemma 3.10 that

µr(B1(0) ∩ Br/20(p + V)) ≤
∑
{rk

s : s ∈ Sr and d(s, p + V) < rs/10} ≤ c(k) . (8.2)

So µr is finite, and thus Borel regular (see for example [Par05, theorem II, 1.2, pag 27]). This
and the monotonicity of βµ wrt µ imply that we can find a Borel set U so that∫ 2

0
βk
µr̄

(x, r)α
dr
r
≤ Mα/2 ∀x ∈ U , (8.3)

and µr̄(B1(0) \ U) ≤ Γ.
By monotonicity of β, µrxU and Sr satisfy the requirements of Theorem 2.1. Therefore we

have some S′r so that

µr(B1(0)) ≤ b
∑
s′∈S′r

rk
s′ + c(k, ρX)M + Γ ≤ c(k, ρX)(M + b) + Γ . (8.4)

Since ∪r>0Sr covers µ-a.e., the required bound follows taking r → 0.
Similarly, in case B) define

S = {x : Θk
∗(µ, x) ≤ b} , (8.5)

and set rs ∈ (0, 1) to be any choice of radius for which µ(B5rs(s)) ≤ 20kbrk
s . Take p + V , Sr, and

µr as in part A). By assumption, we have ∪rSr covers µ-a.e.
We must demonstrate µr is finite. Let {Brs(s)}S̃r

be a Vitali cover of {Brs(s) : s ∈ Sr ∩ B1(0) ∩
Br/20(p + V)}. Then, using the definition of rs and Lemma 3.10, we have

µr(B1(0) ∩ Br/20(p + V)) ≤
∑
s∈S̃r

µ(B5rs(s)) ≤
∑
s∈S̃r

20kbrk
s ≤ c(k)b . (8.6)

By the same argument as in (8.1) we have µr(B1(0)) < ∞, and thus Borel-regular. So, as in part
A), we can find a set U with (8.3) and µr̄ (B1(0) \ U) ≤ Γ.

So µrxU and Sr satisfy the requirements of Theorem 2.1, by an analogous computation to
(8.4) we deduce the required bound for µr. Since this bound is independent of r̄ and µr ↗ µ, we
obtain the claim.

We prove case C). Fix p + V as above, and now in this case define

µr = µx(B1(0) \ Br(p + V)) ≤ bH kx(S \ Br(p + V)) . (8.7)

From (8.1) each µr is finite, and hence Borel-regular. A standard argument (see e.g. chapter 1
in [Sim83]) shows that if

A = {x : Θ∗,k(µr, x) > t}, (8.8)

then tH k(A) ≤ µr(A). Therefore we must have the density bounds

Θ∗,k(µr, x) ≤ b for µr-a.e. x , (8.9)

Using part B), then taking r → 0, we deduce

µ(B1(0) \ (p + V)) ≤ c(k, ρX)(b + M) . (8.10)
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Since from Lemma 3.11 we have µ(B1(0) ∩ (p + V)) ≤ bH k(B1(0) ∩ (p + V)) ≤ c(k)b, we
conclude. �

8.1. Rectifiability. Now we are ready to prove Theorem 2.6 about rectifiability criteria for the
measure µ. This proof follows from the Covering Lemma and some considerations. First of all,
fix any Br (x) ⊂ B1 (0). We can consider the trivial covering S = Sz = Br (x) for this ball, and
the Covering Lemma 6.3 tells us that if we define (6.7):

F =
(
Sz ∩ τ(B3(0k))

)
∪

⋃
b∈B

[
Brb(b) ∩ {s ∈ S : rs < rb}

]
, (8.11)

this set covers most all of Br (x) up to a set of small µ measure.
The point now is to make sure that a fixed portion of the measure µ in B1 (0) will be covered

by the first part of the covering, i.e., by the set τ(B3(0k)), which is clearly rectifiable. In other
words, we need to make sure that the “bad balls” Brb(b) and the set not covered by F do not
carry much portion of the measure. This is the main part of this proof, and it requires lower
density bounds to ensure that we can pick balls Br (x) that have enough measure µ. Once this is
done a standard inductive procedure can be used to cover a set of full measure with countably
many Lipschitz images.

