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Abstract

Throughout this thesis, we embrace the Bayesian mixture models setting, harnessing their
flexibility and adaptability to address a range of challenging research questions concerning
data clustering. This manuscript is a collection of three projects. The first two projects
are dedicated to the use of Bayesian Nonparametric (BNP) methods. In the concluding
project, we focus on a parametric setting, and provide a novel methodological framework
to investigate specific research inquiries arising in topic modeling.

The manuscript addresses distinct research questions, each approached through the lens
of Bayesian methodology. In Chapter 2, we tackle the challenge of simultaneous clustering
of users and items within datasets riddled with missing information, a common occurrence
in data from social platforms. We propose an innovative co-clustering method that accom-
modates informative censoring, providing a robust solution for handling missing data and
extracting valuable insights. Chapter 3 shifts the focus towards modeling the evolution of
data partitions over time, developing a model for changepoint detection using time-varying
random partition models. The proposed approach builds upon the principles of dynamic
linear models in time series, extending them by incorporating latent state equations that
model the evolution of partitions of units over time. In the final chapter, we introduce a
novel model based on distributions defined on the simplex to address the intriguing question
of whether such distributions can capture various forms of dependence among topics in a
corpus of textual documents. Our investigation leads us to the definition of a model charac-
terized by positive correlation across topics, highlighting the versatility and applicability of
simplex-based distributions in modeling complicated relationships within textual datasets.

In summary, this thesis aims at providing a thoughtful perspective on Bayesian mixture
models and their applications, while also presenting innovative solutions to various research
questions, demonstrating the breadth and depth of Bayesian methodology in tackling com-
plex data analysis problems.
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To find truth,
one must travel through a dense fog.

David Dweck
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Chapter 1

Introduction

In the last decade, the amount of data that scientists and economic activities have at their
disposal has increased dramatically. Such data is often unstructured and heterogeneous. For
this reason, the necessity to develop new, efficient, and flexible models has emerged. In this
context, mixture models have gained prominence as a powerful and versatile framework in
statistical modeling, widely employed across various fields to address the challenges includ-
ing cluster analysis, discriminant analysis, survival analysis (Peel and MacLahlan, 2000).
Mixture models find extensive applications in different domains, such as image segmenta-
tion, clustering, anomaly detection, biological data modeling and finance for modeling asset
returns. The ability to capture complex data structures and the adaptability of mixture
models make them very successful and an indispensable tool in data analysis and modeling.
These models are based on the intuitive notion that observed data often originates from
a mixture of underlying probability distributions, each reflecting distinct data sources, la-
tent classes, or components. The direct benefit of their flexibility allows to capture a wide
range of data characteristics, from multimodality to heterogeneity (McLachlan and Basford,
1988).

1.1 Mixture models

Mixture models stand as a cornerstone in the realm of statistical modeling since 19th cen-
tury. Newcomb (1886) showed that a two-component mixture can be used to combine
observations to detect outliers, especially when there is heterogeneity in the data.

From a mathematical point of view, suppose that (Ω,A,P) is a probability space, where
Ω is a sample space, A is a σ-algebra on Ω, and P is a probability measure defined on A.
Let X : Ω → X be a random vector defined on Ω and taking values in some space X ⊆ Rd.

1



Chapter 1. Introduction

Then, for any ω ∈ Ω, x = X(ω) is a realization of X. We will refer to a collection of
realizations of X as observations or data.

Definition 1.1.1 (Finite Mixture distribution). X has a finite mixture distribution if its
probability density function (pdf) has the form

p(x) = ζ1f1(x) + · · ·+ ζKfK(x), for x ∈ X (1.1)

where
ζk > 0, for k = 1, . . . ,K, and ζ1 + · · ·+ ζK = 1

and
fk(·) ≥ 0,

∫
X
fk(x)dx = 1, for k = 1, . . . ,K.

The parameters ζ1, . . . , ζK are the mixing weights and f1(·), . . . , fK(·) are the component
densities of the mixture (see, e.g., Gelman et al., 2013).

A more explicit representation p(·) can be obtained if f1(·), . . . , fK(·) have specified
parametric forms. In this case, we can rewrite (1.1) as

p(x|θ, ζ) = ζ1f1 (x|θ1) + · · ·+ ζKfK (x|θK) , for x ∈ X , (1.2)

where θk denotes the vector of the parameters of fk(·), ζk the k-th mixing weight, and
θ = (θ1, . . . ,θK) and ζ = (ζ1, . . . , ζK) denote the vectors of all the parameters of the
mixture model. Mixture models are flexible as it is not required that all components belong
to the same parametric family. However, the majority of applications in the literature focus,
for simplicity, on components from the same parametric family of distributions. In the latter
situation, the finite mixture density can be defined as follows

p(x|θ, ζ) = ζ1f (x|θ1) + · · ·+ ζKf (x|θK) =
K∑
k=1

ζkf (x|θk) , x ∈ X (1.3)

where f (·|θk) denotes a generic member of the parametric family and θ1, . . . ,θK belong to
the same parameter space Θ.

One of the the most notable and popular examples of mixture distributions is defined as
mixture of (d-dimensional) Gaussian distributions, which is usually referred to as Gaussian
mixture or normal mixture, indicated as Gaussian mixture model (GMM, see, e.g., Peel

2



1.1. Mixture models

and MacLahlan, 2000). In this case, the k-th component density has the form

ϕd (x|µk,Σk) =
1

|2πΣk|1/2
exp

{
−1

2
(x− µk)

′Σ−1
k (x− µk)

}
, for x ∈ Rd.

Hence, in general the density function of a Gaussian mixture has the form

p(x|θ, ζ) = ζ1ϕd (x|µ1,Σ1) + · · ·+ ζKϕd (x|µK ,ΣK) , for x ∈ Rd

with ζ = (ζ1, . . . , ζK) and θ = (µ,Σ), where µ = (µ1, . . . ,µK), and Σ = (Σ1, . . . ,ΣK)

represent, respectively, the vectors of the means and the variance-covariance matrices of
the Gaussian components of the mixture. Figure 1.1 illustrates a simple example of a
univariate Gaussian mixture model obtained by assigning equal weight to three components.
This visualization helps to grasp how the mixture components explain the underlying data
distribution.

Mixture models offer a robust framework for modeling data distributions characterized
by multiple components. These models, based on the principle of combining simpler proba-
bility distributions, enable us to represent and understand complex data sources, and have
become a valuable tool in various fields. The mathematical formulation, as exemplified by
the GMM in Figure 1.1, provides a clear structure for modeling the data, and visualizations
aid in comprehending how these components contribute to the overall distribution.

Once the components have been defined, it is possible to incorporate mixtures within a
Bayesian framework. This involves specifying probability distributions for the component
parameters and the component weights. The mixture distribution, characterized by proba-
bilities ζ = (ζ1, . . . , ζK) is a representation of the variability in θ = (θ1, . . . ,θK) across the
population of interest. At this stage, we are assuming that the number of mixture compo-
nents, denoted as K, is known and fixed. If we have observations x for which their mixture
components are known, the mixture model in (1.2) can be readily adapted by incorporating
the prior distributions for ζ and θ, that is

p(x|θ, ζ) = ζ1f1 (x|θ1)+ · · ·+ ζKfK (x|θK) , for x ∈ X ,

θ|ζ ∼ G,

(ζ1, . . . , ζK) ∼ DK ,

(1.4)

where G is a discrete distribution with support on the K locations of the components,
and DK is a discrete prior distribution, defined on the K-dimensional simplex, for the K
weights. At the heart of this framework lies the concept of exchangeability, a fundamental
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Figure 1.1: A visual representation of a univariate Gaussian mixture model with three
components, here arbitrarily denoted as components 1, 2 and 3.

principle in Bayesian statistics.

1.1.1 Exchangeability

Exchangeability, thoroughly studied by de Finetti (1937), represents a foundational notion
in probability theory. Exchangeability is a way to formalize an assumption of homogeneity
of the data. An ideally infinite sequence of observations X1, X2, . . ., defined on a common
probability space (Ω,A,P) and taking values in (X0,X0), is said to be exchangeable if the
order in which the observations are recorded is irrelevant as far as their joint distribution
is concerned. More formally,

Definition 1.1.2. A sequence of observations {Xn}n≥1 is exchangeable if and only if
(X1, . . . , Xn) converges in distribution to

(
Xσ(1), . . . , Xσ(n)

)
, that is

(X1, . . . , Xn)
d
=
(
Xσ(1), . . . , Xσ(n)

)
(1.5)

where σ is any permutation of the set {1, . . . , n}, for any n ≥ 1.

That is, the exchangeability of an infinite sequence of observations is defined by means of
the invariance of its distribution under finite permutations of the observations themselves.
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1.1. Mixture models

We can rewrite (1.5) as

P (X1 ∈ A1, . . . , Xn ∈ An) = P
(
Xσ(1) ∈ A1, . . . , Xσ(n) ∈ An

)
(1.6)

for any A1, . . . , An ∈ X0, for any n ≥ 1, and for any permutation σ of {1, . . . , n}. Let
p̃ : (Ω,A) → (P,P) be a random probability measure on (X0,X0).

Before stating the de Finetti’s representation theorem, it is convenient to recall the
definition of a Polish space.

Definition 1.1.3 (Polish space). A space X0 is a Polish space if it is a separable topological
space whose topology is metrisable by a complete metric.

Theorem 1.1.1. (de Finetti, 1937) If X0 is a Polish space, the following conditions are
equivalent:

i) {Xn}n≥1 is a sequence of exchangeable observations;

ii) there exists a random probability measure p̃ on (X0,X0), such that {Xn}n≥1 are con-
ditionally i.i.d. given p̃;

iii) there exists a probability measure G on (P,P) such that

P (X1 ∈ A1, . . . , Xn ∈ An) =

∫
P

n∏
i=1

p (Ai)G(dp)

for any A1, . . . , An ∈ X0 and n ≥ 1.

Bruno de Finetti, in his celebrated representation theorem (Theorem 1.1.1) states that
a sequence of observations is exchangeable if and only if its distribution is a mixture of
laws of a sequence of independent and identically distributed (i.i.d.) random variables. If
p̃ ∼ G is a random probability measure with distribution G, the measure G is uniquely
defined on (P,P) by the distribution ρ = P ◦ X−1 of X : G is called the de Finetti
measure of the sequence {Xn}n≥1, and in the context of Bayesian statistics plays the role
of prior distribution. Indeed, when observations are exchangeable, their distribution can be
represented in a hierarchical form as

Xn | p̃ iid∼ p̃, n ≥ 1

p̃ ∼ G,
(1.7)
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Chapter 1. Introduction

where G is the prior distribution for p̃. Thus, by virtue of Theorem 1.1.1, the use of priors in
Bayesian methods is justified from a theoretical standpoint. Furthermore, if G has support
on some finite-dimensional subspace of P, as for example the space of distribution on X0

with a specific parametric form, then the model is called parametric. On the other hands,
if G has an infinite-dimensional support, then model in (1.7) is termed nonparametric.

1.2 Dirichlet Process

One of the cornerstones of Bayesian nonparametric is the Dirichlet process (DP). The
framework introduced by de Finetti in the 1930s encompassed the nonparametric scenario.
However, it lacked a tractable nonparametric distribution G. The Dirichlet process emerged
as the pioneering tractable nonparametric distribution in the academic literature (Fergu-
son, 1973). Hence, the connection with mixture models is straightforward. The Dirichlet
process offers a more flexible and powerful framework for modeling data when the number
of components is uncertain or potentially infinite, making it a valuable tool in Bayesian
nonparametric modeling.

In the framework of finite mixture models, one assumes that there are K ≤ n sub-
populations that compose the total population, with K known and fixed, corresponding to
the number of components in the mixture as in Equation 1.4. The components can have
a common parametric family with the k-th component depending on a specific parameter
vector θk. In this setting, exchangeability implies that the data points can be assigned to
the components in any order without affecting the underlying model’s structure. In the
context of DP-based mixture models, this means that we can keep adding new components
as more data points arrive, and the model can adapt to the data distribution. Thanks to
the flexibility of the DP, the number of components K is not fixed a priori and becomes
subject of inference. In order to introduce this process, it is useful to start from the Dirichlet
distribution and its properties.

1.2.1 Dirichlet distribution

The Dirichlet distribution, named after the mathematician Peter Gustav Lejeune Dirichlet,
is the multivariate generalization of the Beta distribution. It is usually denoted as Dir(α)

where α is the concentration parameter with components αi > 0 for i = 1, . . . , n. Thanks to
its analytical properties, the Dirichlet is the most commonly adopted prior distribution for
parameters defined on the simplex, used in Bayesian statistics. Before defining the Dirichlet
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1.2. Dirichlet Process

distribution, it is convenient to recall the Beta and the Gamma distributions.

Definition 1.2.1 (Beta distribution). The random variable Y ∼ Beta(a, b) is said to have
a Beta distribution if its probability density function on the unit interval (0, 1) is given by

fY (y) =
Γ(a+ b)

Γ(a)Γ(b)
ya−1(1− y)b−1, 0 < y < 1 and a, b > 0,

where Γ(x) =
∫∞
0 tx−1e−tdt denotes the gamma function.

Definition 1.2.2 (Gamma distribution). The random variable Y ∼ Gam(a, b) is said to
have a Gamma distribution if its probability density function is given by

fY (y) =
ba

Γ(a)
ya−1e−by, y > 0.

The Dirichlet distribution with parameter (α1, . . . , αn), for αi > 0, as i = 1, . . . , n, can be
described as the law of the random vector

(Y1/Y, . . . , Yn/Y ) , Y =
n∑

i=1

Yi,

where Yi
ind∼ Gam(αi, 1) for any i = 1, . . . , n. It is defined on a bounded support, i.e. the

n-part simplex, defined as

Sn =

{
(x1, . . . , xn) : xi > 0, i = 1, . . . , n,

n∑
i=1

xi = 1

}
.

Hence, the pdf of the Dirichlet distribution is defined as follows

fY (y = (y1, . . . , yn)) =
Γ (
∑n

i=1 αi)∏n
i=1 Γ (αi)

n∏
i=1

yαi−1
i , αi ≥ 0. (1.8)

We can show that, by construction, the Dirichlet pdf with two components f(y1, y2), co-
incides with the pdf of a Beta distribution with parameters α1 and α2. In the following
we briefly recall some of the well-known properties of Dirichlet distribution (for proofs and
details see Ferguson, 1973; Minka, 2000). The most relevant, when adopted as prior distribu-
tion, is that the Dirichlet distribution is conjugated to the multinomial likelihood, property
that greatly facilitates posterior updates in Bayesian analysis. The Dirichlet distribution is
commonly used as distribution for the weights of the components in the Bayesian mixture
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Chapter 1. Introduction

model in (1.4). Furthermore, it is easy to recover marginal and conditional distributions
as well as to maintain identifiability in the parameter estimation. The moments of the
distribution are available in closed form. Finally, we remark that the infinite-dimensional
generalization of the Dirichlet distribution is the Dirichlet process. In other terms, the
Dirichlet distribution coincides with the finite dimensional distributions of the nonpara-
metric prior defined in Ferguson (1973).

