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Abstract
The paper deals with the following double phase problem
Vul? \%
[/ <| L e Al >dx]div(|Vu|!’—2w+a(x)|w|f/-2w)
= +ul” in Q,
u>0 in Q,
u=0 on 0Q,

where Q C RV is a bounded domain with Lipschitz boundary 0Q, N > 2, m represents
a Kirchhoff coefficient, 1 < p < ¢ < p* with p* = Np/(N — p) being the critical Sobolev
exponent to p, a bounded weight a(-) >0, A > 0 and y € (0, 1). By the Nehari manifold
approach, we establish the existence of at least one weak solution.
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1 Introduction

In this paper, we combine the effects of a nonlocal Kirchhoff coefficient and a double phase
operator with a singular term and a critical Sobolev nonlinearity. Precisely, we study the
problem

g p q .
i [/ ('v“' t ()Y )d} £ =2+ i
Q )

p q
u>0 in €, ()
u=0 on 0f),

where along the paper, and without further mentioning, Q Cc R" is a bounded domain
with Lipschitz boundary 0Q, dimension N > 2, A > 0 is a real parameter and exponent
y € (0, 1). The main operator Ez g is the so-called double phase operator given by

Ly () = div(|Vul’*Vu + a@)|Vuli™*Vu), u€ Wé’H(Q), (1.1)

with W(I)’H(Q) being the homogeneous Musielak-Orlicz Sobolev space where we assume
that

(hp) 1<p<N, p<g<p®and 0<La() € L®(Q) with p* being the critical Sobolev
exponent to p given by
«_ _Np

p = N_—p (1.2)

While the nonlocal term m in (P,) denotes a Kirchhoff coefficient satisfying

(h,) m :[0,00) — [0, c0)is a continuous function defined by
m(t) = ay + byt’™! forall t >0,

where ay > 0, b, > 0 with 0 € [l,p*/q).

Problem (P,) is said to be of double phase type because of the presence of two differ-
ent elliptic growths p and g. The study of double phase problems and related functionals
originates from the seminal paper by Zhikov [25], where he introduced for the first time in
literature the related energy functional to (1.1) defined by

- / (|Vco|p+a(x)|Vco|‘1) dx. (1.3)
Q

This kind of functional has been used to describe models for strongly anisotropic materi-
als in the context of homogenization and elasticity. Indeed, the modulating coefficient a(-)
dictates the geometry of composites made of two different materials with distinct power
hardening exponents p and g. From the mathematical point of view, the behavior of (1.3)
is related to the sets on which the weight function a(-) vanishes or not. In this direction,
Zhikov found other mathematical applications for (1.3) in the study of duality theory and
of the Lavrentiev gap phenomenon, as shown in [26, 27]. Also, (1.3) belongs to the class of
the integral functionals with nonstandard growth condition, according to Marcellini’s ter-
minology [22, 23]. Following this line of research, Mingione et al. provide famous results
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in the regularity theory of local minimizers of (1.3), see, for example, the works of Baroni-
Colombo-Mingione [4, 5] and Colombo-Mingione [9, 10].

Starting from [25], several authors studied existence and multiplicity results for nonlin-
ear problems driven by (1.1) with the help of different variational techniques. In particular,
Fiscella-Pinamonti [18] introduced two different double phase problems of Kirchhoff type,
with the same variational structure set in WS’H(Q). By the mountain pass and fountain theo-
rems, existence and multiplicity results are provided in [18]. Following this direction, in [17]
Fiscella-Marino-Pinamonti-Verzellesi consider some classes of Kirchhoff type problems on
a double phase setting but with nonlinear boundary conditions. Combining variational meth-
ods, truncation arguments and topological tools, different multiplicity results are established.
Recently, the authors [2] were able to study a Kirchhoff problem like (P,), but involving a
subcritical term. By a suitable Nehari manifold decomposition, the existence of two different
solutions are provided in [2]. We also mention the works of Cammaroto-Vilasi [7], Isernia-
Repovs [20] and Ambrosio-Isernia [1] for Kirchhoff type problems driven by the p(:)-Lapla-
cian or the (p, g)-Laplacian.

The main novelty, as well as the main difficulty, of problem (P,) is the presence of a critical
Sobolev nonlinearity. Indeed, in order to overcome the lack of compactness at critical levels
arising from the presence of the critical term in (P,), the same fibering analysis used in [2]
cannot work. For this, we exploit other variational tools inspired by more recent situations as
in [14]. For this, Farkas-Fiscella-Winkert [14] used a suitable convergence analysis of gradi-
ents in order to handle the critical Sobolev nonlinearity of problem

—div(|Vu|p_2Vu + a(x)|Vu|q_2Vu) = Au|®%u + |ul” "2u in Q,
u=20 on 0Q.

Following this direction, we mention [15, 16] concerning existence results for critical dou-
ble phase problems involving a singular term and defined on Minkowski spaces in terms of
Finsler manifolds, that is driven by the Finsler double phase operator

ﬁi’;’(u) := div(FP (Vu)\VF(Vu) + a@)F (Vu)VF(Vu)),

where (RY, F) stands for a Minkowski space. While, Crespo-Blanco-Papageorgiou-Winkert
[12] consider a nonhomogeneous singular Neumann double phase problem with critical
growth on the boundary, given by

—div(|Vul??Vu + a@)|Vul > Vu) + a@u’™" = {@u™ + ™ inQ,

(IVulP~2Vu + a(x)qu|‘1_2Vu) cv=—B)u! on 0Q. (1.4)
By the fibering approach introduced by Drabek-Pohozaev [13] along with a Nehari mani-
fold decomposition, the existence of at least two solutions of (1.4) is obtained in [12].
Inspired by the above papers, we solve problem (P,) by a variational approach. Indeed, a
function u € WS’H(Q) is said to be a weak solution of problem (P,) if u™7¢ € LY(Q), u > 0
a.e.in Q and

Q Q

is satisfied for all ¢ € Wd’H(Q), where (-, -) denotes the duality pairing between W(;’H(Q)
and its dual space W(I)’H(Q)* In particular, the weak solutions of (P,) are the critical points
of the energy functional J; : WJ’H(Q) — R given by

@ Springer



1082 R. Arora et al.

7,00 = |agr (Vi + 2290 (W)] -4 / ]~ d — - / ul?” dx,
o -7 Jo ¥ Ja

forany u € Wé’H(Q), where

¢H(u)=/<w+a(x)w)dx.
o\ P q

Hence, the main result reads as follows.

