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Abstract

Despite gene expression programs being notoriously complex, RNA abundance is usually assumed as a proxy for
transcriptional activity. Recently developed approaches, able to disentangle transcriptional and post-transcriptional
regulatory processes, have revealed a more complex scenario. It is now possible to work out how synthesis, processing and
degradation kinetic rates collectively determine the abundance of each gene’s RNA. It has become clear that the same
transcriptional output can correspond to different combinations of the kinetic rates. This underscores the fact that
markedly different modes of gene expression regulation exist, each with profound effects on a gene’s ability to modulate its
own expression. This review describes the development of the experimental and computational approaches, including RNA
metabolic labeling and mathematical modeling, that have been disclosing the mechanisms underlying complex
transcriptional programs. Current limitations and future perspectives in the field are also discussed.
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Introduction

The genetic information encoded in transcriptional units
is transferred to end products, non-coding transcripts and
proteins, via the complex series of events that constitute the
cell’s gene expression programs, controlled by transcriptional,
co-transcriptional, and post-transcriptional regulatory cues [1].
Profiling of transcriptional maps by high-throughput sequencing
is currently considered routine, and public repositories include
thousands of RNA-seq experiments that enable both absolute
and comparative gene expression quantification [2]. However,
RNAs being transient species, the mere quantification of a
transcript’s copy number is poorly informative of the underlying

dynamics and could actually lead to misleading conclusions [3].
Taking a transcript’s abundance as a direct measurement of its
corresponding gene’s transcriptional activity is a widespread
oversimplification. Rather, a poorly transcribed gene could see
many of its RNA molecules accumulate just because they are
highly stable (i.e. long half-life) and therefore can persist long
after the transcriptional unit has been turned off. Conversely, if
a gene is very actively transcribed but its transcripts are highly
unstable species, only a few copies of its RNAs are found in the
cell [4].

In general, gene expression could be better deciphered if
the transcriptional output were broken down into its two key
components, premature and mature RNA, each with its own
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Figure 1. Mathematical modeling of the RNA life cycle. (A) Schema of the RNA
life cycle, including the steps of premature RNA synthesis, its processing into
mature RNA, and the degradation of the latter; the corresponding kinetic rates
are indicated in parenthesis. (B) Mathematical representation of the RNA life
cycle through ODEs. The first equation describes the modulation of premature
RNA over time (dP/dt) as the balance between the amount of RNA molecules
synthesized (k1(t)) and those processed to become mature transcripts (ky(t)-P).
The second equation describes the modulation of mature RNA (dM/dt) as the
balance between the amount of premature RNA molecules processed (k,(t)-P)
and the amount of mature RNA transcripts degraded (k3(t)-M). (C) Steady state
solution of the ODEs system.

rates of production and decay [5]. This set of information would
allow a fuller understanding of the expression status of a given
gene in a given biological condition. First, this information would
reveal the close link between a gene’s transcriptional activity
and its actual transcriptional output, and that, at steady state,
the population of its RNAs is only apparently static [3]. In fact,
the tight balance between RNA production and decay results
into a constant flowing of genetic information, comparable to
the constant flowing of water in and out of a sink where both
the faucet and the drain are open. Second, this information
would unveil a cell’s ability to modulate gene expression levels
at a given speed [3]. For example, if the faucet were suddenly
closed, the time the sink would take to become empty would
be entirely dictated by the size of the drain, i.e. the rate of
degradation of a given RNA species. Indeed, transcripts with
either short or extended half-lives are, respectively, highly and
poorly responsive to perturbations [6].

The kinetic rates of the RNA life cycle

Altogether, the RNA life cycle can be depicted with a simple
model where premature transcripts are produced at a given
‘synthesis rate’ and transformed into mature transcripts at a
given ‘processing rate’ (Figure 1A). Eventually, mature transcripts
are lost at a given decay or ‘degradation rate’. Therefore, process-
ing and degradation rates determine the half-life of premature
and mature species, respectively. This model is commonly rep-
resented as a system of ordinary differential equations (ODEs,
Figure 1B) [5, 7], which reveals that, at steady state, the expres-
sion of premature RNAs equals the ratio between synthesis and
processing rates, while the expression of mature RNAs equals
the ratio between synthesis and degradation rates (Figure 1C).
As an obvious consequence of this model, processing and degra-
dation rates have no impact on the steady state abundance of
mature and premature species, respectively [3].

For years, RNA half-life has been the only other piece of
information that could complement the quantification of total
RNA abundance. Nowadays, multiple approaches are available to
quantify the whole set of RNA kinetic rates, disclose the behind-
the-scenes details of gene expression programs, and shed light
on their implications. This review will cover the experimental
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Figure 2. Quantification of a transcript’s half-life through block-of-transcription
experiments. Key steps in the estimation of RNA degradation rates through
block-of-transcription experiments. First, a drug blocking transcription is pro-
vided. Then, the progressive reduction in gene expression is measured at several
time points. Finally, the exponential decay coefficient is used to quantify the
transcript half-life.

and computational key approaches that are currently available
for the genome-wide quantification of the kinetic rates of RNA
synthesis, processing, and degradation. First, the approaches
that can be applied to total RNA-seq experiments will be covered.
Then, the approaches that rely on nascent RNA profiling will be
discussed. Finally, recent approaches enabling the study of single
cells will be summarized, and key assumptions, limitations, and
future perspectives will be discussed.