1.2.2 Ferguson-Dirichlet process

The Dirichlet process, commonly referred to as DP and also known as the Ferguson-Dirichlet
process, is arguably the most famous example of Bayesian Nonparametric (BNP) model.
The DP is a stochastic process whose realizations are discrete distributions with probability
1. Consequently, they are valuable for providing versatile mixing components in discrete
mixture models.

Theorem 1.2.1. (Ferguson, 1973). Let (X0,X0) be a Polish space, α a finite measure on
(X0,X0) such that α (X0) = a > 0. Then there exists a random probability measure p̃ with
finite dimensional Dirichlet distribution. Its law is uniquely determined on the space (P,P)

and p̃ is termed the Ferguson-Dirichlet process.

In other terms, following Theorem 1.2.1, we can state the following definition

Definition 1.2.3 (Dirichlet process). A random measure p̃ on (X0,X0) is said to possess a
Dirichlet process distribution, DP(α), with base measure α, if for every finite measurable
partition A1, . . . , Ak of X,

(p̃ (A1) , . . . , p̃ (Ak)) ∼ Dir (α (A1) , . . . , α (Ak)) .

where α is a given finite positive Borel measure on (X0,X0) (Ghosal and Van der Vaart,
2017).

1.2.3 Posterior inference

Let X1, X2, . . . be a sequence of exchangeable random variables defined on a probability
space (Ω,A,P) and taking values in (X0,X0), with de Finetti measure G, that is

Xi | p̃
iid∼ p̃ i ∈ N

p̃ ∼ G.
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1.2. Dirichlet Process

The focal point of Bayesian inference is on recovering the posterior distribution of p̃ and
determining the predictive distribution. The former requires to obtain the distribution of
p̃ conditionally given X1, . . . , Xn, which is a distribution on the space (P,P). The latter,
instead, allows to predict the outcome of the next observation Xn+1 given the previously
observed values X1, . . . , Xn, i.e. to determine P (Xn+1 ∈ · | X1, . . . , Xn) , known as 1-step
ahead prediction.

In general, obtaining these distributions might require mathematical or, alternatively,
computational effort. However, if G coincides with a DP(α), the convenient properties of
the Dirichlet process come to help. In particular, thanks to its conjugacy property, the
posterior distribution of a Dirichlet process is again a Dirichlet process. As a result, closed-
form Bayesian estimators for parameters of interest can be readily obtained. In the following
theorem, more explicit forms to derive the posterior and the predictive distributions are
provided.

Theorem 1.2.2. (Ferguson, 1973) Let (Xn)n≥1 be an exchangeable sequence of observations
on (Ω,A,P), with DP(α) as the de Finetti measure of this sequence, namely

Xi | p̃
iid∼ p̃, i ∈ N

p̃ ∼ DP(α),

where α is a finite measure on (X0,X0).

Then, the posterior distribution of p̃ equals DP(αn), being αn = α+
∑n

i=1 δXi .

Moreover, the predictive distribution is

P (Xn+1 ∈ A | X1, . . . , Xn) =
a

a+ n

α(A)

a
+

n

a+ n

 1

n

n∑
j=1

δXj (A)

 ,

for any A ∈ X0 and with a = α(X0).

Last but not least, the marginal distribution of Xi can be calculated similarly to the
posterior distribution formula. Positive probability of the ties among Xi is implied by the
discrete nature of the DP prior. Let Xi | p̃ iid∼ p̃, with p̃ ∼ G, be a random sample for
i = 1, . . . , n. In particular, p̃ ∼ DP(α,G0) with G0 being the normalization of α, i.e. G0 =

α/α(X0). The marginal distribution p (X1, . . . , Xn) =
∫ ∏n

i=1G (Xi) dπ(G) is recovered by
exploiting the Pólya urn representation of Blackwell and MacQueen (1973). It can be spec-
ified, by resorting to the chain rule, as p (X1, . . . , Xn) = p (X1)

∏n
i=2 p (Xi | X1, . . . , Xi−1),
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Chapter 1. Introduction

where

P (Xi ∈ A | X1 . . . , Xi−1) =
1

a+ i− 1

i−1∑
h=1

δXh
(A) +

a

a+ i− 1
G0 (A) , (1.9)

for i ≥ 2 (see, e.g., Müller et al., 2015). The marginal joint distribution of (X1, . . . , Xn)

is exchangeable since the Xi are i.i.d. given p̃. For all the other properties of the Dirichlet
process and it equivalent definitions, one can refer to Ghosal and Van der Vaart (2017) and
Müller et al. (2015).

1.2.4 Stick-breaking representation

A very useful approach to define random probability measures is the stick-breaking con-
struction. This strategy is general, and, as a particular case, the Dirichlet process can be
recovered. The stick-breaking representation of the Dirichlet process has been first proved
by Sethuraman (1994).

Exploiting the stick-breaking method, one can define almost surely discrete random
probability measures on (X0,X0) of the following type

p̃ =
∑
j≥1

p̃jδθ̃j ,

where the θ̃js are i.i.d. random atoms distributed as P0, which is a probability on (X0,X0).
The p̃js are positive stick-breaking weights with the property

∑
j≥1 p̃j = 1 almost surely,

which ensure that p̃ is a probability. To define the random masses p̃1, p̃2, . . ., let us consider
a sequence of random variables Y1, Y2, . . . in [0, 1], for which we provide a constructive
definition nicely described by the following metaphor. Consider a stick of length 1, break
it into two pieces of length Y1 and 1− Y1, and set p̃1 = Y1. The remaining stick of length
1 − Y1 is again broken into two pieces of relative lengths Y2 and (1− Y2). Hence, we
set p̃2 = (1− Y1)Y2, the remaining stick has length (1− Y1) (1− Y2). Iterating such a
procedure we define the following infinite sequence of weights

p̃1 = Y1, p̃2 = (1− Y1)Y2, . . . p̃j = Yj

j−1∏
i=1

(1− Yi) , . . .

A graphical representation of the procedure is shown in Figure 1.2. The following theorem
for i.i.d. stick-breaking weights guarantees that the weights sum up to 1, as long as the
random variables Y1, Y2, . . . are i.i.d. and not degenerate at 0.
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1

Y1 1− Y1

Y1 (1− Y1)Y2 (1− Y1)(1− Y2)

...

Figure 1.2: Graphical representation of the stick-breaking procedure.

Theorem 1.2.3. Assume that Y1, Y2, . . . are i.i.d. random variables in [0, 1] then∑
j≥1

p̃j = 1 ⇐⇒ P (Y1 > 0) > 0

To show that the Dirichlet process is a stick-breaking prior having i.i.d. stick-breaking
weights, we can state the following

Lemma 1.2.1 (Dirichlet equation). Let α be a measure on (X0,X0) with α (X0) = a > 0,
consider Y ∼ Beta(1, a) and θ̃ ∼ G0, with G0 = α/a. Consider the following distributional
equation

p̃ = Y δθ̃ + (1− Y )p̃ (1.10)

where the variable is a random probability measure p̃. If θ̃ and Y are independent, the
Ferguson-Dirichlet process is the only solution of Equation 1.10.

The representation of Sethuraman is provided in the following theorem.

Theorem 1.2.4. (Sethuraman, 1994) Let θ̃1, θ̃2, . . .
iid∼ G0, where G0 = α/a, assume that

Y1, Y2, . . .
iid∼ Beta(1, a), where the two sequences are independent. The random probability

measure

p̃ :=
∑
j≥1

Yj

j−1∏
i=1

(1− Yi) δθ̃j

has distribution Dir(α).

Using this representation, it becomes evident that, as the Dirichlet distribution serves
as the component weights distribution for finite mixtures, the Dirichlet process might con-
veniently be chosen to play the corresponding role in infinite mixture models.
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1.2.5 Dirichlet Process Mixture models

When it comes to modeling absolutely continuous distributions, such as in density estima-
tion problems, the Dirichlet process by itself is not suitable due to its discreteness. However,
an effective nonparametric model for continuous distributions emerges when we convolve
the Dirichlet process with an appropriate continuous kernel function, giving rise to what is
known as the Dirichlet process mixture (DPM) model (Antoniak, 1974).

Definition 1.2.4 (Kernel function). A kernel function on X0 × Θ is any function ψ :

X0 ×Θ → R+such that

1. ψ(x; θ) is bi-measurable (i.e., that is measurable in both the arguments);

2. for any θ ∈ Θ, x 7→ ψ(x; θ) is a probability density function.

Definition 1.2.5 (Dirichlet process mixture). A Dirichlet process mixture (DPM) on X0

is a random density f̃ defined as

f̃ =

∫
Θ
ψ(x; θ)dp̃(θ) (1.11)

with p̃ ∼ DP(α).

In the special case of a Gaussian kernel, we can derive one of the most popular DPM
models, namely the location-scale DP mixture of univariate Gaussian kernels. Let X0 = R,
ψ(x;θ) with θ =

(
µ, σ2

)
, and Θ = R× R+. The random density can be defined as

f̃(x) =

∫
R×R+

ψ
(
x;θ =

(
µ, σ2

))
dp̃(θ),

with the discrete random probability measure, p̃, used to model the joint distribution of
mean and variance of the Gaussian kernel. A simplification of this model is called the
location DP mixture of univariate Gaussian kernels. In this case, the Dirichlet process is
used to model only the distribution of the mean of the Gaussian kernel. The variance is an
additional parameter of the kernel. Consider θ = µ and ϕ = σ2, Θ = R×R+. The random
density f̃ is specified as follows

f̃σ2(x) =

∫
R
ψ
(
x;µ, σ2

)
dp̃(µ),
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1.2. Dirichlet Process

when σ2 is fixed. If σ2 has assigned a prior p0, f̃ becomes

f̃(x) =

∫
RR+

ψ
(
x;µ, σ2

)
dp̃(µ)dp0

(
σ2
)
.

The mixture model in (1.4) with the mixing measure G being a Dirichlet process prior
can be written as a hierarchical model. Specifically, we introduce a vector of latent variables
θ = (θ1, . . . , θn), and consider the following augmented version of the DPM:

Xi | θi
ind∼ ψ (xi; θi) , i = 1, . . . , n

θi | p̃
iid∼ p̃, i = 1, . . . , n

p̃ ∼ DP(α).

(1.12)

1.2.5.1 Partitions and Clustering

The hierarchical representation of Equation 1.12 allows us to recover, in a straightforward
way, the partition induced by θ. For i, j = 1, . . . , n and i ̸= j, the discreteness of the Dirich-
let implies that P (θi = θj) is greater than 0, i.e. θ displays ties with positive probability.
Consequently, the vector θ will exhibit k < n distinct values (θ∗1, . . . , θ∗k) with corresponding
frequencies given by (n1, . . . , nk), where

∑k
j=1 nj = n. In essence, the latent variables θ

yield a partition of the n elements into k blocks, where each block corresponds to a specific
value θ∗j . As a result, we can identify two observations Xi and Xj as belonging to the
same cluster if the corresponding latent parameters θi and θj belong to the same block, i.e.
θi = θj .

Notably, in the context of the Dirichlet process, the probability of observing any par-
ticular partition of n elements into k blocks with frequencies (n1, . . . , nk) is given by the
exchangeable partition probability function (EPPF, see Pitman, 1995) Π

(n)
k (n1, . . . , nk),

expressed as:

Π
(n)
k (n1, . . . , nk) =

ak

(a)n

k∏
j=1

(nj − 1)!, (1.13)

with (a)n denoting the ascending factorial, i.e. (a)n = a(a + 1)(a + 2) . . . (a + n − 1) =

Γ(a + n)/Γ(a). It is important to note that the EPPF is symmetric in its arguments and
serves as a probability distribution over the space Sn encompassing all possible partitions
of the n elements. Let Sn,k be the set encompassing all conceivable partitions of n elements

13



Chapter 1. Introduction

into k blocks. Then, it can be verified that

n∑
k=1

∑
Sn,k

Π
(n)
k (n1, . . . , nk) = 1.

We are now in the position to derive the conditional distribution of θ given X =

(X1, . . . , Xn). This distribution is proportional to the joint distribution of (X,θ),

p (θ,X) = Π
(n)
k (n1, . . . , nk)

k∏
j=1

g0
(
θ∗j
) n∏
i=1

ψ (Xi | θi)

= Π
(n)
k (n1, . . . , nk)

k∏
j=1

g0
(
θ∗j
) ∏
i∈Cj

ψ
(
Xi | θ∗j

)
obtained after marginalizing with respect to p̃. Here, g0 is the probability density function
associated with the base measure G0, and Cj =

{
i ∈ {1, . . . , n} : θi = θ∗j

}
identifies the set

of indexes allocated to the j-th cluster, accordingly nj = |Cj |. Consequently, the conditional
distribution of θ given X can be expressed as

p (θ |X) =
Π

(n)
k (n1, . . . , nk)

∏k
j=1 g0

(
θ∗j

)∏
i∈Cj ψ

(
Xi | θ∗j

)
∑n

k=1

∑
Sn,k

Π
(n)
k (n1, . . . , nk)

∏k
j=1

∫
Θ g0 (tj)

∏
i∈Cj ψ (Xi | rj) drj

.

As already discussed, the partition of θ translates into a partition of the observations X,
clustered into k groups. The partition of the set of experimental units {1, . . . , n} is referred
as π = {C1, . . . , Cj}. The sets Cj are random due to the fact that the θis are random.
As highlighted in Müller et al. (2015), the Dirichlet process mixture implies a model on a
random partition π of the experimental units. The posterior inference on clustering of the
data is described by the posterior model p (π |X).

Due to the large dimensionality of Sn,k, the posterior distribution of π is, in general,
hard to study. To this end, various computational approaches have been proposed in
the literature (see, e.g., Neal, 2000). In contrast to parametric Bayesian analysis, one of
the significant advantages of employing BNP methods lies in their flexibility in modeling
distribution functions without restrictive assumptions. However, this flexibility comes with
its own set of computational challenges. The remarkable progresses of BNP models in
recent decades is largely attributable to advancements in simulation-based computational
techniques, with Markov chain Monte Carlo methods (MCMC) playing a prominent role
(see, e.g., Müller et al., 2015). MCMC methods for mixture models study the posterior
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distribution of π by sampling from the posterior distribution of θ. The partitions visited
by the chain provide us with valuable insights on how data can be clustered, including
both the number of groups and the allocation of observations to distinct groups. Collecting
this information through the sampling algorithm allows us to investigate, for example, the
variable K, which represents the number of clusters in the dataset. Notably, the DPM
model does not require the number K to be fixed a priori. Instead, it treats K as a random
variable, and its posterior distribution is influenced by both prior beliefs and the observed
data. Exploiting the EPPF in (1.13) of the DP, we can derive the prior induced by the
Dirichlet process on K as follows

P(K = k) =
∑
Sn,k

Π
(n)
k (n1, . . . , nk)

=
∑
Sn,k

ak

(a)n

k∏
j=1

(nj − 1)!