Theorem 1.1 Let hypotheses (h))-(h,) be satisfied. Then there exists A* > 0 such that for all
A € (0, A*] problem (P,) has at least one weak solution u, such that J,(u,) < 0.

The proof of Theorem 1.1 is based on a suitable minimization argument on the Nehari
manifold. For this, we extract a minimizing sequence whose energy values converge to
a negative number. However, in order to verify that the sequence actually converges to a
solution of (P,) we need a truncation argument combined with a delicate gradient analysis,
inspired by [14].

The paper is organized as follows. In Sect. 2, we recall the main properties of Musielak-
Orlicz Sobolev spaces Wé’H(Q) and state the main embeddings concerning these spaces.
Section 3 gives a detailed analysis of the fibering map, presents the main properties of suit-
able subsets of the Nehari manifold and finally shows the existence of a weak solution of
problem (P,).

2 Preliminaries

In this section, we will present the main properties and embedding results for Musielak-
Orlicz Sobolev spaces. First, we denote by L"(Q) = L"(Q;R) and L"(€;R") the usual Leb-
esgue spaces with the norm || - ||, and the corresponding Sobolev space Wg”(Q) is equipped
with the norm ||V - ||, for1 < r < 0.

Suppose hypothesis (h;) and consider the nonlinear function H : Q X [0, 00) — [0, 00)
defined by

He, 1) =1 + a0,

The Musielak-Orlicz Lebesgue space L(Q) is given by
Q) = {u £ Q> R wis measurable and o, (0) < oo}
equipped with the Luxemburg norm
luelly = inf{r > 0|0H(g) < 1},

where the modular function is given by

03,(1) 2=/'H(x,|u|)dx:/(|u|p+a(x)|u|q)dx.
Q Q
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Next, we recall the relation between the norm|| - ||,; and the modular function ¢,,, see Liu-
Dai [21, Proposition 2.1] or Crespo-Blanco-Gasiniski-Harjulehto-Winkert [11, Proposition
2.13].

Proposition 2.1 Let (h,) be satisfied, u € L"(Q) and ¢ > 0. Then the following hold:

() Ifu# 0, then ully = c if and only if 0, (") = 1;
i) lully < 1(resp. > 1,=1) if and only if o, (u) < 1 (resp.> 1, = 1);
(iii)  Ifllully < 1, then ||ull], < 05(u) < |lull;;

iv)  Iflully > 1, thenllullg < op(u) < lull3;

) Nully — Oif and only if 03,(u) — 0;
(vi) |lully = oo if and only if 03,(u) — oo.

Moreover, we define the weighted space
Li(Q) = {u Q- IR| u is measurable and /a(x)|u|qu < oo}
Q

endowed with the seminorm

nww=</mMMMQ7
Q

The corresponding Musielak-Orlicz Sobolev space W'7(Q) is defined by
WIHQ) = {u eIQ) : |Vul € LH(Q)}

equipped with the norm
loelly 30 = NV atllyg + Hlull g

where || Vu||;, = || |[Vu| || In addition, we denote by Wé’H(Q) the completion of C°(£2) in
WLH(Q). Thanks to hypothesis (h,), we know that

llaell = I Vullyy

is an equivalent norm in Wé’H(Q), see Crespo-Blanco-Gasifiski-Harjulehto-Winkert [11,
Proposition 2.16(ii)]. Furthermore, it is known that L*(Q), W'"(Q) and WS’H(Q) are uni-
formly convex and so reflexive Banach spaces, see Colasuonno-Squassina [8, Proposition
2.14] or Harjulehto-Hést6 [19, Theorem 6.1.4].

Finally, we recall some useful embedding results for the spaces L(Q) and WS’H(Q),
see Colasuonno-Squassina [8, Proposition 2.15] or Crespo-Blanco-Gasinski-Harjulehto-
Winkert [11, Propositions 2.17 and 2.19].

Proposition 2.2 Let (h)) be satisfied and let p* be the critical exponent to p given in (1.2).
Then the following embeddings hold:

1) L"Q) o L"(Q)and W(;’H(Q) < WJ”(Q) are continuous for all r € [1, p];
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(ii) WS’H(Q) < L7(Q) is continuous for all r € [1, p*] and compact for all r € [1, p*);
(iii) L"(Q) < LI(Q) is continuous;
@iv) Li(Q) < L"(Q) is continuous.

3 Proof the main result

In order to solve problem (P,), we apply a minimization argument for J, on a suitable sub-
set of WS’H(Q). For this, we define the fibering function y, : [0, o) — R defined by

v, () =J,(tu) forallz >0,

which gives

v, (D) =

by 4 117 - " .
appy (tVu) + — ¢ (V)| — A—— [ |u| 7" dx— — [ [ul” dx.
0 1-v Jo P Ja
It is easy to see that y,, € C*((0, 00)). In particular, we have for ¢t > 0

w0 = [ag + bt V] (=1l + vl )

—,w/|u|1-7dx—tp*-1/|u|ﬂ*dx
Q Q

w0 = [ag + boy Va0 | = D2 Va? + g = D2 Val?, |

and

2
— 0-2 =1 Py -1 q
+b® = DV (- IVull + 07 Va2, )
+ Ayt / lu]' =7 dx — (p* — 1)#’*—2/ [ulP” dx.
Q Q
Thus, we can introduce the Nehari manifold related to our problem which is defined by
N, = {u e W@\ (0} : /(1) = o}.
In particular, we have u € N if and only if
[ag + bod? (V0] <||VM||§ + ||Vu||3’a) - /1/ |u|1_ydx+/ |ul?" dx.
Q Q

Also ru € N, if and only if y/ (1) = 0. Observe that V, contains all weak solutions of (P,).
Moreover, we define the following subsets of N,

Nr={ueN, : y/(H)>0} and N;={ueN, : y/(1)=0}.

In contrast to [2] we are not going to study the set ./\f; = {u EN, : 1//;’ 1) < O}. The next
Lemma can be shown as in [2, Lemmas 3.1 and 3.2] replacing r by p*.

Lemma 3.1 Let hypotheses (h))-(h,) be satisfied.
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(i) The functional J A| N, is coercive and bounded from below for any A > 0.
(1) There exists A; > 0 "such that ./V° @ forall A € (0, A)).