Quantification of RNA half-lives through
block-of-transcription experiments

The first approach to be established in the field was RNA half-
lives quantification through block-of-transcription experiments
[8]. Cells are treated with drugs blocking transcription, such as
actinomycin D or amanitin. Then, a simple first-order kinetic
model is used to describe the decrease in transcripts’ levels and
their half-lives are quantified by estimating their exponential
decays (Figure 2). This approach has been (and still is) often
adopted for the quantification of the half-lives of individual
RNAs. This can be done by PCR, designing primers that match
exons or exon-intron junctions and quantifying the progressive
reduction in the abundance of mature or premature RNA at
different times following drug treatment. In some cases, this
approach has also been adopted in the genome-wide quantifica-
tion of RNA half-lives, by quantifying the transcripts’ reduction
with microarrays [9, 10] and high-throughput sequencing [11-
13]. However, this method is extremely invasive for the cell, and
among other effects, it can also affect RNA molecules stabil-
ity [14]. Moreover, fitting the exponential decay of transcripts
expression levels requires multiple data points and the opti-
mal spacing between time points can vary between genes with
extremely short or extended half-lives. Finally, the extrapolation
of the half-life of mature RNAs from their progressive reduc-
tion neglects the fact that, despite the block of transcription,
additional mature molecules could have originated following
the processing of residual premature molecules. This is poten-
tially very important for those genes that are characterized
by markedly slow processing rates. Altogether, this technique
is cumbersome and not suitable to the study of the dynamic
regulation of RNA half-life.

The importance of the quantification of premature and
mature RNA expression

As depicted in Figure 1, the determination of the RNA kinetic
rates requires the quantification of premature and mature RNA
abundance [15]. Commonly, these are respectively obtained
from exonic and intronic RNA-seq signals in high-throughput
sequencing short-read experiments. However, complicating the
interpretation of intronic signals is the potential occurrence of
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alternative splicing events, including the possibility that introns
are retained in the mature form [16].

Premature transcripts have shorter half-lives than their
mature counterparts. For example, in mouse fibroblast cells,
RNA processing rates are more than 10 times faster than
degradation rates [17]. In other words, RNA processing has a
faster kinetic rate than RNA degradation, and premature RNAs
are less abundant than mature ones. Moreover, both species are
largely outnumbered by transcripts of ribosomal genes. For these
reasons and in order to maintain the information on premature
RNA abundance, RNA-seq experiments based on the depletion
of ribosomal RNAs are preferable to the most commonly used
preparations that include the selection of the poly-adenylated
transcripts [15].

Nonetheless, standard sequencing kits profiling poly-
adenylated transcripts have a substantial (~10% of the reads)
residual intronic expression [18], which can be used to measure
the relative levels of premature RNA expression with good
approximation [3]. The drawback of this approach is that the
inferred expression levels of premature RNAs are significantly
underestimated.

Approaches to quantify RNA kinetic rates
based on total RNA-seq

The quantification of premature and mature RNA expression
levels is necessary but not sufficient for the quantification of
RNA kinetic rates. Indeed, the model presented in Figure 1 is
hampered by the indetermination of the system, where three
unknowns are governed by two equations. A few approaches
based on steady-state observations were developed that con-
sider intronic expression as a proxy for synthesis rates. While
this greatly simplifies the problem from a mathematical point
of view, it neglects the fact that intronic signals, i.e. premature
RNA expression, result from the joint action of two processes:
premature RNA synthesis and processing into mature form.
Therefore, these approaches neglect the contribution of RNA
processing or rely on the strong assumption that the rate of
processing is constant.

Available methods

One of these approaches is EISA, which allows the quantifi-
cation of changes in synthesis and degradation. By adopting
the assumptions discussed above, this method uses changes
in intronic signals as a proxy for changes in transcriptional
activity [19]. A variation of this approach was recently employed
in Rembrandts, a new tool that, by including a term model-
ing the coupling between synthesis and processing, allows a
more refined estimation of the variations in degradation rates
between conditions [20]. Noteworthy, all these methods only
provide relative changes in the kinetic rates between differ-
ent steady state conditions. Conversely, Snapshot-Seq aims at
determining the absolute rates of synthesis and degradation,
using intronic signals for the former, and the ratio between
exonic and intronic signals for the latter [21]. Finally, an approach
for modeling synthesis and degradation rates on time course
data was proposed by Zeisel et al. [6], but it requires a priori
information on RNA processing rates and assumes them to be
constant.

In a complementary approach, histone marks closely related
to transcription (H3-K4me3, -K27me3, and -K36me3) were used
in place of RNA-seq intronic signals as proxy for transcriptional
activity, and a regression approach was adopted to compare

them with the RNA-seq transcriptional output. Here, the ratio-
nale is that the difference between expected (histone marks) and
observed (RNA-seq) transcriptional outputs can be used to infer
decay rates [22].