=
ak

(a)n

∑
Sn,k

k∏
j=1

(nj − 1)!

=
ak

(a)n
|s(n, k)|,

where s(n, k) represents a Stirling number of the first kind. MCMC algorithms play a pivotal
role in the estimation and fitting of models incorporating DP priors. These algorithms are
indispensable tools in the Bayesian settings, enabling us to draw inferences and explore the
posterior distributions of parameters and latent variables in a wide range of models. Among
the various MCMC techniques employed in the context of nonparametric mixture models,
four of the most notable ones are: the marginal algorithm (Escobar, 1988; Neal, 2000), the
slice sampler (Walker, 2007; Kalli et al., 2011), the retrospective sampler (Papaspiliopoulos
and Roberts, 2008), and the importance conditional sampler (Canale et al., 2022).

1.3 Main Contributions of the Thesis

In this chapter, we proposed an essential review of Bayesian mixture models, with a specific
emphasis on mixtures based on the Dirichlet process. We have focused on the significance
of this process, revisited its fundamental assumptions, provided a concise summary of its
properties and notation, and discussed the methods for deriving posterior and predictive
distributions. The remainder of this manuscript is dedicated to the investigation of specific
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research questions, examined within the framework of Bayesian methodology. It is worth
noting a clear distinction: while the next two chapters harness the flexibility and adapt-
ability of nonparametric methods, the final chapter takes a slightly different approach, by
embracing a parametric approach.

More specifically, in Chapter 2, we consider a significant problem in the field of data
analysis: simultaneously clustering users and items, task that is particularly challenging
when dealing with datasets plagued by missing information. This issue becomes especially
relevant when considering the vast and diverse datasets generated by social platforms, where
missing data is a common occurrence. In this chapter, we propose a novel approach to ad-
dress this issue, a comprehensive model for co-clustering data that accounts for informative
censoring. The proposed model not only facilitates efficient clustering of users and items
but also handles the complexities introduced by missing data, enabling a more robust and
accurate analysis of underlying patterns in the dataset. This approach represents an in-
novative contribution to the field of BNP methods, particularly in data-rich environments,
with missing values being considered as a source of information.

In Chapter 3, our focus shifts to a compelling question: how to model the evolution
of partitions over time. To tackle this issue, we explore how to identify changepoints in
multivariate time series based on time-varying random partitions. The temporal dimension
adds a layer of complexity to the already challenging task of modeling the clustering of units
with a random partition model. We present a compelling framework that not only provides
valuable insights into the ever-evolving nature of partitions over time but also effectively
allows capturing changepoints in their evolution. Our method contributes substantially to
the existing literature on temporal modeling with random partition models, which to date
is limited to few contributions.

The final chapter of this manuscript, Chapter 4, is dedicated to defining a new model
for textual data using distributions defined on the simplex. This chapter centers around
the intriguing question of whether such distributions can accommodate various forms of
dependence among topics. Our examination leads us into the realm of topic modeling with
positive correlation, where we explore the potential of these distributions in uncovering un-
derlying patterns and dependencies within complex datasets. Throughout this chapter, we
push the boundaries of what simplex-based distributions can achieve in terms of modeling
complicated relationships, shedding light on their versatility and applicability across diverse
contexts.
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Chapter 2

A Bayesian Model for Co-clustering Ordinal Data
with Informative Censoring

2.1 Introduction

Multivariate ordinal data, such as movie ratings and politicians’ votes, have been exten-
sively analyzed with both parametric and nonparametric approaches (e.g., Bennett et al.,
2007; Zhou et al., 2008; van Dijk et al., 2009). This type of data plays a central role in var-
ious domains, with recommendation systems being a notable example. In recommendation
systems, individual preferences are formalized as ordinal ratings provided for various items.
Examining such applications helps us in shedding light on the specific challenges the anal-
ysis of these data might present and in outlining the main objectives of our contribution.
First of all, the ease of accessibility of diverse data sources, driven by technological ad-
vancements, has significantly amplified the challenge of extracting meaningful information
from the large volume of available data (Abello et al., 2013). Moreover, recommendation
systems inputs are often characterized by sparsity, with individual preferences expressed
for only a subset of the available items, as it happens for instance in e-commerce platforms:
any statistical analysis must address the issue of handling missing observations. A common
strategy is to consider them as absent information and thus discard them. On the contrary,
missing data itself can convey useful information: for example, censoring in movie ratings,
or politicians’ votes, might indicate lack of interest for a specific movie type, or objection
to a specific political position. Finally, when the goal is to provide similarity-based rec-
ommendations, it is interesting to explore both the clustering of individual preferences and
the clustering of items. In this chapter, we present a modelling strategy that, while not de-
signed exclusively to deal with the problem of recommending items that might be pertinent
to specific individuals, is able to address the aforementioned challenges. More specifically,
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we propose a method to do simultaneous clustering, i.e. co-clustering, of individuals and
items, while accounting for the large dimension and the sparse nature of the data.

Co-clustering methods, also known under the name of biclustering or two-mode clus-
tering, were first introduced by Hartigan (1972): they are meant to simultaneously cluster
rows and columns of a matrix. Over the past three decades, these approaches have found
widespread application, particularly in the realm of biological data analysis, where they
have been used to jointly cluster genes and conditions (Madeira and Oliveira, 2004; Cheng
and Church, 2000). Other applications of these methods can be found in data mining
(Busygin et al., 2008) and recommendation system (Choi et al., 2018). A non-exhaustive
list of references that propose methods for co-clustering includes Meeds and Roweis (2007),
where, in the context of recommendation systems, a solution based on the Pitman–Yor
process is proposed; Wang et al. (2011), where a Mondrian process is used to model de-
pendence of row and column clusters and a reversible jump MCMC for posterior sampling;
Wang et al. (2012), an extension of the model of Meeds and Roweis (2007) where a new
approach, called Infinite Hidden Relational Model, is proposed to predict interaction val-
ues for new objects. Within this line of research, some contributions have considered the
problem of missing observations: Shan and Banerjee (2008) address it by considering only
a complete subset of data; Reisner et al. (2019) present an R package to co-cluster data in
the presence of missing values, which implements a geometric approach that exploits an
optimal rearrangement of rows and column of the data matrix. Our work contributes to
this literature and is innovative as it regards missing data as an informative component, a
concept we refer to as “informative censoring”. This also allows us to avoid the common
practice of discarding or imputing missing data. Additionally, by adopting a nonparamet-
ric approach, we circumvent the challenge of setting the number of clusters for rows and
columns. Instead, we treat these quantities as model parameters for which we can make
inference based on the evidence provided by the data.

The problem of modeling multivariate ordinal data has attracted a great deal of atten-
tion in the recent Bayesian and Bayesian nonparametric literature (see, e.g., DeYoreo and
Kottas, 2018, 2020; Webb and Forster, 2008). A cleaver idea to deal with these data, dis-
crete by their nature, consists in introducing continuous unobservable latent variables and
a set of cutoffs that allow to relate observations and latent variables, in the spirit of (Albert
and Chib, 1993). Kottas et al. (2005) combine this idea with the definition of a Dirichlet
process mixture of multivariate Normal kernel to model the continuous latent variables.
The flexibility of their proposal conveniently allows for arbitrary cutoffs to be fixed without
affecting posterior inference. The model we define combines this framework with a matrix

22



2.2. Model

factorization approach to handle the large dimensional nature of the data. The latter idea
is in line with the literature on recommendation systems through a collaborative filtering
approach (Koren, 2008). The principle at the core of Bayesian matrix factorization models
(e.g. Salakhutdinov and Mnih, 2008) is that the preferences of a user are determined by a
small number of unobserved factors. For this reason, the n×p preference matrix, reporting
the preferences that n individuals assign to p items, is modeled as the product of a d × n

user coefficient matrix and a d× p factor matrix, where d represents the latent dimension.
The aim is to find the best rank-d approximation to the observed n×p target matrix under
a given loss function. An extension of this model can include extra information on either
individuals or items, element that can improve the model predictive ability, especially when
data are sparse (Porteous et al., 2010).

The rest of the chapter is organized as follows. Section 2.2 is dedicated to the specifi-
cation of the model. The strategy for posterior distributions, and posterior inference with
details on its implementation can be found in Section 2.3 and Section 2.4. The performance
of the model is investigated by means of the analysis of synthetic and real data, as presented
in Section 2.5 and 2.6, respectively. Finally, the Appendix includes additional results for
the full conditional distributions and the data analysis.

2.2 Model

Let X be a tensor of continuous observations, with dimensions n × p × q, where n is the
number of individuals, p is the number of items and q is the size of each observation Xij

(individual i, item j). We assume that d is the size of latent factor (with d ≪ n, p), and
we let θi be the factor matrix for the i-th individual, with size d× 1× q, ψj be the factor
matrix for the j-th item, with size d× 1× q, and Ξ be a variance-covariance matrix, with
size q × q. We propose to model the factor matrices θi and ψj with independent Dirichlet
processes, which leads to the following nonparametric Bayesian factor model:

Xij |θi,ψj
ind∼ Nq(θ

⊤
i ψj ,Ξ);

θi|H
iid∼ H; ψj |F

iid∼ F ;

(H,F ) ∼ DP(MH , H0)DP(MF , F0).

(2.1)

where the base measures (H0, F0) are specified as matrix Normal distributions (see, e.g.,
Viroli, 2011). The model in (2.1) can be seen as a multivariate extension of the setting
presented in Porteous et al. (2010).
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Our objective is to explore the flexibility of (2.1) to model ordinal observations with
censored components. As a running example, one can think of a movie platform, with
the ordinal observations being the rating assigned by users to movies, and the censored
components corresponding to movies not rated by specific individuals. With this purpose,
we resort to the idea presented in Kottas et al. (2005), where a Bayesian nonparametric
model for continuous distributions is used, at a latent level, to model multivariate ordinal
data. Although the same strategy can be applied to a larger dimensional framework, we
confine ourselves to the case q = 2, as two dimensions suffice in handling movie ratings and
censored observations. More specifically, we let Yi = (Yi1, . . . , Yip) be the vector of ratings
assigned by individual i to the p movies on the database, where we assume that each Yij

takes values in {1, 2, . . . , Cj}. In realistic scenarios, it seems reasonable to expect that some
of the components of each observation Yi = (Yi1, . . . , Yip) might be missing, that is there
might be movies that were not rated by i-th individual. We formalize this by endowing each
observation Yi with a vector δi = (δi1, . . . , δip), with δij , for j = 1, . . . , p, indicating whether
the j-th component Yij of Yi was observed (δij = 1) or not (δij = 0). We formalise the fact
that the j-th element of Yi is not observed by writing Yij ∈ [Cj ], where [n] := {1, 2, . . . , n}
denotes the set of the first n positive integers. The strategy of Kottas et al. (2005) can then
be applied by introducing the latent variables Zi, for i = 1, . . . , n, such that, for any pair
of positive integers ℓ1 ≤ ℓ2,

Yij ∈ {ℓ1, . . . , ℓ2} if γj,ℓ1−1 < Zij ≤ γj,ℓ2

where −∞ = γj,0 < γj,1 < · · · < γj,Cj−1 < γj,Cj = ∞ are the cutoffs for each j = 1, . . . , p.
Only two special cases must be considered here, namely ℓ1 = ℓ2 = ℓ (observed component),
and ℓ1 = 1 and ℓ2 = Cj (unobserved component). That is

Yij = ℓ if γj,ℓ−1 < Zij ≤ γj,ℓ;

Yij ∈ [Cj ] if −∞ = γj,0 < Zij ≤ γj,Cj = ∞.

Similarly, for the censored variables δij , for i = 1, . . . , n and j = 1, . . . , p, we introduce a
continuous latent variable Dij , in the spirit of Albert and Chib (1993), such that δij = 1

if and only if Dij ≥ 0. If we let Ξ = diag(σ2, τ2), then we can exploit (2.1) to model the
latent vectors Xij = (Zij , Dij), and thus obtain the following hierarchical model for the
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observations (Yij , δij),:

Pr(Yij = ℓ, | Zij , δij) =
1

C
1−δij
j

1(γj,ℓ−1,γj,ℓ](Zij)
δij

δij =

1, if Dij ≥ 0

0, if Dij < 0

Zij | Ui,Vj
ind∼ N(U⊤

i Vj , σ
2);

Dij | Ri,Wj
ind∼ N(R⊤

i Wj , τ
2);(

Ui

Ri

)
=

[
Ui1 Ui2 . . . Uid

Ri1 Ri2 . . . Rid

]
|H iid∼ H

H ∼ DP(MH , H0)(
Vj

Wj

)
=

[
V1j V2j . . . Vdj

W1j W2j . . . Wdj

]
|F iid∼ F

F ∼ DP(MF , F0)

(2.2)

where, as in (2.1) H and F are independent Dirichlet processes and d ≪ n, p. The first
equation defining the model is a way to formalize the idea that, if δij = 1, i.e. 1(Dij >

0) = 1, then, conditionally on Zij , the distribution of Yij is degenerate at the value ℓ such
that Zij belongs to (γj,ℓ−1, γj,ℓ]; if δij = 0, i.e. 1(Dij > 0) = 0, then the distribution of Yij
does not depend on the value of the latent variable Zij and is uniform on {1, . . . , Cj}.
The model is completed by specifying the base measures H0 and F0, which we define as
independent matrix normal distributions, that is

H0 = N2,d

((
mU,i1 mU,i2 . . . mU,id

mR,i1 mR,i2 . . . mR,id

)
,Φ,Σ

)
;

F0 = N2,d

((
mV,1j mV,2j . . . mV,dj

mW,1j mW,2j . . . mW,dj

)
,Ω,Υ

)
,

(2.3)

where Φ and Ω are (2×2) variance-covariance matrices of the rows of the matrix Normals,

Φ =

(
ϕ1 ϕ2

ϕ2 ϕ3

)
;

Ω =

(
ω1 ω2

ω2 ω3

)
,
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and, similarly, Σ and Υ are (d × d) variance-covariance matrices of the columns. All the
matrices we defined are to be considered positive definite. Moreover, the parametrization
we consider is such that it is worth stressing that while observations Yi and δi, and latent
variables Zi and Di have dimension p, the underlying factor model works with a smaller
number d of factors. Furthermore, we observe that the introduction of a latent layer of
continuous random variables considerably simplifies the task of writing the joint distribution
of all the random elements in the model, which is the starting point of next section.

2.3 Posterior Distribution

In view of the definition of a MCMC algorithm for posterior inference, described in Section
2.4, we study the joint conditional distribution of the random elements that constitute the
model in (2.2), given the data. More specifically, we show the derivation of the conditional
distribution that is obtained after marginalizing with respect to the random probability
measures (H,F ). This step conveniently simplifies the task of posterior sampling by ana-
lytically integrating out the infinite-dimensional parameters of the model.