Notice that this is the only place where the lower bound on the upper density Θ∗,k(µ, x) > 0
plays a role. Notice also that this assumption is necessary to ensure rectifiability. Indeed,
consider for example the n-dimensional Lebesgue measure λn in Rn. For k < n, this measure
clearly satisfies ∫ 2

0
βk
λn(x, r)2 dr

r
< ∞ , Θk

∗(λ
n, x) < ∞ (8.12)

for all x ∈ Rn. Indeed for all x, Θk
∗(λ

n, x) = Θ∗,k(λn, x) = Θk(λn, x) = 0, but clearly λn is not
k-rectifiable.

Proof of Theorem 2.6. The argument is very similar to the ones in [ENV, section 10]. For the
reader’s convenience we sketch the argument here.

First, we prove our theorem under the stronger assumptions that µ is finite and∫ 2

0
βk
µ(x, r)α

dr
r
≤ Mα/2 , Θk

∗(µ, x) ≤ b, Θ∗,k(µ, x) ≥ a , (8.13)

with a, b,M positive and finite. We will turn to the general case afterwards.
Applying Corollary 2.3 at every scale we deduce

µ(Br(x)) ≤ c(k, ρX)(M + b)rk =: Γrk ∀x and ∀r < 1 . (8.14)

Note this implies µ << H k.
By Lemma 3.4, given any δ > 0, then for µ-a.e. x there is a scale Rx so that

µ

(
z ∈ Br(x) :

∫ ∞

0
βk
µxBr(x)(z, s)α

ds
s
> δ

)
≤ δrk ∀0 < r < Rx . (8.15)

Let us take any such x and r < Rx, and by the above we can find a Borel set A ⊂ Br(x) so that∫ ∞

0
βk
µxA(z, s)α

ds
s
< δ, µ(Br(x) \ A) ≤ δrk . (8.16)
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Ensuring δ ≤ δ0(k, ρX, χ), we can apply the Covering Lemma 6.3 to µxA, with cover Sz = A,
S+ = ∅, to obtain a Lipschitz mapping τ : B3 → X and a family of bad balls B, so that

µ

A \ τ(B3) ∪
⋃
b∈B

Brb(b)

 ≤ c(k, χ, ρX)δ , and
∑
b∈B

rk
b ≤ c(k) . (8.17)

For each bad ball Brb(b), we can follow the argument from Section 6.4.2, and use upper bound
(8.14), to obtain

µ(Brb(b)) ≤ (c(k, ρX, χ)δ2 + 1/10 + cB(k)χΓ)rk
b . (8.18)

Choose χ = min(1/100, 1/Γ), then taking δ(k, ρX, χ) sufficiently small, we can combine (8.17)
with (8.18) and our definition of A to obtain

µ(Br(x) \ τ(B3)) ≤ c6(k)rk , (8.19)

for some constant c6(k) which is independent of M, b, a.
In particular, by scaling µ and correspondingly readjusting χ, δ, we can assume a ≥ 10c6.

Then a straightforward argument using the above conclusions shows that, for any closed set C,
we can find finitely many Lipschitz mappings τ1, . . . , τN : B3(0) ⊂ Rk → X, so that

µ(B1(0) \ (C ∪ τ1(B3) ∪ · · · ∪ τN(B3))) ≤
1
2
µ(B1(0) \C) . (8.20)

Rectifiability for µ satisfying (8.13) now follows directly.

In order to conclude the proof, we show that the assumptions that µ is finite and (8.13) holds
instead of (2.7) are not restrictive.

First, we show that we can assume wlog that µ is finite, and thus also Borel-regular since X
is a metric space. Indeed, let x ∈ B1 (0) be such that

βk
µ(x, 2)α < ∞ , (8.21)

and consider a k-dimensional affine plane p + V with∫
B2(x)

d(y, p + V)α =

∫
B1(0)

d(y, p + V)α < ∞ . (8.22)

Then automatically for all r̄ > 0 the measure µ restricted to the open set Or̄ = Br̄ (p + V)
C

has
finite mass. Moreover, by monotonicity of β wrt µ and since Or̄ is open, µxOr̄ satisfies all the
assumptions of (2.7) and it is finite.

Note also that the measure µx(p + V) is rectifiable. Indeed, let

Ai =
{
Θk
∗(µ, x) < i

}
∩ (p + V) ∩ B1 (0) , µi = µx(p + V) ∩ Ai . (8.23)

We claim that µi(Br (x)) ≤ cirk for all x, r, and thus µx(p + V) = limi µi << H
kx(p + V).

