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Abstract. We consider the damped/driven cubic NLS equation on the
torus of a large period L with a small nonlinearity of size λ, a properly
scaled random forcing and dissipation. We examine its solutions under
the subsequent limit when first λ→ 0 and then L→∞. The first limit,
called the limit of discrete turbulence, is known to exist, and in this
work we study the second limit L → ∞ for solutions to the equations
of discrete turbulence. Namely, we decompose the solutions to formal
series in amplitude and study the second order truncation of this series.
We prove that the energy spectrum of the truncated solutions becomes
close to solutions of a damped/driven nonlinear wave kinetic equation.
Kinetic nonlinearity of the latter is similar to that which usually appears
in works on wave turbulence, but is different from it (in particular,
it is non-autonomous). Apart from tools from analysis and stochastic
analysis, our work uses two powerful results from the number theory.

1. Introduction

1.1. The setting. In this paper we continue the study of the Zakharov-
L’vov stochastic model for wave turbulence (WT), initiated in [7, 8]; see
also a survey [9]. We start by recalling the classical and the Zakharov-L’vov
stochastic settings of WT. See the introduction to [7] for more detailed
discussions of the two models.

Classical setting. Let TdL = Rd/(LZd) be the d-dimensional torus, d ≥ 2,
of period L ≥ 2. We denote by ∥u∥ the normalized L2-norm of a complex

function u on TdL, ∥u∥2
= L

−d ∫TdL ∣u(x)∣2 dx , and write the Fourier series

of u in the form

(1.1) u(x) = L−d/2∑
s∈ZdL

vse
2πis⋅x

, ZdL = L
−1Zd .

Here the vector of Fourier coefficients v = (vs)s∈ZdL is given by the Fourier

transform of u(x),

v = F(u), vs = L
−d/2 ∫

TdL
u(x)e−2πis⋅x

dx for s ∈ ZdL,

so the Parseval identity takes form ∥u∥2
= L

−d∑s∈ZdL
∣vs∣2. We will study

solutions u(t, x) whose norms satisfy ∥u(t, ⋅)∥ ∼ 1 as L → ∞. This makes
the chosen in (1.1) scaling of Fourier series convenient for our purposes.
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We consider the cubic NLS equation with modified nonlinearity

(1.2)
∂

∂t
u + i∆u − iλ (∣u∣2 − 2∥u∥2)u = 0, x ∈ TdL,

where u = u(t, x), ∆ = (2π)−2∑d
j=1(∂

2/∂x2
j) and λ ∈ (0, 1] is a small

parameter. The modification of the nonlinearity by the term 2iλ∥u∥2
u

keeps the main features of the standard cubic NLS equation, reducing some
non-crucial technicalities; see the introduction to [7].

The objective of WT is to study solutions of (1.2) under the limit L→∞
and λ→ 0 on long time intervals. There are plenty of physical works contain-
ing some different (but consistent) approaches to the limit; many references
may be found in [29, 25, 26]. Despite the strong interest in physical and
mathematical communities to the addressed questions, significant progress
in the rigorous justification of the physical predictions was achieved only
recently [23, 16, 1, 15, 5, 3, 4, 2, 6]. See e.g. the introductions to [7, 3, 6]
for discussions of the obtained results.

Zakharov-L’vov setting. When studying eq. (1.2), members of the WT
community talk about ”pumping energy to low modes and dissipating it in
high modes”. To make this rigorous, following Zakharov-L’vov [28], in the
present paper as well as in [7, 8] we consider the NLS equation (1.2) dumped
by a (hyper) viscosity and driven by a random force:

(1.3)
∂

∂t
u + i∆u − iλ (∣u∣2 − 2∥u∥2)u = −νA(u) +

√
ν
∂

∂t
η
ω(t, x).

Here ν ∈ (0, 1/2] is another small parameter, which should be properly
agreed with λ and L. The dissipative linear operator A is defined as

(1.4) A(u(x)) = L−d/2∑
s∈ZdL

γsvse
2πis⋅x

, v = F(u), γs = γ
0(∣s∣2),

where ∣s∣ stands for the Euclidean norm of a vector s and γ
0(y) is a smooth

real increasing function of y > 0, satisfying 1

(1.5) γ
0
≥ 1 and c(1 + y)r∗ ≤ γ0(y) ≤ C(1 + y)r∗ ∀ y > 0 .

The exponent r∗ > 0 and c, C are positive constants. We also assume that

all derivatives of γ
0

have at most polynomial growths at infinity.

The random noise η
ω

is given by a Fourier series

η
ω(t, x) = L−d/2∑

s∈ZdL
b(s)βωs (t)e2πis⋅x

,

1For example, if γs = (1 + ∣s∣2)r∗, then A = (1 −∆)r∗.
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where {βs(t), s ∈ ZdL} are standard independent complex Wiener processes 2

and b(x) is a Schwartz function on Rd ⊃ ZdL. 3

Solutions u(τ) of (1.3) are random processes in the space H = L2(TdL,C),
equipped with the norm ∥ ⋅ ∥. If r∗ is sufficiently big, equation (1.3) is

known to be well posed. Moreover, Ito’s formula shows that E∥u(τ)∥2
is

bounded uniformly in τ and L, ν, λ, once E∥u(0)∥2
is bounded uniformly in

these parameters, see in [7].

We will study the equation on time intervals of order ν
−1

. So it is conve-
nient to pass from t to the slow time τ = νt and write eq. (1.3) as

u̇ + iν
−1

∆u − iρ (∣u∣2 − 2∥u∥2)u = −A(u) + η̇ω(τ, x),
η
ω(τ, x) = L−d/2∑

s∈ZdL
b(s)βωs (τ)e2πis⋅x

.
(1.6)

Here ρ = λν
−1

, the upper-dot stands for d/dτ and {βs(τ), s ∈ ZdL} is another
set of standard independent complex Wiener processes. Below we use ρ, ν
and L as parameters of the equation.

In the context of equation (1.6), the objective of WT is to study its
solutions u(τ) when

(1.7) L→∞ and ν → 0,

while ρ = ρ(ν, L) is scaled appropriately, mostly paying attention to their
energy spectra

(1.8) Ns(τ) ∶= E∣vs(τ)∣2, where v(τ) = F(u(τ)).
Exact meaning of the limit (1.7) is unclear since no relation between the
parameters ν and L is postulated by the theory.

Motivated by physical works, in the present paper, as in [7, 8], we study
formal decompositions in ρ of solutions to eq. (1.6) and of their energy
spectra Ns under the limit (1.7). See the introduction to [7] for a discussion
of our motivation, and see below Section 4. In [7, 8] we understand the limit
(1.7) as

(1.9) first L→∞ and then ν → 0, or L≫ ν
−2

while ν → 0.

There we have shown that principal terms of the decomposition of Ns in ρ

have a non-trivial limiting behaviour, provided that ρ is scaled as ρ ∼ ν
−1/2

,
governed by a nonlinear wave kinetic equation (WKE) with added dissipation
and a constant forcing. The WKE coincides with that, arising in physical
works, so this result agrees well with the predictions of the WT.

2i.e. βs = β
1
s + iβ

2
s , where {βjs , s ∈ ZdL, j = 1, 2} are standard independent real Wiener

processes.
3Often it is assumed that the intensity b(x) of the noise η

ω
is non-negative, but we do

not impose this condition. Note that if b(x) ≡ 0, then our results become trivial since
below we will provide (1.3) with the zero initial conditions.
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In the present paper we are interested in the opposite order of limits,
which rarely appears in physical works:

(1.10) firstly ν → 0 and then L→∞.

Roughly speaking, our main result is that under the double limit (1.10)
the behaviour of principal terms of the decomposition in ρ for the energy
spectrum Ns is governed by a modified WKE. The latter is similar to the
WKE arising in [7, 8] and physical papers, but is different from them. The
scaling of ρ now is ρ ∼ Lχd(L), where

(1.11) χd(L) ≡ 1 if d ≥ 3 and χd(L) = (lnL)−1/2
if d = 2.

To the best of our knowledge this WKE did not appear in the literature
before.

For the proof we start with the result obtained in [21, 17], where the
limiting as ν → 0 behaviour of equation (1.6) is examined (while L and
ρ are kept fixed). Then we pass to the limit as L → ∞, following the
approach of [7, 8] and using the developed there tools, such as a specific
Feynman diagram presentation. Another key ingredient of the proof is an
obtained in [10] refinement of the Heath-Brown circle method for quadratic
forms [14], and certain upper bounds for the number of integer points on
intersections of quadrics. In the next subsections we describe our results
and methods in more detail.

In [20] a similar result concerning the iterated limit (1.10) was found

heuristically, however there ρ was scaled as ρ ∼
√
L. The present paper

shows that the correct scaling is different: ρ ∼ Lχd(L).
Similar regimes, when L→∞ slowly while ν > 0 fast decays to zero, were

studied in [16, 1]. However the elegant description of the limit, obtained
there, is far from the prediction of WT. The works [16, 1] should rather
be regarded as a kind of averaging (similar to that of Krylov–Bogolyubov)
since the considered there time scale is much shorter than the characteristic
time scale of WT. Note that in [1] a similar to ours [10] refinement of the
Heath-Brown method also is crucially used.

1.2. The limit of discrete turbulence. We first consider the limit

(1.12) ν → 0 while L and ρ stay fixed.

It is known as the limit of discrete turbulence (see [25, Section 10]) and has
been successfully studied in [21, 17]. To explain the result let us take the
Fourier transform of equation (1.6):

v̇s − iν
−1∣s∣2vs + γsvs = iρL−d(∑1,2,3

δ
′12
3s v1v2v̄3 − ∣vs∣2vs) + b(s)β̇s(1.13)

for s ∈ ZdL. Here, as it is common in WT, vj abbreviates vsj , ∑1,2,3 stands

for ∑s1,s2,s3∈ZdL
, and

(1.14) δ
′12
3s = δ

′s1s2
s3s ∶= { 1, if s1 + s2 = s3 + s and {s1, s2} ≠ {s3, s} ,

0, otherwise.



THE LARGE-PERIOD LIMIT 5

Note that

(1.15) if δ
′12
3s = 1, then {s1, s2} ∩ {s3, s} = ∅.

We pass to the interaction representation,

(1.16) as(τ) = vs(τ)e−iν
−1
τ ∣s∣2

, s ∈ ZdL,

and denote

(1.17) ω
12
3s = ω

s1s2
s3s ∶= ∣s1∣2 + ∣s2∣2 − ∣s3∣2 − ∣s∣2 = −2(s1 − s) ⋅ (s2 − s),

where the last equality holds if δ
′12
3s = 1 since then s3 = s1 + s2 − s. Then

equation (1.13) takes the form

ȧs + γsas = iρYs(a, ν−1
τ) + b(s)β̇s, s ∈ ZdL,

Ys(a, t) = L−d(∑1,2,3
δ
′12
3s a1a2ā3e

itω
12
3s − ∣as∣2as),

(1.18)

where {βs} is yet another set of standard independent complex Wiener pro-
cesses (and, again aj stands for asj ). Note that the energy spectra of solu-

tions to equations (1.13) and (1.18) coincide:

(1.19) Ns(τ) = E∣vs(τ)∣2 = E∣as(τ)∣2.
Sometimes we will write Ns and as as Ns(τ ; ν, L) and as(τ ; ν, L). The
limiting dynamics in equation (1.18) under the limit (1.12) is governed by
the effective equation of discrete turbulence. The latter has the form (1.18)
with the modified nonlinearity Y

res
, in which the sum is taken only over

resonant vectors s1, s2, s3:

ȧs + γsas = iρY
res
s (a) + b(s)β̇s , s ∈ ZdL ,

Y
res
s (a) = L−d(∑

1,2,3
δ
′12
3s δ(ω12

3s)a1a2ā3 − ∣as∣2as) .
(1.20)

Here δ(ω12
3s) = 1 if ω

12
3s = 0 and δ(ω12

3s) = 0 otherwise. The following result is
proven in [21, 17].

Theorem 1.1. If d ≥ 1 and r∗ ≥ d/2+ 1, then equations (1.18) and (1.20)
are well posed. Under the limit (1.12), on time intervals of order 1,

i) a solution a
ν(τ) of (1.18) converges in distribution to a solution a

0(τ) of
(1.20) with the same initial data at τ = 0;

ii) the energy spectrum E∣aνs(τ)∣2 = Ns(τ ; ν, L) converges to the energy spec-

trum E∣a0
s(τ)∣2.

If b(x) > 0 for all x, then it is known that under the assumptions of
Theorem 1.1, equations (1.18) and (1.20) are mixing, so they have unique
stationary measures. Then in [21, 17] it is also proven that the assertions

of the theorem remain true if a
ε(τ) = Ns( and a

0(τ) denote stationary
solutions of equations (1.18) and (1.20).
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1.3. The main result. In view of Theorem 1.1, to understand behaviour
of the energy spectrum (1.19) of equation (1.18) under the limit (1.10), it

remains to study that of the energy spectrum E∣as(τ ;L)∣2 of the effective
equation (1.20) under the limit L → ∞. Instead, following the logic of
[7], we study the energy spectrum corresponding to a principal part of a
decomposition in ρ for the solutions as(τ ;L) of equation (1.20).

Quasisolutions and their energy spectra. To simplify presentation we as-
sume that initially the system was at rest, i.e. supplement equation (1.20)
with the zero initial condition

(1.21) as(0) = 0 ∀s ∈ ZdL.

We formally decompose the corresponding solution of (1.20) in ρ,

(1.22) a(τ) = a
(0)(τ) + ρa(1)(τ) + ρ2

a
(2)(τ) + . . . , a

(k)(0) = 0,

a
(k)(τ) = a

(k)(τ ;L). The process a
(0)(τ) satisfies the linear equation

ȧ
(0)
s + γsa

(0)
s = b(s)β̇s , s ∈ ZdL .

So it is Gaussian,

(1.23) a
(0)
s (τ) = b(s)∫

τ

0
e
−γs(τ−l)dβs(l),

and its components {a(0)s } are independent. The process a
(1)

satisfies

ȧ
(1)
s + γsa

(1)
s = iY

res
s (a(0)) ,

so that
(1.24)

a
(1)
s (τ) = iL−d∫

τ

0
e
−γs(τ−l) (∑

1,2,3

δ
′12
3s δ(ω12

3s)(a
(0)
1 a

(0)
2 ā

(0)
3 ) − ∣a(0)s ∣2a(0)s )(l)dl

is a Wiener chaos of third order (see [18]). Similar for n ≥ 1,

a
(n)
s (τ) = iL−d ∑

n1+n2+n3=n−1

∫
τ

0
e
−γs(τ−l)

×(∑
1,2,3

δ
′12
3s δ(ω12

3s)(a
(n1)
1 a

(n2)
2 ā

(n3)
3 ) − a

(n1)
s a

(n2)
s ā

(n3)
s ) (l) dl,

(1.25)

is a Wiener chaos of order 2n + 1.
Next we consider the quadratic truncation of the series (1.22),

(1.26) As(τ ;L) = As(τ) = a
(0)
s (τ) + ρa(1)s (τ) + ρ2

a
(2)
s (τ) ,

which we call the quasisolution 4 of the effective equation (1.20), (1.21). It is
traditional in WT to analyse the quasisolution instead of the solution itself,
postulating that the former well approximates the latter; see introduction to

4by analogy with the quasimodes in the spectral theory of the Shrödinger operator.
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[7] for a discussion. The goal of the present paper is to study the behaviour
of the energy spectrum of A(τ),
(1.27) ns,L(τ) = E∣As(τ ;L)∣2, s ∈ ZdL,

as L → ∞. Our results, formulated below, show that under this limit the
energy spectrum ns,L(τ) has a non-trivial behaviour (i.e. stays finite and

behaves differently from E∣a(0)s ∣2) only if ρ ∼ Lχd(L), where χd is defined
in (1.11). Accordingly, from now on we assume that

(1.28) ρ = εLχd(L),
where 0 < ε ≤ 1/2 is a small but fixed constant (see a few lines below for its
discussion). Then the energy spectrum ns,L expands as

(1.29) ns,L(τ) = n
(0)
s,L(τ) + ε n

(1)
s,L(τ) + ε

2
n
(2)
s,L(τ) + ε

3
n
(3)
s,L(τ) + ε

4
n
(4)
s,L(τ),

s ∈ ZdL, where

(1.30) n
(k)
s,L(τ) = (Lχd(L))k ∑

k1+k2=k
0≤k1,k2≤2

Ea(k1)s (τ)ā(k2)s (τ) .

In particular, by (1.23)

(1.31) n
(0)
s,L(τ) = E∣a(0)s (τ ;L)∣2 = b(s)2

γs
(1 − e−2γsτ), s ∈ ZdL,

and a simple computation shows that n
(1)
s,L(τ) ≡ 0. For higher order terms

we prove that

(1.32) n
(2)
s,L ∼ 1 and ∣n(3)s,L∣, ∣n

(4)
s,L∣ ≲ 1 as L→∞ uniformly in τ ≥ 0;

see a discussion in the next subsection. Thus, the parameter ε measures the
properly scaled amplitude of the solutions, and indeed it should be small for

the methodology of WT to apply. Then, the term ε
2
n
(2)
s,L is the crucial non-

trivial component of the energy spectrum ns,L while the terms ε
3
n
(3)
s,L, ε

4
n
(4)
s,L

are perturbative. This well agrees with the prediction of physical works
concerning various models of WT.

Wave kinetic equation. In view of (1.32), to study the limiting as L→∞
behaviour of the energy spectrum ns,L(τ) up to an error of size ε

3
it remains

to investigate the behaviour of its principal component n
(0)
s,L(τ)+ ε

2
n
(2)
s,L(τ).

We show that the latter is governed by a WKE. To state the result let us
consider the resonant quadric

(1.33) Σs = {(s1, s2) ∈ R2d
∶ (s1 − s) ⋅ (s2 − s) = 0},

cf. (1.17), and a measure µ
Σs on it, given by

(1.34) µ
Σs(ds1ds2) = (∣s1 − s∣2 + ∣s2 − s∣2)

−1/2
ds1ds2 ∣Σs ,
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where ds1ds2 ∣Σs denotes the volume element on Σs, corresponding to the

standard Euclidean structure on R2d
.

Let us consider the following non-autonomous cubic wave kinetic integral

operator K(τ), for any τ ≥ 0 sending a function ys, s ∈ Rd, to the function
Ks(τ)y, defined as
(1.35)

Ks(τ)y = 4Cd ∫
Σs

µ
Σs(ds1ds2)(Z4

y1y2y3+Z
3
y1y2y4−Z

2
y1y3y4−Z

1
y2y3y4).

Here yj ∶= ysj with s4 ∶= s and s3 ∶= s1 + s2 − s, Cd is the constant from

Theorem B below, the kernels Zj
= Zj(τ ; s1, s2, s3, s4) are given by formulas

(4.14), (4.15) and satisfy 0 ≤ Zj(τ) ≤ 1. When τ → ∞ the operator K(τ)
exponentially fast converges to a limiting kinetic integral operator K(∞),
given by (1.35) with Zj

replaced by (γs1 + γs2 + γs3 + γs4)
−1

for all j:
(1.36)

Ks(∞)y = 4Cd ∫
Σs

µ
Σs(ds1ds2)

γs1 + γs2 + γs3 + γs4
(y1y2y3+ y1y2y4− y1y3y4− y2y3y4).