Finally, we recently proposed a novel approach, INSPEcT-,
which, for the first time, enabled us to model the whole set of
RNA kinetic rates based on time course RNA-seq datasets [3, 23].
INSPECT- considers the temporal delay between the responses
of premature and mature forms proportional to mature RNA
half-life, which can thus be estimated. Following this, the rates
of RNA synthesis and processing can be determined by solving
the system at steady state: k; = M - k; and k; = k3 - %,
respectively (Figure 1). Further modeling is used to refine first-
guess values of all kinetic rates and to quantify the significance
of their variation over time. If time course data are not available,
INSPECT- determines the ratio between premature and mature
RNA expression to quantify the ratio between degradation and
processing rates (Figure 1). While this does not permit the decon-
volution of the contribution of each rate, changes in this ratio for
a given gene across conditions indicate that one of those rates
was altered, suggesting the occurrence of post-transcriptional
regulation. This approach was formerly introduced by Gaidatzis
et al. [19] and implemented in EISA. However, EISA assumes
that RNA processing rates are constant across conditions, and
changes in the ratio are entirely attributed to RNA degradation,
which could be an issue in those conditions where both RNA
processing and degradation are modulated.

Among these approaches, EISA, Rembrandts, and INSPEcT-
are the only ones for which executable codes have been released.
EISA and INSPECT- are available as part of the eisaR and INSPEcT
Bioconductor packages, while Rembrandts is available in the
form of scripts.

Advantages of approaches that only require total
RNA-seq data

Despite their assumptions and limitations, these approaches
have two key advantages: they are straightforward to apply,
since they only require total RNA-seq data, and they permit to
retrospectively analyze the thousands of sequencing datasets
archived in public repositories.

When applied to analyze the transcriptomes of various tis-
sues, EISA revealed the post-transcriptional regulation of gene
sets targeted by specific miRNAs [19].

When used to reanalyze a number of publicly available time-
course datasets in human, mouse, and plants, INSPEcT- per-
mitted to distinguish between the contributions of transcrip-
tional and post-transcriptional regulation by complementing
and expanding already published gene expression analyses [3].
INSPECT- was also used to discern between the transcriptional
and post-transcriptional impact of the MYC transcription factor
during B Cell activation [24]. Finally, exploiting its ability to
map changes in post-transcriptional regulation between steady
state conditions, INSPEcT- was used to chart landscapes of post-
transcriptional regulation in hundreds of RNA-seq experiments,
covering dozens of tissues and disease conditions. Those data
revealed a signature of brain genes, some of which involved
in amyotrophic lateral sclerosis, which are potentially post-
transcriptionally regulated by m6A RNA modifications [3].

These approaches demonstrated that it is possible to extract
precious information from total RNA-seq datasets, decoupling
transcriptional and post-transcriptional regulation through the
quantification of RNA kinetic rates. However, this comes at the
cost of important assumptions, such as neglecting or assuming
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constant rates of RNA processing, or at the cost of specific
requirements on the experimental design, such as time course
transcriptional profiling.

Approaches that quantify RNA kinetic rates
based on nascent RNA profiling

As discussed in the previous section, quantifying all three RNA
kinetic rates based on premature and mature RNA expression
is not trivial, especially at steady state. Indeed, available
approaches either require priori for the RNA processing rates
[6] or require time course data [3].

To overcome this issue and find a unique solution to the ODEs
system introduced in Figure 1, additional information must be
gathered. An obvious choice would be the independent quan-
tification of one kinetic rate, for instance the estimation of
transcripts’ half-lives. However, this solution would carry with
it all the limitations previously mentioned for the block-of-
transcription technique. A turning point in the field came when
approaches for direct genome-wide measurements of nascent
transcription became available. Indeed, when profiled over rel-
atively short-time intervals, nascent transcription provides a
direct measurement of the rate of premature RNA synthesis [25].
Quantification of RNA synthesis rates through nascent RNA pro-
filing greatly facilitates the resolution of the equations described
in Figure 1 and enables the quantification of processing and
degradation rates.

Profiling nascent transcription

Multiple approaches are available that profile nascent transcrip-
tion [26] by relying on either RNA metabolic labeling or the isola-
tion of chromatin associated RNAs or of transcripts associated
to transcriptionally active polymerase complexes (Figure 3A).
Among these approaches, those employing RNA metabolic label-
ing have proved to be particularly successful [27]. Indeed, the
enrichment of chromatin-associated RNAs also captures stably
associated pre-existing transcripts. The isolation of transcripts
associated to transcriptionally engaged polymerases, as in GRO-
seq [28] and PRO-seq [29], circumvents this issue but cannot dis-
entangle the speed of the RNA polymerase II (RNAPII) complex
from the transcriptional output. Hence, two genes (X and Y) of
the same length, associated with the same number of productive
RNAPII complexes, would return the same number of nascent
transcripts, suggesting that their synthesis rates are identical.
Rather, in metabolic labeling experiments, modified nucleotides
are provided to the cells for a fixed length of time and are
incorporated only into the transcripts that are synthesized over
this time interval. Hence, if RNAPII complexes reading gene X
elongate their RNA transcripts faster than those reading gene
Y, they will generate more nascent transcripts and gene X’s
synthesis rate will result to be higher than gene Y’s.