In order to show that µi(Br (x)) ≤ cirk, let Br j

(
x j

)
be a covering of Br (x) ∩ Ai with x j ∈ Ai,

µi

(
Br j

(
x j

))
≤ 2ωkirk

j and Br j/5

(
x j

)
pairwise disjoint. Since x j ∈ (p + V)∩ B1 (0),

∑
j(r j/5)k ≤ c,

and so µi(Br (x)) ≤ cirk as wanted.
Thus we can write

µ = µx(p + V) + lim
i→∞

µxOi−1 , (8.24)

and so if the finite measure µxOr̄ is rectifiable for all r̄ > 0, we obtain that the original µ is
countably rectifiable also.
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As for the stronger hypothesis (8.13), we have the following. Given a finite µ, for any integer
i, define

Ui =

{
x ∈ B1(0) :

∫ 2

0
βk
µ(x, r)α

dr
r
≤ i, Θk

∗(µ, x) ≤ i, Θ∗,k(µ, x) ≥ i−1
}
. (8.25)

By assumption, ∪iUi covers µ-a.e. x. Moreover, µxUi obviously satisfies∫ 2

0
βk
µxUi

(x, r)α
dr
r
≤ i, Θk

∗(µxUi, x) ≤ i . (8.26)

We claim that Θ∗,k(µxUi, x) ≥ 10−ki−1 for µ-a.e. x ∈ Ui. Given this claim and the previous
bounds (8.26), our initial proof will show that each µxUi is k-rectifiable, and hence µ is k-
rectifiable also.

Let us prove our claim. The proof is standard, but we include it for the reader’s convenience.
When k = 0 the claim is trivial. Otherwise, set

A = {x ∈ Ui : Θ∗,k(µxUi, x) < 10−ki−1} . (8.27)

Suppose, towards a contradiction, that µ(A) > 0. Since µ is finite Borel-regular, we can
choose an open V ⊃ A so that µ(V) ≤ (11/10)µ(A). For µ-a.e. x ∈ A, pick a radius rx so that:

Brx(x) ⊂ V,
µ(Brx(x) ∩ A)

ωkrk
x

≤ 10−ki−1,
µ(Brx/5(x))
ωk(rx/5)k ≥ (9/10)i−1 . (8.28)

Let {Brxi
(xi)}i be a Vitali cover of {Brx(x)}x∈A, so that the rxi/5-balls are disjoint. This collec-

tion is countable, since each ball has a positive amount of measure. Then we have the contra-
diction

µ(A) ≤
∑

i

10−ki−1ωkrk
xi
≤ 2−k(10/9)

∑
i

µ(Brxi/5(xi)) ≤ 2−k(10/9)µ(V) < µ(A) . (8.29)

Therefore we must have µ(A) = 0.

This completes the proof of our claim, and in turn the proof of Theorem 2.6. �

Now we turn our attention to Corollary 2.7, which is just a special case of the previous
Theorem 2.6.

Proof of Corollary 2.7. Take r > 0. By our assumption there is an affine k-plane p + V so that

H k(S \ Br(p + V)) < ∞ . (8.30)

Define

S r =

{
x ∈ B1(0) : d(x, p + V) ≥ r and

∫ ∞

0
βk
µ(x, r)

dr
r
≤ 1/r

}
. (8.31)

ThenH kxS r is finite, and hence we have density bounds

2−k ≤ Θ∗,k(H kxS r, x) ≤ 1 forH k-a.e. x ∈ S r . (8.32)

By construction and monotonicity of β, H kxS r satisfies the requirements of Theorem 2.6, and
so we deduce S r is k-rectifiable.

From our hypotheses ∪rS r = S \ (p + V) up to a set ofH k-measure 0. Since p + V is trivially
k-rectifiable, we finish the proof taking r → 0. �
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8.2. Proof of Proposition 2.9. Now we turn to Proposition 2.9, which is a corollary of the
proof of the main Theorem. Actually, the construction is much simplified in this case.

Remark 8.3. Before we sketch the proof of this result, it is worth noticing that up to making
sure that the constants involved in the estimates are independent of the ambient dimension n,
and up to using the notion of almost projections/canonical projections on Banach spaces and
the relative estimates studied in Section 3, the proof of this theorem is very similar to the proof
of [Tor95, main theorem],[DT12]. In the language of our proofs, the Reifenberg flat condition
allows us to completely skip the good balls - bad balls construction and makes the inductive
covering of Lemma 6.3 technically less involved.

For this entire section, let us fix S to be a (k, δ)-Reifenberg flat set having 0 ∈ S , as per
Theorem 2.9. The proof is essentially standard.