It is similar to the standard four-waves kinetic operator of WT (e.g. see

in [25]), which has the form (1.35) with Zj
≡ const, but still is different

from the latter since K(∞) depends on the spectrum {γs} of the dissipation
operator A.5

For r ∈ R we denote by Cr(Rd) a space of continuous complex functions

on Rd with finite norm

(1.37) ∣f∣r = sup
z∈Rd

∣f(z)∣⟨z⟩r, where ⟨z⟩ = max(∣z∣, 1).

In Section 5, following [7], we show that if r > d, then for any τ the oper-

ator K(τ) defines a continuous 3-homogeneous mapping K(τ) ∶ Cr(Rd) ↦
Cr+1(Rd), and for any y ∈ Cr(Rd) the curve τ ↦ K(τ)(y) is Hölder contin-

uous in Cr(Rd).
Now consider the following damped/driven non-autonomous WKE

(1.38) żs(τ) = −2γszs + ε
2
Ks(τ)(z) + 2b(s)2

, z(0) = 0,

where τ ≥ 0 and s ∈ Rd. In Section 5 we prove that for small ε it has a

unique solution zs(τ), which can be written as zs(τ) = z
0
s(τ) + ε

2
z
1
s(τ, ε),

where z
0
s, z

1
s ∼ 1 and z

0
s solves the linear equation (1.38)∣ε=0. It is easy to

see that z
0
s equals the component n

(0)
s,L of the energy spectrum ns,L, given by

(1.31), and we prove that z
1
s is ε

4
-close to n

(2)
s,L uniformly in τ . Then, in view

of (1.32), the energy spectrum ns,L is ε
3
-close to the solution zs(τ).

Below we denote by C
#(s) various positive functions of s which decay

as ∣s∣ → ∞ faster than any negative degree of ∣s∣. These functions never

5Earlier the kinetic operator K(∞) was heuristically obtained in [20].
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depend on L, ε and τ . By C
#(s; p) we denote functions C

#(s) depending
on a parameter p.

Theorem A (Main theorem). Let d ≥ 2. Then the energy spectrum
ns,L(τ) of the quasisolution As(τ) of (1.20), (1.21) satisfies the estimate

ns,L(τ) ≤ C
#(s) and is ε

3
-close to the solution zs(τ) of WKE (1.38).

Namely, under the scaling ρ = εLχd(L), for any r there exists εr ∈ (0, 1/2]
such that for 0 < ε ≤ εr we have

(1.39) ∣n⋅,L(τ) − z⋅(τ)∣r ≤ Crε3
∀ τ ≥ 0,

if L ≥ ε
−2

for d ≥ 3, and L ≥ e
ε
−1

for d = 2.

See Theorem 5.9. Since the energy spectrum ns is defined for s ∈ ZdL with
finite L, then the norm in (1.39) is understood as ∣f∣r = supz∈ZdL ∣f(z)∣⟨z⟩r.

Remark 1.2. If d = 2, the lower bound L ≥ e
ε
−1

can be relaxed in the
following sense. In Appendix D we explain that there is a bounded correction
f(τ, L) which can be written explicitly, such that

(1.40)
»»»»»»n⋅,L(τ) − z⋅(τ) −

f(τ, L)
lnL

»»»»»»r ≤ Crε
3

∀ τ ≥ 0,

if L ≥ ε
−6

.

In Lemma 5.6 we show that for ε≪ 1 equation (1.38) ∣ τ=∞ has a unique

steady state z
ε
∈ Cr(Rd). It is close to the unique steady state z

0
s ∶= b(s)2/γs

of the linear equation (1.38)∣ε=0 and is asymptotically stable. Jointly with
Theorem A this result implies the following asymptotic in time behaviour
of the energy spectrum ns,L(τ):

(1.41) ∣n⋅,L(τ) − z
ε
⋅ ∣r ≤ Cr(e−τ + ε3), ∀ τ ≥ 0,

if L is as in Theorem A, see (5.19).

The cases d ≥ 3 and d = 2 are similar, but should be treated separately.
To shorten the presentation we give a detailed proof of Theorem A only for
d ≥ 3, when

χd = 1 and ρ = εL.

The proof for d = 2 can be obtained by a simple modification of the argument
for d ≥ 3. We sketch it in Appendix D. So from now on, except Section 2
which gives a brief account of the method of Feynman diagrams from [7, 8],
we assume that d ≥ 3.

In paper [7] we examine the behaviour of the energy spectrum ns,L,ν(τ)
of a quasisolution to equation (1.18) under the limit (1.9), assuming that

ρ = εν
−1/2

. 6 We got there a similar result which states that n⋅,L,ν(τ) is

ε
4
-close to a solution of the damped/driven four-wave kinetic equation as in

6In [7] the notation is slightly different: there we set ρ = ε
1/2
ν
−1/2

.



10ANDREY DYMOV, SERGEI KUKSIN, ALBERTO MAIOCCHI, AND SERGEI VLĂDUŢ

[25, Section 6.9.1] (in contrast with eq. (1.38), the kinetic nonlinearity there
does not depend on the dissipation A in equation (1.3)).

What next? In this work and in [7] we obtained wave kinetic limits for the
energy spectra of quasisolutions for the NLS equation (1.6) under limit (1.10)

with the scaling ρ = εLχd(L) and limit (1.9) with the scaling ρ = εν
−1/2

.

Our next goal is to show that an exact solution a⋅(τ) of eq. (1.18) is ε
3
-

close to its quasisolution A⋅(τ) (uniformly in L ≥ 2 and τ ∈ [0, T ], for any

T > 0). And that a solution of eq. (1.6) is ε
3
-close to the quasisolution of the

equation (uniformly in ν, L and τ ∈ [0, T ], if L ≥ ν
−2−γ̄

, γ̄ > 0). This would
imply that the energy spectra of solutions of eq. (1.6) under limit (1.10) and

limit (1.9) are ε
3
-close to solutions of the two WKE (namely, eq. (1.38) and

the WKE from [7]). To prove this, say, for a solution a⋅(τ) of eq. (1.18)
we consider the equation on any fixed time-interval [0, T ] and regard it as
a nonlinear equation FT (a⋅(⋅)) = 0. Then the quasisolution A satisfies the

equation with a disparity ≲ ε
3
. By analogy with some stochastic problems

for nonlinear PDEs, recently successfully resolved by the KAM-techniques
(e.g. see [19]), we believe that KAM also applies to the equation FT = 0. Its

application would imply that a is ε
3
-close to A, as stated. We also believe

that analysis of the KAM-iterations which build a from A will show that the
energy spectrum of the solution a⋅(τ) of eq. (1.18) under the limit L → ∞
converges to a solution of the WKE (1.38). A similar logic should apply to
the energy spectra of solutions for eq. (1.6) under the limit (1.9).

1.4. Outline of the proof: Feynman diagrams and number theory.

It is well understood that to write down formulas for the terms n
(k)
s,L of

decompositions as (1.29) it is instrumental to use the language of Feynman
diagrams. In application to similar problems this goes back at least to the
works [11, 12], and then was successfully used for the purposes of WT in
[23, 5, 3, 4, 2, 6] and other papers. We use this techniques in the form

developed in [8] which gives a convenient presentation of the terms n
(k)
s,L (see

(1.30)). Namely, by iterating the Duhamel formula (1.25) we express a
(n)(τ)

in terms of the Gaussian processes a
(0)
s , and next evoking the Wick formula

for moments of a
(0)
s write the terms n

(k)
s,L as multiple sums. Then the just

mentioned diagram techniques allows to ‘integrate’ these sums. That is, to

write any n
(k)
s,L as a sum over an intersections of k−1 quadrics in (ZdL)k in a

form, convenient to pass to a limit as L→∞. The term n
(2)
s,L is a sum over a

single quadric and may be analised without the diagram’s machinery. This
and some other similar terms play a leading role in our analysis and dictate
the form of the limiting WKE. The terms may be written as sums

(1.42) Gs(τ, L) = L2(1−d) ∑
z1,z2∈Z

d
L∶

z1⋅z2=0, z1,z2≠0

Φs(τ ; z1, z2),
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well known in works on WT. To study them under the limit L → ∞ we
make use of the celebrated circle method of Heath-Brown [14]. Since the
result of [14] does not completely fit our purposes, we specified it in the
accompanying paper [10] (also see [1, Section 5] for another specification of
the Heath-Brown method, used for the purposes of WT). This implies

Theorem B. For any L ≥ 2,

»»»»»»Gs(τ, L) − Cd ∫Σ0

Φs(τ ; z1, z2)µΣ0(dz1dz2)
»»»»»» ≤ Kd

∥Φs(τ ; ⋅)∥N1,N2

Ld−5/2
,

where Σ0 = {z1, z2 ∈ Rd ∶ z1 ⋅ z2 = 0}, µ
Σ0 is the measure on it, defined by

(1.34) with s = 0, Cd is a number-theoretical constant, satisfying Cd ∈ (1, 1+
2

2−d), the norm ∥ ⋅ ∥N1,N2
is defined in (3.3) and the constants N1, N2 ∈ N

depend only on d.

In particular, the term n
(2)
s,L(τ) admits a limit when L→∞.

The terms n
(3)
s,L and n

(4)
s,L in (1.29) correspond to multiple intersections

of quadrics, and the Heath-Brown method does not apply to them. Still
the diagram technique allows to write these terms in a convenient compact
form. Then next in Section 3 and Appendix A we use Theorem B jointly
with another powerful result from the number theory – Bezout’s theorem
for finite fields – to prove 7

Theorem C. For k = 3, 4, ∣n(k)s,L(τ)∣ ≤ C
#(s).

Theorems B and C imply (1.32). So to establish Theorem A it remains to

show that the term n
≤2
s,L(τ) ∶= n

(0)
s,L(τ)+ε

2
n
(2)
s,L(τ) (or equivalently its limit as

L→∞, provided by Theorem B) can be well approximated by a solution of
the WKE (1.38). To this end, following the lines of [7] (and the logic of the

Krylov–Bogolyubov averaging) we consider increments ∆n
≤2
s,L ∶= n

≤2
s,L(τ +

θ) − n
≤2
s,L(τ) and express them through the processes a

(0)
m via the Duhamel

formula (1.25) and the Wick theorem. Then the increments approximately
take the form (1.42), and we use Theorem B to show that they are close to
the r.h.s. of the WKE, multiplied by θ.

Although the computation of the increments ∆n
≤2
s,L is similar to that in

[7], now a mechanism leading to a WKE is rather different. Namely, in

[7] components of the terms n
(k)
s,L are approximated by formulas analogous

to (1.42), where the summation over the lattice (Zd)k = {z} is replaced

by an integration over Rdk. The integrals in those formulae involve fast
oscillating Gaussian kernels. The zero sets of these kernels define quadrics,
related to the quadrics {(z1, z2) ∶ z1 ⋅ z2 = 0} in (1.42). Due to the fast

oscillations a crucial component of the increments ∆n
≤2
s,L is given by the

7In fact, in Section 3 we prove an abstract result, more general than the theorem below;
see there Theorem 3.2.
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terms, associated with short-range correlations in τ of the processes a
(0)
m (τ).

On the contrary, in the present situation a crucial contribution is given by

other terms, associated with long-time correlations of the processes a
(0)
m (τ),

while the short-range correlations only give a small correction. As the result,
the kinetic integral in the WKE (1.38) depends on the viscosity operator A,
while that in the WKE in [7] does not.

Finally we note that, as we explain in Section 3.2, it is plausible that
Theorem C holds for all k ≥ 3. If so, then for ρ = εL the energy spectrum of
a solution a(τ), written as (1.22), defines a formal series in ε, uniformly in
L ≥ 2. Then the partial sums of this series, made by the terms of order ε

m
,

m ≤ M , with any fixed M ≥ 2, also satisfy Theorem A with the constants
Cr, depending on M . Cf. Conjecture 3.8.

2. Series expansion: approximating equation and diagrammatic
representation for solutions

In this section, assuming that d ≥ 2, we approximate processes (1.25)

by more convenient processes a
(n)

, and then obtain a compact and instru-
mental representation for their correlations in terms of Feynman diagrams
(see Lemma 2.2), following [8, Sections 3-5]. This representation (as well as
its analogy in [7, 8]) is used to estimate various disparity terms, related to
quasisolutions A(τ ;L), see (1.26), and to their energy spectra.

Our presentation is sketchy, but missing details may be found in [8]. For
a general discussion of the language of Feynman diagrams see [18].

2.1. Approximate a-equation. We start by considering an approximation

of the original equation (1.20) by an equation, where the term L
−d∣as∣2as is

removed:

ȧs + γsas = iρYs(a) + b(s)β̇s , s ∈ ZdL ,

Ys(a) = L−d ∑
1,2,3

δ
′12
3s δ(ω12

3s)a1a2ā3 .
(2.1)

Similar to processes as we decompose

(2.2) a = a
(0)
+ ρa

(1)
+ . . . .

Here a
(0)

= a
(0)

and the processes a
(n)
s (τ) with n ≥ 1 are built by the

recursive formula (1.25) with the term a
n1
s a

n2
s ā

n3
s being dropped. I.e. with

the nonlinearity Y
res
s replaced by the Ys above.

Results of [8] together with Theorem 3.2 below (which is an abstract
version of Theorem C from the introduction) imply

Proposition 2.1. For all m,n ≥ 0, satisfying N ∶= m + n ≤ 4,

(2.3) ∣Ea(m)
s (τ1)ā(n)s (τ2) − Ea(m)

s (τ1)ā(n)s (τ2)∣ ≤
L
−N−d+1

χd(L)N−1
C

#(s;n,m) ,

uniformly in τ1, τ2 ≥ 0.
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We prove the proposition in Appendix C for d ≥ 3 and discuss an adap-
tation of the proof to the case d = 2 in Appendix D. Doing that we use
the relation N ∶= m + n ≤ 4 only to apply Theorem 3.2 (or Theorem D.2 if
d = 2). So if the assertion (3.9) of the latter theorem holds for larger N ’s,
then for those N ’s estimates (2.3) remains true as well (we believe that (3.9)
is fulfilled for all N , see in Section 3.2).

Relations (2.3) imply that moments of processes a
(m)
s (τ) well approximate

those of processes a
(m)
s (τ) as L → ∞. Accordingly, from now on we will

mostly study processes as(τ) and their decompositions (2.2).

2.2. Diagrams for solutions. For what follows it is convenient to re-write
operator Y from (2.1), using a fictitious index s4:

Ys(a) = L−d ∑
1,2,3,4

δ
′12
34 δ(ω12

34)δs4 a1a2ā3 ,

where δ
s
4 is the Kronecker symbol. Then analogous of the expression (1.25)

for a
(m)

, m ≥ 1, takes the form

a
(m)
s (τ) = ∑

m1+m2+m3=m−1

i∫
τ

0
dl e

−γs(τ−l)

L
−d ∑

1,2,3,4

δ
′12
34 δ(ω12

34) δs4(a
(m1)
1 a

(m2)
2 ā

(m3)
3 )(l) .

(2.4)

We will call the objects as those in the r.h.s. of (2.4) sums, despite they
involve integrating in dl. The r.h.s. of (2.4) contains several sums, corre-
sponding to all admissible choices of numbers m1,m2,m3.

We apply Duhamel’s formula (2.4) to the terms a
(mi)
si (l) in the right-hand

side of (2.4) with mi > 0, and iterate the procedure till a
(m)
s (τ) is expressed

through the processes a
(0)

and ā
(0)

. Then a
(m)
s becomes represented as a

finite sum of sums; we denote such sums by Is. Below we will associate with
each sum Is an appropriately constructed diagram D. Thus we will write

a
(m)
s (τ) as

(2.5) a
(m)
s (τ) = ∑

D∈Dm

Is(D; τ),

where Dm is a set of all diagrams, corresponding to the just explained repre-

sentation of a
(m)

via the processes a
(0)

and ā
(0)

. Similarly by Dn we denote

the set of diagrams, parametrizing the terms in the sum, representing ā
(n)(τ)

in a form, analogous to (2.5): ā
(n)
s (τ) = ∑D̄∈Dm

Is(D̄; τ).

2.2.1. Construction of the sets of diagrams Dm and Dn. We start with dis-
cussing the set D2 and the sums Is(D) with D ∈ D2.

When iterating the Duhamel formula (2.4) (or its complex conjugation)
for a j-th time, we will denote the corresponding time l ∈ [0, τ] by lj and
will write the set of indices {s1, s2, s3, s4} as {ξ2j−1, ξ2j , σ2j−1, σ2j}, where we
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a)

c
(2)
0

c
(1)
1 c

(0)
2 c̄

(0)
1 w̄2

c
(0)
3 c

(0)
4 c̄

(0)
3 w̄4

b)

c
(2)
0

c
(0)
1 c

(1)
2 c̄

(0)
1 w̄2

c
(0)
3 c

(0)
4 c̄

(0)
3 w̄4

c)

c
(2)
0

c
(0)
1 c

(0)
2 c̄

(1)
1 w̄2

c
(0)
3 w4 c̄

(0)
3 c̄

(0)
4

Figure 1. The set of diagrams D2.

enumerate by ξi the indices of non-conjugated variables a
(k)
s′

in (2.4) and by

σi – those of conjugated variables ā
(n)
s′′

. We write the corresponding fictitious
index s4 as σ2j if we apply (2.4), or as ξ2j if we apply the complex conjugation
of (2.4). More precisely, when applying (2.4) we denote s1 = ξ2j−1, s2 = ξ2j ,
s3 = σ2j−1 and s4 = σ2j , and when applying its complex conjugation, we
write s1 = σ2j−1, s2 = σ2j , s3 = ξ2j−1 and s4 = ξ2j . We will abbreviate

(2.6) δj = δ
′ξ2j−1ξ2j
σ2j−1σ2j and ωj = ω

ξ2j−1ξ2j
σ2j−1σ2j , j ≥ 1,

(these terms correspond to δ
′12
34 and ω

12
34 in (2.4)). We also set

(2.7) ξ0 = σ0 ∶= s.

Applying (2.4) to a
(2)
s and using the notation above with j = 1 we find

a
(2)
s (τ) = a(2)ξ0 (τ) = ∑

m1+m2+m3=1

i∫
τ

0
dl1 e

−γξ0(τ−l1)

L
−d ∑

ξ1,ξ2,σ1,σ2

δ1 δ(ω1) δξ0σ2(a
(m1)
ξ1

a
(m2)
ξ2

ā
(m3)
σ1 )(l1) .

(2.8)

Let us consider the summand with m1 = m2 = 0 and m3 = 1. Applying

the conjugated formula (2.4) to ā
(1)
σ1 and using the introduced notation with

j = 2 we get

ā
(1)
σ1 (l1) = − i∫

l1

0
dl2 e

−γσ1(l1−l2)

L
−d ∑

ξ3,ξ4,σ3,σ4

δ2 δ(ω2) δσ1ξ4 (a
(0)
ξ3
ā
(0)
σ3 ā

(0)
σ4 )(l2) .