When profiling nascent RNA via metabolic labeling, two main
approaches are available. One is based on physically separating
nascent transcripts from pre-existing species. The other is based
on the chemical derivatization of nascent transcripts. Specific
computational tools have been developed to quantify the RNA
kinetic rates depending on the experimental approach adopted.

Quantification of RNA kinetic rates through purification
of labeled RNA

The approaches that are based on nascent RNA purification
typically rely on the incorporation of 4-thiouridine (4sU)

modified nucleotides into nascent transcripts. Following total
RNA extraction, the 4sU nucleotides in the labeled transcripts are
tagged with biotin, and nascent RNAs are physically separated
from pre-existing ones and eventually sequenced [25]. Recently,
TT-seq implemented a variation of this approach by adding a
fragmentation step. In this way, data resolution was increased,
and ultra-short labeling times could be adopted. This technique
was applied for the characterization of nascent transcription at
enhancers [30].

Different methods were developed that rely on nascent RNA
profiling and involve the adoption of specific experimental
designs and tailored computational methods. In terms of output,
these methods differ for their ability to assess either the
magnitude only or also the changes in RNA kinetic rates across
different conditions (Figure 3B).

In the more straightforward approach, the sequencing of total
RNA is complemented by profiling the nascent RNA with single
4sU pulses, from a few minutes to a number of hours long. In
theory, the optimal labeling time depends on several experi-
mental parameters and on the distribution of the degradation
rates of interest. In general, short labeling times provide good
estimates for fast decay kinetics, while long half-lives should
be studied using longer 4sU pulses. Moreover, quickly degraded
transcripts are affected by long labeling times more than stable
RNAs that are affected by brief 4sU pulses; for this reason, the
second of these two experimental settings should be generally
preferred [31]. A number of computational tools for the analysis
of these data are available. The first tool developed for this
purpose was DTA, which quantifies the rates of synthesis and
degradation under a single condition. For each condition, it
requires three samples to be profiled: labeled, unlabeled, and
total transcripts. In case the unlabeled fraction is not available,
the ratio between labeled and total transcripts must be provided
[32]. This approach was subsequently extended to allow the
comparison among different conditions (cDTA) by using spike-
ins [33]. More recently, pulseR was introduced to also provide
the quantification of degradation rates [34]. pulseR is based on
negative binomial models, which are particularly appropriate for
RNA-seq counting data. It takes advantage of spike-ins, if avail-
able, otherwise it requires sequencing of the total RNA popula-
tion in addition to the profiling of labeled and unlabeled condi-
tions. Available from the INSPEcT Bioconductor library together
with INSPEcT-, INSPEcT+ is the only tool that can quantify all
RNA kinetic rates, RNA processing rate included, in steady state
conditions [7]. Moreover, it provides a statistical assessment of
the variation of the kinetic rates across different conditions.
INSPECT+ requires only the profiling of nascent and total RNAs,
which are normalized with a computational procedure.

The approach-to-equilibrium methods were developed as an
alternative to those based on single pulse. These methods are
optimized to only quantify the RNA degradation rate and can be
broadly divided into two categories: one where a series of exper-
iments with increasing labeling times is conducted (pulse), and
the other where RNA is quantified at different time points fol-
lowing complete labeling (chase). Currently, two different tools
can be used for the quantification of degradation rates based
on pulse approach-to-equilibrium data, DRUID [12] and pulseR
[34]. While approach-to-equilibrium methods can be considered
robust, they are restricted to the analysis of steady states and are
less commonly adopted in the field due to the large number of
required samples and high costs.

The temporal profiling of nascent transcription through
metabolic labeling at different time points following a perturba-
tion was adopted for the first time to characterize the response

1202 ¥snbny G0 uo isanb Aq 06ZE09/68SEEAA/F/2Z/101ME/qIdq/WO00 dnodlWapede//:sd)y woly papeojumoq



Dynamics of transcriptional and post-transcriptional regulation | 5

A S « NAPII associated RN
3 E in o
: iy -
- 45! i 5 ¥.. .5 Ne 3.
£ DNA .
%< chromatin
3= _~ Y _~— ™Y unlabeled e —~__ "~
) RNA
(o
experimental design inference framework output software
k3
L=T-:(1—ehr) - GRAND-SLAM
time
single RNA labeling time
(steady state)
=T ks .
i 3 DTA
L=T-(1—ekstz)
time
total RNA (7))
—ky-P=0 ks
ko - P—ks-M=0 ‘ s INSPECT+
- L
trL n
time
multiple RNA labeling times k3
(approach to equilibrium) Ltr)=T- (1 - e_k"'tL) pulseR
time
L(tL) = L(O) . (1 — e_(}f?:"r’Y)‘tL) ks
p : DRUID
0 RNA labeling time i AR
Doubling time
time
single RNA labeling time
(time course)
DRIiLL
INSPECT+