Let us review some basic properties of the β∞. First, we trivially have β∞(x, r) ≤ δ for any x ∈
S , by the Reifenberg-flat assumption. Second, if Br(x) ⊂ BR(y), then β∞(x, r) ≤ (R/r)β∞(y,R).
In particular, we have

βk
S ,∞(x, r) ≤ c(k)

∫ 2r

r
βk

S ,∞(x, s)
ds
s
. (8.33)

Definition 8.4. Given x ∈ S , let us define V∞(x, r) to be any k-plane for which

S ∩ Br(x) ⊂ B2β∞(x,r)r(x + V∞(x, r)) . (8.34)

Similar to how the L2-β-numbers control tilting between nearby good balls, the L∞-β-numbers
control tilting between nearby Reifenberg-flat balls. The proof is identical, except we use the
Reifenberg-flat condition to obtain points in S in general position, and require no lower mass
bounds.

Lemma 8.5. Let x, x′, y ∈ S , and suppose Br(x) ∪ Br′(x′) ⊂ BR/2(y), and BR(y) ⊂ B2(0). Then
we have

dH((x + V∞(x, r)) ∩ BR(y), (x′ + V∞(x′, r′)) ∩ BR(y)) ≤ c(k, r/R, r′/R)βk
S ,∞(y,R)R , (8.35)

and

dG(V∞(x, r),V∞(x′, r′)) ≤ c(k, r/R, r′/R)βk
S ,∞(y,R) . (8.36)

Similarly, we have

dH((x + V∞(x, r)) ∩ BR(y), S ∩ BR(y)) ≤ c(k, r/R)δR . (8.37)

Remark 8.6. Although phrased differently, a similar lemma is present in the proof of [Tor95,
lemma 3.1].

Proof. Provided δ(k) is sufficiently small, the Reifenberg-flat condition and stability Lemma
3.13 imply we can find points x0 = x and x1, . . . , xk ∈ S ∩B9r/10(x) so that the vectors {xi− x0}

k
i=1

lie in r/2-general position.
For each i = 0, . . . , k we have

d(xi, (x + V∞(x, r))) ≤ β∞(xi, r)r, and d(xi, (y + V∞(y,R))) ≤ β∞(y,R)R . (8.38)
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Therefore, ensuring δ(k) is sufficiently small, we can use the stability Lemma 3.13 to find zi ∈

(x + V∞(x, r)) ∩ Br(x) such that ||xi − zi|| ≤ 2δr, and the vectors {zi − z0}
k
i=1 lie in r/4-general

position. Lemma 3.7 implies that

d(z, y + V∞(y,R)) ≤ c(k, r/R)β∞(y,R)R ∀z ∈ (x + V∞(x, r)) ∩ BR(y) . (8.39)

Now use Lemma 3.17, and repeat the argument with Br′(x′), and the desired estimates (8.35),
(8.36) follow from the triangle inequality.

Let us prove (8.37). Fix a k-plane W so that dH((y + W) ∩ BR(y), S ∩ BR(y)) < 2δR. We have
by our choice of zi that

d(zi, y + W) ≤ 4δR i = 0, . . . , k . (8.40)

Therefore, as above, lemmas 3.7 and 3.17 imply that

dH((x + V∞(x, r)) ∩ BR(y), (y + W) ∩ BR(y)) ≤ c(k, r/R)δR , (8.41)

and (8.37) follows by the triangle inequality. �

8.6.1. Construction. We build the map τ as a limit of maps τi, constructed in a very similar
manner to Section 7. The proof that each τi has the required bi-Hölder/bi-Lipschitz bounds is
essentially verbatim to items 2 and 3 in Section 7.

We shall inductively define a sequence of mappings τi : V(0, 1) → X, and manifolds Ti =

τi(V(0, 1)), which admit the following properties:
(1) T0 = V(0, 1).
(2) Graphicality of Ti: for any y ∈ Ti, there is an k-dimensional affine plane p+V (depending

on y), so that for any choice of almost-projection πV to V , we have

Ti ∩ B2ri(y) = graphΩ,πV
( f ), (2ri)−1|| f || + Lip( f ) ≤ Λδ, B1.5ri(y) ∩ (p + V) ⊂ Ω ⊂ (p + V)

(8.42)

Moreover, if there exists some g ∈ Gi∩B10ri(y), then we can take p+V = p(g, ri)+V(g, ri).
(3) Each map τi : V(0, 1)→ Ti is a (1 + c(k, χ)δ)-bi-Hölder equivalence.
(4) Given summability condition (2.12), then in fact each τi is a bi-Lipschitz equivalence,

with bound

e−c(k,ρX)Qα

||x − y|| ≤ ||τi(x) − τi(y)|| ≤ ec(k,ρX)Qα

||x − y||. (8.43)

(5) Covering control: We have dH(S ∩ B1+ri/2,Ti ∩ B1+ri/2) ≤ ri.
Given items 1)-5), the Reifenberg Theorem 2.9 will follows directly.