Let S be the best Sobolev constant in Wé ?(Q) defined as

I Vall}
S= inf —F 3.1)
wewy?@\(o) lull),
Note that we can write lI/L’l (¢) in the form
w(n=17" <ou(t) - /1/ |u] '~ dx>, t>0, (3.2)
Q
where
o, (D) = [ag + by, 1V )] (ﬂ’ 1+7||Vu||” +19- 1+7||Vu||ga — / lul?” dx.
Q
From this definition we see that fu € N, if and only if
o,(t) = /1/ | "7 dx. (3.3)
Q

The next Lemma shows that ./\/: is nonempty whenever A is sufficiently small.

Lemma 3.2 Let hypotheses (h))-(h,) be satisfied and let u € Wé’H(Q) \ {0}. Then there
exist A, > 0 and unique 1} <ty < 13 such that

max
0<o/(t)=))y]t), 0>0/ () =)y ) and o, )= max o, (1)
whenever A € (0, Ay). In particular, f{u € ./\/Ifor A€ (0,A,).
Proof Foru € WS’H(Q) \ {0} the equation
0=0/(t) = [ay + byl (tVu)] [(p -1+ }/)tp_2+y||Vu||£ +(@-1+ y)ﬂ—2+y||w||gﬂ
+ bo® = DGV (#Vally + 67|V,
-1 -1
(= 19ully + e V)
SR AT
Q
can be equivalently written as
[ag + bud V0] [0 = 1+ 7 IVull + (g = 1+ )7 |Vl |
0-2 —p*+1 —p*+1 —1 —1
o+ b0 = D2V (# HIVally + 7 Vale, ) (7 IVl + 7 IVal? )
=(p*_1+y)/ ul?" dx.
Q
(3.4)
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1086 R. Arora et al.

From p* > g6 and 6 > 1 we see that

p@—1D+p—p" <min{p@®—-1)+qg-p*.q0—-1)+p-p*}
<max {p(@—-1)+qg-p*,q0 -1 +p-p*} (3.5)
<q@—-1)+qg—p*=¢g0—-p"<0.

We denote the left-hand side of (3.4) by
T,(t) =[aq + by’ (tV10)] [(p — 1+ ([ Vull + (g = 1+ ) ||Vu||3,u]
+ bo® = DV (7 [Vally + 67+ Va2, )
-1 -1
(tP IVull? + 1 ||Vu||3’a).

Then, from (3.5) and0 < y < 1 < p < g < p*, we know that

) lm7,0)=co, (i) lmT,H)=0, (i) 7, <0 foralls>0.
10+ t—00

From the intermediate value theorem along with (i) and (ii) we can find #*__ > 0 such that

max
(3.4) holds. In addition, (iii) implies that #; is unique due to the injectivity of T,. Moreo-

ver, if we consider 0'; () > 0, then in place of (3.4) we get
T,t)> (P -1+ y)/ lu]?" dx.
Q

Since T, is strictly decreasing, this holds for all # < #2 . The same can be said for ¢/ (r) < 0
and t > I Hence, o, is injective in (0, Iax) and in (tr’;ax, 00). Furthermore,

u —
o, ..)= max o,
with the global maximum >0 of o,. Moreover, we have
limo,(t)=0 and limo,(f) = —c0.
=0+ =0

Applying the estimate p¢;,(Vu) > || Vull, we obtain

b . «
0> 0~ 1 IV = 7 = 1 [ G
P’ Q

which by using Holder’s inequality and (3.1) results in

i
25\ o
»

w5 1 [boPO -1+ S .y 3.7)
T Vall, | pfter =1 +7y) 0

Note that 6, is increasing on (0, z; ). Hence from pepy, (Vu) > ||Vu||§, p < g, Holder’s ine-

quality, (3.1) and the representation of #; in (3.7) we have
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b, .
Ul ) 2 0,(8) > ey IV~ Gy [ b g
by
> (Y |V ||P9( S vl -”9)
po-

p*—pb by upo-1+ 0
> <—>F(’°) NVull

pr=l+y
p*—q0 b,
> (252 ) ey
pr=1l+y/)p®"
AL
. 0¥ —p
(P -9 1vapi—r 2o by | b0 —1+71)S7 |" "
- P pf=1| pi-l(p* — 1 +7)
zm/wwm
Q
where A, is given by
0—1+y —y
b < P —qb )(bo(p0—1+y)S)pp*pa s
T \pr =14y )\ Pt — 1+ y) |g|p*;,f;' '

From the considerations above we conclude that

o, (4. > /1/Q|u|1—ydx

whenever 1 € (0, A,). Since o, is injective in (0,#; ) and in (7, 00), we can find unique

max
t’l‘, t‘z‘ > 0 such that

ax’

o, (1) = /1/9 ul' 7 dx = 0, (1) with /(1) <0 < &’ (1").

Due to (3.3) we have tju € N,. Then, from the representation in (3.2), we observe that
o\(t) =1y () + y Tyl (o).
Finally, since /() = y/(¢5) = 0 and ¢/ (#5) < 0 < o/ (¢}) we derive that
0<ol()=u)y!() and 0> 0/ (1) =)y ).
This shows, in particular, that r{u € ./\/’: for A € (0, Ay). O

Next we show that the modular ¢,,(V-) is upper bounded with respect to the elements of
N; The proof is similar to that in [2, Proposition 3.4] and so we omitted it.

Lemma 3.3 Let hypotheses (h))-(h,) be satisfied. Then there exist A3 > 0 and constant
D, = D,(4) > 0 such that

0r(Vu) = [IVull? + | Vull?,, < Dy

foreveryu € Nj{ and for every A € (0, Ay).
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1088 R. Arora et al.

By Lemma 3.1(ii), we observe that Nj{ is closed in W(;’H(Q) for A > 0 small enough. We
define

Ot = inf J,(u).
4 uGN; A()

The next proposition shows that @: < 0. We refer to [2, Proposition 4.1] for its proof.

Proposition 3.4 Let hypotheses (h))-(h,) be satisfied and let A € (0, min{A, A, }), with A,
A, given in Lemmas 3.1(ii) and 3.2. Then @I < 0.

Based on the implicit function theorem in its version stated in Berger [6, p. 115] we can
proof the following Lemma which proof is similar to the one in [2, Lemma 4.2].

Lemma 3.5 Let hypotheses (h))-(h,) be satisfied and let A > 0. Let us consider u € ./\/'jlr
Then there exist € > 0 and a continuous function { : B_(0) — (0, c0) such that

¢0)=1 and (W)(u+v)€N; forallve B, (0),
where B,(0) 1= {ve W,™(Q) : |Ivll <e).