For the sake of compactness, we introduce the following notation, we let θ = (U ,R) =

((U1,R1), . . . , (Un,Rn)), ψ = (V ,W ) = ((V1,W1), . . . , (Vp,Wp)), Z = (Z1, . . . ,Zn),
D = (D1, . . . ,Dn), and denote the data as Y = (Y1, . . . ,Yn) and δ = (δ1, . . . , δn). Then,
we are interested in studying the conditional distribution of (θ,ψ,Z,D), given the data
(Y , δ), that is p(θ,ψ,Z,D | Y , δ) ∝ p(θ,ψ,Z,D,Y , δ). Conditionally on (H,F ), we can
write

p(θ,ψ,Z,D | Y , δ, (H,F )) ∝ p(Y | Z, δ)p(δ |D)p(Z,D | θ,ψ)p(θ,ψ | (H,F ))

=
[ n∏
i=1

p∏
j=1

p(Yij | Zij , δij)p(δij | Dij)p(Zij , Dij | θi,ψj)
]

× p(θ | H)p(ψ | F ).

given that (H,F ) ∼ DP(MH , H0)DP(MF , F0), it is possible to analytically marginalize
(H,F ) out of p(θ,ψ,Z,D | Y , δ, (H,F )). Thus, we get

p(θ,ψ,Z,D | Y , δ) ∝ E(H,F )

[
p(Y | Z, δ)p(δ |D)p((Z,D) | θ,ψ)p(θ,ψ | (H,F ))

]
= p(Y | Z, δ)p(δ |D)p((Z,D) | θ,ψ)E(H,F )

[
p(θ,ψ | (H,F ))

]
= p(Y | Z, δ)p(δ |D)p((Z,D) | θ,ψ)EH

[
p(θ | H)

]
EF

[
p(ψ | F )

]
.

26



2.3. Posterior Distribution

The distribution of the latent variables θ and ψ, i.e. EH [p(θ | H)] and EF [p(ψ | F )], are
characterized by the so-called Pólya urn scheme (Blackwell et al., 1973), which is based
on the predictive distribution of θi+1 and ψj+1 given the observation of {θ1,θ2, . . . ,θi}
and {ψ1,ψ2, . . . ,ψj}. Moreover, given the independence of H and F , the two predictive
distributions are independent. Specifically, for the case H ∼ DP(MH , H0), we have

p(θi+1 ∈ · | θ1,θ2, . . . ,θi) =
MH

MH + i
H0(·) +

1

MH + i

i∑
r=1

δθr(·),

analogously for F ∼ DP (MF , F0) and the predictive distribution for ψj+1. Thus we can
write

p(θ,ψ,Z,Y | V , δ) ∝
n∏

i=1

[ p∏
j=1

p(Yij | Zij , δij)p(δij | Dij)p(Zij , Dij | θi,ψj)
]

×
n∏

i=1

p(θi | θ1,θ2, . . . ,θi−1)

p∏
j=1

p(ψj | ψ1,ψ2, . . . ,ψj−1).

The distribution of (θ,ψ) obtained by marginalizing with respect to (H,F ) is more con-
veniently written by means of the exchangeable partition probability function (EPPF) of
the two Dirichlet processes. Given the almost sure discreteness of H and F , with positive
probability there will be ties between the components of θ and ψ, leading to a total of kn
and kp distinct values. It is convenient to denote these distinct values as (θ∗1, . . . ,θ

∗
kn
) and

(ψ∗
1, . . . ,ψ

∗
kp
), whose frequencies in θ and ψ are summarized in the vectors (n1, . . . , nkn)

and (p1, . . . , pkp). The EPPFs of the Dirichlet process tell us that the probability of observ-
ing any specific realization of θ (or ψ) displaying kn (or kp) distinct values with frequencies
(n1, . . . , nkn) (or (p1, . . . , pkp)). That is,

Π
(n)
kn

(n1, . . . , nkn) =
Mkn

H

(MH)n

kn∏
r=1

(nr − 1)!

Π
(p)
kp

(p1, . . . , pkp) =
M

kp
F

(MF )p

kp∏
t=1

(pt − 1)!.
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As a result we can write

p(θ,ψ,Z,D | Y , δ) ∝
n∏

i=1

p∏
j=1

p(Yij | Zij , δij)p(δij | Dij)p(Zij , Dij | θi,ψj)

×Π
(n)
kn

(n1, . . . , nkn)

kn∏
r=1

h0(θ
∗
r)×Π

(p)
kp

(p1, . . . , pkp)

kp∏
t=1

f0(ψ
∗
t )

=
n∏

i=1

p∏
j=1

p(Yij | Zij , δij)p(δij | Dij)

×
kn∏
r=1

kp∏
t=1

∏
i∈Cr

∏
j∈Ct

p(Zij , Dij | θ∗r ,ψ∗
t )

×
kn∏
r=1

h0(θ
∗
r)Π

(n)
kn

(n1, . . . , nkn)

kp∏
t=1

f0(ψ
∗
t )Π

(p)
kp

(p1, . . . , pkp),

(2.4)

or, more compactly,

p(θ,ψ,Z,D | Y , δ) ∝ Π
(n)
kn

(n1, . . . , nkn)Π
(p)
kp

(p1, . . . , pkp)

kn∏
r=1

h0(θ
∗
r)

kp∏
t=1

f0(ψ
∗
t )

×
∏
i∈Cr

∏
j∈Ct

p(Yij | Zij , δij)p(δij | Dij)p(Zij , Dij | θ∗r ,ψ∗
t ),

(2.5)

where h0 and f0 denote the probability density functions corresponding to the base measures
H0 and F0, and Cr = {i ∈ {1, . . . , n} : θi = θ∗r} and Ct = {j ∈ {1, . . . , p} : ψj = ψ∗

t }.
From (2.5) one can obtain the full conditional distributions of θi,ψj , Zi and Di, for any
i = 1, . . . , n and j = 1, . . . , p.

2.4 Posterior Inference

Given the convoluted form of the posterior distribution in (2.5), we devise a MCMC
sampling strategy to investigate its properties. Specifically, we build a Gibbs sampling
algorithm with parameter updates made efficient by the closed-form of the full condi-
tional distributions. Given the base measures defined in Equation 2.3, we let mU =

(mU,i1,mU,i2, . . . ,mU,id),mR = (mR,i1,mR,i2, . . . ,mR,id),mV = (mV,1j ,mV,2j , . . . ,mV,dj)
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and mW = (mW,1j ,mW,2j , . . . ,mW,dj). We start with the simple observation that, if(
U

R

)
∼ N2,d

((
mU

mR

)
,Φ,Ω

)

with parameters mU and mV as described above, and variance-covariance matrices Φ and
Σ, then, we can rewrite the joint distribution of U and R, by using the chain rule, as

U |R ind∼ Nd

(
m̃U , Σ̃

)
; R

ind∼ Nd (mR, ϕ3Σ)

where m̃U =mU + ϕ2

ϕ3
(R−mR) and Σ̃ =

(
ϕ1 −

ϕ2
2

ϕ3

)
Σ. Similarly, if

(
V

W

)
∼ N2,d

((
mV

mW

)
,Ω,Ψ

)

with parameters mV and mW as described above, and variance-covariance matrices Ω and
Ψ, then, we can rewrite the joint distribution of V and W , by using the chain rule, as

V |W ind∼ Nd

(
m̃V , Υ̃

)
; W

ind∼ Nd (mW , ω3Υ) ,

where m̃V =mV + ω2
ω3
(W −mW ) and Υ̃ =

(
ω1 −

ω2
2

ω3

)
Υ. This observation will be useful

in dealing with the distributions H0 and F0 appearing in (2.5).
The full conditional distributions of Zi and Di are proportional to

p(Zi| . . .) ∝ exp
{
− 1

2
tr[∆−1(Zi−V ⊤Ui)(Zi − V ⊤Ui)

⊤]
}

×
p∏

j=i

1(γj,Vij−1,γj,Vij ]
(Zij)

1{Dij>0} ;

p(Di| . . .) ∝ exp
{
− 1

2
tr
[
Γ−1(Di−W⊤Ri)(Di −W⊤Ri)

⊤]}
×

p∏
j=i

(
δij1{Dij≥0} + (1− δij)1{Dij<0}

)
,

For the full conditional distributions of (Ui,Ri) and, similarly for (Vj ,Wj), we can write

p ((ui, ri)|(U−i,R−i), . . .) ∝
MH

MH + n− 1

∫
exp

{
−1

2
tr
[
∆−1(Zi − V ⊤u)(Zi − V ⊤u)⊤

]}
× exp

{
−1

2
tr
[
Γ−1(Di −W⊤r)(Di −W⊤r)⊤

]}
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× |Σ̃|−
1
2 exp

{
−1

2
tr
[
Σ̃−1(u− m̃U )(u− m̃U )

⊤
]}

× |Σ|−
1
2 exp

{
−1

2
tr
[
ϕ−1
3 Σ−1(r −mR)(r −mR)

⊤
]}

d(u, r)

× fd

(
ui; m̃U , Σ̃

)
fd (ri;mR, ϕ3Σ)

+

kn∑
k=1

nk
MH + n− 1

exp

{
−1

2
tr
[
∆−1(Zi − V ⊤u∗

k)(Zi − V ⊤u∗
k)

⊤
]}

× exp

{
−1

2
tr
[
Γ−1(Di −W⊤r∗k)(Di −W⊤r∗k)

⊤
]}

δ(u∗
k,r

∗
k)
(ui, ri),

where fd (x;m,S) is used to denote the density of a d-dimensional multivariate Normal
random vector, with mean m and covariance matrix S. We observe that a convenient
simplification is obtained by assuming independence between columns, case that allows us
to split a matrix variate normal into the product of two independent multivariate normals.
As a result, when ϕ2 = 0, Ui is independent of Ri, and we can write

Pr
(
(Ui,Ri) is new | . . .

)
∝ MH

MH + n− 1
(2π)−p|∆Γ|−1/2|ΣΣ|−1/2ϕ

−1/2
3 ϕ

−1/2
1

× |(ϕ−1
1 Σ−1 + V∆−1V ⊤)

(
ϕ−1
3 Σ−1 +WΓ−1W⊤

)
|−1/2

× exp
{
− 1

2
tr
(
∆−1ZiZ

⊤
i + Γ−1DiD

⊤
i

+ ϕ−1
3 Σ−1mRm

⊤
R + ϕ−1

1 Σ−1mUm
⊤
U

)}
− 1

2
tr[(WΓ−1Di + ϕ−1

3 Σ−1mR)

× (WΓ−1Di + ϕ−1
3 Σ−1mR)

⊤

× (WΓ−1W⊤ + ϕ−1
3 Σ−1)−1]

− 1

2
tr[(V∆−1Zi + ϕ−1

1 Σ−1mU )

× (V∆−1Zi + ϕ−1
1 Σ−1mU )

⊤

× (V∆−1V ⊤ + ϕ−1
1 Σ−1)−1]}

(2.6)

Moreover, new values for (Ui,Ri) can be sampled from the following independent distribu-
tions

Ui|rest
ind∼ Nd

(
(ϕ−1

1 Σ−1 + V∆−1V ⊤)−1(ϕ−1
1 Σ−1mU + V∆−1Zi);

(ϕ−1
1 Σ−1 + V∆−1V ⊤)−1

)
,
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Ri|rest
ind∼ Nd

(
(ϕ−1

3 Σ−1 +WΓ−1W⊤)−1(ϕ−1
3 Σ−1mR +WΓ−1Di);

(ϕ−1
3 Σ−1 +WΓ−1W⊤)−1

)
.

Furthermore, the probability that (Ui,Ri) coincides with an already observed value,
that is a value that appears in (U−i,R−i), is

Pr
(
(Ui,Ri) = (u∗

r , r
∗
k)| . . .

)
∝ nk
MH + n− 1

(2π)−p|∆|−1/2|Σ|−1/2

× exp

{
−1

2
tr
[
∆−1(Zi − V ⊤u∗

r)(Zi − V ⊤u∗
r)

⊤
]}

× exp

{
−1

2
tr
[
Γ−1(Di −W⊤r∗k)(Di −W⊤r∗k)

⊤
]}

,

(2.7)

where (u∗
r , r

∗
k) are the elements of (U ,R) in the k-th cluster and nk is the cardinality of

the same cluster. Once the probabilities in (2.6) and (2.7) have been computed up to a
proportionality constant, their exact value can be recovered by exploiting the fact that they
sum up to 1.

More details are provided in Appendix 2.A. We can derive in a similar way the full
conditional distributions for (Vj ,Wj). Finally, for the hyperparameters σ2 and τ2, we
specify the following a priori distributions

σ2 ∼ IG(ασ, βσ),

τ2 ∼ IG(ατ , βτ ),

where IG stands for the Inverse-Gamma distribution. The corresponding full conditionals
are given by

σ2|rest ∼ IG

ασ +
np

2
, βσ +

1

2

n∑
i=1

p∑
j=1

(Zij −U⊤
i Vj)

2

 ,

τ2|rest ∼ IG

ατ +
np

2
, βτ +

1

2

n∑
i=1

p∑
j=1

(Dij −R⊤
i Wj)

2

 .

It is well known that algorithms based on Pólya urn schemes can suffer of slow mixing
(see, e.g., the discussion in Ishwaran and James, 2001). A solution to deal with this problem
is the introduction of an acceleration step that consists in updating the distinct values of
the latent variables from their full conditional distributions.
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We describe the acceleration step we introduce in the algorithm by focusing on the
update of (U∗

k ,R
∗
k), the update of (V ∗

l ,W
∗
l ) being analogous. We let Ck = {i ∈ {1, . . . , n} :

(Ui,Ri) = (U∗
k ,R

∗
k)} and obtain

Pr((U∗
k ,R

∗
k) ∈ (du, dr)|Z,D, (V ,W )) ∝ H0(du, dr)

×
∏
i∈Ck

exp

{
−1

2
tr
[
∆−1(Zi − V ⊤u)(Zi − V ⊤u)⊤

]}

× exp

{
−1

2
tr
[
Γ−1(Di −W⊤r)(Di −W⊤r)⊤

]}
.

Sampling from this distribution is straightforward because it can be decomposed into the
product of two d-dimensional Normal distributions. We let Z̄k and D̄k be respectively the
mean of the observations of the variable Z and D in the k-th cluster and, by considering
again the simplifying assumption ϕ2 = 0, we obtain

U∗
k |rest

ind∼ Nd

(
(ϕ−1

1 Σ−1 + nkV∆−1V ⊤)−1(ϕ−1
1 Σ−1mU + nkV∆−1Z̄k);

(ϕ−1
1 Σ−1 + nkV∆−1V ⊤)−1

)
R∗

k|rest ∼ Nd

(
(ϕ−1

3 Σ−1 + nkWΓ−1W⊤)−1(ϕ−1
3 Σ−1mR + nkWΓ−1D̄k);

(ϕ−1
3 Σ−1 + nkWΓ−1W⊤)−1

)
for more details see Appendix A.1.