(2.9)

Inserting (2.9) into the summand in (2.8) with m1 = m2 = 0 and m3 = 1, we
get a sum Is(D; τ) which we associate with the diagram D from fig. 1(c);
further on we will denote this diagram by D

c
. The non-conjugated vertices

c
(k)
i of the diagram are associated with the variables a

(k)
ξi

in (2.8), (2.9);

the corresponding to them indices are ξi. The conjugated vertices c̄
(n)
j are

associated with the variables ā
(n)
σj and the corresponding indices are σj . In

particular, the root c
(2)
0 is associated with a

(2)
ξ0

= a
(2)
s and the corresponding
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index is ξ0. In the notation c
(k)
i and c̄

(n)
j we sometimes omit the upper

indices k and n which we call the degrees of the vertices c
(k)
i , c̄

(n)
j . The

vertices w̄2 and w4 are called conjugated (non-conjugated) virtual vertices
and the corresponding indices are σ2 and ξ4; these vertices are associated

with the Kronecker symbols δ
ξ0
σ2 and δ

σ1
ξ4

in (2.8) and (2.9). Vertices which
are not virtual are called real. Every edge of the diagram couples a non-

conjugated (conjugated) vertex c
(k)
i (c̄

(k)
i ) of positive degree k ≥ 1 with a

conjugated (non-conjugated) virtual vertex w̄i′ (wi′). It is associated with
an application of formula (2.4) (or its complex conjugation) to the variable

a
(k)
ξi

(or ā
(k)
σi ), corresponding to the vertex c

(k)
i (or c̄

(k)
i ).

The set of four vertices

(2.10) c2j−1, c2j , c̄2j−1, w̄2j or c2j−1, w2j , c̄2j−1, c̄2j

(in dependence whether the virtual vertex is conjugated or not) to which
correspond the indices ξ2j−1, ξ2j , σ2j−1, σ2j is called the j-th block ; the dia-
gram D

c
has two blocks. The index i of a virtual vertex wi (w̄i) is always

pair, i = 2j. Each block corresponds to an application of formula (2.4) (or
its complex conjugation) to its parent, i.e. to the vertex of positive degree
coupled with the virtual vertex of the block. The virtual vertex is conju-
gated if the parent is non-conjugated and the other way round. The time
variable lj is associated with the j-th block.

The leaves are the vertices of zero degree, that is, the vertices c
(0)
i and

c̄
(0)
j .

The diagrams from fig. 1(a,b) correspond to the summands in (2.8) with
m1 = 1, m2 = m3 = 0 and m1 = m3 = 0, m2 = 1; they are constructed
by the same rules as the diagram D

c
. The three diagrams from fig. 1 form

the set D2. The set of diagrams D2, corresponding to ā
(2)
s (τ), is obtained

by conjugating the vertices in the three diagrams above and re-ordering the
elements of each block in such a way that the pair of non-conjugated vertices
is followed by the pair of conjugated vertices, i.e. the blocks have the form
(2.10).

The sets Dm and Dn with arbitrary m,n ≥ 0 and the diagrams which

are their elements, are constructed similarly. Namely, the sets D0 and D0

are trivial – they contain one diagram each, made by the root c
(0)
0 (or c̄

(0)
0 ).

The sets D1 and D1 also contain only one diagram each; e.g. the diagram

in D1 consists of the root c
(0)
1 , joint by an edge with w̄2 in the only block

B1 = (c(0)1 , c
(0)
2 , c̄

(0)
1 , w̄2). Arbitrary sets Dm and Dn may be constructed by

induction. Indeed, consider a process a
(m+1)(τ) with m ≥ 1 and apply to it

(2.4) with m ∶= m+ 1. In the r.h.s. of (2.4) the sum in m1,m2,m3 contains
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(m + 2)(m + 1)/2 terms. Consider any one of them,

(2.11) i∫
τ

0
dl e

−γs(τ−l)L−d ∑
1,2,3,4

δ
′12
34 δ(ω12

34) δs4(a
(m1)
1 a

(m2)
2 ā

(m3)
3 )(l),

draw the block B1 = (c(m1)
1 , c

(m2)
2 , c̄

(m3)
1 , w̄2), and join w̄2 by an edge with

the root c
(m+1)
0 . Next consider the sets Dm1

,Dm2
,Dm3

and do the following:
a) Firstly take Dm1

. If m1 = 0, do nothing. Otherwise choose any diagram

D
1
∈ Dm1

, place it below c
(m1)
1 and identify its root with c

(m1)
1 . Do this for

each diagram in Dm1
, thus obtaining ∣Dm1

∣ diagrams with roots in c
(m+1)
0 .

b) Then consider the set Dm2
and do the same with the just obtained

∣Dm1
∣ diagrams, identifying their roots with the vertex c

(m2)
2 , and next –

the set Dm3
, identifying the roots with c̄

(m3)
3 .

c) It remains to convert thus obtained ∣Dm1
∣ × ∣Dm2

∣ × ∣Dm3
∣ diagrams

to elements of the set Dm+1 by re-numerating properly their blocks and
accordingly re-numerating the vertices in the blocks as in (2.10). Do this by
numerating the blocks from top to the bottom and from left to right, as in
the examples above with m = 2.

d) Doing the same for all blocks, corresponding to all possible (m+2)(m+
1)/2 terms (2.11), get the diagrams, forming the set Dm+1.

The set Dm+1 is constructed inductively in the same way.

For further needs we note that due to the factors δ
′12
34 and δ

s
s4 in (2.4), the

indices ξi, σj entering the formula for the sums Is(D) from (2.5) satisfy the
relations

1) δ′ξ2j−1ξ2jσ2j−1σ2j = 1 ∀j,

2) indices ξi, σj corresponding to adjacent in D vertices are equal.
(2.12)

2.3. Feynmann diagrams for expectations. The main objects we are

interested in are the correlations Ea(m)
s1 (τ1)ā(n)s2 (τ2). It can be shown that

they vanish if s1 ≠ s2.8 To represent an expectation Ea(m)
s (τ1)ā(n)s (τ2) we

consider the set of diagrams

Dm ×Dn ∶= {D1
⊔ D̄

2
∶ D

1
∈ Dm, D̄

2
∈ Dn}.

Here a diagram D
1⊔D̄2

is obtained by drawing D
1

and D̄
2

side by side, where

the blocks of D
1

are enumerated from 1 to m, while those of D̄
2

together with
the corresponding time variables lj are enumerated from j = m+1 to m+n.
The vertices together with the corresponding indices ξ2j−1, ξ2j , σ2j−1, σ2j are

enumerated accordingly, see fig. 2. The diagram D
1⊔ D̄

2
has two roots c

(m)
0

and c̄
(n)
0 . For any D = D

1 ⊔ D̄
2

consider

Is(D; τ1, τ2) = Is(D1
; τ1)Is(D̄2

; τ2),
8As well vanish the correlations Ea(m)

s1 (τ1)a(n)s2 (τ2) and Eā(m)
s1 (τ1)ā(n)s2 (τ2) for all s1, s2.
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a)

c
(2)
0 c̄

(0)
0

c
(1)
1 c

(0)
2 c̄

(0)
1 w̄2

c
(0)
3 c

(0)
4 c̄

(0)
3 w̄4

b)

c
(1)
0

w̄2c̄
(0)
1c

(0)
2c

(0)
1

c̄
(2)
0

c
(1)
3 w4 c̄

(0)
3 c̄

(0)
4

c
(0)
5 c

(0)
6 c̄

(0)
5 w̄6

Figure 2. A diagram from the set a) D2 ×D0 and b) D1 ×D2.

so that a
(m)
s (τ1)ā(n)s (τ2) = ∑D∈Dm×Dn

Is(D; τ1, τ2). Our next task is to com-

pute EIs(D) for each D ∈ Dm ×Dn.

Randomness enters the term Is(D) via the random variables a
(0)
ξi

, ā
(0)
σj ,

corresponding to the leaves of the diagram D = D
1⊔D̄

2
. They are Gaussian

with correlations

(2.13) Ea(0)s (l1)a
(0)
s′

(l2) = 0, Ea(0)s (l1)ā
(0)
s′

(l2) = δss′ Corr(γs, b(s), l1, l2),
where

(2.14) Corr(γs, b(s), l1, l2) = Bs(e−γs∣l1−l2∣ − e−γs(l1+l2)), Bs =
b(s)2

γs
.

So the Wick theorem [18] implies that the expectation EIs(D) is given by a

sum over all Wick pairings of variables a
(0)
ξi

, corresponding to non-conjugated

leaves c
(0)
i , with variables ā

(0)
σj corresponding to conjugated leaves c̄

(0)
j . More-

over, the leaves c
(0)
i and c̄

(0)
j should belong to different blocks since otherwise

the summand corresponding to such Wick pairing vanishes due to (1.15) and
item (1) in (2.12). We parametrize the sum over the Wick pairings by the
defined below set F(D) of Feynman diagrams. Denoting by Js(F) a term
(i.e. a sum), corresponding to a specific Feynman diagram F, we have:

EIs(D) = ∑
F∈F(D)

Js(F) .

2.3.1. Definition of Feynman diagrams. To construct the set of Feynman

diagrams F(D), corresponding to some diagram D = D
1 ⊔ D̄

2
, we consider

all possible partitions of the set of leaves of D to non-intersecting pairs

(c(0)i , c̄
(0)
j ), such that the paired leaves c

(0)
i and c̄

(0)
j do not belong to the

same block. To each such partition we associate a diagram F obtained from
D by joining with an edge the two leaves in every pair, see fig. 3(a). So
in each diagram F ∈ F(D) all vertices of D are joint by edges, every edge
couples a conjugated vertex with a non-conjugated in another block (or with
a root), and every vertex belongs to exactly one edge.

Since Ea(0)s ā
(0)
s′

= 0 if s ≠ s
′
, the indices ξi, σj entering the formulas for

sums Js(F) satisfy (2.12), where in item (2) the diagram D is replaced by
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a)

c
(2)
0 c̄

(0)
0

c
(1)
1 c

(0)
2 c̄

(0)
1 w̄2

c
(0)
3 c

(0)
4 c̄

(0)
3 w̄4

b)

c
(2)
0 c̄

(0)
0

c
(1)
1 c

(0)
2 c̄

(0)
1 w̄2

c
(0)
3 c

(0)
4 c̄

(0)
3 w̄4

Figure 3. a) A Feynman diagram F obtained from the dia-
gram D in fig. 2(a). b) A cycle obtained from the Feynman
diagram F.

the Feynman diagram F; below we denote these relations as (2.12)F. In
particular, due to the item (2), the vector of indices σ = (σi) is a function
of the vector ξ = (ξj). Accordingly below we write σ = σF(ξ).

Let

Fm,n = ⋃
D∈Dm×Dn

F(D)

be the set of all Feynman diagrams associated with the product a
(m)
s ā

(n)
s .

Each diagram F ∈ Fm,n has N ∶= m+n blocks and 4N+2 vertices, including
2N + 2 leaves Half of edges (and of leaves) are conjugated, while another
half is not.

By construction a diagram F ∈ Fm,n never pairs leaves from the same
block. This alone does not exclude that F is such that in (2.12)F the
assumptions (1) and (2) are incompatible since for some j we may have
ξ2j−1, ξ2j = σ2j−1 or σ2j once σ = σF(ξ). Analysis shows that this cannot
happen if m+ n ≤ 4, but may happen if m+ n ≥ 5. Accordingly, we denote
by

F
true
m,n ⊂ Fm,n

the set of Feynman diagrams for which the set of indices ξi, σj satisfying the

relations (2.12)F is not empty. For any diagram F ∉ F
true
m,n we have Js(F) = 0

due to the factors δ
′12
34 and δ

s
s4 in (2.4).

2.4. Transformation, resolving linear relations on indices. Let us
take a Feynman diagram F ∈ Fm,n, denote N ∶= m + n ≥ 1 and consider

the sum Js(F). The relations (2.12)F on indices ξi, σj ∈ ZdL, 0 ≤ i, j ≤

2N , 9 entering the formula for Js(F) are involved, which makes the sum
Js(F) difficult for further analysis. In [8] it was found a convenient way
to “integrate the sums Js(F)”, i.e. to parametrise the indices ξi, σj by N -

vector z = (z1, . . . , zN) from a domain in (ZdL)N , free from any relations on

9Recall that ξ0 = σ0 = s.
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its components. In this section we present this parametrisation, referring
the reader to [8] for a proof.

Since item (2) of (2.12)F is equivalent to the relation σ = σF(ξ), it suffices
to parametrise the set of admissible multi-indices ξ, i.e. of those ξ for which
the multi-indices ξ and s = σF(ξ) satisfy item (1) in (2.12)F. The construc-
tion starts with defining for each F ∈ Fm,n a skew-symmetricN×N incidence

matrix α
F
= (αF

ij) whose elements are integers from the set {0,+1,−1}. In
terms of this matrix we define the set of polyvectors

(2.15) Z(F) = {z = (z1, . . . , zN) ∈ (ZdL)N ∶ zj ≠ 0 and (αF
z)j ≠ 0 ∀ j} .

Here and below for an M × N -matrix A we denote by Az the polyvector

with components (Az)j ∶= ∑iAjizi ∈ Zd. 10 The matrix α
F

has no zero rows

and zero columns if and only if F ∈ F
true
m,n , and, accordingly, the set Z(F)

is non-empty if and only if F ∈ F
true
m,n . Next, it turns out that the vectors

z ∈ Z(F) may be used to parametrize the set of admissible indices ξi by
means of an affine mapping

(2.16) ξ(z) = s +AF
z, z ∈ Z(F).

Here A
F

is an (2N + 1) × N -matrix, whose elements again are integers
from the set {0,+1,−1}. Transformation (2.16) provides a presentation of

the terms Js(F), forming the correlation Ea(m)
s (τ1)ā(n)s (τ2), and so for the

correlation itself. The corresponding result is proved in Theorem 5.5 of [8].
In our setting its statement, where for the function θ(x, t) is chosen I{0}(x)
– the indicator function of the point x = 0 – takes the following form:

Lemma 2.2. For any integers m,n ≥ 0 satisfying N = m + n ≥ 1, any

s ∈ ZdL and τ1, τ2 ≥ 0,

1) for each F ∈ F
true
m,n parametrisation (2.16) (depending on s and F) is

such that the quantity ωj in (2.6), written in the z-coordinates, takes the
form

(2.17) ω
F
j (z) = 2zj ⋅

N

∑
i=1

α
F
jizi = 2zj ⋅ (αF

z)j .

2) We have

(2.18) L
NEa(m)

s (τ1)ā(n)s (τ2) = ∑
F∈F truem,n

cFJs(τ1, τ2;F),

where the constants cF ∈ {±1,±i} and

(2.19) Js(τ1, τ2;F) = ∫
RN

dl L
N(1−d) ∑

z∈Z(F), ωF
j (z)=0∀j

F
F
s (τ1, τ2, l, z) .

10That is, abusing notation we denote by A an operator in (Zd)M with the block-matrix
A⊗ 1.
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The density F
F
s (τ1, τ2, l, z) is a real function, smooth in (s, z) ∈ Rd × RdN ,

satisfying

(2.20) ∣∂µs ∂κzF F
s (τ1, τ2, l, z)∣ ≤ C#

µ,κ(s)C#
µ,κ(z) e−δ(∑

m
i=1 ∣τ1−li∣+∑Ni=m+1 ∣τ2−li∣)

with a suitable δ = δN > 0, for any vectors µ ∈ (N∪ {0})d, κ ∈ (N∪ {0})dN
and any s ∈ Rd, z ∈ RdN , l ∈ RN .

Let us briefly explain the way to construct the parametrization (2.16). We
first add to the Feynman diagram F dashed edges that couple non-conjugated
vertices with conjugated inside all blocks, as in fig. 3(b). For each block there
are two ways of doing that. We prove that there exists a choice (possibly,
not unique) of a dashed edge in each block such that the diagram becomes
a cycle, as in fig. 3(b). Then, for each j we set x2j−1 ∶= ξ2j−1 − σ2j−1 and
x2j ∶= ξ2j−σ2j or x2j−1 = ξ2j−1−σ2j and x2j ∶= ξ2j−σ2j−1, according to the
choice of the dashed edges in the j-th block, where we substitute σ = σF(ξ).
The fact that the Feynman diagram with added dashed edges forms a cycle
implies that the transformation ξ ↦ x is invertible. Item (1) of (2.12)F
implies that x2j = −x2j−1. Then we set zj ∶= x2j−1 and get (2.16). The

incidence matrix α
F

also is constructed in terms of this cycle.
Since the choice of the dashed edges in general is not unique, the parametri-

zation z ↦ ξ is not unique as well. However, if z
′
↦ ξ is another parametriza-

tion, obtained by the procedure above, and α
F ′

is the associated incidence

matrix, then for each j we have either z
′
j(ξ) = zj(ξ) or z

′
j(ξ) = (αF

z(ξ))j .
In the latter case we also have the symmetric relation zj(ξ) = (αF ′

z
′(ξ))j .

Computing in (2.19) the integral over dl and using estimate (2.20), we
obtain a form of integrals Js, more convenient for some of the subsequent
analysis:

Corollary 2.3. In terms of Lemma 2.2, the integrals Js from (2.18) can be
written as

(2.21) Js(τ1, τ2;F) = LN(1−d) ∑
z∈Z(F), ωF

j (z)=0∀j

Φ
F
s (τ1, τ2, z) ,

where the real-valued functions Φ
F
s are Schwartz in (s, z) and satisfy

(2.22) ∣∂µs ∂κzΦ
F
s (τ1, τ2, z)∣ ≤ C#

µ,κ(s)C#
µ,κ(z),

uniformly in τ1, τ2 ≥ 0, for any vectors µ ∈ (N∪ {0})d and κ ∈ (N∪ {0})dN .

3. Main estimates for the sums

In this section we focus on estimates for the sums (2.21) and on their
dependence on L and N . We recall that d ≥ 3. It is convenient to study
the problem we consider in the following abstract setting. Let α = (αij),
N ≥ 2, be an N ×N skew-symmetric matrix whose elements belong to the
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set {−1, 0, 1}, without zero lines and rows. 11 Consider a family of quadratic

forms on (Rd)N
ωj(z) = zj ⋅ (αz)j , 1 ≤ j ≤ N,

where z is the polyvector (z1, . . . , zN), zj ∈ Rd, and (αz)j ∶= ∑N
i=1 αjizi.

Let us set

(3.1) Z = {z ∈ (ZdL)N ∶ zj ≠ 0 and (αz)j ≠ 0 ∀ j}.

Let a function Φ ∶ RNd → R be sufficiently smooth and sufficiently fast
decaying at infinity (see below for exact assumptions). Our goal is to study
asymptotic as L→∞ behaviour of the sum

(3.2) SL,N(Φ) ∶= LN(1−d) ∑
z∈Z∶ ωj(z)=0∀j

Φ(z).

For a function f ∈ C
k(Rm), n1 ∈ N ∪ {0} satisfying n1 ≤ k and n2 ∈ R,

we set

(3.3) ∥f∥n1,n2
= sup
z∈Rm

max
∣α∣≤n1

∣∂αf(z)∣⟨z⟩n2 , ⟨x⟩ ∶= max{1, ∣x∣} .