0 time

time

Figure 3. Experimental and computational approaches to RNA kinetic rates quantification through nascent RNA profiling. (A) Alternative experimental approaches

to the separation of nascent RNA from its pre-existing form. (B) Alternative approach
computational framework, output, and software are reported.

of dendritic cells to LPS [15]. In this study, all RNA kinetic
rates were modeled, even though the rates of processing were
assumed to be constant. Further development of the analysis
methodology allowed to avoid this assumption and disclosed
the full complexity of the RNA life cycle. Two different tools
implemented this approach: DRILL [5] and INSPEcT+ [7].

es to RNA kinetic rates quantification. The corresponding experimental design,

Quantification of RNA kinetic rates through chemical
derivatization of labeled RNA

Improving on the issues related to the purification of nascent
RNA, various approaches were recently proposed in which
alternative chemical reactions specifically converted modified
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nucleotides incorporated in nascent transcripts into different
bases [35]. These methods include SLAM-seq [36], TimeLapse
[37], and TUC-seq [38]. A variation of the latter was recently
proposed in which two modified nucleotides are used in
subsequent pulses. The rationale is that differences in detecting
the corresponding conversion signatures give information on
both RNA synthesis and decay [39]. A couple of tools, GRAND-
SLAM [40] and SLAM-DUNK [41], were developed that to be
tailored to these data. While GRAND-SLAM only returns the
rates of degradation, the rates of synthesis can be easily
determined, in the context of the tool assumptions and
equations reported in Figure 3B. SLAM-DUNK is particularly
suited to the quantification of conversion rates and to the ability
to simulate SLAM-seq datasets.

Noteworthy, once the quantification of nascent and pre-
existing transcripts is obtained with these approaches, many
of the computational tools developed for handling single pulse
metabolic labeling data obtained through purification (Figure 3B)
could be in principle adopted for the quantification of the RNA
kinetic rates.

A novel method, Dyrec-seq, was recently proposed in which
cells are first pre-cultured for 12 h in a medium with 5-
bromouridine (BrU), and then RNAs are collected at several
time points after switching the cells to a 4sU-containing
medium. On one hand, BrU containing RNAs are collected by
immunoprecipitation; on the other hand, SLAM-seq is applied
to identify 4sU containing RNAs. Eventually, the abundance of
BrU and 4sU decreases and increases over time, respectively,
allowing the quantification of degradation and synthesis rates
[42]. The advantage of this method is that it allows the joint
quantification of two kinetic rates. The disadvantage resides in
the complexity of the experimental setup and in the number of
samples that have to be collected for each condition.

Purification of labeled RNA versus chemical
derivatization: pros and cons

While the physical separation between nascent and pre-existing
reads is convenient, it presents a number of drawbacks. In fact, it
leads to the contamination of the labeled fraction with unlabeled
transcripts (up to 30% for short labeling pulses, [3, 35]), and it
requires sequencing of both labeled and unlabeled fractions thus
increasing costs, especially when time course experiments are
performed. Moreover, given the small amount of nascent RNA
within the total population of transcripts (especially when short
labeling times are used), substantial RNA has to be obtained to
retrieve enough nascent RNA for its subsequent sequencing [27].

Finally, the integration of total and nascent RNA-seq data
introduces normalization issues. These can be solved compu-
tationally based on the overdetermination of the ODEs system
when synthesis rates are introduced as proxy from nascent
RNA profiling, as in INSPEcT+ [7] and DRILL [5], resulting in
the quantification of a global scaling factor for each condition.
Alternatively, these can be solved experimentally by introducing
the profiling of spike-ins, as in ¢DTA [33] and pulseR [34], or by
adding the profiling of the unlabeled fraction in addition to the
labeled fraction and total RNA, as in pulseR [34].

The key advantage of the methods relying on chemical
derivatization is that reads from nascent transcripts can be in
silico separated from those from their pre-existing counterparts.
Hence, a single sequencing run is enough to characterize both
transcripts populations, while there is no need for normalization
between them. However, these methods typically require longer
pulse times (60" or several hours, depending on the cell type).

Moreover, while they allow the identification of nascent RNAs
with high specificity, they have low sensitivity [41].

Comparison between degradation rates
quantified through different approaches

The various tools presented above differ markedly in terms of
pre-requisites and outputs, so that comparing their results is not
a trivial matter. To reach this aim, we took advantage of the fact
that all tools permit to quantify RNA degradation rates. Hence,
we looked for the cell type that had been characterized with the
highest number of experimental approaches, including block-
of-transcription experiments and different approaches based on
RNA metabolic labeling, and identified the widely used HEK293
cell line [12]. For the tools and experimental settings already
exploited to quantify the degradation rates in this cell type,
we considered the data available in literature. For the other
approaches, we applied them on the raw data from the same
studies.