Algorithm 1 summarizes the steps of the gibbs sampler we are now in the position to
define, by combining the sequential updates of the model parameters according to the full
conditionals we derived, with the acceleration step.
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Algorithm 1 Gibbs sampling with the acceleration step

1: set admissible initial values for the latent vectors U (0),V (0),R(0) and W (0)

2: for each iteration r = 1 . . . , R do:
3: for each i = 1, . . . , n and j = 1, . . . , p do:
4: sample (Ui,Ri)

(r) from

MH

MH + n− 1
L(U

(r)
i ,R

(r)
i ,W ,V ;Zi,Di)H0(·)

+

k(r)
n∑

k=1

n
(r)
k

MH + n− 1
L(U

(r)
i ,R

(r)
i ,W ,V ;Zi,Di)δ(U∗

i ,R
∗
i )

(r)(·)

5: sample (Vj ,Wj)
(r) from

MH

MH + p− 1
L(V

(r)
j ,W

(r)
j ,U ,R;Zj ,Dj)F0(·)

+

κ
(r)
D∑

k=1

n
(r)
k

MH + p− 1
L(V

(r)
j ,W

(r)
j ,U ,R;Zj ,Dj)δ(V ∗

j ,W ∗
j )(r)(·)

6: end for
7: set (U∗,R∗)(r) =

(
(U∗

1 ,R
∗
1)

(r), . . . , (U∗
k
(r)
n

,R∗
k
(r)
n

)(r)
)

be the vector of distinct parameters in (U ,R)(r)

8: set (V ∗,W ∗)(r) =
(
(V ∗

1 ,W
∗
1 )

(r), . . . , (V ∗
κ
(r)
p

,W ∗
κ
(r)
p

)(r)
)

be the vector of distinct parameters in (V ,W )(r)

9: for each k = 1, . . . , k
(r)
n do:

10: let C(r)
k be the set of indexes i such that (Ui,Ri)

(r) = (U∗
k ,R

∗
k)

(r);
11: update (U∗

k ,R
∗
k)

(r) from

Pr ((U∗
k ,R

∗
k) ∈ (dU , dR)| . . .) ∝ H0(dU ,dR)

∏
i∈C

(r)
k

L(U ,R,W ,V ;Zi,Di)

12: end for
13: for each l = 1, . . . , κ

(r)
p do:

14: let ζ(r)l be the set of indexes j such that (Vj ,Wj)
(r) = (V ∗

l ,W
∗
l )

(r);
15: update (V ∗

l ,W
∗
l )

(r) from

Pr ((V ∗
l ,W

∗
l ) ∈ (dV , dW )| . . .) ∝ F0(dV , dW )

∏
j∈ζ

(r)
l

L(U ,R,W ,V ;Zj ,Dj)

16: end for
17: for each i = 1, . . . , n and j = 1, . . . , p do:
18: sample Z

(r)
ij and D(r)

ij respectively from

N(V
(r)⊤
j U

(r)
i ;σ2)1(γj,Yij−1,γj,Yij

](Z
(r)
ij )1{Dij>0} ;

N(W
(r)⊤
j R

(r)
i ; τ2)

(
δij1{Dij≥0} + (1− δij)1{Dij<0}

)
.

19: where N(·, ·) is a Normal distribution.
20: end for
21: end for
22: end
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2.5 Simulation studies

We investigate the performance of model (2.2) in co-clustering individuals and items in
synthetic data simulated from different scenarios. Our study consist in two parts: the first
one aims to study the sensitivity of the model to the size of the data, the second one is
designed to study how the ability of the model to detect the correct cluster is affected by
the amount and the nature of censored observations. In both cases data are generated by
specifying finite mixture models for the matrices (Ui ;Ri) and (Vj ;Wj), and by using the
parametric part of the model in (2.2) as the conditional distribution of the observations
(Yij , δij) given (Ui ;Ri) and (Vj ;Wj). In the first part of the study, we simulate ordinal
observations so to mimic the movie ratings data that will be considered in the illustration
of Section 2.6.2. Specifically, we assume that the ratings Yi can take values in {1, 2, 3} and
consider a scenario characterized by three types of users and three types of movies. Thus
inducing nine bivariate clusters, or co-clusters. Finally, we censor 5% of the observations,
picked at random among the records corresponding to the lowest ratings, thus imitating a
mechanism of informative censoring. In the second part of the study, we simulate binary
observations thus reproducing a type of data similar to politicians votes data of the illus-
tration that will be presented in Section 2.6.1. Specifically, we assume observations Yi take
values in {0, 1}, or equivalently that votes can be either “No” or “Yes”, and we consider a
scenario characterized be three main parties and three types of votes, thus inducing nine
bivariate clusters. In the first part we consider different values for n and p; in the second one
instead we let the amount of censored observations and the type of censoring to vary. For
each considered scenario, we independently generate and analyse 100 datasets. Example of
generated datasets for the two types of data are represented in Figures 2.13, 2.14 and 2.15.

The first step we need to take in order to implement model 2.2 consists in selecting
the cardinality of the latent dimension d. We propose to choose d on a case-by-case basis
by comparing the predictive ability of models with different values of d. For this reason
we decide to implement and evaluate the LogPseudo Marginal Likelihood (LPML, Geisser
and Eddy, 1979) for a set of values of d. Rather than repeating this step for all the
generated datasets, we consider a simple scenario for both ordinal and binary data, with
n = p = 50 and 5% of censored observations, and we evaluate the LPML for a range of
models corresponding to values of d in {2, . . . , 20}. The results (see Figures 2.1a and 2.1b)
suggest that the best predictive ability is achieved with d = 3, for both ordinal and binary
data. Hence, the value 3 for the latent dimension d is used throughout this section, for all
the scenarios.
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Figure 2.1: LPML for different values of the latent dimension d.

2.5.1 Part one

We investigate the performance of our model when the dimension of the data changes. We
simulate ordinal data with dimension (n, p) ∈ {(50, 50), (100, 100), (200, 200)}. As expected
for any Gibbs sampling algorithm, the computational time increases more than linearly with
the data dimension np. Table 2.1 shows the impact of data size on the efficiency of the
computational process.

Computational Cost
Size Min. 1st Qu. Median Mean 3rd Qu. Max.

50x50 682 715 725 718 732 735
100x100 3501 3541 3555 3554 3569 3595
200x200 27588 28302 28698 28874 29674 30525

Table 2.1: Computational cost of the MCMC algorithm, in seconds per 1000 iterations,
for datasets of varying size.

The results of this simulation are compared with the use of the Adjusted Rand Index
(ARI, Rand, 1971; Hubert and Arabie, 1985; Vinh et al., 2009). Given the specific nature
of the clustering problem we are considering, we exploit the ARI to compare true and
estimated bivariate partitions, which are induced, respectively, by true and estimated row
and column partitions. To stress this fact, we refer to this index as to bivariate ARI.
Figure 2.2 shows the bivariate ARI when the data dimension changes. The performance
of the model appears rather stable across different dimensions of the dataset. Nonetheless,
it can be observed that the median value of the bivariate ARI is slightly larger for larger
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Figure 2.2: Bivariate ARI boxplot comparison over different sizes, for ordinal data. Re-
sults are based on 100 replicates.

dimensional datasets, thus indicating that more data helps in recovering the true latent
clusters.

2.5.2 Part two

Next, we examine the performance of our model when the percentage and type of censoring
vary. Binary data are generated by setting n = p = 50. Once a dataset is formed, a
portion consisting of 5%, or 15%, of the observations is censored. Censoring are introduced
by following two different principles: when the observations to be censored are picked
uniformly at random from the np data entries, we say the censoring are non-informative;
when the observations to be censored are picked uniformly at random from the entries that
are equal to 0, then we say the censorings are informative. Datasets are analysed by means
of model (2.2). As for Part 1, we assess the performance of our model by comparing the
true and the estimated bivariate partitions by means of the bivariate ARI. The results
of our study are presented in Figure 2.3, which shows that the latent clusters are better
identified in the settings with 5% of missing values rather than when the percentage of
censored entries is increased to 15%. Moreover, the scenarios with informative censoring
tend to lead to larger bivariate ARI values, thus showing that our model is able to exploit
this additional source of information.
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Figure 2.3: Bivariate ARI boxplot comparison over different censoring types, for binary
data. Results are based on 100 replicates.

2.6 Real data application

2.6.1 U.S. Senators Data

Political data is of significant interest for examining how politicians vote within their respec-
tive parties, whether they align with party lines or exhibit distinct patterns. Such analysis
can reveal, for example, contrasting behaviors within a single political party. The dataset
we consider was retrieved from Voteview1 and comprises records of 100 U.S. senators and
their voting decisions in 35 voting sessions held between May 2, 2022, and May 16, 2022.
The data is visually represented in Figure 2.4. It is worth noting that 3.37% of the entries
are missing, thus referring to sessions in which the politician did not vote. The specific
nature of this dataset lets us anticipate the presence of polarized clusters corresponding to
party affiliations. Furthermore, it is reasonable to assume that censored observations hold
valuable information, given that the choice to abstain from voting in a particular session
is frequently a political statement in its own right. As for the simulated data considered
in Section 2.5, we resort to the LPML to set the value of the latent dimension d. Our
analysis suggests that the best predictive performance is achieved when setting d = 3, as
demonstrated in Figure 2.5.

1https://voteview.com/

37

https://voteview.com/


Chapter 2. Co-clustering Ordinal Data with Informative Censoring
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Figure 2.4: Representation of the votes of the U.S. Senators, the right legend represents
the modalities (i.e., “No”=0, “Yes”=1). White cells indicate missing votes.

Figure 2.5: LPML to evaluate the latent dimension d for the dataset U.S. Senate.
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Figure 2.6: Alluvial diagram comparing topic of voting sessions and identified clusters for
the U.S. Senators’ votes.

The results of our cluster analysis for votes and Senators are displayed in Figures 2.6
and 2.7, respectively. These alluvial diagrams provide interesting insight by comparing the
identified clusters with available information on type of voting sessions and party affiliations.
Votes are clustered into two groups while the topics covered during the voting sessions can
be classified into: nominations to promote a new person for a specific position, motions
and resolutions. Our analysis result identifies one large cluster with all the nominations
and just over half of the motions, and a smaller one containing the prevalence of motions
and all the resolutions. This outcome may suggest that similarities exist between the way
senators voted on certain motions and nominations. Furthermore, as expected, the clusters
for Senators appear to be highly polarized towards their respective party affiliations, it is
interesting to observe that Independent senators are clustered together with senators from
the Democratic party. We also note that there exists a third smaller cluster suggesting that
the votes of nine Republican senators are aligned with the preferences of five Democratic
politicians.

We compared the results our analysis with those obtained by using the R package bi-
clustermd (Reisner et al., 2019). It is important to note that this alternative approach to
co-clustering problems requires the number of clusters to be set, and that it involves to
impute the missing values with the mean of the data, thus ignoring the fact that, as we
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Figure 2.7: Alluvial diagram comparing party affiliation and identified clusters for the
U.S. Senators.

discussed, the censoring in the U.S. senators data might actually contain useful information.

The clusters we found with biclustermd are rather coherent with our results. For the
votes, only one record was clustered in a different group, as shown in Figure 2.17. As for
the senators’ clusters, some differences were apparent, especially referring to the smallest
group. Our method captured the similarities between some Democrats’ and Republicans’
preferences, while the biclustermd identified a small cluster with only Republicans, as shown
in Figure 2.16. More information about the results can be found in Appendix 2.B.

2.6.2 Movielens Data

In the last decades, the widespread use of movie platforms has led to the collection of a large
amount of data pertaining to both users and movies. Movielens2 is a dataset available in the
R package dslabs (Irizarry and Gill, 2021). To contain the amount of missing information,
we selected a subset of the original dataset that includes 60 users and 28 movies, resulting
in 17.98% of missing data (Figure 2.9). The ratings take values in {0.5, 1, . . . , 5}. Figure
2.8 shows the counts per ratings in this dataset. The distribution of the ratings appears
rather concentrated around values in the range [4, 5], possibly because the dataset under

2http://files.grouplens.org/datasets/movielens/ml-latest-small.zip
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Figure 2.8: Counts per rating for the Movielens dataset.

analysis consists of very well-known and acclaimed movies. The frequencies corresponding
to half-points, i.e., {0.5, 1.5, 2.5, 3.5, 4.5}, are lower than those for full rating points, i.e.,
{1, 2, 3, 4, 5}. However, this aspect is not critical to our model, as the cutoffs involved in the
analysis help representing all the modalities of the ordinal data despite of the frequencies.
The flexibility of our fully Bayesian nonparametric specification allows us to effectively
handle this specific feature of the data.

By resorting to the LPML, we determined that the optimal predictive performance is
achieved with a latent dimension of d = 2, as illustrated in Figure 2.10. Notably, the movie
cluster consists of four distinct groups, which are arbitrarily denoted as clusters 1, 2, 3 and
4. Cluster 1 represents the genre “Drama/Thriller”, the only movie that, based on its tags,
appears surprisingly grouped with this cluster is “Toy Story”. Cluster 2 groups “Adventure
/ Action” movies and its composition appears rather homogeneous. The movies composing
cluster 3 appear to be characterized by a plot involving a journey to be completed to resolve
the misadventures of their characters. The last cluster consists of more satirical movies and
its composition seems rather homogeneous. Table 2.2 reports the titles of the 28 movies in
the dataset, their genres, and their cluster allocation.

Our analysis has identified six distinct user clusters with frequencies {8, 31, 4, 7, 9, 1},
arbitrarily denoted as clusters 1, 2, 3, 4, 5, and 6. To protect user privacy, no individual
information was made available. For this reason, in order to gain some insight on the

41



Chapter 2. Co-clustering Ordinal Data with Informative Censoring

Movielens data

Users

M
ov

ie
s

1 3 5 7 9 11 13 15 17 19 21 23 25 27

60
53

46
39

32
25

18
11

5

+0.00

+0.75

+1.25

+1.75

+2.25

+2.75

+3.25

+3.75

+4.25

+4.75

+5.25

1

0.5

2

4.5

1.5

4

3.5

2.5

3

5

Figure 2.9: Visual representation of Movielens data. White cells indicate not available
ratings.