The first crucial result concerns the case N = 2. Then ω1(z) = −ω2(z) =
α12z1 ⋅ z2 and α12 ≠ 0, so

(3.4) SL,2(Φ) = L2(1−d) ∑
z∈Z2d

L ∶ z1⋅z2=0
z1≠0, z2≠0

Φ(z).

Then we write the sum above as ∑z1⋅z2=0−∑z1=0 or z2=0 . Since
»»»»»»L
−d∑z∈Z2d

L ∶ zi=0 Φ(z)»»»»»» ≤ C∥Φ∥0,d+1 for i = 1, 2, we get

(3.5)
»»»»»»SL,2(Φ) − L2(1−d) ∑

z∈Z2d
L ∶ z1⋅z2=0

Φ(z)»»»»»» ≤ CL
2−d∥Φ∥0,d+1.

Now an asymptotic for the sum SL,2(Φ) immediately follows from Theo-
rem 1.3 in [10] where the dimension is 2d, ε = 1/2 and m = 0, by applying
it to the sum ∑z1⋅z2=0 in (3.5) (we recall that d ≥ 3):

Theorem 3.1. Let N1(d) ∶= 4d(4d2 + 2d − 1) and N2(d) ∶= N1 + 6d + 4.

If ∥Φ∥N1,N2
<∞, then there exist constants Cd ∈ (1, 1+ 2

2−d), and Kd > 0
such that

(3.6)
»»»»»»»»
SL,2(Φ) − Cd ∫

Σ0

Φ(z)µΣ0(dz1dz2)
»»»»»»»»
≤ Kd

∥Φ∥N1,N2

Ld−5/2
,

where Σ0 is the quadric {z ∈ R2d ∶ z1 ⋅ z2 = 0} and the measure µ
Σ0 is given

by (1.34) with s = 0.

11The theorems below and their proofs remain valid as well for arbitrary skew-
symmetric matrices with integer elements without zero lines and rows, but in this case
the notation used in the proof becomes heavier.
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In Appendix C of [10] we give the following explicit formula for the
number-theoretical constants Cd:

(3.7) Cd =
ζ(d − 1)ζ(4d − 2)
ζ(d)ζ(2d − 2) ,

where ζ is the Riemann zeta-function. Due to (3.7) Cd satisfies 1 < Cd <

1+ 2
2−d

, as is stated in the theorem. The integral in (3.6) converges if Φ(z)
decays at infinity fast enough:

(3.8)
»»»»»»∫Σ0

Φ(z)µΣ0(dz1dz2)
»»»»»» ≤ Cr∥Φ∥0,r if r > 2d − 1,

see Proposition 3.5 in [7]. So, it converges under the theorem’s assumptions.
From Theorem 3.1 another result can be deduced, whose proof is given

in the next Section 3.1:

Theorem 3.2. For N = 2, 3, 4 there exist constants Cd,N such that

(3.9) ∣SL,N(Φ)∣ ≤ Cd,N∥Φ∥0,N̄ ,

for N̄ ∶= ⌊N/2⌋N2(d)+(N−2)(d−1)+1, where N2 is defined in Theorem 3.1.

Since in view of estimate (2.22) the functions Φ
F
s from Corollary 2.3 satisfy

(3.10) ∥Φ
F
s (τ1, τ2, ⋅)∥n1,n2

≤ C
#(s), ∀n1, n2,

then the two theorems above apply to study correlations (2.18) with N =

m + n ≤ 4. In fact, in the case N = 2 the number of Feynmann diagrams is
small and the corresponding correlations may be calculated directly without
the machinery, developed in Section 2. In Example 3.4 which illustrats
this computation, as well as in a number of situations below, we apply
Theorem 3.1 in the following setting:

Corollary 3.3. Let

SL,2 = L
2(1−d) ∑

1,2,3

δ
′12
3s δ(ω12

3s)fs(s1, s2, s3; q),

where ω
12
3s is given by (1.17), q ∈ Rn is a parameter (in applications usually

this will be the time) and fs(s1, s2, s1 + s2 − s; q) 12 is a Schwartz function

of (s1, s2, s) satisfying ∣∂µ(s1,s2,s)fs∣ ≤ C
#
µ (s1)C#

µ (s2)C#
µ (s) uniformly in q,

for any multi-index µ. Then

(3.11)
»»»»»»»»
SL,2 − Cd ∫

Σs

fs(s1, s2, s1 + s2 − s; q)µΣs(ds1ds2)
»»»»»»»»
≤
C

#(s)
Ld−5/2

,

uniformly in q, where Σs and µ
Σs are the quadric (1.33) and the measure

(1.34) on it.

12The formula for s3 comes from the relation δ
′12
3s = 1.
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Proof. In the variables z1 = s1 − s, z2 = s2 − s the quadratic form ω
12
3s

with s3 = s1 + s2 − s reads ω
12
3s = −2z1 ⋅ z2 (see (1.17)). Then, taking into

account that the relation δ
′12
3s = 1 is equivalent to the relations z1, z2 ≠ 0 and

s3 = s1 + s2 − s, we find that the sum SL,2 takes the form (3.4). Applying
next Theorem 3.1 and changing in (3.6) back to the variables s1, s2 we get
(3.11). �

Example 3.4. Let us calculate the asymptotic as L → ∞ of E∣a(1)s (τ)∣2.

Expanding a
(1)
s as in (2.4) and then using (2.13) we get:

E∣a(1)s (τ)∣2 = 2L
−2d ∑

1,2,3

δ
′12
3s δ(ω12

3s)∫
τ

0
dl1 ∫

τ

0
dl2B123

×
3

∏
j=1

(e−γj∣l1−l2∣ − e−γj(l1+l2)) eγs(l1+l2−2τ)

with B123 = B1B2B3, where Bs is defined in (2.14). In the case of τ =∞ the
formula simplifies since by changing the integration variables as rj ∶= τ − lj
and passing to the limit we get

E∣a(1)s (∞)∣2 =2L
−2d ∑

1,2,3

δ
′12
3s δ(ω12

3s)∫
∞

0
dr1 ∫

∞

0
dr2

B123 e
−(γ1+γ2+γ3)∣r1−r2∣e−γs(r1+r2)

=
2L

−2d

γs
∑
1,2,3

δ
′12
3s δ(ω12

3s)
B123

γ1 + γ2 + γ3 + γs
.

Then, by Corollary 3.3,

»»»»»»»»»
L

2E∣a(1)s (∞)∣2 − 2Cd
γs
∫

Σs

B123 µ
Σs(ds1ds2)

γ1 + γ2 + γ3 + γs

»»»»»»»»»
≤
C

#(s)
Ld−5/2

, s3 ∶= s1+ s2− s.

3.1. Proof of Theorem 3.2. Let us define the geometric quadrics Qj ∶=

{z ∈ (Rd)N ∶ ωj(z) = 0} and consider their intersection Q = ∩Nj=1Qj .

Note that Q = ∩N−1
j=1 Qj since the skew symmetry of the matrix α implies

ω1 + . . . + ωN = 0. Denote by B
Nd
R the open cube ∣z∣∞ < R in RNd, where

by ∣ ⋅ ∣∞ we denote the l∞-norm.

Proposition 3.5. If w ∶ RNd ↦ R is such that ∣w∣L∞ <∞ and supp(w) ⊂
B
Nd
R , where R ≥ 1, then for N = 2, 3, 4 we have

(3.12)

»»»»»»»»»»»
∑

z∈Q∩Z
w(z)

»»»»»»»»»»»
≤ C(N, d)R⌊N/2⌋N2(d)+(N−2)(d−1)

L
N(d−1)∣w∣L∞ .

Here N2 is defined in Theorem 3.1 and Z – in (3.1).
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Proof. Below in this proof for any subset Q ⊂ Rmd we denote

(3.13) QL = Q ∩ ZmdL .

By suitably rearranging indices i and possibly multiplying ωi by −1, ω1 may
be assumed to be of the form ω1(z) = z1 ⋅∑i α1izi with α1N = 1. Define
v = ∑i α1izi so that

(3.14) ω1(z) = z1 ⋅ v and zN = α1NzN = v − ∑
1<i<N

α1izi,

since α11 = 0 by the skew symmetry of the matrix α.

For N > 2, fix (z1, v) ∈ R2d
. Then the remaining quadratic forms ωj with

1 < j < N as functions of (z2, . . . , zN−1) ∈ R(N−2)d
become polynomials qj

of degree at most two, with no constant term. Namely

(3.15) qj(z2, . . . , zN−1; z1, v) = zj ⋅(αj1z1+αjNv+ ∑
1<i<N

(αji−αjNα1i)zi) .

For 1 < j < N consider the sets

Q̃j(z1, v) = {(z2, . . . , zN−1) ∶ qj(z2, . . . , zN−1; z1, v) = 0} ⊂ R(N−2)d
,

and their intersection Q̃(z1, v) = ∩1<j<N Q̃j(z1, v). We denoteQ
0
1 = {(z1, v) ∈

R2d ∶ z1 ⋅ v = 0} (cf. (3.14)) and set

(3.16) A2 = {(z1, v) ∈ R2d
∶ z1 ≠ 0, v ≠ 0}.

Since ∣αij∣ ≤ 1, then on the support of w we have ∣(z1, v)∣∞ ≤ (N − 1)R.
So, recalling (3.13), for N > 2 we get

»»»»»»»»»»»
∑

z∈Z∩Q
w(z)

»»»»»»»»»»»
≤ C(N, d)∣w∣L∞ ∑

(z1,v)∈Q0
1L∩B

2d
(N−1)R

1

× sup
(z1,v)∈Q0

1L∩A2∩B
2d
(N−1)R

∑
(z2,...,zN−1)∈Q̃L(z1,v)∩B

(N−2)d
R

1 .

(3.17)

For N = 2 the same estimate holds with the second line replaced by 1.
To estimate the sum in the first line, we take any smooth function w0(x) ≥

0, equal one for x ≤ 1 and vanishing for x ≥ 2. Then

∑
(z1,v)∈Q0

1L∩B
2d
(N−1)R

1 ≤ ∑
(z1,v)∈Q0

1L

wR(z1, v),

where wR(z1, v) ∶= w0(∣(z1, v)∣/((N − 1)R
√

2d). Since for R ≥ 1 and any

a ∈ N ∪ {0}, b ≥ 0 we have ∥wR∥a,b ≤ C(a, b,N, d)Rb, then in view of
Theorem 3.1 and (3.8),

(3.18) ∑
(z1,v)∈Q0

1L∩B
2d
(N−1)R

1 ≤ CL
2(d−1)[R2d

+R
N2L

−d+5/2] ≤ C ′L2(d−1)
R
N2 ,
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where C,C
′

depend on d,N,N1 and N2.
To estimate the second line of (3.17) we use the following lemma, proved

in Appendix A.

Lemma 3.6. Assume that the matrix α is irreducible. Then for N = 2, 3, 4,

any R ≥ 1 and any (z1, v) ∈ B2d
(N−1)R satisfying (z1, v) ∈ Q0

1L∩A2 we have:

(3.19) ∣Q̃L(z1, v) ∩B
(N−2)d
R ∣ ≤ 2

(N−2)d(NRL)(N−2)(d−1)
.

This completes the proof of Proposition 3.5 in the case of irreducible
matrix α: indeed, we get

(3.20)

»»»»»»»»»»»
∑

z∈Z∩Q
w(z)

»»»»»»»»»»»
≤ C(N, d)∣w∣L∞R

N2+(N−2)(d−1)
L
N(d−1)

.

If the matrix α is reducible, it can be reduced through permutations to a
block diagonal matrix with m blocks which are irreducible square matrices
of sizes Ni satisfying ∑iNi = N . Since Ni ≥ 2 (otherwise there would be
a zero row or column in α), m ≤ ⌊N/2⌋. Applying estimate (3.20) to each
block we get the assertion of the proposition. �

Now we derive the theorem from the proposition. Let ϕ0(t) = χ(−∞,1](t)
and for k ≥ 1, ϕk(t) = χ(2k−1,2k](t). Then 1 = ∑k ϕk(t) and

Φ =

∞

∑
k=0

fk(z) , fk(z) = ϕk(∣z∣∞)Φ(z) .

Then supp fk ⊂ Bk = {∣z∣∞ ≤ 2
k} and ∥fk∥∞ ≤ C2

−kN̄∥Φ∥0,N̄ , for any N̄ .
Therefore, by Proposition 3.5,

∣SL,N(Φ)∣ ≤ C(N, d)∥Φ∥0,N̄

∞

∑
k=0

2
k(⌊N/2⌋N2+(N−2)(d−1)−N̄)

,

which converges if N̄ > ⌊N/2⌋N2+ (N −2)(d−1). This completes the proof
of Theorem 3.2. �

Remark 3.7. For any fixed vector (z1, v), Q̃(z1, v) is a real algebraic set in

R(N−2)d
of codimension (N −2). If Q̃(z1, v) were a smooth manifold of that

codimension, then estimate (3.19), modified by a multiplicative constant

CQ̃(z1,v), would be obvious. But Q̃(z1, v) is a stratified analytic manifold
(with singularities), and to obtain for it a modified version of the estimate
(3.19) as above, using analytical tools, seems to be a heavy job since we
need a good control for the factor CQ̃(z1,v). Instead in Appendix A we prove
the lemma, using arithmetical tools.

3.2. On extension of Theorem 3.2 to any N . The restriction on N in
the statement of Theorem 3.2 comes from estimate (3.19) in Lemma 3.6,
proved only for N = 3, 4. We know that for every N the system of poly-
nomials qj(⋅; z1, v), 1 < j < N , defining the set Q̃L(z1, v) in Lemma 3.6,
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is linearly independent for any (z1, v) and any irreducible incidence matrix
α. Also we know that all polynomials qj(⋅; z1, v) are irreducible; see Lem-
mas A.9 and A.10 in Appendix A (there the independence and reducibility
are understood over some specific algebraically closed field K, but the ar-
gument also works for K replaced by C). These two facts certainly are
insufficient to prove Lemma 3.6 for any N , but they naturally lead to

Conjecture 3.8. Under assumptions of Lemma 3.6, for any N ≥ 2

∣Q̃L(z1, v) ∩B
(N−2)d
R ∣ ≤ C(N, d)(RL)(N−2)(d−1)

.

One may try to prove this assertion using either arithmetical or analytical
tools; cf. Appendix A and Remark 3.7. It is straightforward to see that,
if the conjecture is true, then Theorem 3.2 holds for any N , so in view of

Lemma 2.2 any expected value L
NEa(m)

s (τ1)ā(n)s (τ2) admits a uniform in L
upper bound.

4. Quasisolutions

In this section we start to study a quasisolution A(τ) = A(τ ;L) of eq. (2.1)
with as(0) = 0, which is the second order truncations of series (2.2):

(4.1) A(τ) = (As(τ), s ∈ ZdL), As(τ) = a(0)s (τ) + ρa(1)s (τ) + ρ2
a
(2)
s (τ) .

We focus on its energy spectrum

(4.2) ns,L = ns,L(τ) = E∣As(τ)∣2, s ∈ ZdL,

when L is large and the parameter ρ is chosen to be ρ = εL. Our goal is to
show that it approximately satisfies a wave kinetic equation (WKE). Using
Proposition 2.1, we will then show that the same applies to the quantities
ns,L, considered in the Introduction.

The energy spectrum ns,L is a polynomial in ε of degree four,

(4.3) ns,L = n
(0)
s,L + ε n

(1)
s,L + ε

2
n
(2)
s,L + ε

3
n
(3)
s,L + ε

4
n
(4)
s,L, s ∈ ZdL,

where the terms n
(k)
s,L(τ) are defined by

(4.4) n
(k)
s,L(τ) = L

k ∑
k1+k2=k

0≤k1,k2≤2

Ea(k1)s (τ)ā(k2)s (τ) .

By Corollary 2.3,

the second moments Ea(k1)s ā
(k2)
s

naturally extend to a Schwartz function of s ∈ Rd,
(4.5)

given by (2.18), (2.21). Accordingly from now on we always regard the

second moments and the terms n
(k)
s,L(τ) as Schwartz functions of s ∈ Rd.
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As customary in WT, we aim at considering the limit of ns,L(τ) as L→∞,

that is, the limits of the terms n
(j)
s,L. The term n

(0)
s,L = n

(0)
s,L is given by (1.31)

and is L-independent, while by a direct computation we see that

(4.6) n
(1)
s,L = 2REā(0)s a

(1)
s = 0, s ∈ Rd,

(here we use (2.4), the Wick theorem and (1.15)). Writing explicitly n
(i)
s,L

with 2 ≤ i ≤ 4, we find that

n
(2)
s,L = L

2E(∣a(1)s ∣2 + 2Rā
(0)
s a

(2)
s ) ,

n
(3)
s,L = 2L

3
REā(1)s a

(2)
s , n

(4)
s,L = L

4E∣a(2)s ∣2 .
(4.7)

The function Rd ∋ s↦ n
(2)
s,L(τ) is made by two terms. By Corollary 2.3 with

N = 2, Theorem 3.1 applies to the both of them. Since d ≥ 3, we get

(4.8) ∣n(2)
s,L(τ) − n

(2)
s (τ)∣ ≤ C#(s)/L1/2

,

where

n
(2)
s (τ) ∶= Cd( ∑

F∈Ftrue1,1

+2R ∑
F∈Ftrue2,0

)cF ∫
Σ0

µ
Σ0(dz1dz2)ΦF

s (τ, τ, z),

and we have used estimate (3.10). Thus, we see that the processes n
(0)
s,L, n

(1)
s,L

and n
(2)
s,L admit the limits

n
(j)
s (τ) ∶= lim

L→∞
n
(j)
s,L(τ ;L).

The limits satisfy (4.8), and for all τ

(4.9) n
(0)
s (τ) = B(s)(1 − e−2γs(τ0+τ)), n

(1)
s (τ) = 0, ∣n(2)

s (τ)∣ ≤ C#(s) ,
where the last inequality follows from Theorem 3.2.

We do not know if the terms n
(3)
s,L, n

(4)
s,L admit limits as L → ∞, but in

view of Corollary 2.3 both of them may be estimated through Theorem 3.2:

(4.10) ∣n(3)
s,L(τ)∣ ≤ C

#(s), ∣n(4)
s,L(τ)∣ ≤ C

#(s) ,
uniformly in L ≥ 2 and τ ≥ 0. We then decompose

ns,L = n
≤2
s,L + n

≥3
s,L,

where

n
≤2
s,L = n

(0)
s,L + εn

(1)
s,L + ε

2
n
(2)
s,L and n

≥3
s,L = ε

3
n
(3)
s,L + ε

4
n
(4)
s,L

(we recall that n
(1)
s,L ≡ 0), and similarly define

n
≤2
s ∶= n

(0)
s + ε

2
n
(2)
s .

Due to (4.8),

(4.11) ∣n≤2
s (τ) − n≤2

s,L(τ)∣ ≤ C#(s)ε2
L
−1/2

,
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so by (4.10),

(4.12) ∣n≤2
s (τ) − ns,L(τ)∣ ≤ C#(s)ε2(L−1/2

+ ε).

Thus, the cut energy spectrum n
≤2
s governs the limiting as L→∞ behaviour

of the energy spectrum ns,L with precision ε
3
C

#(s), where we regard the
constant ε ≤ 1/2 (which measures the size of solutions for (1.6) under the
proper scaling) as a fixed small parameter. Accordingly, our next goal is to

show that n
≤2
s (τ) approximates the solution of a WKE.