Now, we set A* :=min{A,A,,A;} with A, A, and A; >0 given in Lemmas
3.1(ii), 3.2 and 3.3 . Let 4 € (0, A*). Applying Ekeland’s variational principle, we obtain a
sequence {u, },ey C N satisfying

1
07 <Ji(,) <07+, (3.8)
llu — u,
Jyw) = J,(u,) + ———= (3.9)
n

for any u € N+ By Lemma 3.1(i), we know that {u, }nEN is bounded in W1 H(Q) Hence,
by Proposmon 2.2(ii) along with the reﬂex1v1ty of W1 (Q), there exist a subsequence still
denoted by {u, },cn. and an elementu, € W () such that

u, = u,; in WO' Q), wu,—-u;, inl’(Q) and u, >u, ae inQ (3.10)

for any s € [1, p*). By the coercivity given in Lemma 3.1(i), we can assume that there exist
E,, E, > 0 such that

Jim flu, I} = E,  and  lim ||u, ||, = E,. (3.11)
We get the following technical results.

Lemma 3.6 Let hypotheses (h))-(h,) be satisfied, let A € (0, A*) and let {u,},cn C ./\/1r be a
sequence satisfying (3.8)—(3.9). Then u,; # 0.

Proof Let us assume by contradiction that u;, = 0. Then l[/; (1) = 0 implies

o+ oy Pl + 12,0 = 3 1,7 @5 [ ax =
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Using (3.10), (3.11) and letting n — oo, we get
E,  E\"! .
ay+by| — +— (E,+E))—d’ =0, (3.12)
p q
where we set
lim [ |u,|’" dx=:d" >0.
Q

Moreover by (3.8) we have

lim J,(u,) = 0} <0,

E, E E, E\’ P
ao<—l+—2>+b0<_l+_2> LAY 3.13)
P q P q P

Recall that E|, E, > 0. Then, taking the value of dr" from (3.12) into (3.13), we derive that

E, E E, E\’ E, EN'E+E
a0<—1+—2>+b0<—1+—2> - a0+b0<—1+—2> 1,
P q P q P q p

This implies

E, E, E +E E, EN° (E ENE+E
ao[—1+—2— 1 2]+b0l1<_1+_2> _<_1+_2> E+E| _,

which implies that

p g P O\p ¢ P q

and so

E  EN\!
i) on ) n(5%)
p q p p q
1 1 1 1
El——-—|+E|——-—|| <0,
[1<p9 p*) 2<q9 p*)]
which is a contradiction because of p < g < g0 < p*. a

Lemma 3.7 Let hypotheses (h,)—(h,) be satisfied, let A € (0, A*) and let {u,},cn C N; be a
sequence satisfying (3.8)~(3.9). Then liminfy' (1) > 0, that is,

ny{gg}f{ lay + bod’; (V)| [(p — 14 IV, I+ (= 1+ y)||w,1||g’a]
+ bo® = DAV )V, 2 + Vi, 19 = (b = 1+ 7) / 7 dx} > 0.
Q

Proof Since {u,},cy C N7}, we have y! (1) = 0and y/ (1) > 0, that is,
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1090 R. Arora et al.

Ja + bt (V)] [0 = 1+ DIVa I+ = 1T+ DIV, 12|
000 = DTV + V2,7 =07 = 14) [l x>0
and
Jag + o (V)] [0 = POV I + (g =PIV 12,

+ b0 — DAL AVu )1V, 2+ [V, [, + A" — 1+ 1) /Q Ju, |7 dx > 0.
(3.14)

Thus, in order to prove the lemma, it is enough to show that
li;gglf{ Jag + buts (V)] [ @ = POV I + (@ = POV I,
+ bo(® = D 2(Vu, )V, |12 + 1V, [12,)°
+Ap* -1 +y)/ |un|1‘7dx} > 0.
Q
By contradicting (3.14), let us assume that
1i,{gioglf{ g + b (V)] [0 = IV, I + g = IV, 12,

+bo(0 = D@ > (Vu )1V, I+ I Vu, 12 )% + A" = 1+ y)/ [ua,,| "7 dx} =0.
Q
(3.15)

By Lebesgue dominated convergence theorem, we obtain

lim |un|l_7dx:/|u/1|l_ydx. (3.16)
n—oo Q Q
Using (3.16) in (3.15), we get
n;gggf{ [ag + bt (V)] [0 =PIV I + g = IV 2,
+ b0 = D> (Vu, )|V, 17 + ||Vun||g,u>2}

=—A<p*—1+y>/|uﬁ|1—ydx,
Q

which yields, by applying (3.11),

-1 _NE _E
_’1/|”,1|1_7dX= [a0+b0<ﬂ+é> ] [(p PHOE; +(g—p") 2]

p*=1+y)
(3.17)

by@—1) (E E,\"7 )
—(p*—1+y)<?+7> (E, + E,).
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From this, due to p < g < p*, we have

-1 " _
_A/luﬂl,dﬁb()(pl g) [(Q_P)(E1+E2)+b0(9 1)g(E, +Ey)

q P*=1+7y) P +r-D
_ by(g8 = p*)(E, +Ey) <5 B )9'1
@P*+y-1D P q
(3.18)
Considering 1//,: (1) = 0 and (3.16), we have
E, E I
lim |u " dx = |ay + by 42 [E1+E2]—/1 [, ]~ dx.
n—eo p q Q
From this and (3.17), we obtain
lim [ |u,|’" dx
n—-oo Q
p+y-1 g+y-1

= [ag+by[ =+ + =2 +|——— )E

lao 0( ) H(ﬂ +7 - >‘ (p*+r—1>2]

by (0
E +E

+p—1+y< > (E| +E,)

S bptr—1 EN\" 0— E N\’
> o+ v )< i 2> (E, +E,) + 0([9 p)( +_2> (E, + Ey)

prF+r—-1 \p ¢ -l+y\p ¢

bypO+y—-1)(E, E\*!
~otyr-0) )<—1+—2> (Ey + Ey)

pr+ry—-1 \p ¢

by +y—1)
TP ety =D

(3.19)

For any fixed w € Wé’H(Q) \ {0}, we know that there exists a unique t,,,, > 0 such that
a{v (t 0. From this and (3.6), we conclude that

max) =

0 1

b0+ — DIVw|E?  \7

fmax = ooty = Dl ””* 1= 1. (3.20)
PP = 1+7y) [o lwl dx

It is easy to verify that ¢, > t,, > t" as defined in (3.7) and from the proof of Lemma 3.2,
we know that A, > 0 is chosen in such a way that

by(p* — w _
W(t o Ve >A2/ w]'~7 dx.
We define
— 0(p* 0+y—1 po _ 1-y
S(w) : —9 oy IV A it dez0

forall w € Wo Q),
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1092 R. Arora et al.