Figure 2.10: LPML to evaluate the latent dimension d for the dataset Movielens.
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Title Genre Cluster
“Seven” Mystery|Thriller 1

“Braveheart” Action|Drama|War 2
“Pulp Fiction” Comedy|Crime|Drama|Thriller 1
“Forrest Gump” Comedy|Drama|Romance|War 2

“Speed” Action|Romance|Thriller 2
“The Fugitive” Thriller 3
“Jurassic Park” Action|Adventure|Sci-Fi|Thriller 2

“The Silence of the Lambs” Crime|Horror|Thriller 1
“The Shawshank Redemption” Crime|Drama 1

“Star Wars: Ep. VI” Action|Adventure|Sci-Fi 2
“Men in Black” Action|Comedy|Sci-Fi 2

“The Sixth Sense” Drama|Horror|Mystery 1
“American Beauty” Drama|Romance 1
“Star Wars: Ep. IV” Action|Adventure|Sci-Fi 2

“The Godfather” Crime|Drama 1
“Die Hard” Action|Crime|Thriller 2

“E.T. the Extra-Terrestrial” Children|Drama|Sci-Fi 3
“Monty Python and the Holy Grail” Adventure|Comedy|Fantasy 4

“Star Wars: Ep. V” Action|Adventure|Sci-Fi 2
“Raiders of the Lost Ark” Action|Adventure 2

“Goodfellas” Crime|Drama 4
“The Terminator” Action|Sci-Fi|Thriller 2
“Groundhog Day” Comedy|Fantasy|Romance 3

“Back to the Future” Adventure|Comedy|Sci-Fi 2
“Ferris Bueller’s Day Off” Comedy 3

“The Matrix” Action|Sci-Fi|Thriller 1
“Toy Story” Adventure|Animation|Children|Comedy|Fantasy 1

“Fargo” Comedy|Crime|Drama|Thriller 4

Table 2.2: Title, genre and cluster allocation for the movies in Movielens dataset.
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Figure 2.11: Cluster results for movies for Movielens data.

composition of each users cluster, we study how users in each group have rated movies in the
four movie clusters, namely “Drama/Thriller”, “Adventure/Action”, ‘Journey” and “Satire”.
By inspecting Figure 2.12, it is apparent that different users clusters are characterized
by different degrees of appreciations for the four movie genres we identified. It is worth
stressing that while a high rating is certainly away to express appreciation for a movie, a
missing rating might indicate lack of interest for a movie. In the left column on Figure
2.12, we can observe the voting patterns of users across different clusters. We notice that
cluster 2 and cluster 5 share some similarities in their voting patterns, as do cluster 3 and
cluster 6. However, upon examining the right column, which presents the percentage of
missing values for each user cluster, we can clearly discern differences in the missing data.
This visualization emphasizes the importance of accounting for missing values as valuable
information.

For a comparison, we analysed the same data by means of the R package biclustermd,
which is specifically designed to handle informative missing values in the data matrix. The
results we obtained for the users clusters are quite similar to ours, despite some discrep-
ancies in the number of users assigned to each cluster, that is {8, 5, 10, 15, 9, 13}. On the
other hand, the movie clusters exhibit a slightly different grouping, as illustrated in Figure
2.18. The first cluster represents “Drama/Thriller/Adventure” movies, the second cluster
comprises “Drama/Thriller” movies, and the movie “Ferris Bueller’s Day Off” appears to
have been misclassified. The third cluster consists of “Comedy” movies, and the final cluster
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Figure 2.12: Radar charts showing the characterization of users’ clusters given the main
genre of clusters’ movies. Ratings are on the left and percentage of missing values on the
right.
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features “Thriller/Drama/Action” movies, with “Monty Python and the Holy Grail” being
an exception.

2.7 Discussion and future direction

Our proposed nonparametric Bayesian method provides a novel and efficient approach for
modeling multivariate ordinal data with informative censoring. This method employs a ma-
trix factorization model specification that can handle high dimensionality problems, while
also allowing for a multivariate framework. Additionally, the use of continuous latent vari-
ables specification makes the model easy to implement and capable of handling practically
any type of data.

To perform co-clustering analysis, we introduced two independent Dirichlet processes
that provide a flexible approach to the problem. Our model displayed good results in both
simulation studies and real data applications. When compared to an alternative approach,
namely the R package biclustermd, we could observe rather similar results, with the notable
difference that biclustermd requires the number of clusters to be specified a priori, as seen
in Reisner et al. (2019).

One of the advantages of our model is its ability to exploit information from both the
observations and the missing values, thus helping to find the latent cluster structure, even
when the observations do not display substantial differences between clusters. Another
advantage of our approach is that the number of clusters does not need to be defined a
priori. Moreover, the ability to combine all the information given by the data, e.g. rates
and missing data from Movielens, helps to profile the users based on their preferences while
guaranteeing the protection of sensible data. This makes our method results a powerful
tool in recommendation system settings.

However, there are some limitations to our model, such as its sensitivity to the specifi-
cation of the variances σ2 and τ2, which was left fixed in our analysis. Alternatively, a prior
distribution can be assigned to σ2 and τ2, as specified in Section 2.4. It is also possible to
set σ2 and τ2 as the values that maximize the predictive ability of the resulting model, by
resorting to a suitable criterion, such as, eg., the LPML.

It is important to note that our model does not scale well when n and p become large,
so addressing these limitations is important for the model to be applied to data with large
n and p, like Netflix Prize data3. Additionally, high dimensional data with large portion

3https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data
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of missing values (e.g., > 80%) can be challenging, which is an important consideration for
those interested in using our method. To improve the method’s scalability and accuracy,
we are exploring how to combine our method with the scalable multistep Monte Carlo
algorithm of Ni et al. (2020) to simultaneously cluster rows and columns in large datasets.
Furthermore, it is essential to note that the percentage and type of missing values play a
cardinal role in the performance of the model.

Overall, our nonparametric Bayesian method provides an efficient way to model mul-
tivariate ordinal data with informative censoring. The method is flexible, and can handle
practically any type of data. It also provides a useful alternative to existing methods with
the goal of performing co-clustering analysis.
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Appendix

Appendix

In this Appendix we report the main passages to recover the full conditional distributions
specified in Section 2.4 and details on the acceleration step. We also provide additional
plots concerning the computational analysis.

2.A Full conditionals

The full conditional distribution of (Ui,Ri) is as follows
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If the parameter ϕ2 is considered equal to 0, we obtain:
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A.1 Acceleration step

The main passages to recover the distribution for the acceleration step for (U∗
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where nk is the number of observations in the k-th cluster. Let Z̄k and D̄k be respectively
the mean of the observations of the variable Z and D in the k-th cluster and, ϕ2 is set
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equal to 0, we obtain:
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2.B Additional Plots

In this section, we provide additional plots for the simulation analysis and for the real data
applications.

B.1 Simulated data

Ordinal data

Column

R
ow

1 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

10
0

87
75

63
51

39
27

15
5

+0.50

+1.50

+2.50

+3.50

1

3

2

Figure 2.13: Graphical representation of a simulated dataset, with ordinal data.
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Binary data − informative missing 5%
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Figure 2.14: Graphical representation of a simulated dataset, with binary data and 5% of
informative missing values.
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Binary data −  non−informative missing 5%
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Figure 2.15: Graphical representation of a simulated dataset, with binary data and 5% of
non-informative missing values.
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B.2 U.S. Senate data
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Figure 2.16: Alluvial diagram comparing party affiliations and clusters identified by bi-
clustermd for the U.S. Senators.
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Figure 2.17: Alluvial diagram comparing topic of voting sessions and clusters identified
by biclustermd for the U.S. Senators’ votes.
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B.3 Movielens data
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Figure 2.18: Alluvial diagram for movie clusters identified with biclustermd.
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Chapter 3

Changepoint Detection with Local Level Dynamic
Random Partition Models

3.1 Introduction

Recently, there has been an increased demand for models that can effectively describe
features of complex multivariate time series data. This surge in interest is particularly
prominent in fields such as biomechanics, motion analysis, human-computer interaction,
and sports science. These models are used to break down continuous human motion or
activity into distinct phases and states. The insights derived from such analyses can then
be used to improve sports performances and delve deeper into the complexity of human
biomechanics, for example, to understand gait cycles, gesture phases, athletic movements,
and even cognitive states. In the analysis of human gesture data, information is typically
gathered through various sensing technologies, such as motion capture systems, accelerom-
eters, or videos. These technologies yield rich datasets that capture the temporal patterns
of human movements. A key concept is to leverage the information accumulated over time
while considering the time series jointly.

Let Y1, . . . ,YT denote a multivariate time series, where each Yt is a n-dimensional
vector, i.e., Yt = {Y1,t, Y2,t, . . . , Yn,t}, observed on n units over T time points. To illustrate,
consider our application in Section 3.5, where we examine scalar velocity data obtained
from n = 4 acceleration sensor units placed on the hands and wrists of a subject. Dynamic
linear models (DLMs) are commonly employed for the analysis of time-series data due to
their flexibility and adaptability in handling diverse situations (Petris et al., 2009). They
define a class of state-space models and are characterized by a system of two equations: an
observation equation, which describes the observed data as a linear combination of latent
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state variables with noise, and a state equation that describes how latent states evolve
over time, thereby tracking the underlying dynamics of the system. We introduce our
contribution by referring to a simple yet fundamental DLM, the local level model (LLM),
which describes the observed data as composed of a level component plus random noise,

Yi,t = βi,t + εi, (3.1)

where εi
iid∼ N(0, 1), where N(µ, σ2) denotes the Normal distribution with mean µ and

variance σ2. The vector βt = {β1,t, . . . , βn,t} represents the underlying level or trend of
the time series at time t. In a typical local level model, the evolution of βt over time
is modeled as a random walk, i.e., the level at time t is predicted to be the same as
the level at time t − 1, plus some random noise. If the variance of the random noise is
small, this assumption implies smooth processes over time. Despite its simplicity, the LLM
illustrates the fundamental characteristics of many time-series models, and will serve as a
basic example throughout.

Studying how measurements from different units cluster or group over time, as well as
how these clusters evolve during an activity, can provide valuable insights in many appli-
cations. For instance, when analyzing biometric data, it is important to understand how
different body parts cooperate during different stages of a gesture or movement. Further-
more, detecting changepoints in the clustering of body parts between gesture stages can
reveal important insights into the motion and inform gesture detection algorithms.

In a Bayesian setting, BNP models are a popular choice for clustering the dynamic
behavior of latent variables like βi,t over time (as discussed in Quintana et al., 2022). BNP
models do not require the upfront specification of the number of clusters; instead, they
allow for posterior inference on cluster allocations directly from the data. Existing BNP
approaches for clustering time series data vary in terms of motivation, application, and how
time-dependence is introduced. For example, some approaches build on the stick-breaking
representation of the Dirichlet Process (Ferguson, 1973; Sethuraman, 1994). In this context,
Antoniano-Villalobos and Walker (2016) have developed a stationary Markov model where
both the transition and stationary densities are nonparametric infinite mixture models.
Nieto-Barajas and Contreras-Cristán (2014) have clustered temporal data while considering
several features typical of time series data (e.g., trends, seasonality). BNP autoregressive
model are discussed in Kalli and Griffin (2018), De Iorio et al. (2019), DeYoreo and Kottas
(2018) and Beraha et al. (2022), among others. Alternatively, other authors have explored
generalizations of the Pólya urn scheme of Blackwell et al. (1973), see, e.g. Caron et al.
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(2007), Caron et al. (2017) and Cassese et al. (2019).

All the methods mentioned above identify clusters based on the values of associated
parameters. In the context of the illustrative local level model (3.1), these models can
potentially assign observations to different clusters over time if, for instance, βi,t = βj,t for
some j ̸= i, j = 1, . . . , n and βi,t+1 = βj,t+1 are significantly different. This occurs because
model-based clustering with Bayesian nonparametric models essentially relies on specifying
a mixture model that depends on a discrete random mixing measure. The probabilistic
distribution over random partitions is essentially a by-product of this mixture setup; in
essence, clusters in a mixture model are identified based on levels of activity. Furthermore,
as highlighted by Page et al. (2022), even when a sequence of random probability measures
is highly correlated, induced random partitions from previous dependent Bayesian nonpara-
metric priors tend to exhibit weak dependencies. This can result in estimated partitions
that fail to capture the evident dependencies present in the sequence of random probability
measures.

A solution to address this challenge involves directly modeling the sequence of random
partitions. In this context, Page et al. (2022) introduced a dependent random partition
model (Hartigan, 1990; Barry and Hartigan, 1992) that incorporates an auxiliary variable
denoted as γi,t (i = 1, . . . , n; t = 1, . . . , T ), which helps determining whether a unit at
time t − 1 should be considered for possible cluster reallocation at time t. More specifi-
cally, when γi,t = 0, unit i must be re-assigned at time t, potentially to a new cluster or
randomly assigned to the same cluster as the previous time. Instead, if γi,t = 1, unit i
is almost surely assigned to the previous cluster. A recently published paper by Quinlan
et al. (2022) presents a method that aims to correlate data partitions with the detection
of changepoints in multivariate time series. However, they specified only a single unique
partition of contiguous clusters for each time series.

In this chapter, we introduce a more straightforward Markov structure for modeling
partitions that evolve over time. Our approach develops a random partition model capable
of connecting the partition of data points to the previous partitions over time. It builds
upon the principles of DLMs but extends them to incorporate latent state equations now
operating within the partition context and time evolution defined by the partitions them-
selves. Therefore, while in the analysis of time series data it is usual to identify sudden
changes in the observed values of a stochastic process as a changepoint, in this paper, we
refer to a changepoint as a change in a latent partition of units. More specifically, we em-
ploy a Markov dependent structure, where the partition at time t, denoted as πt, is modeled
conditionally on the partition at time t−1 to account for temporal persistence and facilitate
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changepoint detection. Furthermore, the selection of changepoints at each time point t is
driven by a mixture that chooses between one of two partitions at each time point. At each
time, the chosen partition can either coincide with the one at the previous time or follow a
flexible and general random partition model. In the presence of a changepoint, the partition
at time t becomes independent of the partition at time t− 1. Unlike the existing Bayesian
nonparametric models cited above, our clustering approach does not rely on the values of
parameters, such as the βi,t’s in equation (3.1). Instead, we directly treat dependent ran-
dom partition allocations as latent structures that drive the dynamics of the observations.
In contrast to the dependent random partition model proposed by Page et al. (2022), we
jointly consider all the units when identifying changepoints, taking into account the multi-
variable nature of the dependent partitions. In Page et al. (2022), the temporal allocation
is guided by subject-specific γi,t’s. As a result, a change of partitions over time (dynamic
distribution of random partitions) is obtained as a by-product of individual clustering allo-
cations. This approach may lead to a higher number of cluster configurations, potentially
more false positive changes, and may hinder the identification of straightforward, clear,
partition changepoints through time, which is crucial, for instance, in identifying gesture
phases. Our modeling approach is relatively straightforward to implement in comparison
to existing methods for dependent random partition models, as it leverages the efficiency of
a Gibbs sampling method. Furthermore, while constructing the prior distribution for the
partition bears some resemblance to the use of spike-and-slab priors for variable selection
(Tadesse and Vannucci, 2021), dealing with partitions introduces additional complexity in
the motivation, modeling and computation.

The remaining of the chapter is organized as follows: in Section 3.2, we present our
proposed model and discuss its main properties. Section 3.3 covers posterior inference and
computational methods. Section 3.4 describes simulation studies highlighting key aspects
of our model. In Section 3.5, we present an application to the analysis of human gesture
data, and finally, Section 3.6 provides concluding remarks and outlines future directions.