4.1. Increments of the energy spectra n
≤2
s . In this section we will show

that the process n
≤2
s (τ) approximately satisfies a WKE. We denote s4 ∶= s,

γj ∶= γsj and set

(4.13) γ1234 = γ1 + γ2 + γ3 + γ4, s⃗ = (s1, s2, s3, s4) ∈ (Rd)4
.

Now, for a fixed τ0 ≥ 0 and for j = 1, 2, 3, 4 we define the functions

Zj(τ0) = Zj(τ0; s⃗) as

(4.14) Zj(τ0; s⃗) ∶= ∫
τ0

0
dl e

−γj(τ0−l) ∏
m=1,2,3,4
m≠j

sinh(γml)
sinh(γmτ0)

if τ0 > 0,

and Zj(0; s⃗) = 0. Computing this integral we get

Zj(τ0; s⃗) =
⎛
⎜
⎝
∏
l≠j

1

1 − e−2γlτ0

⎞
⎟
⎠
⋅ [1 − e−γ1234τ0

γ1234
−
e
−2(γ1234−γj)τ0 − e−γ1234τ0

2γj − γ1234

+∑
l≠j

(e
−2(γ1234−γj−γl)τ0 − e−γ1234τ0

2(γj + γl) − γ1234
−
e
−2γlτ0 − e−γ1234τ0

γ1234 − 2γl
)] ,

(4.15)

where each fraction from the square brackets should be substituted by
τ0e

−γ1234τ0 if its denominator vanishes.

For any real number r let Cr(Rd) be the space of continuous complex

functions on Rd with the finite norm

(4.16) ∣f∣r = ∣f(z)⟨z⟩r∣L∞ .

We naturally extend this norm to f ∈ L∞(Rd) and set

(4.17) L∞,r(Rd) = {f ∈ L∞(Rd) ∶ ∣f∣r <∞} .
Consider also the linear operator L, given by

(4.18) (Lv)(s) = 2γsv(s), s ∈ Rd.

Below we often write the value v(s) of a function v at s ∈ Rd as vs and

the function v itself as (vs, s ∈ Rd). Now, for v ∈ Cr(Rd), where r >
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d, and for τ0 ≥ 0, τ ∈ (0, 1], we define the kinetic integral K
τ(τ0)(v) =

(Kτ
s (τ0)(v), s ∈ Rd):

(4.19) K
τ(τ0)(v) = ∫

τ

0
e
−tL

K(τ0)(v)dt .

Here the operator K(τ0) = K
1(τ0) + ⋅ ⋅ ⋅ + K

4(τ0) sends a function v =

(vs, s ∈ Rd) to the function

Ks(τ0)(v) = 4Cd ∫
Σs

µ
Σs(ds1ds2)(Z4(τ0; s⃗)v1v2v3

+ Z3(τ0; s⃗)v1v2v4 − Z2(τ0; s⃗)v1v3v4 − Z1(τ0; s⃗)v2v3v4)

=∶ K
4
s (τ0)(v) +K3

s (τ0)(v) +K2
s (τ0)(v) +K1

s (τ0)(v)

(4.20)

(note the reversed signs for K
2

and K
3
). Here vj ∶= v(sj), where s4 = s and

s3 ∶= s1+s2−s4 (in view of the factor δ
′12
3s ). While µ

Σs is the measure (1.34)

on the quadric Σs = {(s1, s2) ∈ R2d ∶ (s1 − s) ⋅ (s2 − s) = 0}. Computing
the integral in t in (4.19), we find

(4.21) K
τ
s (τ0)(v) =

1 − e−2γsτ

2γs
Ks(τ0)(v) =

1 − e−2γsτ

2γs

4

∑
j=1

K
j
s(τ0)(v).

We study the kinetic integral K
τ

in Section 5 while now we formulate a
result which is the main step in deriving the wave kinetic limit.

Theorem 4.1. For any 0 < τ ≤ 1 the function (n≤2
s , s ∈ Rd) satisfies

n
≤2(τ0 + τ) = e−τLn≤2(τ0) + 2∫

τ

0
e
−tL

b
2
dt + ε

2
K
τ(τ0)(n≤2(τ0)) + ε2R,

(4.22)

where b
2
= (b2(s), s ∈ Rd) and the remainder Rs(τ) satisfies

(4.23) ∣R(τ)∣r ≤ Crτ (τ + ε2) , ∀r.

4.2. Proof of Theorem 4.1. We first fix a value for L and decompose the

processes τ ↦ a
(i)
s (τ0 + τ), where τ0 ≥ 0 and 0 ≤ τ ≤ 1, as

(4.24) a
(i)
s (τ0 + τ) = c(i)s (τ ; τ0) +∆a

(i)
s (τ ; τ0), i = 0, 1, 2, s ∈ ZdL .

Here

c
(i)
s (τ ; τ0) = e−γsτa(i)s (τ0)

and ∆a
(i)
s is defined via relation (4.24). Below we write c

(i)
s (τ ; τ0) and

∆a
(i)
s (τ ; τ0) as c

(i)
s (τ) and ∆a

(i)
s (τ) since τ0 is fixed.

Obviously,

c(τ) ∶= c(0)(τ) + ρc(1)(τ) + ρ2
c
(2)(τ)
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with τ ≥ 0 is a solution of the linear equation (2.1)ρ=0,b(s)≡0, equal A(τ0) at

τ = 0, and ∆a(τ) = ∑2
j=0 ρ

j
∆a

(j)(τ) equals A(τ0 + τ) − c(τ). By (4.5), for
0 ≤ i, j ≤ 2

the functions Ec(i)s c̄
(j)
s , Ec(i)s ∆ā

(j)
s , E∆a

(i)
s ∆ā

(j)
s

naturally extend to Schwartz functions of s ∈ Rd.
(4.25)

Due to (4.6) and (4.7),

e
−2γsτn

≤2
s,L(τ0) = E∣c(0)s (τ)∣2+ρ2E(∣c(1)s (τ)∣2+2Rc̄

(0)
s (τ)c(2)s (τ)), ∀ s ∈ Rd.

Then,

n
≤2
s,L(τ0 + τ) − e−2γsτn

≤2
s,L(τ0) = E(∣a(0)s (τ0 + τ)∣2 − ∣c(0)s (τ)∣2

+ ρ
2(∣a(1)s (τ0 + τ)∣2 − ∣c(1)s (τ)∣2 + 2R(a(2)s ā

(0)
s (τ0 + τ) − c(2)s c̄

(0)
s (τ))).

(4.26)

Let us set

Ys(u, v, w) ∶= L−d ∑
1,2,3

δ
′12
3s δ(ω12

3s)u1v2w̄3 .

Writing explicitly the processes ∆a
(i)
s (τ), s ∈ ZdL, we find

∆a
(0)
s (τ) = b(s)∫

τ0+τ

τ0

e
−γs(τ0+τ−l) dβs(l),

∆a
(1)
s (τ) = i∫

τ0+τ

τ0

e
−γs(τ0+τ−l)Ys(a(0)) dl,

∆a
(2)
s (τ) = i∫

τ0+τ

τ0

e
−γs(τ0+τ−l)(Ys(a(0), a(0), a(1))

+ Ys(a(0), a(1), a(0)) + Ys(a(1), a(0), a(0)))dl,

(4.27)

where a
(i)
= a

(i)(l). Note that to get explicit formulas for c
(i)
s (τ), i = 0, 1, 2,

it suffices to replace in the r.h.s.’s of the relations in (4.27) the range of

integrating from [τ0, τ0+τ] to [0, τ0]. For example, c
(0)
s (τ) = e−γsτa(0)s (τ0) =

b(s) ∫ τ00 e
−γs(τ0+τ−l) dβs(l).

Using that Ec(i)s (τ)∆ā(0)s (τ) = Ec(i)s (τ)E∆ā
(0)
s (τ) = 0 for any i and s, we

obtain

(4.28) E(a(2)s ā
(0)
s (τ0 + τ) − c(2)s c̄

(0)
s (τ)) = E∆a

(2)
s (τ)ā(0)s (τ0 + τ),

and from (4.24) we get that

∣a(1)s (τ0 + τ)∣2 − ∣c(1)s (τ)∣2 = ∣∆a(1)s (τ)∣2 + 2R∆a
(1)
s c̄

(1)
s (τ),

E(∣a(0)s (τ0 + τ)∣2 − ∣c(0)s (τ)∣2) = E∣∆a(0)s (τ)∣2.
(4.29)
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Then, inserting (4.28) and (4.29) into (4.26) and using that ρ = εL, we find

n
≤2
s,L(τ0 + τ) − e−2γsτn

≤2
s,L(τ0) = E∣∆a(0)s (τ)∣2 + ε2

Qs,L(τ0, τ), s ∈ Rd,
where

Qs,L(τ0, τ) ∶=L2(E∣∆a(1)s (τ)∣2 + 2RE[∆a(1)s (τ)c̄(1)s (τ)

+∆a
(2)
s (τ)ā(0)s (τ0 + τ)]) ,

(4.30)

and we recall (4.25). Since

E∣∆a(0)s (τ)∣2 = b(s)2

γs
(1 − e−2γsτ) = 2∫

τ

0
e
−tL

b
2(s) dt,

then

n
≤2
⋅,L(τ0 + τ) − e−τLn≤2

⋅,L(τ0) = 2∫
τ

0
e
−tL

b
2
dt + ε

2
Q⋅,L(τ0, τ),

for n
≤2
⋅,L = (n≤2

s,L, s ∈ Rd). In order to pass to the limit L→∞ we recall the
relation (4.11). Then the desired formula (4.22) is an immediate consequence
of the assertion below:

Proposition 4.2. We have

(4.31) lim
L→∞

Qs,L(τ0, τ) = Kτ
s (τ0)(n≤2(τ0)) +Rs(τ), s ∈ Rd,

where the remainder R satisfies (4.23).

Proof. The first step in the proof of (4.31) is the following result, established
in Appendix B:

Proposition 4.3. One has

(4.32) ∣Qs,L(τ0, τ) − Xs,L(τ0, τ)∣ ≤ C#(s)τ2
, s ∈ Rd ,

where

Xs,L(τ0, τ) ∶= 4L
2(1−d)

τ ∑
1,2,3

δ
′12
3s δ(ω12

3s)(Z4
n
(0)
1 n

(0)
2 n

(0)
3 + Z3

n
(0)
1 n

(0)
2 n

(0)
s

−Z1
n
(0)
2 n

(0)
3 n

(0)
s − Z2

n
(0)
1 n

(0)
3 n

(0)
s ) .

(4.33)

The terms Zj
= Zj(τ0; s1, s2, s3, s) are defined by (4.14) and n

(0)
i ∶= n

(0)
si,L

(τ0),

n
(0)
s ∶= n

(0)
s,L(τ0).

By (4.9) n
(0)
i = n

(0)
si are Schwartz functions in si. Besides, the functions

Zj(τ0, s⃗) have at most polynomial growth in s⃗ together with their deriva-
tives, uniformly in τ0 ≥ 0:

Lemma 4.4. For any vector µ ∈ (N∪ {0})4d
, uniformly in τ0 ≥ 0, we have»»»»»∂

µ

s⃗
Zj(τ0, s⃗)

»»»»» ≤ P (s⃗;µ) , where P (s⃗;µ) has at most a polynomial growth in

s⃗.
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By the lemma, which is proven in Section B.7, Xs,L satisfies the hypotheses
of Corollary 3.3. So

(4.34) ∣Xs,L(τ0, τ) − τKs(τ0)(n(0))∣ ≤ C#(s)L−1/2
τ .

Next, note that ∣n(0)
s (τ0) − n

≤2
s (τ0)∣ ≤ C

#(s)ε2
due to (4.9). Then the

estimate on the Lipschitz constants of the operators K
j(t), given in (5.4),

implies that

∣K(τ0)(n(0)(τ0)) −K(τ0)(n≤2(τ0))∣r ≤ Crε
2
∀ r.

So that

(4.35) ∣τKs(τ0)(n(0)(τ0)) − τKs(τ0)(n≤2(τ0))∣ ≤ C#(s)τε2
.

On the other hand, on account of the definition (4.21), for 0 ≤ τ ≤ 1 we
have the bound

(4.36)
»»»»»τKs(τ0)(n≤2) −Kτ

s (τ0)(n≤2)»»»»» ≤ Cγsτ
2∣Ks(τ0)(n≤2)∣ ≤ C#(s)τ2

,

where the last inequality follows from the estimate of the norm of the oper-

ator K
j(t), given in (5.3), and from (4.9).

Putting together (4.32), (4.34), (4.35), (4.36) and letting L grow to infin-
ity, we conclude the proof. �

5. Kinetic equation

At this section we examine the wave kinetic equation

(5.1) żs(τ) = −(Lz)s + ε2
Ks(τ)(z) + 2b(s)2

, τ ≥ 0, z(0) = 0

(L is defined in (4.18) and the operator K = K
1 + ⋅ ⋅ ⋅ + K4

is defined in

(4.20)), and next derive from this analysis and (4.22) the proximity of n
≤2
s (τ)

to a solution of (5.1). We will need the following result, which is Lemma 4.2
from [7]:

Lemma 5.1. For j, l = 1, . . . , 4 and u
j
∈ Cr(Rd) consider the operators

Jl(u1
, . . . , u

4)(s) = ∫
Σs

µ
Σs(ds1ds2)∏

i≠l

u
i(si)

(see (1.34)), where s4 = s and s3 = s1 + s2 − s. Then for each l,

(5.2) ∣Jl(u1
, . . . , u

4)∣r+1 ≤ Cr∏
i≠l

∣ui∣r if r > d.

5.1. Kinetic integrals. We recall notation (4.13), (4.14).

Lemma 5.2. For j = 1, . . . 4, any τ ≥ 0 and any s⃗ = (s1, . . . , s4) ∈ (Rd)4
,

i) 0 ≤ Zj(τ ; s⃗) ≤ min(τ, 1/γsj) ≤ 1,

ii) ∣Zj(τ ; s⃗) − Z(∞; s⃗)∣ ≤ Ce−2τ
, where Z(∞; s⃗) = 1/γ1234.
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Proof. The first assertion follows from (4.14) since sinh(x) is an increasing
non-negative function of x ≥ 0, so in the integrand in (4.14) we have 0 ≤

sinh(γml)/ sinh(γmτ ′) ≤ 1. For 0 ≤ τ ≤ 1 the second estimate follows from
the first one as

∣Zj(τ ; s⃗) − Z(∞; s⃗)∣ ≤ ∣Zj(τ ; s⃗)∣ + ∣Z(∞; s⃗)∣,
while for τ ≥ 1 it follows from (4.15) since γ123j−γj ≥ 1 and γ1234−γj−γl ≥ 1
for j, l ∈ {1, 2, 3, 4}, j ≠ l. �

Since the kernels Zj
are non-negative by the first assertion of the lemma

above, then denoting κ1 = κ2 = 1, κ3 = κ4 = −1 we achieve that the

operators κjK
j
, 1 ≤ j ≤ 4, are positive (in the sense that they send positive

functions to positive). Due to the first assertion of the lemma and (5.2), for

any τ ≥ 0 they define positive 3-homogeneous mappings Cr(Rd)→ Cr+1(Rd)
if r > d, and

(5.3) ∣κjKj(τ)(v)∣r+1 = ∣Kj(τ)(v)∣r+1 ≤ Cr min(τ, 1)∣v∣3r , j = 1, . . . , 4,

for τ ≥ 0. So the mappings K
j(τ) are locally Lipschitz:

(5.4)

∣Kj(τ)(v1)−Kj(τ)(v2)∣r+1 ≤ 3Cr min(τ, 1)R2∣v1
−v

2∣r, if ∣v1∣r, ∣v2∣r ≤ R.
Since for j = 1, . . . , 4 and any s ∈ Rd,
• for non-negative functions n,m ∈ L∞,r (see (4.17)) such that m ≤ n we

have κjK
j
s(τ)(m) ≤ κjKj

s(τ)(n) ≤∞,

• ∣Kj
s(τ)(v)∣ ≤ κjKj

s(τ)(∣v∣) ≤∞ for any complex function v ∈ L∞,

• ∣vs∣ ≤ ∣v∣r⟨s⟩−r for all v ∈ L∞,r,
then the relations (5.3), (5.4) remain true for functions from L∞,r.

Lemma 5.3. If ∣sl∣ ≤ R for l = 1, . . . , 4, then

(5.5)
»»»»»»»
∂

∂τ
Zj(τ ; s⃗)

»»»»»»»
≤ Cγ

0(R2)

(see (1.5)).

Proof. For any m ∈ {s1, . . . , s4} and 0 ≤ l ≤ τ we have

»»»»»»»
∂

∂τ

sinh γml

sinh γmτ

»»»»»»»
≤ γm

cosh γmτ

sinh γmτ
≤ γmC max(1, 1/(γmτ)).

Considering separately the cases τ ≥ 1 and 0 ≤ τ < 1, using (4.14) and the
estimate above we get the result. �

This lemma implies that for any v ∈ Cr(Rd) and any j the curve τ ↦

K
j(τ)(v) ∈ Cr(Rd) is Hölder-continuous:

Lemma 5.4. For any τ0 ≥ 0, 0 ≤ τ ≤ 1, j = 1, . . . , 4 and any r > d + 1,

(5.6) ∣Kj(τ0 + τ)(v) −Kj(τ0)(v)∣r ≤ Cr∣v∣3rτκ∗ ∀ v ∈ Cr(Rd),
where κ∗ = 1/(1 + 2r∗).
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Proof. By the homogeneity we may assume that ∣v∣r = 1. For R ≥ 1 let us

set v
R(s) = v(s)χ∣s∣≤R ∈ L∞. Then

(5.7) ∣vR∣r ≤ 1, ∣v − vR∣r−1 ≤ R
−1
.

Now let us write the increment K
j(τ0 + τ)(v) −Kj(τ0)(v) as

(Kj(τ0 + τ)(v) −Kj(τ0 + τ)(vR)) + (Kj(τ0 + τ)(vR) −Kj(τ0)(vR))
+(Kj(τ0)(vR) −Kj(τ0)(v)) =∶ ∆1 +∆2 +∆3.

Recalling that (5.3) and (5.4) hold for functions from L∞,r′ with r
′
> d,

we get from (5.7) that ∣∆1∣r + ∣∆3∣r ≤ CrR
−1
. To estimate ∆2 we set

∆
R
2 = ∆2χ∣s∣≤R. Since by (5.3), ∣∆2∣r+1 ≤ 2Cr, then ∣∆2 −∆

R
2 ∣r ≤ 2CrR

−1
.