Pairwise Spearman’s correlations among HEK293 degrada-
tion rates revealed that in general, each method had high
internal reproducibility, in the 0.8-1.0 range (Figure 4). We
took the degradation rates quantified through the approach-
to-equilibrium method as our gold standard, as discussed
above, and we expected the rates determined through block-of-
transcription to have the lowest correlations, when compared
with those from RNA metabolic labeling data. Indeed, two main
clusters could be identified, separating the results obtained by
blocking transcription from those obtained by RNA metabolic
labeling. In particular, approach-to-equilibrium data analyzed
by DRUID showed average correlations in the order of 0.6 with
block-of-transcription results. The degradation rates determined
by INSPECT+, pulseR, and DTA were highly correlated with those
reported by DRUID, in the order of 0.7-0.9, with higher correlation
when data generated with the same labeling time were
considered. Rather, the analysis of approach-to-equilibrium
data for the same cells from an independent study reduced
the correlation between INSPEcT+ and DRUID to the order of
0.6-0.7. This suggests a strong dependence on specific settings
of the protocol, the experimenter and/or the adopted reagents.
Finally, the correlation between degradation rates determined
by GRAND-SLAM, based on SLAM-seq data for mouse embryonic
stem cells, was reported being in the order of 0.5-0.7 with
block-of-transcription experiments using actinomycin D [40].

Noteworthy, both DTA and pulseR required the profiling of
unlabeled RNA, which was not publicly available for the HEK293
cells. To overcome this limitation, we took advantage of the
fact that both tools can work, as an alternative, on the ratio
between the labeled and the total fractions, thus allowing their
normalization. This ratio was set assuming a 25% yield in the
labeled RNA purification step, and its setting had a minor impact
on the reported correlations.

Quantifying RNA kinetic rates at single cell
level

A pioneering study conducted by La Manno et al., allowed for
the first time the characterization of RNA metabolism in single
cells, and demonstrated the importance of characterizing the
RNA kinetic rates for the interpretation of single cells transcrip-
tomes [43]. Relying on the combination of intronic and exonic
signals from total RNA data in single cells, the authors were
able to estimate gene-level rates of synthesis and degradation.
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Figure 4. Similarity between RNA degradation rates quantified by methods relying on block-of-transcription or RNA metabolic labeling. Heatmap of pairwise Spearman’s
correlations comparing degradation rates obtained for HEK293 cells using different approaches. Amanitin and Actinomycin D drugs were used to block transcription.
Several tools for the analysis of RNA metabolic labeling data were compared, covering various experimental designs: approach to equilibrium, and single metabolic
labeling performed at the indicated times (t;). All degradation rates derive from the Lugowski dataset [12], or from the reanalysis of the same data, with the exclusion
of the HEK293 degradation rates determined in an independent study (Mukherjee dataset [68]).

However, the degradation rate of each gene was borrowed across
different cells, and the rate of RNA processing was neglected
and globally set to one. This allowed the authors to determine
how far individual transcripts were from their closer steady state
and the direction, i.e. velocity, they will take to reach it. When
this information is aggregated for all transcripts, it provides an
estimate of the overall direction that each single cell is taking
in the transcriptomic space, being able to reconstruct connec-
tions between adjacent cells and temporal trajectories of the
process under study. Yet, time scales remain in the domain of
pseudotime. This approach, named RNA velocity, was recently
improved by a novel method, scVelo, which, overcoming impor-
tant limitations of the former approach, does not assume steady
states and provides gene-level processing rates. Moreover, scVelo
latent time better captures the ordering of events along temporal
trajectories compared with pseudotime [44].

Recently, three studies were able to profile both total and
nascent RNA in individual cells using RNA metabolic labeling
through chemical derivatization of modified nucleotides. In
the study presenting NASC-seq, they relied on 1 h metabolic
labeling with 4sU followed by the alkylation of extracted RNA.
This allowed detecting nascent transcription for ~700 genes
and the analysis of their differential transcription in stimulated
cells [45]. In the study introducing Sci-fate, they quantified
changes in nascent RNA following the temporal response to
glucocorticoid receptor activation. This allowed determining
gene-level half-lives; however, these were assumed to be
constant across cells and conditions. Eventually, both changes
in nascent RNA and constant degradation rates were used to
infer cell states transitions. Sci-fate relies on combinatorial
indexing and in situ 4sU chemical conversion in bulk fixed cells,

thus providing a more efficient and cheaper quantification
of nascent and pre-existing RNA compared with competing
methods [46]. A third study, introducing scSLAM-seq, was
applied to cells subjected to mock or viral infection, uncovering
the (epi)genomic determinants of intercellular transcriptional
heterogeneity, and linking it to transcriptional bursting. In fact,
the variability among cells of the gene-level ratio between
nascent and total RNA was found to be strictly associated to
the methylation status of CpG islands and to the presence of the
TATA box, the latter being formerly implicated in transcriptional
bursting [47].

Few approaches were recently proposed that integrate the
profiling of nascent RNA through metabolic labeling into the
dynamical models that infer the trajectories of single cells. A first
set of methods enabled increasing accuracy of the inferred mod-
els and allowed predicting cells’ trajectories during a dynamic
process over extended time periods [48, 49]. Another approach,
adopting pulse and chase experiments through the incorpo-
ration of 5-ethynyl-uridine in single cells (scEU-seq), allowed
the estimation of constant synthesis and degradation rates. By
placing individual cells along cell cycle or differentiation tra-
jectories, scEU-seq could infer how synthesis and degradation
rates change over time along those processes. However, the rate
estimates were aggregated across cells [50].