3.2 Local level dynamic partition model

We describe the key features of the proposed dynamic partition model, a local level dynamic
partition model (LLDPM), taking model (3.1) as reference. More specifically, we assume
that for each unit i, i ∈ {1, . . . , n}, the observations are generated from some general
likelihood (observation equation) Yi,t | βi,t

ind∼ p (yi,t | βi,t), t = 1, . . . T . In the following, we
will consider a Gaussian kernel. The dynamics of the latent state equation are characterized
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in terms of time-varying partitions of the n units over time. In order to describe such
dynamics, we introduce a dependent RPM that models temporal dependence in terms of
sequences of partition by considering an auxiliary variable, γt, which determines whether
a partition at time t − 1 will be considered for possible cluster reallocation at time t,
t = 1, . . . , T . More specifically, together with each βi,t, we introduce a binary changepoint
auxiliary variable γt ∈ {0, 1}, to detect changes in the partitions of the n units from time
t − 1 to time t. When considering a partition πt at time t, we denote the number of
clusters/blocks identified in the partition at time t among the n units as |πt|. Further,
let C1,t, . . . , C|πt|,t represent the clusters of the n units as implied by the partition πt at
time t. Thus, given a partition πt−1 at time t− 1, we assume that the partition-based state
equation is characterized as a mixture over two partition models, corresponding to the case
of exchangeable (independent) and fully dependent partitions across the two time points,

πt | π1:(t−1),γ2:(t−1) ∼ (1− γt) δπt−1(πt) + γt p
∗(πt), t = 2, . . . , T (3.2)

where π1:t = (π1, . . . , πt−1) is the vector of previously recorded partitions, γ2:(t−1) =

(γ2, . . . , γt−1) indicates the vector of previous changepoints, and p∗(πt) indicates the dis-
tribution of a base random partition model. In the following, for simplicity, we assume
that the base distribution over the partitions is given by the Chinese restaurant process
(CRP, Pitman, 2002) with mass parameter α. We indicate it as p∗(π) = pCRP(π;α). In
the state equation (3.2), we allow γt to potentially depend on past times. Nevertheless,
in the following we assume that γt

ind∼ Bern (ηt), where the probability of a changepoint
ηt ∼ Beta(a, b), that is we assume that the changepoints are independent of the vector
γ2:(t−1) and partitions π1:(t−2). Thus, for any t = 2, . . . , T , conditionally on πt−1 and γt,
the partition πt is independent of π1:(t−2) and of γ2:(t−1). The model is completed by an
initialization condition on the initial partition, e.g. π1 ∼ p∗1(·) and by priors on the values of
the local mean parameters βi,t. Here, we assume p∗1(·) = p∗(·) = pCRP(·;α). We then con-
sider auxiliary variables si,t ∈ {1, . . . |πt|} indicating the cluster memberships/assignments,
i.e. if units i, j ∈ Ck,t, for some k = 1, . . . , |πt|, then si,t = sj,t = k. We follow the typical
assumption of Bayesian nonparametric models and assume that at each time point the val-
ues of the parameters βi,t coincide within a cluster, although the specific values could differ
at different times. That is, we assume

βt | πt ∼
|πt|∏
j=1

P0

(
β∗j,t
)
, (3.3)
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for some base distribution P0 (·) where P0(·) is the base measure for the parameters βt

(t = 1, . . . , T ). We can rewrite the joint distribution of the data and the latent partition
and selection parameters, after marginalizing with respect to the βt’s, t = 1, . . . , T , as
follows

p(Y ,π,γ) = p(γ)p(π | γ)
∫
p(β | π)p(Y | β)dβ

= p∗ (π1)
T∏
t=1

ηγtt (1− ηt)
1−γt

T∏
t=1

[
(1− γt)δπt−1(πt) + γt p

∗(πt)
]

×
T∏
t=1

|πt|∏
j=1

∫ ∏
i∈Cj(πt)

p(yi,t | β∗j,t)P0(dβ∗j,t)

(3.4)

where we have indicated β as the collection of the local level parameters. Let

G(Yt | πt) =
|πt|∏
j=1

∫ ∏
i∈Cj(πt)

p(yi,t | β∗j,t)P0(dβ∗j,t).

Then, we can rewrite (3.4) in a compact form as

p(Y ,π,γ) = p∗ (π1)
T∏
t=1

ηγtt (1− ηt)
1−γt

T∏
t=1

[
(1− γt), δπt−1(πt) + γt p

∗(πt)
]
G(Yt | πt)

= p (π1:T , γ2:T ) G(Yt | πt).
(3.5)

We can further integrate with respect to γ2:T and consider p(Y ,π) = p (π1:T ) G(Yt | πt),
where the distribution of π1:T is

p(π1:T ) = p∗(π1)

T∏
t=2

[
(1− ηt)δπt−1(πt) + ηt p

∗(πt)
]
. (3.6)

3.2.1 Marginal properties

In this section, we explore the prior properties of model (3.5) and the proposed prior. We
first formally prove that at each time t, the marginal distribution of the random partition
πt is the same as that of the base process p∗(·), for t = 2, . . . , T .

Proposition 1. Let π1 ∼ p∗(π1) be a random probability random model. Let π2:T and
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γ2:T be characterized by the joint distributions defined in model (3.5). Then, for every t =
2, . . . , T , the marginal distribution of the random partition πt is the base random probability
measure p∗(·).

In particular, if p∗(·) = pCRP(·;α), then such distribution is the random partition model
implied by a Dirichlet process with total mass parameter α. The previous preposition
extends also to the whole class of Gibbs-type priors. Gibbs–type priors is a more general
set of prior where some of the well-known special cases are the Dirichlet and the Pitman-Yor
processes (Ferguson, 1973; Pitman and Yor, 1997) as well as mixtures of symmetric Dirichlet
distributions (Gnedin and Pitman, 2005), the normalized inverse Gaussian processes (Lijoi
et al., 2005) and their generalization given by normalized generalized gamma processes
(Lijoi et al., 2007). For an insightful investigation of the large n behavior of Gibbs-type
priors, and the role of the Pitman-Yor process within this class of random probability
measures, one can refer to Arbel and Favaro (2021). De Blasi et al. (2013) shows that
exchangeable product partition models with probability of each partition depending only
on the cardinality of each cluster coincide with the family of Gibbs-type priors. More in
detail, we can consider different exchangeable partition probability functions (EPPFs). The
EPPF provides a simple way to define probabilistic partition models based on the number
and sizes of blocks, independently of the object labels. The clusters are exchangeable since
the probability distribution over partitions is invariant under permutations of the object
labels. A Gibbs-type EPPF (see, e.g., De Blasi et al., 2013) has the following form,

Pα

[
πt = {C1,t, . . . , C|πt|,t}

]
= Vn,|πt|

|πt|∏
j=1

Γ (|Cj,t| − α)

Γ(1− α)
,

where |·| indicates the cardinality of each block/cluster, −∞ ≤ α < 1, Vn,|πt|, kt = 1, . . . , |πt|
is a weight that determines how the probability mass is allocated over partitions with
different numbers of blocks. A special case is the Chinese restaurant process (Pitman,
2006),

p(πt | α) =
α|πt|∏n

i=1(α+ i− 1)

|πt|∏
i=1

(|Ci,t| − 1)!

by setting Vn,|πt| = α|πt|/(α)n, where α > 0, and (a)q = Γ(a + q)/Γ(a) for any a > 0 and
integer q ≥ 0.
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3.2.2 Hierarchical representation of the LLDPM

In this section, we show that our model allows for an equivalent representation that does not
rely on assuming a sequence of temporally dependent partitions; instead, this representation
establishes a hierarchical structure in the dependence of the partitions, which can be used
to describe changes of the partition between different groups or experimental conditions.
We start by focusing on the joint distribution of two subsequent random partitions in model
(3.5). Without loss of generality, we consider T = 2 and consider the joint distribution of
π1 and π2,

p(π1, π2) = p∗(π1;α) [(1− η)δπ1(π2) + η p∗(π2;α)] .

We propose an alternative construction that defines the same distribution for a vector of
two random partitions. More specifically, let π̃ be another random partition, and assume
the following joint model for π̃, π1 and π2,

π̃ ∼ p∗(π)

πt | π̃, γ1, γ2
ind∼ (1− γt) δπ̃(πt) + γt p

∗(πt), t = 1, 2,
(3.7)

where we still assume γt
iid∼ Bern(ηt), t = 1, 2. Note that in model (3.7), the distribution of

π2 is independent of that of π1 given partition π̃. That is, model (3.7) effectively defines a
hierarchical partition model. We can write the joint distribution of (π̃, π1, π2) and (γ1, γ2)

as

p(π̃, π1, π2, γ1, γ2) = p(π̃, π1, π2 | γ1, γ2) p(γ1, γ2)

= p(π̃) p(π1 | π̃, γ1, γ2) p(π2 | π̃, γ1, γ2) p(γ1) p(γ2)

= p∗(π̃)

{
2∏

t=1

[(1− γt)δπ̃(πt) + γt p
∗(πt)]× ηγtt (1− ηt)

1−γt

}
.

The distribution of (π1, π2) is obtained by marginalizing the last expression with respect to
(γ1, γ2) and π̃,

p(π̃, π1) =
∑
π̃∈P

p∗(π̃)

2∏
t=1

[(1− ηt)δπ̃(πt) + ηt p
∗(πt)]

= p∗(π1) [(1− η̃) δπ1(π2) + η̃ p∗(π1) p
∗(π2)] ,

(3.8)

68



3.3. Posterior Inference

where P indicates the power set of the partitions, with 2n elements, and η̃ = 1 − (1 −
η1)(1−η2). By comparing (3.5) and (3.8), we appreciate that the two distributions coincide
provided that η̃ = η, which is achieved if (1 − η1)(1 − η2) = (1 − η). If we further make
the assumption that η1 = η2, then η1 = 1 −

√
1− η, such that γt

iid∼ Bern(1 −
√
1− η) in

(3.7), t = 1, 2. Thus, marginally, the joint distribution on the partitions posited by the
local-level partition model can be seen as a case of a hierarchical partition model. This
representation can be extended to T ≥ 2 groups and it underscores how the time-varying
partition model (3.8) can be seen as a special case of a partially exchangeable model on
the partitions, we assume the same marginal distributions of the partitions, p∗(πt), and
equality of the probabilities ηt’s.

3.3 Posterior Inference

Posterior inference for the parameters in the model (3.5) is carried out using a MCMC
algorithm. More specifically, we follow a Gibbs sampling scheme (Neal, 2000). Given
the representation in (3.6), we evaluate the full conditional distributions of the model by
jointly updating the pair (γt, πt), for t = 1, . . . , T in each Gibbs iteration, b = 1, . . . , B.
This strategy consists of five main steps. We briefly describe the updates of the model
parameters at a generic iteration b. Full details of the posterior distributions and of our
implementation are in the Supplementary material (Appendix 3.B).

1. update πt: we update the partition from its full conditional distribution p(π
(b)
t |

γ
(b−1)
t , . . .) where the dots indicate all remaining parameters. For notation simplicity,

the subscript (b) is deleted in formulas whenever it is clear from the context:

p(π
(b)
t | γ(b−1)

t , γ
(b−1)
t+1 , . . .) ∝

[
(1− ηt) δπt−1(πt) + ηt pCRPα (πt)

]
×[

(1− γt+1) δπt+1(πt) + γt+1 pCRPα(πt+1)
]
G(Yt | πt).

The expression of this full conditional highlights that the update depends also on
γ
(b−1)
t+1 .Thus, we need to distinguish between the following two cases:

a) If γ(b−1)
t+1 = 1, then the conditioning implies a changepoint at time t+ 1, and we

do not borrow any information about the partition at time t by looking one-step
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ahead. Thus, the partition at time t arises from a mixture,

p(π
(b)
t | γ(b−1)

t , γ
(b−1)
t+1 = 1, . . .) ∝ (1− ηt)G(Yt | πt−1) δπt−1(πt)

+ ηt pCRPα(πt)G(Yt | πt),

i.e., πt coincides with πt+1 with probability that is proportional to (1−ηt)G(Yt |
πt+1). Alternatively, it is generated as a random draw of a new partition from
a random partition model with distribution proportional to pCRPα(πt)×G(Yt |
πt). The probability of choosing this mixture component is proportional to
ηt
∑

πt∈Pt
pCRPα(πt)G(Yt | πt) = ηt gt. We discuss how we evaluate these quan-

tities further below.

b) If γ(b−1)
t+1 = 0:

p(π
(b)
t | γ(b−1)

t , γ
(b−1)
t+1 = 0, . . .) ∝ (1− ηt) δπt−1(πt)G(Yt | πt−1)

+ ηt pCRPα (πt+1)G(Yt | πt);

that is, given γt+1 = 0, πt coincides either with πt−1 with probability proportional to
(1− ηt) δπt−1 (πt)G(Yt | πt−1) or with πt+1 with probability proportional to
ηt pCRPα (πt+1)G(Yt | πt). Hence, since γt+1 = 0, we have that p(πt ≡ πt+1) = 1.

2. update γt: the update of the auxiliary variable γt depends on the partitions πt and
πt−1 as follows,

a) p(γ(b)t = 1 | π(b)t , . . .) ∝ η
(b−1)
t pCRPα (πt);

b) p(γ
(b)
t = 0 | π(b)t , . . .) ∝ (1− η

(b−1)
t , )δ

π
(b)
t−1

(π
(b)
t ).

If π(b)t = π
(b)
t−1, then

– p(γ
(b)
t = 1 | π(b)t , . . .) ∝ η

(b−1)
t pCRPα(πt−1)

– p(γ
(b)
t = 0 | π(b)t , . . .) ∝ (1− η

(b−1)
t )

However, if π(b)t ̸= π
(b)
t−1, then p(γ(b)t = 1) = 1.

3. update βt: update βt from p(β
(b)
t | . . .), such that

p(β
(b)
t | π(b)t , . . .) ∝

|πt|∏
j=1

∏
i∈Cj(πt)

P (yi,t | β∗j,t)P0(β
∗
j,t).

4. update the remaining parameters are update with straightforward Gibbs sampling
updates.
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5. reshuffling step for π: we update the visited partitions using a sampling importance
resampling step considering different groups of sequential partitions.