For ∣s∣ > R the function ∆
R
2 vanishes, while for ∣s∣ ≤ R in view of Lemma 5.3

we have

∣∆R
2 s∣ = ∣∆2s∣ = ∣Kj

s(τ0 + τ)(vR) −Kj
s(τ0)(vR)∣

≤ Cr ∫
Σs

µs(dv1dv2)∣Zj(τ0 + τ ; s⃗) − Zj(τ0; s⃗)∣∣v1∣ . . . ∣v4∣
∣vj∣

χ{∣sj∣≤R ∀j}

≤ C1rγ
0(R2)τ ∫

Σs

µs(dv1dv2)
∣v1∣ . . . ∣v4∣

∣vj∣
≤ C2r⟨s⟩−r−1

τR
2r∗ ,

where to get the last inequality we used (5.2). We have seen that the Cr-norm

of the increment is bounded by Cr(R−1 + τR2r∗), for any R ≥ 1. Choosing

R = τ
−1/(1+2r∗) we achieve (5.6). �

5.2. Kinetic equation. Now we will apply the obtained results to the ki-

netic equation (5.1). Since the function b(⋅)2 ∶= {b(s)2} ∈ Cr(Rd) for all
r, since L is the operator of multiplying by the function 2γs as in (1.4),
(1.5), and the operator K satisfies (5.3), (5.4), then for small enough ε > 0

eq. (5.1) has a unique solution, belonging to Cr(Rd) for each r, which in a
Lipschitz way depends on the r.h.s. of the equation, when the latter devi-

ates from b(⋅)2
. Namely, the following result, where X

r
stands for the space

C(0,∞; Cr(Rd)), given the norm ∣v(⋅)∣Xr = supt≥0 ∣v(t)∣r, may be easily
verified (a proof of a similar fact may be found in Section 4 of [7]).

Lemma 5.5. For any r > d,
1) There exists ε∗, depending on b(⋅), r and r∗, such that for 0 ≤ ε ≤ ε∗

eq. (5.1) has a unique solution z(τ), belonging to X
r
. It satisfies

(5.8) ∣z∣Xr ≤ Cr∣b2∣r.

2) If z
0(τ) is a solution of the linear equation (5.1)∣ε=0, then ∣z− z

0∣Xr ≤

Crε
2
. If a curve z

′(τ) solves (5.1) with 2b(s)2
replaced by 2b(s)2 + ξs(t),

where ξ ∈ X
r

and ∣ξ∣Xr ≤ 1, then ∣z − z
′∣Xr ≤ Cr∣ξ∣Xr .
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The lemma’s assertion holds as well for non-zero initial conditions z(0) ∈
Cr(Rd) in (5.1), but we do not need this.

Let K(∞) be the operator, obtained from K(τ0) by replacing in (4.20)

the kernels Zj(τ0; s), s ∈ Rd, by Z(∞; s⃗) (see Lemma 5.2). Let r > d and

z
ε
∈ Cr(Rd) be a solution of the limiting stationary equation

(5.9) Lzε − ε2
K(∞)(zε) = 2b(⋅)2

in the vicinity of L−1(2b2), existing for small ε by the inverse function the-

orem. Since b
2(⋅) ∈ ⋂r Cr(R

d) and, as in (5.3), the map K(∞) is one-

smoothing, then decreasing ε∗ if needed we achieve that z
ε
∈ ⋂r Cr(R

d) for
ε ≤ ε∗ and

(5.10) ∣zε − 2L−1(b2)∣m ≤ Cmε
2
∀m.

Here and below the constants depend on b and r∗.
Let us consider the curve w(t) = z(t) − z

ε
. It satisfies the equation

ẇ + L(w) = ε2(K(t)(z) −K(∞)(zε))
= ε

2[(K(t)(z) −K(t)(zε)) − (K(t)(zε) −K(∞)(zε))]
and w(0) = −zε. Denote K(τ)(zε) −K(∞)(zε) =∶ −η(τ). In view of Lem-

mas 5.2 and 5.1, ∣η(τ)∣r ≤ Cre−2τ
for τ ≥ 0. Next, regarding the difference

K(τ)(z(τ)) −K(τ)(zε) as an operator, linear in w(τ) = z(τ) − z
ε

and qua-
dratic in (z(τ), zε), we write it as K(τ)(w(τ)). Then by (5.4) and (5.8),
∣K(τ)w∣r+1 ≤ Cr∣w∣r, ∀r > d. Finally, we substitute

w(τ) = v(τ) + y(τ), v(τ) = −e−τLzε,
and re-write the equation on w as an equation on y:

ẏ + Ly = ε2K(τ)(v(τ) + y(τ)) + ε2
η(τ), y(0) = 0.

Or

(5.11) y(t) = ε2 ∫
t

0
e
−(t−s)L[K(s)(v(s) + y(s)) + η(s)]ds.

Let Y
r

be the space of continuous curves y ∶ R+ → Cr(Rd), vanishing at

zero, with finite norm ∣y∣Y r = supt≥0 e
t∣y(t)∣r. Let B be the linear operator

B(y)(t) = ∫
t

0
e
−(t−s)LK(s)(y(s)) ds.

Then the equation for y may be written as

(5.12) y(t) = ε2(B(y)(t) +B(v)(t) + ∫
t

0
e
−(t−s)L

η(s)ds).

If ∣ỹ∣Y r = 1, then

∣B(ỹ(t))∣r+1 ≤ ∫
t

0
∣e−(t−s)LK(s)(ỹ(s))∣r+1ds ≤ C

′
r ∫

t

0
e
−2(t−s)

e
−s
ds < C

′
re
−t
.
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So B ∶ Y r
→ Y

r+1
is a bounded linear operator if r > d, and accordingly the

operator (id−ε2
B) is a linear isomorphism of Y

r
if r > d and ε is sufficiently

small. It easy to see that B(v) and ∫ t0 e
−(t−s)L

η(s)ds both belong to all

spaces Y
r
. Then in view of (5.12), ∣y∣Y r+1 ≤ Cε

2
. Since the operator B is

1-smoothing, then by induction we get that y belongs to all spaces Y
r
. We

have proved that

Lemma 5.6. The solution z(τ), constructed in Lemma 5.5, may be written
as

z(τ) = (id − e
−τL)zε + y(τ), where ∣y(t)∣r ≤ Crε2

e
−t
∀ t ≥ 0, ∀ r .

Here z
ε

is defined in (5.9) and satisfies (5.10).

5.3. Energy spectra of quasisolutions and kinetic equation. In this
section we prove our main result. Namely, we show that the energy spec-

trum (4.2) of the quasisolution ns,L(τ) = E∣As(τ)∣2 of eq. (2.1) with large

L is ε
3
-close to the solution z(τ) of the WKE (5.1), constructed in Lem-

mas 5.5, 5.6. By (4.12), it suffices to prove this for ns,L replaced by n
≤2
s . Let

us denote ws(τ) = n≤2
s (τ)− zs(τ); then ws(0) = 0. Recall that ε∗ is defined

in Lemma 5.5.

Lemma 5.7. If r > d + 1 and ε ≤ C
−1
1r ≤ ε∗ for an appropriate constant

C1r, then for any τ0 ≥ 0 and 0 < τ ≤ 1/2,

(5.13) ∣w(τ0 + τ)∣r ≤ (1 − τ/2)∣w(τ0)∣r + C2rτε
2(τκ∗ + ε2),

where κ∗ = 1/(1 + 2r∗).

Proof. Since by (5.1)

z(τ0 + τ) = e−τLz(τ0) + 2∫
τ

0
e
−tL

b
2
dt + ε

2 ∫
τ0+τ

τ0

e
−(τ0+τ−t)LK(t)(z(t))dt,

then in view of (4.22) and (4.19)

(5.14) w(τ + τ0) = e−τLw(τ0) + ε2
∆ +R,

where R is as in (4.22) and

∆ = ∫
τ0+τ

τ0

e
−(τ0+τ−t)L(K(τ0)(n≤2(τ0)) −K(t)(z(t)))dt.

Note that in view of Lemma 5.5 and estimates (4.9),

(5.15) ∣n≤2(τ)∣r, ∣z(τ)∣r ≤ Cr for all τ and all r,
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with suitable constants Cr. Let us re-write ∆ as follows:

∆ = ∫
τ0+τ

τ0

e
−(τ0+τ−t)L(K(τ0)(n≤2(τ0)) −K(τ0)(z(τ0)))dt

+ ∫
τ0+τ

τ0

e
−(τ0+τ−t)L(K(τ0)(z(τ0)) −K(t)(z(τ0)))dt

+ ∫
τ0+τ

τ0

e
−(τ0+τ−t)L(K(t)(z(τ0)) −K(t)(z(t)))dt =∶ ∆

1
+∆

2
+∆

3
.

By (5.4) and (5.15), ∣∆1∣r ≤ Crτ ∣w(τ0)∣r. Similar,

∣∆3∣r ≤ Crτ sup
τ0≤t≤τ0+τ

∣z(t) − z(τ0)∣r ≤ Crτ2

since ∣z(t)− z(τ0)∣r ≤ ∫ tτ0 ∣− Lz(l)+ ε2
K(l)(z(l))+ 2b

2∣rdl and ∣z(t)∣r+r∗ ≤
C
′
r by (5.15). Now let us consider ∆

2
. By Lemma 5.4, ∣K(τ0)(z(τ0)) −

K(t)(z(τ0))∣r ≤ Cr(t − τ0)κ∗ . So ∆
2
≤ Cr ∫ τ0 t

κ∗dt = C
′
rτ

1+κ∗ .

Since L ≥ 21 and τ ≤ 1/2, then ∣e−τLw(τ0)∣r ≤ (1 − τ)∣w(τ0)∣r. Now

(5.14), (4.23) and the bounds on ∆
j

imply that

∣w(τ0 + τ)∣r ≤ (1 − τ)∣w(τ0)∣r + Crε2
τ(∣w(τ0)∣r + τ + τκ∗ + (τ + ε2)),

and (5.13) follows if C
−1
1r ≪ 1. �

For any 0 < τ ≤ 1/2, any N and for k = 0, . . . , N let us set wk = ∣w(kτ)∣r.
Let the function k → wk attains its maximum at a point k which we write
as k ∶= k0 + 1. If k0 + 1 = 0, then wk ≡ 0. Otherwise in view of (5.13) we
have

wk0 ≤ wk0+1 ≤ (1 − τ/2)wk0 + C2rτε
2(τκ∗ + ε2).

So wk0 ≤ 2C2rε
2(τκ∗ + ε2) and

max
0≤k≤N

∣w(kτ)∣r = wk0+1 ≤ 3C2rε
2(τκ∗ + ε2)

since τ ≤ 1/2. Applying again (5.13) with τ0 = kτ and τ replaced by
any τ̄ ∈ (0, τ), and using that in the formula above N is any, we get that

∣w(t)∣r ≤ 4C2rε
2(τκ∗ + ε2), for any t ≥ 0. Sending τ → 0 (and estimating

norms ∣ ⋅ ∣r with r < d + 2 via ∣ ⋅ ∣d+2) and then using (4.12) we finally get

Theorem 5.8. For any r there exist positive constants C1r, C2r, C3r such

that if ε ≤ C
−1
1r , then

(5.16) sup
τ≥0

∣n≤2(τ) − z(τ)∣r ≤ C2rε
4

and if L ≥ ε
−2

, then

(5.17) sup
τ≥0

∣n⋅,L(τ) − z(τ)∣r ≤ C3rε
3
.
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Relation (5.17) together with Lemma 5.6 give a control over the long time
behaviour of the spectra of quasisolutions of (2.1) in terms of the stationary
solution zε of the limiting kinetic equation (see (5.9)):

∣n⋅,L(τ) − z
ε∣r ≤ Cr(e−τ + ε3), ∀ τ ≥ 0 .

By Proposition 2.1 with d ≥ 3 this result and (5.17) extend to the spectra
of quasisolutions of (1.20), defined in (1.27), as expressed in

Theorem 5.9. For any r there exist positive constants C4r, C5r such that

if ε ≤ C
−1
4r and L ≥ ε

−2
, then

sup
τ≥0

∣n⋅,L(τ) − z(τ)∣r ≤ C4rε
3
,(5.18)

∣n⋅,L(τ) − z
ε∣r ≤ C5r(e−τ + ε3), ∀ τ ≥ 0 .(5.19)

Relation (5.16) extends to the energy spectra of quasisolutions of (1.20)
analogously.

Appendix A. Proof of Lemma 3.6

In this appendix we suppose that the dimension d satisfies d ≥ 2.

A.1. Idea of the proof and general setting. In Lemma 3.6 (up to an ob-
vious scaling) we have to estimate the number of integer points on a quadric
inside a large box. The idea is to embed the integral points of the box in
an affine space over a large finite field and then apply powerful algebraic
geometry techniques to estimate the needed number (note that this identi-
fication of bounded integers with elements of a finite field is ubiquitous in
coding theory and combinatorics). It is possible mainly due to the fact that
this techniques permits to count points defined over a finite field using some
geometric information (essentially the dimension, the degree and irredun-
dant decomposition) on the corresponding algebraic set over the algebraic
closure of our finite field. We begin with recalling some basic definitions and
results concerning such algebraic sets (see, for example, the first chapter of
the book [27]).

Affine algebraic sets. Let us fix an algebraically closed field K. Let
Am = K

m
be the m-dimensional affine space over K, and let F1, . . . , Fs ∈

K[T1, . . . , Tm] be non-zero polynomials. Then an affine algebraic set (AAS)
X is just the set of common zeros of these polynomials:

(A.1) X={(a1, . . . , am) ∈ Km
∶ F1(a1, . . . , am)= . . .=Fs(a1, . . . , am)=0}.

Irreducibility. An AAS X is reducible if X = X1∪X2 with two non-empty
AAS X1, X2 s.t. X1 ≠ X,X2 ≠ X. If it is not the case, X is called irreducible,
or an affine algebraic variety (see [27], Section I.3.1).

Theorem A.1. (Irredundant decomposition) Any non-empty AAS X can
be presented as

(A.2) X = X1 ∪ . . . ∪Xl
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for irreducible X1, . . . , Xl such that Xi /⊂ Xj for i ≠ j. The decomposition
is unique up to order.

This decomposition is especially simple for a hypersurface X, i.e. when in

(A.1) s = 1. Then F = F1(T1, . . . Tm) = Π
l
j=1Qj for irreducible polynomials

Qj which are uniquely defined up to multiplicative constants and permu-
tation since the ring K[T1, . . . , Tm] is a unique factorisation domain, see,
e.g. Chapter IV of [24], and then Xj = {Qj = 0}. This uniqueness is true
under the condition which we can and will suppose to hold, namely, that
the polynomial P does not have multiple divisors, i.e., all Qj , j = 1, . . . , l
are distinct. For further references we formulate a corollary of the unique
factorisation property (see [27], Section I.3.1)

Lemma A.2. i). If X and Y are hypersurfaces, then X = Y if and only if
the corresponding polynomials PX and PY are proportional. Moreover if Y
is irreducible and X ⊆ Y , then X = Y.

ii). If degPX = 2 then there are exactly two possibilities: either X irre-
ducible (in this case it cannot contain a hyperplane), or X = X1 ∪ X2 for
two affine hyperplanes, defined by affine linear polynomials l1 and l2, and
PX = l1l2.

Dimension. One can define the dimension r = dimX ∈ {0, 1, . . . ,m} as
follows: dimX = max{dimXi, i = 1, . . . , l} for (A.2), and for an irreducible
AAS X

dimX = max{r ∶ X = X0 ⊃ X1 ⊃ . . . ⊃ Xr ≠ ∅},
where all Xi, i = 0, . . . , r are irreducible AAS and all inclusions are strict.
The codimension of X is codimX = m − dimX.

In particular, if dimX = m then X = Am (indeed, if X ⊂ Am, X ≠ Am

the definition implies that dimX < dimAm = m) and if dimX = 0 then X
is a finite set. The codimension of X as in (A.1) is at most s.

From the definition we get immediately (see [27], Section I.6.2)

Lemma A.3. If Y ⊂ X,Y ≠ X and X is irreducible, then dimX > dimY ,
codimX < codimY.

Degree. Let X ⊂ Am be a non-empty AAS, dimX = r. Then its degree
degX is defined as follows:

degX = max{cardinality of X ∩ L ∶ dim (X ∩ L) = 0},
where L ⊂ Am is an affine plane with dimL = m − r.

Lemma A.4. If X is a hypersurface (i.e. in (A.1) s = 1), then codimX = 1
and degX = degF1.

The famous Bezout theorem in its the most elementary setting over the
field C states that

degX ≤ Π
s
i=1 degFi.
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A.2. Finite fields’ Bezout theorem. From now on the field K is the
algebraic closure F̄p of a finite field Fp, where p is a large prime number (see
[24], Section V.5).

We will use a version of Bezout’s theorem over finite fields which can be
deduced from its general form, e.g. [13], and is also explicitly stated and
proved in [22, Corollary 2.2].

Theorem A.5. Let K = F̄p and the AAS X in (A.1) is such that Fj ∈
Fp[T1, . . . , Tm], degFj = dj, j = 1, . . . , s, and dimX = r. Then

∣X ∩ Fmp ∣ ≤ prΠs
i=1di.

A.3. Preliminary result. Let q1, . . . , qs, s ≥ 1, be polynomials of degree
at most two in m ≥ s variables, qi ∈ Z[X1, . . . , Xm], with qi(0) = 0,
i = 1, ..., s. Consider the geometric quadrics Qi = {x ∈ Rm ∶ qi(x) = 0}
and their intersection Q = ∩si=1Qi. The latter is not empty since 0 ∈ Q.

Let B
m
M ⊂ Rm be an open cube {∣x∣∞ <M} with some M ≥ 1. Consider

the set

Sm(M,Q) = Q ∩ Zm ∩Bm
M .

Let p be a prime and q
(p)
i ∈ Fp[X1, . . . , Xm] denote the polynomials qi

mod p over the finite field Fp. Consider the sets

Q
(p)
i = {x ∈ Km

∶ q
(p)
i (x) = 0}

and their intersection Q
(p)

= ∩si=1Q
(p)
i (recall that now K = F̄p is the al-

gebraic closure of Fp). We will be interested mainly in the cardinality of

Q
(p)(Fp) ∶= Q(p) ∩ Fmp as a tool to estimate ∣Sm(M,Q)∣.

Proposition A.6. Let M ≥ 1 and suppose that a prime p > 2M satisfies
p = 2M(1 + r(M)), where r(M) > 0. Suppose also that deg qi ≤ 2 for each

i and that the AAS Q
(p)

is of dimension m− s (and of codimension s, that

is, the s quadrics Q
(p)
i intersect properly):

(A.3) dim Q
(p)

= m − s.

Then

(A.4) ∣Sm(M,Q)∣ ≤ 2
m(1 + r(M))m−sMm−s

.

By Bertrand’s postulate, for any M ≥ 1 there is a p satisfying 2M < p <
4M , and when applying Proposition A.6 we will always chose

(A.5) r(M) < 1.

Moreover, by the Prime Number Theorem, for large M one can chose
r(M) = o(1).

Proof of Proposition A.6. Let Π ∶ Sm(M,Q)⟶ Fmp be defined by

Π(x1, . . . , xm) = (x1 mod p, . . . , xm mod p).
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Then Π is injective and its image is contained in Q
(p) ∩ Fmp ⊂ Fmp . Indeed,

the last assertion is clear and the injectivity is established as follows: if

(x′1 mod p, . . . , x
′
m mod p) = (x1 mod p, . . . , xm mod p)

but x
′
≠ x, then for some i ∈ {1, ...,m} we have x

′
i mod p = xi mod p, but

x
′
i ≠ xi. Consequently, ∣xi − x′i∣ ≥ p > 2M which contradicts the condition

xi, x
′
i ∈ B

m
M . Apllying then Theorem A.5 to X = Q

(p)
we get the conclusion

since

∣Sm(M,Q)∣ ≤ ∣Q(p)(Fp)∣ ≤ 2
s
p
m−s

= 2
m(1 + r(M))m−sMm−s

.