Let us detail the construction of the τi and Ti. Recall that ri = χi, where here we shall fix
χ = 1/100.

For each i define Gi to be a maximal 2ri/5-net in S ∩ B1(0), so that the balls {Bri(g)}g∈Gi cover
S ∩ B1(0), and the balls {Bri/5(g)}g∈Gi are disjoint. Given g ∈ Gi, let Vg = V∞(g, ri), and πg be a
choice of almost-projection to Vg. Let {φg}g∈Gi be the truncated partition of unity subordinate to
{Bri(g)}g∈Gi , as per Lemma 3.1.

We now define

σi = x −
∑
g∈Gi

φg(x)πg(x − g) , (8.44)
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and set τi = σi ◦ · · · ◦ σ1, and Ti = τi(T0) ≡ τi(V∞(0, 1)).
This completes the construction of the τi and Ti. In the following subsections we prove by

induction the properties 2)-5). We can assume by inductive hypotheses that items 2)-5) hold for
scales r0, . . . , ri.

8.6.2. Item 2: Graphicality. The proof is the same as Section 7.3, except we use the β∞ instead
of β, and tilting Lemma 8.5 in place of Lemma 3.48. Let us sketch the proof. In this section
c denotes a constant depending on k, but independent of Λ, and we assume δ(k) is sufficiently
small so that c(1 + Λ)δ < ε1(k).

Fix y ∈ Ti, and we can assume y ∈ B10ri+1(g) for some g ∈ Gi+1, since otherwise σi+1 is the
identity on B2ri+1(y). If i = 0, then we have for any g̃ ∈ G1 ∩ B9r1(y) the estimates

d(g̃,V∞(0, 1)) ≤ 5β∞(0, 5) , dG(V∞(g̃, r1),V∞(0, 1)) ≤ c(k)β∞(0, 5) . (8.45)

Since T0 ≡ V∞(0, 1), we can apply the squash lemma at scale B2r1(y), then the regraphing lemma
at scale Br1(y), to deduce item 2.

Suppose i ≥ 1. By construction there is a g′ ∈ Gi so that g ∈ Bri(g
′), and a g′′ ∈ Gi−1 so that

g′ ∈ Bri−1(g
′′). Let us fix almost-projection π′′ to Vg′′ .

By tilting Lemma 8.5 and by construction, we have for any g̃ ∈ B6ri(g) the estimates

d(g̃, g′′ + Vg′′) ≤ cβ∞(g′′, 3ri−1)ri , dG(V∞(g̃, ri),Vg′′) ≤ cβ∞(g′′, 3ri−1) , (8.46)

and similarly, for any g̃ ∈ Gi+1 ∩ B9ri+1(y),

d(g̃, g′′ + Vg′′) ≤ cβ∞(g′′, 3ri−1)ri+1 , dG(V∞(g̃, ri+1),Vg′′) ≤ cβ∞(g′′, 3ri−1) . (8.47)

We can then use our inductive hypothesis, the structure of σi, and the squash lemma part C)
at scale Bri(g

′), to obtain

Ti ∩ B2ri(g
′) = graphΩ,π′′( f ) , r

−1
i || f || + Lip( f ) ≤ cβ∞(g′′, 3ri−1) , B1.5ri(g) ∩ (g′′ + Vg′′) ⊂ Ω ,

(8.48)

where c is independent of Λ. Since B6ri+1(y) ⊂ B1.1ri(g
′), we can now use the squash lemma part

B) at scale B2ri+1(y), then the regraphing lemma at scale Bri+1(y), to deduce item 2.
As before, we can apply the squash lemma part A) to obtain the estimate

||σi+1(x) − x|| ≤ c(k)δri+1 ∀x ∈ Ti . (8.49)

Moreover, part A) also gives the estimate

||(σi+1(x) − σi+1(y)) − (x − y)|| ≤ c(k)δ||x − y|| ∀x, y ∈ Ti . (8.50)