with 7, given in (3.20). Taking w = u,, in (3.21) and then passing to the limit as n — oo we
get

lim S(u,) > 0.

n—oo
On the other hand, by Lemma 3.6 and (3.11), we have that at least one of E, and E, is not
zero. Let us assume, without any loss of generality, that E, > 0, E, > 0. Then by (3.18),
(3.19), (3.20) along with g8 < p*and A € (0, A,), we obtain

(po=147)
bo(p*—q6) bo(p9+y—1)Ef P*—pb E°
. P pr4r=D \ p7' (pr—1+47) 1
lim S(u,) < -
N0 po+r—1
by(pO+y—1) -9\ p*-p0
Pipr+r=1 1

A, bo(q8 = p)E, +Ey) <5 LB )‘“
A P*+y-1D P q
bop* —q0) ,  bolad—pIE]

Py =Dty =)

This proves the assertion of the lemma. O

Let h € WS’H(Q) be nonnegative. From Lemma 3.5 there exists a sequence of maps
{{,}nen such that &,(0) = 1 and ¢, (th)(u, + th) € N for sufficiently small # > 0 and for
each n € N. From this and u, € V,, we have the equations

[ao+b0¢§1‘1(vun)]<||Vun||£ + ||vu,,||g,a) . ,1/ |17 dx — / |7 dx = 0
Q Q
(3.22)
and

a0 + bod; GV, )] (E2E I Vw, I+ IV, 12, )
X . (3.23)
- ACH'"(th)/ [w, |7 dx — ¢? (th)/ lw,|”" dx =0
Q Q
where w, = u, +th.
Lemma 3.8 Let hypotheses (h,)-(h,) be satisfied, let A € (0, A*) and let {u,},cn C Nj{ be a
sequence satisfying (3.8)—(3.9). For any nonnegative function h € WA‘H(Q), the sequence

{{£/(0), h)} ,en is uniformly bounded.

Proof Subtracting (3.22) from (3.23), we get
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(ag + by, ' (Vu,)) [(IIVWnllﬁ = IV 12 + VW lI7 , = 1V, II2 )
@) = DIV, I+ k) = DIVw, I
0—1 0—1
+ 000G V) = 857 V)] (LN, I+ LIV, ) 50
- A(é’,i_y([h) - 1) / Iwnll_ydx_ /l/ (lwnll_y - Iunll_y) dx
Q Q
- (é‘,{:*([h) - 1) / IM}nIIfF d'x_/ (Iw}nl[fF - Iunlp*) dx = 0.
Q Q
For notational convenience, we set
(. h), = / |Vu, ">V, - Vhdx and (u,.h),, = /a(x)qunlq_ZVun - Vhdx.
Q Q

We have the following limits

R DR AL
t—0 t

= (6100, (0 = D> (Vu )W Vi, I + [V, 12
+ (0 — DL (Vu, )y b, + (1), ),
- VW, Il = 1V, |1}

1—0 t =p<un’h>p’

lim VW, llga = 1V, G

=0 t

1in3(|wn|f’* - |u,,|P*)dx=p*/ |u, |P"~2u,,h dx,
11— Q

= q(Uy, h)gas

(th) — 1
lin(} % = 5(£(0),h) foranys > 1.
t—

(3.25)

Taking into account
[ =) a0
Q

since A is nonnegative, dividing both sides of (3.24) by ¢# > 0 and then passing the limit as
t = 07, we obtain

0 < (ag + byl (Vu,)) <p / |V, |P~2Vu,Vhdx + ¢ / a(x)|Vu,|972Vu, Vh dx
Q Q
+p (5 0), IV, |17+ g{£,(0), h>|IVunI|3,,,)
2
+ bo® = D Vu, MO ) (117,12 + 11,12,

A= PO ) / e, dx — p*(C'(0). 1) / 7" dx — p* / |71, i,
Q Q Q

This implies
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os<g«mhﬂw0+%¢$%vM»@mv%mz+qMMA¢J
+bd0—D¢$%V%J@V%M£+HV%HL>2
—xa—y{énhwvw—pjéhmﬁm]+mo+m¢§%v%»
(p/ |Vun|”_2Vun -Vhdx + q/a(x)qun|q_2Vun -Vh dx>
Q Q
[l o
Q
Therefore, using the fact that u, € N,, we have
os<gmxm{am+m@2%v%»kp+y—1wv%m+wq+y—1mv%u4
+%w—lwﬁ%wmewM+HWM&f—Qf+y—DKJ%Ww}

+ [(ao + b0¢2;1(wn)<p / |Vu,|P2Vu, - Vhdx + g / a(x)|Vu, |9 *Vu, - Vh dx)
Q Q

- p* / |un|p%_2unh dx] .
Q

Now using Lemma 3.7 and taking into account the boundedness of {u, }nEN in W (Q), we
infer that {(£'(0), /) } ey is bounded below for any nonnegative 2 € W Q).

It remains to show that {(C (0),h)},en 18 bounded above for any nonnegative
he W1 "(Q). Assume by contradiction that lim SUP,,_, (¢’ (0), h) = 0. Thus, without loss
of generallty, we can consider ¢, (th) > ¢,(0) = 1 for n € N large enough . It is easy to see
that

Applying this in (3.9) with u = ¢, (th)w,,, we get

[, th
| &, (th) ” ”
n

> J,(u,) — J, (&, (thyw,)

bor.g 0
=aq, [¢H(VM,,) - ¢H(C”(th)an)] +— [d)H(VHn) - (;bH(Cn(th)an)]

A
1_

[ [ - mmeVM——/ﬁwP|umWM

Using (3.22) and (3.23) in the inequality above, we obtain
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h
|c,,(zh)—1|”f:” c<h)”t I

= a [d’H(Wn) — Gy (&, () Vw,) — ﬁ

(Va2 + 1V, 12, = & Vo, 12 - cqah)nwnugﬂ)]
 [hV) = S,V Pl (Vi
0 0 1-

¢4, €, )V w,)
(VI + c,z(rh)nwnnga)]
-, ,

_<L_i>/[|¢(rh>w,,|” "] .
l—y p*

Now dividing the above inequality by ¢ > 0, passing to the limit as # — 0% and using (3.25),
we have