The analysis of single cells transcriptomes revealed the
importance of transcriptional bursting, in which intermittent
bursts of expression alternate with transcriptional inactivity
[51]. While this offers unprecedented opportunities for the study
of transcriptional activity at the level of individual genes, it also
poses major issues in the inference of transcripts half-lives in
single cells. In fact, steady state assumptions are too loose to
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be considered valid in single cells, and the ratio between the
nascent and pre-existing molecules could be more indicative
of the transcriptional status of a gene (on versus off) rather
than informing on transcript stability. As a consequence, novel
computational techniques are needed to estimate bursting
kinetics unbiased half-lives in single cells, likely incorporating
a dynamical component for the transcriptional status of
individual genes.

Current limitations

Experimental and computational methods in the field are
nowadays sufficiently consolidated and streamlined, so that the
quantification of RNA kinetic rates is accessible to every lab with
standard equipment and access to high-throughput sequencing.
In fact, as discussed above, user-friendly software applications
exist, some of which only require standard RNA-seq data as
input. However, a number of improvements are necessary to
deal with the current limitations and to further increase the
power of these approaches.

Issues affecting the quantification of all RNA kinetic
rates

Two are the issues that are detrimental to the quantification of
all RNA kinetic rates, and they both involve the contamination
of the labeled fraction. The first is due to the non-specific pull
down of pre-existing transcripts, and the second results from
the inability to precisely distinguish the labeled portion within
nascent transcripts.

The first issue specifically affects RNA metabolic labeling
approaches based on the purification of nascent transcripts.
This issue directly contributes to inflating the rates of synthesis
by returning higher levels of nascent transcription due to the
contaminating unlabeled RNAs. Consequently, this inflates
the quantification of the processing and degradation rates.
Sophisticated normalization procedures [5, 7] and ways of
measuring the level of contamination have been developed [3,
5, 31]. However, avoiding physically separating nascent and pre-
existing RNA fractions is currently the most effective way to
overcome this issue, as in the approaches that are based on the
chemical derivatization of modified nucleotides [35]. Notewor-
thy, while the methods relying on the chemical derivatization
of labeled transcripts are not affected by the contamination
effect, they are however afflicted by errors in the quantification
of nascent RNAs due to their low sensitivity. However, the
amount of nascent transcription and the rate of synthesis
are typically underestimated rather than inflated by these
methods.

The second issue is partially solved by fragmenting the
labeled transcripts before their purification, a key improvement
first introduced in TT-seq [30]. This additional step maximizes
the enrichment of nascent RNAs in the labeled fraction and
reduces the incorporation of RNAs synthetized before the
metabolic labeling by capturing only the parts that include mod-
ified nucleotides. This leads to a more precise measurement of
the nascent RNA and is expected to improve the quantification
of all RNA kinetic rates. Noteworthy, the difficulty in identifying
the pre-existing portion in a metabolically labeled transcript,
if any, is also shared with the methods relying on chemical
derivatization. Indeed, modified nucleotides have a low rate
of incorporation (one 4sU can be found every 43 uridines [36]),
indicating that defining what part of a labeled transcript existed
prior to the pulse is not easy.

Issues in RNA processing quantification

The quantification of processing rates can be affected by
two different issues. The first issue is the overestimation of
premature RNA abundance, which can lead to shorter processing
rates. This is expected to occur particularly for long mammalian
introns, as the RNA polymerase can take a significant time
transcribing an entire intron, before this becomes available for
processing by the spliceosome machinery. Consequently, the
RNA-seq signal in long introns decreases from the 5 to the 3
end. The quantification of intron abundance based on the 3’ end
region would provide a more robust measurement of premature
RNA abundance [21]. However, this is not trivial to model [21],
it is complicated by the typical reduced intronic coverage, and
it is expected to affect no more than 10% of introns, having a
length greater than 10Kb [52]. Therefore, most approaches prefer
integrating the coverage across the whole intron.

The second issue, which also particularly affects long mam-
malian genes, is related to co-transcriptional processing [53, 54].
In the model represented in Figure 1, the rate of processing
represents the speed at which premature RNA, following its
synthesis, is converted into mature RNA. However, the time this
process takes does not necessarily coincide with the time the
actual splicing of the transcripts takes. Introns that are spliced
almost immediately after the completion of their synthesis are
expected to have similar processing and splicing rates. Rather,
introns that are spliced post-transcriptionally may see their
actual splicing being delayed. These can be due to the time the
RNA polymerase takes to reach the gene end, which depends
on the distance to be covered and the elongation speed of the
complex, to the time the transcript takes to terminate, and to
the time necessary for the recruitment and proper assembly
of the spliceosomal complex. All these steps contribute to the
processing rate. This issue is likely to become relevant when one
is interested in estimating the speed of splicing, which can be
important for mechanistic studies on this process.

Eventually, one way to solve these issues is calculating the
RNA kinetic rates of individual introns, rather than averaging
them over entire transcriptional units [5, 52].