�

A.4. Main estimate for N = 3 and 4. Now we pass to the proof of

Lemma 3.6 and denote ∣Q̃L(z1, v)∩B
(N−2)d
R ∣ = s(R, Q̃, L). Consider the set

S
′(R, Q̃, L) = Q̃ ∩ Z(N−2)d

∩B
(N−2)d
RL , Q̃ = Q̃(Lz1, Lv),

and denote by s
′(R, Q̃, L) its cardinality. Then s

′(R, Q̃, L) = s(R, Q̃, L)
since the map (z2, . . . , zN−1)↦ (Lz2, . . . , LzN−1) is a bijection between the

sets Q̃L(z1, v) ∩B
(N−2)d
R and S

′(R, Q̃, L).
Let us estimate s

′(R, Q̃, L) through Proposition A.6 with m = (N − 2)d
and s = N −2, where N = 3 or 4. To this end it suffices to find M ≥ RL and

p > 2M such that assumption (A.3) is fulfilled for any (z1, v) ∈ B
2d
(N−1)R

satisfying (z1, v) ∈ Q
0
1L ∩ A2. Lemma A.7 below establishes this for M =

NRL/2 and any p > 2M . Then, applying (A.4) with r(M) < 1 (see (A.5)),
we conclude the proof of Lemma 3.6.

For a prime p and a, b ∈ Fdp let us consider algebraic sets Q̃
(p)
j over K = F̄p:

Q̃
(p)
j (a, b) ∶= {(z2, . . . , zN−2) ∈ K(N−2)d

∶ q
(p)
j (z2, . . . , zN−2; a, b) = 0},

where q
(p)
j (z2, . . . , zN−2; a, b) are the residues modulo p of the polynomials

qj(z2, . . . , zN−2; a, b), defined by (3.15). We set Q̃
(p)

= ∩1<j<N Q̃
(p)
j for the

intersection of the algebraic sets.

Lemma A.7. Let N ∈ {3, 4}, (z1, v) ∈ Q0
1L ∩ A2 (see (3.16)) and let p be

a prime satisfying p > max(∣Lz1∣∞, ∣Lv∣∞). Then

(A.6) dim Q̃
(p)(Lz1, Lv) = (N − 2)(d − 1) .

The assumption p > max(∣Lz1∣∞, ∣Lv∣∞) ensures that Lz1 and Lv are

different from zero in K
d
. In particular, for (z1, v) ∈ B2d

(N−1)R this assump-

tions is satisfied if p > 2M with M = NRL/2.

Proof of Lemma A.7. Let N = 3. Then N − 2 = 1 and Q̃
(p)

is given by

the unique equation q
(p)
2 (z2;Lz1, Lv) = 0, for a fixed (z1, v). By Lemma A.9

the equation is non-trivial, so the conclusion follows from Lemma A.4.
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N = 4. The codimension of the intersection of two quadrics is at most
two. We have to show that it is two (and not one). The result will follow
from the next three lemmas.

Lemma A.8. Let Q1 = {q̃1 = 0},Q2 = {q̃2 = 0} be two linearly independent
quadrics over K. Then the codimension of Q1 ∩Q2 is one if and only if q̃1

and q̃2 have a mutual affine linear factor l(x).

Proof. Let the codimension of the intersection be one. In this case if one
of Q1,Q2 is irreducible, then Q1 = Q2 by Lemma A.3 with Y = Q1 ∩ Q2.
However this is impossible by Lemma A.2. i) since q̃1 and q̃2 are indepen-

dent. Therefore by Lemma A.2. ii) Q1 = H1 ∪H2 and Q2 = H
′
1 ∪H

′
2, with

hyperplanes H1, . . . ,H
′
2. If all Hi ∩H

′
j are of codimension two then

codimQ1 ∩Q2 = codim (∪(Hi ∩H
′
j)) = min(codimHi ∩H

′
j) = 2.

Therefore, at least one of Hi ∩H
′
j is of codimension one and then we have

ker(l(x)) = Hi ∩H
′
j ⊂ Q1 ∩Q2 for an affine linear l(x). Hence l(x) divides

both q̃1 and q̃2 by Lemma A.2. ii).
The inverse statement is obvious. �

Lemma A.9. For any N > 2, if the matrix α is irreducible and (z1, v) ∈
Q

0
1L∩A2 is such that Lz1, Lv ≠ 0 in K

d
, then the polynomials q

(p)
j (⋅, Lz1, Lv),

1 < j < N are linearly independent over K. In particular, each q
(p)
j is a

non-zero polynomial.

Proof. Consider a linear combination ∑1<j<N cjq
(p)
j . By the homogeneity

in (z2, . . . , zN−1) it vanishes identically if and only if

∑
1<j<N

cjzj ⋅ (αj1(Lz1) + αjN(Lv)) ≡ 0 ,

∑
1<i,j<N

cj(αji − αjNα1i)zj ⋅ zi ≡ 0 .
(A.7)

Arguing by induction and using that the matrix α is irreducible we construct
a partition E0, . . . , EM , M ≥ 1, of the set {1, . . . , N} such that E0 = {1, N}
and for n ≥ 1,

En = {j ∶ αjl = 0 ∀ l ∈ En′ , n
′
≤ n−2, and ∃ l

′
∈ En−1 such that αjl′ ≠ 0}.

Since (z1, v) ∈ Q0
1L and Lz1, Lv ≠ 0 in K

d
, then the term in brackets in the

first line of (A.7) is not identically zero for each j ∈ E1, so cj = 0 for every
j ∈ E1. Using this in the second line of (A.7) we get:

M

∑
n=2

M

∑
m=n−1

∑
j∈En

∑
i∈Em

cjαjizj ⋅ zi ≡ 0 .

This relation holds if and only if (cj − ci)αji = 0 for all j ∈ En, 2 ≤ n ≤M ,
and i ∈ Em, n − 1 ≤ m ≤M . We know that cj = 0 if j ∈ E1. Starting from
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n = 2 and arguing by induction in n we find that if ci = 0 for all i ∈ En−1,
then cj = 0 for all j ∈ En. Indeed, for any j ∈ En there exists at least one
i ∈ En−1 such that αji ≠ 0 by the definition of Ei, so relation (cj−ci)αji = 0
implies that cj = 0 if j ∈ En. That is, cj ≡ 0. �

Lemma A.10. For any N > 2, if the matrix α is irreducible and (z1, v) ∈
Q

0
1L∩A2 is such that Lz1, Lv ≠ 0 in K

d
, then the polynomials q

(p)
j (⋅, Lz1, Lv),

1 < j < N , are irreducible.

Proof. Each polynomial q
(p)
j has degree one or two. If its degree is one the

assertion is obvious. Now let the degree be two. Note that in view of (3.15)

q
(p)
j can be written as the scalar products q

(p)
j = zj ⋅ lj(z2, . . . , zN−1; z1, v)

mod p, where lj are surjective affine functions lj ∶ K
d(N−2)

⟶ K
d
. But such

scalar product cannot vanish for d ≥ 2 > 1 on a hyperplane H ⊂ K
d(N−2)

which by Lemma A.2. ii) would be the case for a reducible quadric. Indeed,
only two cases can occur:

a) the coefficient α of zj in lj is non-zero, or
b) it is zero but then the coefficient β of some other zi is non-zero.

In case a) take the 2-dimensional plane P (x1, x2) in the whole space, gener-
ated by two orthogonal vectors from the zj-space, where the first basis vector

is parallel to α1jz1 + αNjv ≠ 0 (this vector is non-zero since (z1, v) ∈ Q
0
1L

and Lz1, Lv ≠ 0 in K
d
, and for the case a) we have α1j , αNj ≠ 0). Then

the restriction of q
(p)
j = 0 on P is α(x2

1 + x
2
2) + c1x1 = 0 with c1 ≠ 0, which

is isomorphic to x
2
1 + x

2
2 = C ≠ 0. This plane quadric in P (x1, x2) cannot

contain P (x1, x2) ∩ H (a line or the whole P (x1, x2)). Indeed, otherwise,
supposing by symmetry that the quadric contains a line x1 = ax2 + b, we
would have that the polynomial

a
2
x

2
2 + 2abx2 + b

2
+ x

2
2 − C = (a2

+ 1)x2
2 + 2abx2 + b

2
− C

vanishes identically. This implies ab = 0, and if a = 0 then the term

(a2 + 1)x2
2 = x

2
2 ≠ 0, while for b = 0 the term b

2 − C = −C ≠ 0.

Similarly, in case b) we take the 4-dimensional vector subspace P
′

gen-
erated by the two first basis vectors in the zj space and the two first

basis vectors in the zi space. The restriction of q
(p)
j = 0 on P

′
is then

β(x1y1 + x2y2) + c1x1 + c2x2 = 0, isomorphic to x1y1 + x2y2 = C which can

not contain P
′(x1, x2, y1, y2)∩H. Indeed, else, supposing by symmetry that

P
′(x1, x2, y1, y2)∩H ⊃ {x1 = a1x2+b1y1+b2y2−c} we get that the following

quadratic function of x2, y1, y2:

(a1x2+b1y1+b2y2−c)y1+x2y2−C = a1x2y1+b1y
2
1+b2y1y2−cy1+x2y2−C

vanishes identically, which is clearly wrong. �
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End of the proof of Lemma A.7. Since each q
(p)
j is a non-zero polynomial

of degree one or two, then to prove Lemma A.7 we have to consider three

cases. In the first case both polynomials q
(p)
2 and q

(p)
3 are linear. Then the

codimension of the intersection Q̃
(p)

is two since they are linearly indepen-

dent. In the second case both q
(p)
2 and q

(p)
3 are quadratic. Then, according

to Lemma A.8, the codimension still is two since the polynomials are ir-
reducible by Lemma A.10. Finally in the last case, when one polynomial
is linear and another one is quadratic, the assertion is clear since then the
AAS in question is an intersection of a quadratic irreducible surface with a
hyperplane. Thus its codimension is two by Lemma A.2. ii).

Remark A.11. The proof of Lemma A.7 follows from three lemmas. Two of
them are valid for any N > 2, but Lemma A.8 holds only for N = 4 (and
tautologically holds for smaller N). Still the bi-linear (or linear) nature of

the polynomials q
(p)
j and direct analysis of the AAS Q̃

(p)
, jointly with the

two lemmas, valid for any N > 2, allow to prove by hand Lemma A.7 for
“not too high” values of N , and thus, to prove for those N ’s Theorem 3.2.
Unfortunately, for the moment we cannot prove the theorem for all N > 2;
cf. Conjecture 3.8.

Appendix B. Proof of Proposition 4.3 and Lemma 4.4

We prove Proposition 4.3 in Sections B.1-B.6 and Lemma 4.4 in Sec-
tion B.7.

B.1. Beginning of the proof of Proposition 4.3. The proof of the
proposition is somewhat cumbersome since we have to consider a number
of different terms and different cases. During the proof we will often skip

the upper index (0), so by writing a and as we will mean a
(0)

and a
(0)
s . We

will also skip the dependence on τ0 by writing c
(i)
s (τ ; τ0) and ∆a

(i)
s (τ ; τ0) as

c
(i)
s (τ) and ∆a

(i)
s (τ). Besides, for a complex function (ws1,...,sk , sj ∈ ZdL) we

denote

⨊
s1,...,sk∈ZdL

ws1,...,sk = L
−kd∑

s1,...,sk∈ZdL
ws1,...,sk ,

and we introduce the symmetrisation

Ysyms (u, v, w; t) = L
−d

3
∑
1,2,3

δ
′12
3s δ(ω12

3s) (u1v2w̄3 + v1w2ū3 + w1u2v̄3) .

We recall that Qs,L is given by formula (4.30) and first consider the term

E∆a
(2)
s (τ)ās(τ0 + τ). Inserting the identity a

(1)(τ0 + l) = c(1)(l) +∆a
(1)(l)

into formula (4.27) for ∆a
(2)
s , we obtain

E∆a
(2)
s (τ)ās(τ0 + τ) = Ns + Ñs,
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where
(B.1)

Ns ∶= iE(ās(τ0 + τ)∫
τ

0
e
−γs(τ−l)3Ysyms (a(τ0 + l), a(τ0 + l),∆a(1)(l)) dl)

and

Ñs ∶= iE(ās(τ0 + τ)∫
τ

0
e
−γs(τ−l)3Ysyms (a(τ0 + l), a(τ0 + l), c(1)(l)) dl).

Thus,
(B.2)

Qs,L = L
2 (E∣∆a(1)s (τ)∣2 + 2RNs + 2RE∆a

(1)
s (τ)c̄(1)s (τ) + 2RÑs) , s ∈ Rd.

We will analyse the four terms above term by term.

B.2. The first term of Qs,L in (B.2). Due to (4.27), we have
(B.3)

E∣∆a(1)s (τ)∣2 = E∫
τ0+τ

τ0

dl∫
τ0+τ

τ0

dl
′
e
−γs(2τ0+2τ−l−l′)Ys(a(l))Ys(a(l′)).

Writing the functions Ys explicitly and applying the Wick theorem, in view
of (2.13) we find

E∣∆a(1)s (τ)∣2 = 2L
−2d∑

1,2

δ
′12
3s δ(ω12

3s)∫
τ0+τ

τ0

dl∫
τ0+τ

τ0

dl
′
e
−γs(2τ0+2τ−l−l′)

Ea1(l)ā1(l′)Ea2(l)ā2(l′)Eā3(l)a3(l′),
and note that

∫
τ0+τ

τ0

dl∫
τ0+τ

τ0

dl
′
e
−γs(2τ0+2τ−l−l′)

≤ τ
2
.

On account of (2.13), we can bound

E∣∆a(1)s (τ)∣2 ≤ 2τ
2⨊

1,2
δ
′12
3s δ(ω12

3s)B123,

where B123 = B1B2B3. Since B123 with s3 = s − s1 − s2 is a Schwartz
function of s, s1, s2 then Theorem 3.2 with N = 2 applies and we find

(B.4) E∣∆a(1)s (τ)∣2 ≤ C#(s)L−2
τ

2
.

B.3. The second term of Qs,L in (B.2). To study the term 2RNs we use
the same strategy as above. Namely, expressing in (B.1) the function 3Ysyms

via Ys, we write Ns as Ns = N
1
s + 2N

2
s , s ∈ Rd, where

N
1
s = iE(ās(τ0 + τ)∫

τ

0
e
−γs(τ−l)Ys(a(τ0 + l), a(τ0 + l),∆a(1)(l)) dl),

N
2
s = iE(ās(τ0 + τ)∫

τ

0
e
−γs(τ−l)Ys(∆a(1)(l), a(τ0 + l), a(τ0 + l)) dl).
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Term N
1
s . Writing explicitly the function Ys and then ∆ā

(1)
3 we get

N
1
s = i L

−d∑
1,2

δ
′12
3s δ(ω12

3s)∫
τ

0
dl e

−γs(τ−l)

× E(a1(τ0 + l)a2(τ0 + l)∆ā
(1)
3 (l)ās(τ0 + τ))

= L
−2d∑

1,2

∑
1′,2′

δ
′12
3s δ

′1′2′

3′3 δ(ω
12
3s)δ(ω1

′
2
′

3′3 )∫
τ

0
dl ∫

l

0
dl
′
e
−γs(τ−l)e−γ3(l−l

′)

(B.5)

× E(a1(τ0 + l)a2(τ0 + l)ā1′(τ0 + l
′)ā2′(τ0 + l

′)a3′(τ0 + l
′)ās(τ0 + τ)).

By the Wick theorem, we need to take the summation only over s1′ , s2′ , s3′

satisfying s1′ = s1, s2′ = s2, s3′ = s or s1′ = s2, s2′ = s1, s3′ = s. Since in

both cases we get δ
′1′2′

3′3 = δ
′12
3s and ω

1
′
2
′

3′3 = ω
12
3s , we find

N
1
s = 2⨊

1,2
δ
′12
3s δ(ω12

3s)∫
τ

0
dl ∫

l

0
dl
′
e
−γs(τ−l)−γ3(l−l′)

× Ea1(τ0 + l)ā1(τ0 + l
′)Ea2(τ0 + l)ā2(τ0 + l

′)Eas(τ0 + l
′)ās(τ0 + τ).

Arguing as in Section B.2 we find

(B.6) ∣N1
s ∣ ≤ C#(s)L−2

τ
2
.

Term N
2
s . By literally repeating the argument we have applied to N

1
s we

find that

N
2
s = i L

−d∑
1,2

δ
′12
3s δ(ω12

3s)∫
τ

0
dl e

−γs(τ−l)×

E(∆a(1)1 (l)a2(τ0 + l)ā3(τ0 + l)ās(τ0 + τ))

= −L
−2d∑

1,2

∑
1′,2′

δ
′12
3s δ

′1′2′

3′1 δ(ω
12
3s)δ(ω1

′
2
′

3′1 )∫
τ

0
dl ∫

l

0
dl
′
e
−γs(τ−l)e−γ1(l−l

′)

× E(a1′(τ0 + l
′)a2′(τ0 + l

′)ā3′(τ0 + l
′)a2(τ0 + l)ā3(τ0 + l)ās(τ0 + τ)).

By the Wick theorem we should take summation either under the condition
s1′ = s3, s2′ = s, s3′ = s2 or s1′ = s, s2′ = s3, s3′ = s2. Since in both cases

δ
′1′2′

3′1 = δ
′12
3s and ω

1
′
2
′

3′1 = −ω12
3s , then

N
2
s = − 2⨊

1,2
δ
′12
3s δ(ω12

3s)∫
τ

0
dl ∫

l

0
dl
′
e
−γs(τ−l)e−γ1(l−l

′)

(B.7)

Ea2(τ0 + l)ā2(τ0 + l
′)Ea3(τ0 + l

′)ā3(τ0 + l)Eas(τ0 + l
′)ās(τ0 + τ) .

Again we get

(B.8) ∣N2
s ∣ ≤ C#(s)L−2

τ
2
.
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B.4. The third term of Qs,L in (B.2). We have

E∆a
(1)
s c̄

(1)
s (τ) = E∫

τ0+τ

τ0

e
−γs(τ0+τ−l)Ys(a(l)) dl∫

τ0

0
e
−γs(τ0+τ−l′)Ys(a(l′)) dl′.

This expression coincides with (B.3) in which the integral ∫ τ0+ττ0
dl
′

is re-

placed by ∫ τ00 dl
′
. Then,

E∆a
(1)
s (τ)c̄(1)s (τ) = 2⨊

1,2
δ
′12
3s δ(ω12

3s)∫
τ0+τ

τ0

dl∫
τ0

0
dl
′
e
−γs(2τ0+2τ−l−l′)

Ea1(l)ā1(l′)Ea2(l)ā2(l′)Eā3(l)a3(l′),

Expressing the correlations Eaj(l)āj(l′) through (2.13), we get

E∆a
(1)
s (τ)c̄(1)s (τ) =2⨊

1,2
δ
′12
3s δ(ω12

3s)B123 ∫
τ

0
dl e

−2γs(τ−l)−γ123sl

∫
τ0

0
dl
′
e
−γ123sτ0e

γsl
′

∏
j=1,2,3

(eγj l
′

− e
−γj l

′

) .