(19, 1+ 1V, 1,

Il

— 2aq
n 0

Gt 1Yy + (1 )0 = (1O 1) (V1 4 1V 12, )

+ %{(g .1 (PUIVa, I+ qll Vi, 12, ) + pla,s ), + q<un,h>q,a}]

+by [¢>$;1<Vun><¢,;<0), n)(PIVa 1+ all Vi, 12,)

+ 1—{(: (). 10 = D2 (Vae )(1Vit, I+ 1V, 2,2

+ 457 (VGO 1 (PIVa I + Vi 12, ) + 65 (V)

(P 1Y, + G114 ) }]

(P l+y
I—y

£(0).h
_ <_y> [(ao 4 ¢;;—l(wn)){<p — 1+ DIV, I+~ 1+ y)lqunIIZ,a}

(€1(0), ) / Ju, " dx + / i, 7 e
Q Q

] —_
+bo(0 = D@ 2 (V) Vi, |12 + [V, 12 )

e (1- y>||u,,||]
Q n

n° n>'*/qa

byd?7' (Vu,)
=ty Y, + . By

(=) f e
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which gives a contradiction if we take the limits n — co on both sides, considering
limsup, ., .(¢'(0),h) = oo, since by Lemma 3.7 and the boundedness of {u,},cx, there
exists some M; > 0 such that

(ao + &5, ' (Vu,)) {(p = L+ IIVu, lIp + (g =1+ y)IIVunIIZ,a}

+bo(0 = D@52 (Vi )1V, |7 + 1|V, |12 )?
1-—
( y)||un||] o
n

1

=1 [l e
Q
for n € N large enough. Thus {(¢ r/; (0), h) } ,en must be bounded above. O

>0a. e inQ

n —

Since J,(u,) = J,(|u,|), without loss of generality, we may assume that u
and so, u; > 0 a. e. in Q. With this assumption, we state our next result.

Lemma 3.9 Let hypotheses (h))-(h,) be satisfied, let A € (0, A*) and let {u,},cn C N+ be
a sequence satisfying (3.8)—(3.9). For any h € Wl H(Q) andn €N, uTh € LY(Q) and as

n— oo
(ag + bodl ' (Vu,)) [ / |Vu,|P~2Vu, - Vhdx + / a(x)|Vu,|**Vu, - Vhdx
Q Q

—A/u;yhdx—/uﬁ*_lhdx=on(l).
Q Q

Proof Let h € WS'H(Q) be nonnegative and recall the following estimate from the proof of
Lemma 3.8

(3.26)

¢ (th) llu I IIthII
n

bo 0 0
> ag|¢y(Vu,) = ¢H(§n(zh)an)] tg 2, (V) = ¢3,(&, (1) Vw,)]

-4 / [l = 1, iy, ] dx — L / [, 7" = 1, (thow, 7] d
=Y Jo P Ja
= o[ @1(Vity) = 1o (Tw,)) + (bry(Tw,) = i (G, T)V0,)) ]
b,
+ 22 [(94,Vi,) = BT, + @V, = 6, ) Vo, )

_L 1-y _ 1— _ A I o
l_y/g[w " — w,|"7] dx —1_y/9['wn| ey, 117]
_L*/[lun|p*_|wn|p*]dx_i*/[|Wn|p*_|€n(th)wn|p*]dx'

P Ja 7" Jo

Dividing the above equation with ¢ > 0 and then passing to limit as t — 0%, we get
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1K/ (0), h)l”i

> (g + bty (Vi) Gt 1, + 1t )+ (GO Bt I + 1 15,

[, 1'=7 = [w, ']
liminf/ - dx+/1<C,§(0),h>/ lu, |~ dx
Q Q

1—y 0+

+<§,;(0),h>/ |un|1’*dx+/uf;*—1hdx
Q Q

h
I, 1
n

= ~(G0). 1) | + b (V) |l 17+ 12,

—/1/|un|1—7dx—/|un|1’*dx
Q Q

- (ao + bo(ﬂ?-[_l(vun)) [(um h)p + (un’ h>q,a]
[, "7 = Tw, '] -
liminf/ dx+/up‘ hdx
Q t e "

]—y t—0+
= —(ay + by (Vu,) (. b, + (1, ) 0]

lu, |17 = |w, |17 .
__A liminf/[ ]dx+/u”lhdx,
=y =07 Jg t o

where we used u,, € NV, that is 1//’ (1) = 0. This implies

/ [lu + th|'7 = u, |~ y]

lim inf
l —y 1=0*

< (ay + byl (Vu, ))[(un, Ry, + (i )y o (3.27)

- [ e g et 4 L
Q n

Observe that |u, + th|'™" — |u,|'~7 > 0, so we can use Fatou’s lemma in (3.27) to obtain

/l/ u hdx < (ay + b0¢§{—1(vun)) [(un,h)p + (u,,, h>q,a]
Q

. h
- [ e g el 4 B
Q n n

Recall that {u,},cy 1S bounded in WS‘H(Q). Then, passing to the limit as n — oo in the
above estimate, we obtain

(ag + bodl, ' (Vu,)) [ / |Vu,|P2Vu, - Vhdx + / a(x)|Vu,|**Vu, - Vhdx
Q Q

—A/u;yhdx—/uﬁ*‘lhdeOn(l),
Q Q

for each nonnegative h € WS’H(Q), where we used the uniform boundedness from
Lemma 3.8.

(3.28)
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We aim to establish that (3.28) holds true for any arbitrary & € WS’H(Q). For this, we
replace £ in (3.28) by (u, + eh)* withe > 0 and h € W(I)’H(Q). Renaming as h, = u, + ¢h
and using (3.28), we get

0,(1) < (ag + by}, (Vu,))
[ /Q |Vu,|P~*Vu, - Vi dx + /Q a(x)|Vu,|*Vu, - Vh! dx]
—A/Slu;rh:dx—/gug*—lhjdx
= (ay + by¢l ' (Vu,))
[/ |Vu, [PV, - VT dx + / a()|Vu,|*Vu, - Vh_ dx]
Q Q
+ (ag + bodl, ' (Vu,))

[ / |Vu,|P"*Vu, - Vh, dx + / a(x)|Vu,|"*Vu, - Vh, dx]
Q Q
—/1/u;’(hs+h;)dx—/ug*‘1(hs+h;)dx

Q Q

(o + bod; Vae) |l I + e, 12,)| = 2 / ot |17 dx / o, dx]
Q Q
+ 6{(510 + byl (Vu,,)) [/ [Vu,|P~*Vu, - Vhdx
Q