Issues in premature and mature RNA degradation

The quantification of degradation rates is based on two key
assumptions. First, all the approaches described in Figure 2B
assume that premature RNAs do not undergo degradation, as
only mature ones do. This implies that all premature transcripts
are, sooner or later, processed into a mature form. This is obvi-
ously a simplification, as an RNA exosome complex controlling
the degradation of premature RNAs is known to exist in the
nucleus [55]. However, the prevalence of this mechanism at the
cellular level is difficult to determine. In general, without this
assumption, the RNA life cycle model would include more terms
and be more complicated, thus requiring additional information
to be solved. This issue specifically affects the quantification of
synthesis and processing rates.

Second, those approaches, such as INSPEcT+ and DRiLL, that
include the modeling of the RNA processing step, assume that no
degradation of the labeled transcripts occurs during the pulse.
This assumption is likely to hold when short pulse times are
used. Instead, when pulses are long, for example in the range
of hours, the likelihood that some of the labeled transcripts
are processed into their mature forms and eventually degraded
increases. As a result, the quantification of the labeled fraction
would lead to the underestimation of the amount of nascent
transcription and, consequently, of the rates of synthesis. To
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deal with this issue, INSPEcT+ allows, at steady state, to con-
sider the processing and degradation of labeled transcripts dur-
ing the pulse, even though this significantly complicates the
mathematical modeling and results in a longer time of analysis
and a slight increase in the number of genes that cannot be
resolved.

Future perspectives and conclusions

The quantification of RNA kinetic rates pertains to individual
transcripts in individual cells, meaning that each RNA molecule
could be distinct, due to subtle changes in its nucleotide
composition, structure, and/or set of modifications. Potentially,
RNA molecules representing the same transcriptional isoform
could have similar rates, compared with different isoforms
of the same transcriptional unit. For example, isoforms with
retained introns that originate premature termination codons
are expected to be associated with high degradation rates,
since they are specifically and rapidly degraded through the
nonsense-mediated decay pathway [4]. However, approaches for
deconvoluting the various transcripts coded by a given gene
are still in their infancy [56]. Long-reads sequencing platforms,
such as Nanopore, offer an unprecedented opportunity to
explore entire transcripts, or large fractions of them [57].
Efforts are underway for coupling RNA metabolic labeling with
these sequencing platforms [58, 59]. The nano-ID approach
was recently proposed that is able to quantify synthesis
and degradation at the level of individual isoforms, based
on the identification of nascent RNAs metabolically labeled
with 5-Ethynyluridine [60]. Recently, a novel approach was
presented applying Nanopore sequencing for the profiling of
the transcriptome of individual cells [61]. This advance opens
the possibility to study RNA dynamics at the level of single
molecules in single cells.

Quantitative modeling of the RNA life cycle is expected to be
instrumental in deciphering RNAPII life cycle. Indeed, the action
of the RNAPII complex can be broken down into a set of key
steps, including RNAPII recruitment, pause-release, elongation
and detachment from 3’ end sites [62]. Similarly to what happens
in the absolute quantification of RNA species by RNA-seq exper-
iments, also RNAPII positioning and quantification by ChIP-seq
data provides a static glimpse of a very dynamic process [63]. As
for gene expression programs, where the increase in RNA abun-
dance could be similarly obtained through increased synthesis
or reduced degradation, an increase in RNAPII at promoters
could also originate from increasing recruitment or reduced
pause-release. The first attempts at comprehensively quantify-
ing the kinetic rates governing the RNAPII life cycle have been
made by taking advantage of the quantification of RNA synthesis
rates [17].

Given the intertwined nature of the RNA and RNAPII life
cycles, novel methods should aim at jointly modeling the cor-
responding kinetic rates, potentially at the level of individual
cells. The development of methods to couple RNA metabolic
labeling with single molecule and single cells sequencing, and
the improvement of methods for the profiling of RNAPII, which
can now be obtained in few cells [64], suggest that this goal could
be reached soon.

In conclusion, numerous experimental and computational
methods for the quantification of RNA kinetic rates are being
developed. The approaches described in this review are listed
in Table 1, providing a reference resource that summarizes their
key features and limitations. This emerging field promises to
offer an unprecedented understanding of how transcriptional

and post-transcriptional regulation generates complex gene
expression programs by fine tuning both its magnitude and
its variation over time or across conditions. Furthermore, the
determination of RNA kinetic rates is expected to be precious in
the characterization of the functional role of RNA modifications
[65, 66] and RNA binding proteins [67], which are fundamental
determinants in the fate of a transcript.

Key Points

® Gene expression programs are set by the balance
of cellular machineries dedicated to RNA synthesis,
processing and degradation, and the abundance and
modulation of RNAs are determined by the tight regu-
lation of the rates governing the kinetics of these key
steps.

® Various experimental and computational methods
exist to study RNA dynamics, allowing the quantifi-
cation of RNA kinetic rates through the profiling and
integrative analysis of nascent and pre-existing RNAs.

® Additional approaches are available that only require
the profiling of total RNA, while they depend on
specific assumptions or they require time course
experiments.

® Approaches are being developed that allow studying
RNA dynamics at the level of single molecules and
single cells.
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