For the integral in the first line we have

(B.9) Ts ∶= ∫
τ

0
dl e

−2γs(τ−l)−γ123sl
= {

τe
−2γsτ if 2γs = γ123s

e
−2γsτ−e−γ123sτ

γ123s−2γs
elsewhere

.

For the integral in the second line, let us denote

T j
∶=∫

τ0

0
dl e

−γ123sτ0e
γj l∏

k≠j

(eγkl − e−γkl) ,(B.10)

where j, k ∈ {1, 2, 3, s}. Then,

(B.11) 0 ≤ T j
≤ 1/γ123s.

Due to (B.9) and (B.10) we get

(B.12) E∆a
(1)
s (τ)c̄(1)s (τ) = 2⨊

1,2
δ
′12
3s δ(ω12

3s)B123TsT
s
.

B.5. The fourth term of Qs,L in (B.2). To study the term 2RÑs, as in

Section B.3, we write Ñs as Ñs = Ñ
1
s + 2Ñ

2
s , s ∈ Rd, where

Ñ
1
s = iE(ās(τ0 + τ)∫

τ

0
e
−γs(τ−l)Ys(a(τ0 + l), a(τ0 + l), c(1)(l)) dl),

Ñ
2
s = iE(ās(τ0 + τ)∫

τ

0
e
−γs(τ−l)Ys(c(1)(l), a(τ0 + l), a(τ0 + l)) dl).

Term Ñ
1
s . Writing explicitly the function Ys and then c̄

(1)
we get

Ñ
1
s = L

−2d∑
1,2

∑
1′,2′

δ
′12
3s δ

′1′2′

3′3 δ(ω
12
3s)δ(ω1

′
2
′

3′3 )∫
τ

0
dl ∫

0

−τ0
dl
′
e
−γs(τ−l)e−γ3(l−l

′)

× E(a1(τ0 + l)a2(τ0 + l)ā1′(τ0 + l
′)ā2′(τ0 + l

′)a3′(τ0 + l
′)ās(τ0 + τ)).
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Again, this is the same expression as (B.5), with the integration over dl
′

ranging from −τ0 to 0 instead of from 0 to l. Thus, by the Wick theorem,
we obtain

Ñ
1
s = 2⨊

1,2
δ
′12
3s δ(ω12

3s)∫
τ

0
dl ∫

0

−τ0
dl
′
e
−γs(τ−l)−γ3(l−l′)

× Ea1(τ0 + l)ā1(τ0 + l
′)Ea2(τ0 + l)ā2(τ0 + l

′)Eas(τ0 + l
′)ās(τ0 + τ).

Following the line of Section B.4 we express the correlations through (2.13)
and get

Ñ
1
s =2⨊

1,2
δ
′12
3s δ(ω12

3s)B12s ∫
τ

0
dl e

−2γs(τ−l)−γ123sl

∫
τ0

0
dl
′
e
−γ123sτ0e

γ3l
′

(eγsl
′

− e
−γsl

′

) ∏
j=1,2

(eγj l
′

− e
−γj l

′

)

=2⨊
1,2
δ
′12
3s δ(ω12

3s)B12sTsT
3
.

(B.13)

Term Ñ
2
s . Literally repeating the argument which we have applied to Ñ

1
s ,

we find that the term Ñ
2
s is given by the same expression as (B.7) with the

integral ∫ l0 replaced by ∫ 0

−τ0
:

Ñ
2
s = − 2⨊

1,2
δ
′12
3s δ(ω12

3s)∫
τ

0
dl ∫

0

−τ0
dl
′
e
−γs(τ−l)e−γ1(l−l

′)

Ea2(τ0 + l)ā2(τ0 + l
′)Ea3(τ0 + l

′)ā3(τ0 + l)Eas(τ0 + l
′)ās(τ0 + τ).

Again we get

(B.14) Ñ
2
s = −2⨊

1,2
δ
′12
3s δ(ω12

3s)B23sTsT
1
.

B.6. End of the proof. Inserting formulas (B.12), (B.13) and (B.14), as
well as (B.4), (B.6), (B.8) in (B.2), we get

»»»»»»Qs,L − 4L
2
Ts⨊1,2

δ
′12
3s δ(ω12

3s) (B123T
s
+B12sT

3
− 2B23sT

1)»»»»»» ≤ C
#(s)τ2

.

(B.15)

Note that the terms Zj
defined in (4.14) can be written as

(B.16) Zj
=

T j

∏k≠j(1 − e−2γkτ0) .

The relations (2.13)-(2.14) imply that for any permutation (k1, k2, k3, k4) of

(1, 2, 3, s) we have Bk1k2k3 = n
(0)
k1
n
(0)
k2
n
(0)
k3

/∏m=k1,k2,k3
(1 − e−2γmτ0), where

n
(0)
ki

= n
(0)
ki,L

(τ0). Together with (B.16) this implies

(B.17) Bk1k2k3T
k4
= Zk4n

(0)
k1
n
(0)
k2
n
(0)
k3
.



THE LARGE-PERIOD LIMIT 49

By symmetry, the term 2B23sT
1

in (B.15) can be replaced by B23sT
1 +

B13sT
2
. Then, inserting (B.17) in (B.15) we get

∣Qs,L − Xs∣ ≤
»»»»»»4L

2(Ts − τ)⨊1,2
δ
′12
3s δ(ω12

3s) (T s
B123 + T 3

B12s − 2T s
B23s)

»»»»»»
+ C

#(s)τ2
,

with Xs defined in (4.33). Finally, we point out that ∣(Ts − τ)T j∣ ≤ 3τ
2
,

due to (B.11) and since ∣Ts − τ ∣ ≤ 3τ
2
γ123s. So, the bound

»»»»»»L
2(Ts − τ)⨊1,2

δ
′12
3s δ(ω12

3s) (T s
B123 + T 3

B12s − 2T s
B23s)

»»»»»» ≤ C
#(s)τ2

,

is a consequence of Theorem 3.2. This concludes the proof of Proposition 4.3.

B.7. Proof of Lemma 4.4. Note that ∂sjf(γj) = f
′(γj)∂sjγj , where ∂sjγj

(as well as higher order derivatives of γj) have at most polynomial growth

at infinity. Then, using the definition (4.14) of Zj
we find

»»»»»∂
µ

s⃗
Zj(τ0, s⃗)

»»»»» =
∣µ∣
∑

n1+n2+n3+ns=1

P (s⃗;n1, . . . , ns)∫
τ0

0
dl (τ0 − l)nje−γj(τ0−l)

∏
m≠j

d
nm

dγ
nm
m

( sinh(γml)
sinh(γmτ0)

) ,

(B.18)

where P (s⃗; a1, . . . , an) denotes a function of s⃗, dependent on parameters
(a1, . . . , an), having at most a polynomial growth at infinity. Using the

relation
sinh(γl)

sinh(γτ0) =
e
−γ(τ0−l)−e−γ(l+τ0)

1−e−2γτ0
we find by induction that

d
n

dγn
( sinh(γl)

sinh(γτ0)
) = ∑

k+m+p=n

ck,m,pIk,m,p(l, τ0, γ),

where ck,m,p are constants,

(B.19) Ik,m,p = ((τ0 − l)ke−γ(τ0−l) − (l + τ0)ke−γ(l+τ0))
τ
m+p
0 e

−2γmτ0

(1 − e−2γτ0)m+1
,

and p ≠ 0 only if m ≠ 0. For τ0 ≥ γ
−1

the terms Ik,m,p are bounded in
absolute values by absolute constants Ck,m,p, where we recall that 0 ≤ l ≤ τ0

and γ ≥ 1. Let now τ0 ≤ γ
−1

. In this case, since k +m + p = n,

∣Ik,m,p∣ ≤ 2
(l + τ0)kτm+p0

(1 − e−2γτ0)m+1
≤ 2

k+1 τ
n
0

(1 − e−2γτ0)m+1
.

So, in the case m ≤ n− 1 we have ∣Ik,m,p∣ ≤ Ck,m,p uniformly in τ0 ≤ γ
−1

. If
m = n (so k = p = 0) we use another estimate, following from (B.19):

∣Ik,m,p∣ ≤ C
e
−γ(τ0−l) − e−γ(l+τ0)

(1 − e−2γτ0)m+1
τ
m
0 =Cτ

m
0 e

−γ(τ0−l) 1 − e−2γl

(1 − e−2γτ0)m+1
≤ Ck,m,p,
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uniformly in τ0 ≤ γ
−1

.
We have seen that the product in (B.18) is bounded uniformly in s⃗, l and

τ0, so the integral over l is also bounded uniformly in s⃗ and τ0.

Appendix C. Proof of Proposition 2.1

The proof uses the theory of Feynman diagrams, presented in Section 2.
For N = 0 the assertion is trivial. For N ≥ 1 in Proposition 8.7 of [8] it is

proven that E(a(m)
s (τ1)ā(n)s (τ2) − a(m)

s (τ1)ā(n)s (τ2)) equals to

(C.1) ∑
F∈F+m,n\Fm,n

cF Js(F) + ∑
F∈Fm,n

cF J
2
s (F),

where F
+
m,n is a certain (finite) set of extended Feynman diagrams, 13 cF is a

complex number of unit norm and Js(F), J 2
s (F) are sums, similar to (2.19).

In Section 8.6.3 of [8] are established the following bounds for these sums:

(C.2) ∣J 2
s (F)∣ ≤ C#(s)L−Nd ∑

z∈Z+(F)∶
zj=0 for some j,

ω
F
k (z)=0∀1≤k≤N

C
#(z),

where

Z+(F) = {z ∈ (ZdL)N ∶ zk ≠ 0⇔
N

∑
i=1

α
F
kizi ≠ 0 ∀1 ≤ k ≤ N}

while the quadratic forms ω
F
k and the skew-symmertic matrix α

F
are defined

in Section 2.4. Note that possibly the diagram F does not belong to the set

F
true
m,n , so that the matrix α

F
may have zero columns and lines. On the other

hand,

(C.3) ∣Js(F)∣ ≤ C#(s)L−Nd ∑
z∈Z̃+(F)∶

ω̃
F
k (z)=0∀1≤k≤Ñ

C
#(z).

Here Ñ = Ñ(F) < N , quadratic forms ω̃
F
k(z) are defined by relations (2.17),

where N is replaced by Ñ and the matrix (αF
ij) – by a certain Ñ ×Ñ -matrix

(α̃F
ji), also satisfying α̃

F
ji = −α̃

F
ij ∈ {0,±1} for all i, j. Accordingly the set

Z̃+(F) ⊂ (ZdL)Ñ is defined as Z+(F) above, but with N and α
F
ij replaced by

Ñ and α̃
F
ij .

We first show that the term J 2
s (F) is bounded by the r.h.s. of (2.3). To

this end we write Z+(F) = ∪KZK, where the union is taken over all subsets

13These diagrams are defined similarly to the Feynman diagrams from Section 2.3.1,
but now we allow to couple leaves not only from different blocks but also from the same
block.
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K ⊂ {1, . . . , N} and

ZK(F) = {z ∶ zk =
N

∑
i=1

α
F
kizi = 0 ∀k ∈ K and zk ≠ 0,

N

∑
i=1

α
F
kizi ≠ 0 ∀k ∉ K}.

Then the r.h.s. of (C.2) takes the form

(C.4) C
#(s)L−Nd ∑

K≠∅
∑

z∈ZK(F)∶
ω
F
k (z)=0∀1≤k≤N

C
#(z).

Note that on the set ZK(F) we have ωk(z) = 0 for all k ∈ K and ωk(z) =
2zk ⋅∑i∉K α

F
kizi for k ∉ K. Thus, the sum over z in (C.4) takes the form of

the sum in (3.2), where z = (zj)j∉K and N is replaced by

N − κ, κ = #K.

We recall that N ≤ 4 and K /= ∅, so that N − κ takes values 0, 1, 2 or 3.
For the sets K satisfying N −κ = 0 we have ZK(F) = {0}, so the sum (C.3)

is bounded by C
#(s)L−Nd. Since the matrix α

F
is skew-symmetric, then in

the case N − κ = 1 we have ZK(F) = ∅, so the sum (C.3) vanishes. When
N − κ = 2 or 3 we apply Theorem 3.2 and see that the sum over z in (C.4)

is bounded by CL
−(N−κ)(1−d)

. So

∣J 2
s (F)∣ ≤ C#(s)L−Nd ∑

K≠∅
L
−(N−κ)(1−d)

= C
#(s) ∑

K≠∅
L
−N+κ(1−d)

≤ C
#
1 (s)L−N+1−d

.

Same argument implies that the r.h.s. of (C.3) also is bounded by the

quantity C
#(s)L−N+1−d

(note that decomposing the r.h.s. of (C.3) as in
(C.4) we get a new term with K = ∅, but for it N − κ = N ≤ 4 and
Theorem 3.2 still applies).

Appendix D. Case d = 2

A difference between the cases d ≥ 3 and d = 2 comes from Theorem 3.1
since in the asymptotic, given by the latter, an additional log-factor appears
when d = 2. To handle it we redefine the sum in (3.2), defining SL,N(Φ), by

multiplying it by (lnL)−N/2
. So when d = 2 SL,N takes the form

(D.1) SL,N(Φ) ∶= L
N(1−d)

(lnL)N/2
∑

z∈Z∶ ωj(z)=0∀j

Φ(z).

Accordingly the (d = 2)-analogy of (3.5) reads
(D.2)

»»»»»»SL,2(Φ) − L
2(1−d)

lnL
∑

z∈Z2d
L ∶ z1⋅z2=0

Φ(z)»»»»»» ≤
CL

2−d

lnL
∥Φ∥0,d+1 =

C

lnL
∥Φ∥0,3.
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This approximation, jointly with a modification of the Heath-Brown result
from [14], given in Theorem 1.4 of [10], implies the following version of
Theorem 3.1 for d = 2:

Theorem D.1. Let d = 2. Then there exist constants N1, N2 > 4 such that
if ∥Φ∥N1,N2

<∞,

(D.3)
»»»»»»»»
SL,2(Φ) − C2 ∫

Σ0

Φ(z)µΣ0(dz1dz2)
»»»»»»»»
≤ K2

∥Φ∥N1,N2

lnL
,

where C2 > 0 is a number theoretical constant and K2 > 0.

Note that estimate (3.8) stays true when d = 2.

Theorem D.2. In the case d = 2 assertion of Theorem 3.2 remains true,
if the sum SL,N is defined as in (D.1) and N2 is the constant from Theo-
rem D.1.

Proof. The only difference with the proof of Theorem 3.2 comes from esti-
mate (3.18) since the latter is obtained by applying Theorem 3.1, and in the
case d = 2 we should apply Theorem D.1 instead. Namely, now the r.h.s. of

(3.18) takes the form CL
2(d−1)

lnL[R2d+RN2(lnL)−1] ≤ C ′RN2L
2(d−1)

lnL.
Since Lemma 3.6 remains unchanged, then for d = 2 the r.h.s. of estimate
(3.20), which holds for irreducible matrices α, should be multiplied by lnL.
In the case of reducible matrix α we apply the latter estimate to each irre-

ducible block, which gives the factor (lnL)⌊N/2⌋
in the r.h.s. of (3.12), since

the number of blocks does not exceed ⌊N/2⌋. However, the final estimate

of Theorem 3.2 remains unchanged because of the factor (lnL)−N/2
in the

definition (D.1) of the sum SL,N . �

Since in the case d = 2 we choose ρ = εL/
√

lnL, then the terms n
(k)
s,L are

given by formula (4.4), multiplied by (lnL)−k/2
. The proof of Proposition 2.1

is analogous to that presented in Appendix C for d = 2. The only difference
being the use of Theorem D.2 in place of Theorem 3.2. Lemma 2.2 remains

unchanged, so the correlations L
k(lnL)−k/2Ea(m)

s ā
(n)
s (τ2), m + n = k, are

given by formula (2.18), multiplied by (lnL)−k/2
(recall that the sum of

these correlations makes n
(k)
s,L). We see that the correlations take the form

(D.1), so Theorems D.1 and D.2 apply to study them.
The rest of the proof of Theorem 5.8 literally repeats that for the case

d ≥ 3, except the appearance of the (lnL)−k/2
factors, coming from the new

definition of ρ. Now the estimates, using Theorem 3.1, should be relaxed
since the estimate provided by Theorem D.1 is slightly weaker than that
of Theorem 3.1. In particular, in the r.h.s. of (4.8), (4.11) and (4.12) the

factor L
−1/2

should be replaced by (lnL)−1
. This results in the stronger

lower bound for L in Theorem 5.8: now it is L ≥ e
ε
−1

instead of L ≥ ε
−2

(see Theorem A).
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Theorem 5.9, as Theorem 5.8, remains unchanged, except the lower bound
for L which is modified as above. Indeed, the theorem follows from The-

orem 5.8 and Proposition 2.1, and the term χ2(L)−N+1
= (lnL)(N−1)/2

,
appearing in estimate (2.3) for d = 2 does not change the assertion of The-
orem 5.8.

D.1. Discussion of Remark 1.2. In fact, Theorem 1.4 from [10] provides
more delicate information about SL,2 than what is stated in Theorem D.1.
Namely, if d = 2 then due to [10],
»»»»»»»»»»

L
2(1−d)

lnL
∑

z∶ z1⋅z2=0

Φ(z) − C2 ∫
Σ0

Φ(z)µΣ0(dz1dz2) −
σ

Φ
1 (L)
lnL

»»»»»»»»»»
≤ C

∥Φ∥N1,N2

L1/6
,

where σ
Φ
1 is a certain function satisfying ∣σΦ

1 (L)∣ ≤ C1∥Φ∥N1,N2
, uniformly

in L. See [10] for an explicit (but complicated) formula for σ
Φ
1 . Consequently,

»»»»»»»»»
SL,2(Φ) − C2 ∫

Σ0

Φ(z)µΣ0(dz1dz2) −
σ̃

Φ
1 (L)
lnL

»»»»»»»»»
≤ C

∥Φ∥N1,N2

L1/6
,

where
σ̃

Φ
1 (L) ∶= σΦ

1 (L) − L2(1−d) ∑
z∶ z1=0 or z2=0

Φ(z)

still satisfies ∣σ̃Φ
1 (L)∣ ≤ C∥Φ∥N1,N2

in view of (D.2). Then estimate (4.12)
refines as

(D.4)
»»»»»»n
≤2
s − ns,L −

f(τ, L)
lnL

»»»»»» ≤ C
#(s)ε2(L−1/6

+ ε) ,

where f(τ, L) ∶= σ̃
Φ(τ)
1 (L) and Φ(τ) is the function satisfying n

≤2
s,L(τ) =

SL,2(Φ(τ)) that comes from Corollary 2.3. By (2.22) and the estimate for

σ̃
Φ
1 above, the function f(τ, L) is bounded uniformly in τ . The rest of the

proofs of Theorems 5.8 and 5.9 remain unchanged while the estimate (D.4)
leads to the assertion of the remark.
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