We explain. When ||x − y|| < 2ri, then we can use (8.48) and the squash lemma to obtain (8.50).
Otherwise, when ||x − y|| ≥ 2ri, then we can use (8.49) to get

||(σi+1(x) − σi+1(y)) − (x − y)|| ≤ 2cδri+1 ≤ c(k)δ||x − y|| . (8.51)

8.6.3. Item 3: bi-Hölder estimates. Let us fix an x, y ∈ B3 ∩ V∞(0, 1). Set m be the maximal
integer so that ||τi(x) − τi(y)|| ≤ 6ri for all i ≤ m. We have by estimate (8.50) the bound

||τm(x) − τm(y)|| ≥ (1 − c(k)δ)m||x − y|| , (8.52)

and so, provided 1 − c(k)δ ≥ 1/2, we have m ≤ a(10 log(6) − log(||x − y||)) for some absolute
constant a.
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Therefore, using (8.50), we have for any i ≤ m the bounds

||τi(x) − τi(y)|| ≤ (1 + cδ)m||x − y|| ≤ (1 + c(k)δ)||x − y||1−a log(1+c(k)δ), and (8.53)

||τi(x) − τi(y)|| ≥ (1 − cδ)m||x − y|| ≥ (1 − c(k)δ)||x − y||1−a log(1−c(k)δ) . (8.54)

As in Section 7.4, we can use (8.49) deduce for any i ≥ m the bound∣∣∣∣||τi(x) − τi(y)|| − ||τm(x) − τm(y)||
∣∣∣∣ ≤ c(k)δrm ≤ c(k)δ||τm(x) − τm(y)|| . (8.55)

Combining this with (8.53), (8.54), and ensuring δ(k, γ) is sufficiently small, we obtain the
required bi-Hölder estimate.

8.6.4. Item 4: bi-Lipschitz estimates. Let us assume the summability condition (2.12). The
proof is identical to Section 7.4. Fix x, y ∈ B3 ∩ V∞(0, 1), and choose m maximal so that
||τi(x) − τi(y)|| ≤ 6ri for all i ≤ m. Using (8.48) and the squash Lemma 4.2 part D), we obtain∣∣∣∣∣ ||τi+1(x) − τi+1(y)||

||τi(x) − τi(y)||
− 1

∣∣∣∣∣ ≤ c(k, ρX)β∞(τi(x), 5ri−1)α ∀i ≤ m − 1 . (8.56)

By the same computation as (7.38), (7.39), we deduce, ensuring δ(k, ρX) is sufficiently small,

e−c(k,ρX)Qα

||x − y|| ≤ ||τi(x) − τi(y)|| ≤ ec(k,ρX)Qα

||x − y|| ∀i ≤ m . (8.57)

On the other hand, again by the same argument as in Section 7.4, we have∣∣∣∣||τi(x) − τi(y)|| − ||τm(x) − τm(y)||
∣∣∣∣ ≤ c(k, ρX)δα||τm(x) − τm(y)|| ∀i ≥ m . (8.58)

Since we can clearly assume δ ≤ Q, this establishes the required bi-Lipschitz bound.

8.6.5. Item 5: covering control. By inductive hypothesis we have

dH(Ti ∩ B1+ri/2, S ∩ B1+ri/2) < ri , (8.59)

and therefore by item “graphicality” and estimate (8.37), we have

dH(Ti ∩ B1+ri/2, S ∩ B1+ri/2) ≤ c(k)δri . (8.60)

We elaborate. Given any y ∈ Ti ∩ B1+ri/2, by (8.59) and construction we can find a g ∈
Gi ∩ B6ri/5(y). Graphicality and estimate (8.37) imply that

d(y, S ) ≤ d(y, g + Vg) + dH((g + Vg) ∩ B5ri(y), S ∩ B5ri(y)) ≤ Λδri + c(k)δri . (8.61)

Conversely, given z ∈ S ∩ B1+ri/2, we can pick a g ∈ Gi ∩ Bri(z) and y ∈ Ti ∩ Bri(z). Then using
graphicality an the definition of β∞ we obtain

d(z,Ti) ≤ d(z, g + Vg) + dH((g + Vg) ∩ B2ri(y),Ti ∩ B2ri(y)) ≤ 2δri + Λδri . (8.62)

This establishes (8.60).
Now using the C0 estimate (8.49) with (8.60) we deduce

dH(Ti+1 ∩ B1+ri+1/2, S ∩ B1+ri+1/2) ≤ c(k)δri < ri+1 , (8.63)

provided δ(k) is sufficiently small. This proves item 5.
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