+/a(x)|Vun|"_2Vun . Vhdx]
Q

—A/u;yhdx—/u{—lhdx}—x/u;Yh;dx—/ufj—lh;dx
Q Q Q Q

+ (ag + body, ' (Vu,))

/|Vun|1’_2Vun-Vh;dx+/a(x)|Vun|q_2Vun~Vh;dx].
Q Q

We define Q, = {x € Q : u, +eh <0}. Using u,, € N, and /Q u,"h_ dx > 0 in the above
estimate, we get

o0,(1) < e{ (ag + body ' (Vuy,))
[/qunV’ZVun'Vhdx+/a(x)|Vun|qZVu,,‘Vhdx]
Q Q
—A/M/hdx—/uﬁ*lhdx} +/ W " h dx — (ag + bodl (Vu,))
Q Q Q,

[/ |Vu,1|P-ZVun.Vhde+/ a(x)|Vu,|**Vu, - Vh, dx
Q, Q

(3.29)
Note that
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—/ |Vu,|P~>Vu, - Vh, dx = —/ |Vu,|P~>Vu, - V(u, + €h) dx
Q Q,

:—/ |Vun|1’dx—5/ |Vu, |P~Vu, - Vhdx
Qs QE
S—e/ |Vu,|P~>Vu, - Vhdx
Q,

and similarly,

—/ a(x)qun|‘1_2Vun-Vhde§—£/ a(x)|Vu,|7*Vu, - Vhdx.
Q Q

3 3

Moreover, applying Holder’s inequality and u,, < —eh in Q,, we have

/ufl’*_lhfdx /ufj‘dx /ug*—1|h|dx
Q Q Q

3 3 3

< +e€

-l 1

Seﬂ*/ |h|ﬂ*dx+g</ u;’*dx> " </ |h|P*dx>"-
Q, Q, Q,

Putting all these in (3.29), we infer that

on(l)ge{(a0+b0¢2;1(Vun))[/|Vun|p’2Vun-Vhdx+/a(x)|Vun|q’2Vun~Vhdx]
Q Q

—A/ujhdx—/ug*—lhdx}mp*/ AP dx
Q Q Q,
Pt 1
+5</ ug*dx)' </ |h|P*dx>' — e(ay + bod; (Vi)
Q Q

3 ‘c

[/ |Vu,|P~>Vu, - Vhdx + /
Q Q

3

a(x)|Vu, |9 *Vu, - Vhdx].

(3.30)

Since |Q,| — 0 as € — 0" and by the boundedness of {u,,},y in W&’H(Q), if we divide
(3.30) by € > 0 and then pass to the limit as e — 0%, we obtain

(ag + bod}; ' (Vu,)) [ / |Vu,|P~>Vu, - Vhdx + / a(x)|Vun|q_2Vun-Vhdx]
Q Q

—A/uyhdx—/ug*—lhdxzan(l),
Q Q

as n — oo. By the arbitrariness of & € WS’H(Q), (3.31) actually implies (3.26) which com-
pletes the proof. a

(3.31)

Now, we prove the compactness property of the energy functional J, in a suitable range of
A. For this purpose, we set for any 4 > 0

P

C) =y —a Ay
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where

P* 1y

. <L_L> - (p*—1+y)|sz|<qe—1+y>w-'+y<1—y>ﬂ*—w
C g0 pr ) T p* g6(1 —7) p*ay

(3.32)

and

P*

©-p*
o = a0< Sb() >l’*ﬂ (Spy< b() >p> @*=pO)(p*-p) . (3.33)
pgfl pgfl

Also, for any k € N, let 7}, be the truncation defined by
t if |t <k,
T = kﬁ if 1] > k.

Proposition 3.10 Let hypotheses (h))-(h,) be satisfied, let A € (0, A*) and let {u,},cn C ./\/1r
be a sequence satisfying (3.8)—(3.9) and

Jy(u,) = c<c, asn— oo. (3.34)

Then {u, },cn possesses a strongly convergent subsequence in WS’H(Q).

Proof Fixing k € N and taking & = T(u, — u;) € W,"(Q) as a test function in (3.26), we
get

0,(1) = (ag + byd7 ' (Vu, )| [ |Vu,IP*Vu, VT, (u, — u,)dx
" Q
+/a(x)|Vun|q_2VunVTk(un —u,)dx
Q

—A/u,;f Tk(un—ul)dx—/ug**lTk(un—uj)dx i=1-J—-K asn— co.
Q Q

(3.35)
Using Young’s inequality, Propositions 2.1(iii)-(iv), 2.2(ii)) and boundedness of the
sequences {u,, },en, { T3 (ut,, — 1)} ,en i Wg*H(Q), we obtain

[J| < ]+ K] +0,(1)
< (ag + boqsﬁgl(wn))/ |V, [P~ VT, (u,, — uy)| dx
Q

+/a(x)|Vu,,|q_1|VTk(u,,—u,l)ldx
Q

. (3.36)
+/ lu,|P _I|Tk(un—u,1)|dx+0n(1)
Q

<(ap+ b0¢%_1(vun))(/’ﬁ(v”n) + (VT (1, — “,1)))

+k/ug*—1dx+on(1)s C(1 +k)
Q
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with a constant C independent of n and k, that is, the sequence {u,” T;(u, — u;)},y is uni-
formly integrable. Then, using (3.10) and Vitali’s convergence theorem, we get

/ u” T (u, —u;)dx — 0.
Q
By Holder’s inequality, we observe that
(LMY > g — / (IVu [P + a(x)|Vu, |97%) Vu, - g dx
Q

is a bounded linear functional. From (3.10), we see that VT, (u, —u;) = O in [LE @)V, so
we can get

lim / (IVuy177% + a(0)|Vuy |72 Vu, - VT (u, — ;) dx = 0. (3.37)

n—-oo

Let ¢, (Vu,) = p := % + % as n — oo, where E, and E, are defined in (3.11). Thus, by
using (3.36)—(3.37) in (3.35) and the fact that a, > 0, b, > 0, f > 0, we get

(ap + b’ ") lim sup[/ (IVu, P2 Vu, — [Vuy |7V, - VT, (, — u,) dx
Q

n—oo

+ / a()(|Vu, |7V, — |[Vu, 1972 Vu,) - VT, (u, — ui)dx]
Q

= lim sup/ uln’*_lTk(un —u;)dx < Ck.
o

n—oo

By Simon’s inequalities, see [24, formula (2.2)], we rewrite the above estimate as

lim sup [ / (IVu, [PV, — [Vu, P2 Vu,) - VT, — uy) dx]
n—o00 Q

. Ck | (3.38)
" (ag + bep')
Set
5,(x) = (|Vun|p_2Vun - |Vu,1|”_2Vui) -V(u, —u,).
Note that s,,(x) > 0 a. e. in Q. We divide the set Q by
EN={xeQ: |u,(x) —u,(»)| <k} and F* = {x € Q: |u,(x) — u,(x)| >k},

where k,n € N are fixed. Let n € (0, 1). Then, from the definition of 7,, Holder’s inequal-
ity, (3.38) and the fact that lim |F,’;| =0, we get

n—oo

n n
lim sup/dex < limsup </ s, dx> |Ei|l—'7 + lim sup </ sndx> |F1;|l—n dx.
n—o0o Q n—oo EF n—oo FI;

n n

n
< _ Gk Q.
~ \(ag + by’
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Letting k — 0%, we obtain that sT— 0in L'(). Thus, we may assume that s, — 0 a. e. in
Q (up to a subsequence) which along with Simon’s inequalities [24, formula (2.2)] gives
that

Vu, - Vu, a.e.in Q. (3.39)

Let M be the nodal set of the weight function a(-) given by
M :={xeQ:alx) =0}
Since, the sequences {|Vu,|"~>Vu, } e and {|Vu, |72V, },cy are bounded in L7 (Q) and

L‘/(Q\M, a(x) dx), respectively, then by using (3.39) and [3, Proposition A.8], we con-
clude that

/Q |Vun|1’_2Vun -Vu, = ||Vuﬂ||£
and
/a(x)qunlq_ZVun -Vu, = / a(x)qun|"_2Vun “Vu, = [Vuyll? .
Q oM 7

Furthermore, using (3.10), (3.39) and the Brezis-Lieb Lemma, we obtain

PH(VMH) - PH(V“n - V’U) = PH(V’M) + On(l),

. . . (3.40)
i 17 = T, = w11 = g 17 + 0, (1)

as n — oo. Let||u, — u,||,» — ¢ for some £ > 0. Now, by taking u,, — u, as a test function
in (3.26), we get

0,(1) = (ag + by, (Vu,))

[/ |Vun|p_2Vu,,‘V(un—uA)dx+/a(x)|Vun|q_2Vun-V(u,,—u,l)dx
Q Q

— ,l/gu’:}' (u, — ui)dx—/gufi’*‘l(un —u,)dx
= (ag + boB" ) [pr(Vu,) = pp(Vity) + 0, (D] = llw, I + I, 17 + 0,(1)

as n — oo. Hence, by (3.10) and (3.40) it follows that

(@y + boB” [Py (Vu,) = py(Vu)| =7 +0,(1) asn — o, (3.41)
which further gives

(o + o) lim (1Y, = Vi I+ 1V, = Vu |12, ) <27 3.42)

Now, we claim that £ = 0. Assume by contradiction that £ > 0. By (3.1) and (3.42), we
have

Sayt? < S(ay + by~ )P < (ay + boﬂg“)”lijg IV, = Vil < 7. (3.43)

Note that (3.42) implies that
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(g + bo'")E| + Ey = IV, |IL = I VuylI2 ) < €7 (3.44)
Using (3.43) in (3.44), we get
(€7)7 2 (g + b T (Ey +Es — Vil = [Vuy112,)7
o Ja}
= (o +bof"™) 7 Tim (IIVu, = Vg2 + 1V, =V, I2, )
o (3.45)

> (ay +bof*) 7 lim <||Vun - wiug) '

v PN
>S (ao+b0ﬂ - ) v PP

2 N
>Sr(ag+byp” ).

From (3.45) and (3.1), we obtain
2 (E - 1Vil)
2 e,
- (nm IV, - Vuﬂlg) "o
n—-oo
> 87 (ag + by*).
This gives
o oo by \Fo
Ey > Si=r(ag + by’ ) > S <F> B
and so we have
N
P*—pb
E, > [SP* (%) ] . (3.46)
-
Combining (3.45) and (3.46), we obtain
S . -1 . Sbo p*p—/; (9;13”*
P 28 (ag + by ) > v ST
o -1 (3.47)
Sby \ - b, Pl o =00 )
> F S [F .

For any n € N, we have
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1, b
) = 0 0).1,) = (Vi) + V) = oV ) 50, >
_,1<L_L>/ul—ydx <__L>
I—y 40) Jo " :
> (it - a( - 5p) [
q0 1-y 40 o

From this, as n — o0, by (3.47), (3.40), Holder’s and Young’s inequality, we derive

o= tim (1) - L))

. - 1 -
Z“o(fp +||M/1||Z*)—/1<m——>|9| ) ||“A||,l,*y

*

* R —
oyt — al/lp**lﬂ

O-1p*
Sbo ,;*-,) " bO PN o =007 »*
ol ) S\ — AT = ¢,
p p

where a;, a; are defined in (3.32). The above estimates gives a contradiction to (3.34).
Hence £ = 0 and using (3.41) and Proposition 2.1(v), we conclude the proof. O

v

pr=l+y

Remark 3.11 By taking 4 € (0,A,) with A, 1= (aya;') » and @), a, are defined in
(3.32) and (3.33) respectively, we have ¢; > 0.

Proof (Proof of Theorem 1.1) Fix 4 < A* := min{A*, A, }. From Lemma 3.1(ii) and Eke-
land’s variational principle there exists a minimizing sequence {u,},c € N \ {0} verify-
ing (3.8), (3.9), (3.10) and (3.34) with c = ®+ Hence, by combining Pr0p0s1t10ns 3.4 and
3.10 , we obtain u, — u, strongly in W (Q) (up to a subsequence). This further implies
thatu, € ./\/ /i and by Lemma 3.7, we get u; € N with u, achieving ©7 since J, is continu-
ous on W "(Q). Since 0 ¢ N and u, >0 we have u; #0and u; > 0 Letting n — oo in
(3.26), we obtaln that u satlsﬁes u/1 "o € LI(Q) and

m(¢H(V“A))<£Z,q(“A)’(P> = j[lu;7¢w+/szu;_lwm

for all p € WJ’H(Q). Finally, by using Proposition 3.4, Lemma 3.5 and by repeating the
proof of [2, Proposition 4.3 and Proposition 4.4, Step 1], we obtain u; > O a. e. in Q. a
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