Evaluating quantities over the power set P. Step 1(a) highlights the computational
challenges that arise when employing the changepoint detection approach outlined in equa-
tion (3.2), e.g., with respect to commonly used spike-and-slab variable selection priors.
In order to explore the partition space and calculate the appropriate probabilities for se-
lecting a specific partition, at each iteration it is necessary to compute quantities like
gt =

∑
πt∈Pt

pCRPα (πt) G (Yt | πt), for each t = 1, . . . , T . These computations can become
computationally daunting as n increases. For example, in our application of Section 3.5,
we consider n = 8 sensors; hence, we would need to compute these quantities across 256
partitions. It is important to ensure the scalability of the method. Importantly, it is worth
noting that these quantities only rely on the partition πt. Therefore, as long as we can effi-
ciently approximate the distribution of such partitions under the base partition model, we
should be able to obtain a reliable approximation for the required quantities. We propose
implementing an auxiliary MCMC run prior to initializing the primary MCMC algorithm
for model fitting. In this preliminary run, we fit an independent CRPα model at each time
point, saving all the partitions generated throughout the MCMC iterations. Then, we can
approximate gt by considering the set St comprising all the posterior partitions obtained
through the CRPα in the auxiliary MCMC run, as follows

ĝt =
1

| St |
∑

πt∈St

pCRPα(πt)G(Yt | πt). (3.9)

Similarly, to sample a new distribution from pCRPα(πt)G(Yt | πt), we leverage the realized
partitions from the auxiliary MCMC run and randomly select a new partition πt from St,
randomly selecting a new partition πt from St, with t = 1, . . . , T .

3.3.1 Changepoint detection

Changepoint detection inherently involves making multiple comparisons, since the decisions
are temporally dependent. To address this multi-comparison problem, we use a decision
theoretic approach to detect the presence of a changepoint, relying on the posterior prob-
ability of the changepoint (PPCt), p(γt = 1 | data), at each time point. More specifically,
we consider a compound decision-theoretic approach, which is based on a loss function that
takes simultaneously into account the sequence of decisions and it is defined as a linear
combination of measures of the false positive and true positive (or false negative) deci-
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sions (Sun and Cai, 2007). In a Bayesian context, Müller et al. (2004) and Muller et al.
(2006) have demonstrated that when assuming both independent hypotheses and indepen-
dent (marginal) loss functions, the optimal approach for minimizing the resulting posterior
expected loss involves thresholding the PPCt values (t = 1, . . . , T ) as estimated from the
output of the MCMC. However, such a procedure does not inherently control for the false
discovery rate (FDR), unless such a control is explicitly accounted for. Therefore, it be-
comes necessary to calculate the optimal threshold in order to control the FDR at a specific
desired level, ζ. This can be done by considering the Bayesian FDR (Newton et al., 2004),

FDRm (h) =

∑T
t (1− PPCt)1(PPCt>h)∑T

t 1(PPCt>h) ∨ 1
(3.10)

where h is the chosen threshold and 1(PPCt>h) indicates the indicator function such that if
PPCt > h then 1(PPCt>h) = 1 and 0 otherwise. The optimal threshold corresponds to the
minimum value of the PPCt which still ensures that the FDRm is less than ζ; in formulas,
h∗ = min{h : FDRm(h) ≤ ζ}. We note that Müller et al. (2004) show how such a decision
rule can be obtained by considering loss functions defined as a linear combination of the
false discovery rate and the true positive (or false negative) rate.

The previous testing procedure can be classified as a marginal approach, since it fails to
consider existing dependencies either among hypotheses or in the decisions themselves. Sun
et al. (2015) extended this framework to the spatial setting, explicitly taking into account
dependencies among the hypotheses, as induced by a spatial model. More recently, Chandra
and Bhattacharya (2019) introduced non-marginal loss functions and non-marginal decision
rules, which take dependencies into account during the decision-making process by consid-
ering dependent decisions directly within the loss functions. More in detail, their procedure
incorporates additional information about dependencies among the tests in the definition
of the error and non-error terms associated with subgroups of hypotheses. The approach
penalizes the decision for each hypothesis based on the incorrect decisions regarding other
dependent tests, thus defining a compound loss in which decisions regarding dependent tests
rely on each other. We adapt their framework to our case. More specifically, we indicate
with Gt the set of hypotheses related to having a changepoint at time t, for t = 1, . . . , T .
These hypotheses correspond to the null hypothesis H0,t (no changepoint) and the alterna-
tive hypotheses H1,t−1, H1,t, H1,t+1 of a changepoint at times t−1, t, t+1. Considering this
set of alternative hypotheses together is crucial, since - for example - a false changepoint
detection at time t− 1 may induce a false changepoint detection at time t, even if the null
hypothesis is true at both times. Let dt represent the decision at time t, i.e., dt = 1 if the
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t-th hypothesis is rejected and dt = 0 if it is not. Let rt denote the truth at time t, i.e.,
rt = 1 if H0,t is true, rt = 0 otherwise. Let d = (d1, . . . , dT ), r = (r1, . . . , rT ). We consider
the compound loss function:

L(d, r) = −TPR(d, r) + λER(d, r),

where λ is a positive constant, and

TPR = TPR(d, r) =
T∑
t=1

dt rt/D

is the true positive rate, defined as the ratio between the number of cases where the t-
th decision correctly identifies a changepoint and the number of positive decisions D =∑T

t=1 dt. In order to penalize false detections at each time t, we define a measure of error
as the ratio between the total number of false detections in the set Gt = {t − 1, t, t + 1}
and D,

ER =

{
T∑
t=2

dt−1(1− rt−1) +
T∑
t=1

dt(1− rt) +
T+1∑
t=1

dt+1(1− rt+1)

}
/D =

=

{
2 d1 (1− r1) + 3

T−1∑
t=1

dt (1− rt) + 2 dT (1− rT )

}
/D.

We aim to minimize the posterior expected loss with respect to d. Then, following steps
similar to those in Theorem 1 of Müller et al. (2004), it is possible to show that the
optimal decision rule is a threshold on the posterior probabilities PPCt = Eθ|Xn

(rt). In
addition, since the expression of the error rate (3.3.1) considers the term 3

∑m−1
t=1 dt(1 −

rt), the resulting non-marginal FDR, say FDRnm, is such that controlled FDRnm(h) =

3FDRm(h), where FDRm is defined in (3.10). Then, the FDRnm is controlled at level
ζ/3, leading to a more stringent procedure than the marginal one. This becomes especially
relevant when dealing with autoregressive data, which are characterized by higher structural
dependence.

3.4 Simulation studies

We present two simulation studies to illustrate the performances of our LLDPM model
under different data-generating mechanisms. More specifically, we investigate the model’s
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ability to accurately detect changepoints in independent and autocorrelated data scenarios,
while also recovering the latent cluster structure. We compare with four alternative models:

1. the Dependent Random Partition Model (DRPM) introduced by Page et al. (2022)
stands out - to our knowledge - as the only model-based approach that has introduced
time dependency directly through partitions;

2. the Linear Dependent Dirichlet process (LDDP, Quintana et al., 2022) incorporates
time explicitly within the atoms of the dependent process. In the implementation
of this model, as well as all the subsequent models, the data is consolidated into a
vector, with time being treated as a covariate. Consequently, we will refer to these
models as alternative approaches in our analysis, rather than direct competitors.

3. the Weighted Dependent Dirichlet process (WDDP, Quintana et al., 2022) incorpo-
rates the time in the weights of the Dirichlet process;

4. the Griffiths-Milne Dependent Dirichlet approach (GMDDP Lijoi et al., 2014) to
build bivariate vectors of dependent and identically distributed random measures, as
implemented in the R package BNPmix (Corradin et al., 2020).

A more general class of alternative models for dependent data partitions could be obtained
by adapting to the partition framework the flexible class of Compound random measures
of Griffin and Leisen (2017). It is worth noting that our approach is model-based and
does not require data concatenation to introduce time dependency. Additionally, we have
adopted a more lenient approach when calculating the similarity between partitions at
two consecutive time steps in the competitor models. These alternative approaches are
not specifically designed to capture changepoints in partitions over time. Specifically, we
utilized a similarity threshold of 90% based on the Adjusted Rand Index (Rand, 1971) to
identify changepoints and enhance the performance of all competitor models.

3.4.1 Simulations with independent data

We start by generating data according to model (3.5). We evaluate the performance over
50 replicated datasets and different number of observations, namely n = {20, 50, 100}, over
T = 100 time points. In each scenario, we generate independent normally distributed data
including 8 changepoints, and we set the number of clusters to range from 2 to 3. An
illustrative example of the data can be found in Appendix 3.C, Figure 3.6. The likelihood
function is defined as a location Normal kernel with a priori variance of σ2 = 0.01. Our
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choice of hyperparameters for the model is as follows: we set the base random partition
model p∗(·) to the CRP and set the concentration parameter α = 1. The distribution P0

is assumed to follow a Gaussian Normal distribution with a mean value of µt = 0 and a
variance of τ2 = 0.52. We further specify the hyperprior distributions as follows: σ2 ∼
Inverse Gamma(a0 = 15, b0 = 3) and τ2 ∼ Inverse Gamma(a0 = 15, b0 = 3), where “IG”
indicates the Inverse Gamma distribution. Additionally, we set ηt ∼ Beta(at = 0.1, bt = 0.9)

in such a way that it assigns a higher probability to the absence of a changepoint. When
fitting the DRPM model, we adopted parameters as suggested in Page et al. (2022), except
that we fixed the variances as we did in our model. The temporal dependence parameter
in the DRPM model follows a distribution of Beta(bt = 0.9, at = 0.1). Finally, for all other
alternative models, we used the same variances as in our model and hyperprior parameter
values as suggested for each method.

We implemented the MCMC algorithm using a Gibbs sampling scheme as detailed in
Section 3.3. The performances of the algorithm are shown in Table 3.1, where we compare
the computational cost of the analysis of datasets of different sizes. The computational time
increases with the number of time series involved in the analysis, while the number of time
points is kept fixed and equal to 100. We ran the model for 10,000 iterations, with the first
50% of iterations as burn-in. Subsequently, we calculated the optimal partition for each time
point based on the posterior similarity and the estimated posterior probability ηt, for t =
1, . . . , T . To determine whether a specific time point t should be considered a changepoint,
we employed the False Discovery Rate method (Muller et al., 2006). As explained in Section
3.3, we implemented a penalized version of FDR with a control threshold set at 0.01/3

Computational Cost
Units Min. 1st Qu. Median Mean 3rd Qu. Max.

20 485.8 487.8 487.9 488.4 490.0 490.7
50 781.6 782.2 783.6 783.8 785.1 786.5
100 949.4 950.1 951.1 952.0 954.3 955.1

Table 3.1: Computational cost, in seconds per 1000 iterations of the MCMC algorithm,
with varying number of time series.

Table 3.2 displays the performance of the five models as the data dimension varies.
Notably, the LLDPM model outperforms all other models across all the metrics. However,
as the sample size increases, all models exhibit a decrease in performance due to the greater
number of subjects that have the potential to switch clusters.

The results highlight the strong performance of GMDDP when considering the metrics
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Data dimension Measure LLDPM DRPM LDDP WDDP GMDDP

unit=20

specificity 0.6104 (0.413) 0.6106 (0.413) 0.566 (0.288) 0.3796 (0.021) 1.000 (0.000)
accuracy 0.9902 (0.010) 0.6288 (0.375) 0.6008 (0.265) 0.4292 (0.019) 1.000 (0.000)

recall 1.000 (0.000) 0.8375 (0.196) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
precision 0.9014 (0.094) 0.4209 (0.367) 0.2714 (0.238) 0.123 (0.004) 1.000 (0.000)

F1 0.9455 (0.054) 0.4724 (0.337) 0.3836 (0.243) 0.2191 (0.006) 1.000 (0.00)
AUC 0.9947 (0.006) 0.7263 (0.194) 0.6472 (0.176) 0.6898 (0.010) 1.000 (0.00)

unit=50

specificity 0.6309 (0.396) 0.6317 (0.397) 0.1961 (0.131) 0.0233 (0.021) 0.9989 (0.008)
accuracy 0.9664 (0.023) 0.6558 (0.363) 0.2604 (0.121) 0.1014 (0.020) 0.9990 (0.007)

recall 1.000 (0.000) 0.9325 (0.098) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
precision 0.7331 (0.149) 0.4292 (0.343) 0.0995 (0.013) 0.0818 (0.002) 0.9924 (0.054)

F1 0.8378 (0.097) 0.5123 (0.330) 0.1808 (0.022) 0.1512 (0.002) 0.9952 (0.034)
AUC 0.9817 (0.012) 0.7821 (0.193) 0.5961 (0.066) 0.5116 (0.011) 0.9995 (0.004)

unit=100

specificity 0.6228 (0.355) 0.6146 (0.352) 0.1397 (0.126) 0.02717 (0.022) 0.9839 (0.080)
accuracy 0.9514 (0.031) 0.6390 (0.321) 0.2086 (0.116) 0.1050 (0.020) 0.9852 (0.073)

recall 1.0000 (0.000) 0.9200 (0.123) 1.0000 (0.000) 1.0000 (0.000) 1.0000 (0.000)
precision 0.6611 (0.167) 0.3444 (0.281) 0.0934 (0.013) 0.0821 (0.002) 0.9671 (0.163)

F1 0.7843 (0.118) 0.4408 (0.281) 0.1707 (0.021) 0.1517 (0.003) 0.9721 (0.138)
AUC 0.9740 (0.017) 0.7673 (0.168) 0.5685 (0.063) 0.5134 (0.011) 0.9920 (0.040)

Table 3.2: Section 3.4.1: Summary statistics for changepoint detection with independent
data and four competing models. The values correspond to the average (standard errors)
over 50 simulations.

related to changepoint detection. However, it is important to recall that GMDDP requires
data vectorization and includes time as a covariate. Additionally, it must be considered
that for all models considered as competitors of our proposal, the similarity threshold was
suitably chosen to optimize their overall performance in detecting changepoints. Moreover,
when evaluating the accuracy of recovering the true latent cluster structure, as depicted in
Figure 3.1, GMDDP does not fare well and struggles to correctly identify clusters. On the
other hand, LLDPM demonstrates very good performance in both changepoint detection
and recovering the latent cluster structure. Hence, GMDDP may not be a reliable choice
when the goal is to simultaneously perform changepoint detection and cluster analysis.
DRPM, on the other hand, exhibits strong performance in changepoint detection, with an
average specificity similar to that of our model in each scenario. However, as the number of
subjects increases, its ability to recover the correct cluster structure is adversely affected.

3.4.2 Simulations with autoregressive data

In a second simulation study, we aim to assess the performance of the model in scenarios
where the data are generated from an AR(1) process. Specifically, we consider datasets
with 30 time points and 20 units. The changepoints are generated changing the magnitude
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Figure 3.1: Section 3.4.1: Boxplots of Adjusted Rand Index values evaluating the clustering
performance with independent data, for four competing models, n = {20, 50, 100}, over 50
replicated datasets and 100 time points.

of the time series at time points divisible by 5 and 9. The number of clusters is setting to
be 1 if no changes occur, 3 and 2 if the magnitudes are changed accordingly. An illustrative
example of such data can be found in Appendix 3.C, Figure 3.7. More specifically, we
generate the data according to the following model:

Yi,t = λYi,t−1 + βi,t + εi,t.

We consider four different scenarios, each with a distinct value for the autoregressive param-
eter λ, chosen from the set {0.25, 0.5, 0.75, 0.9}. The error term εi,t follows an independent
and identically distributed normal distribution with mean 0 and variance σ2. The results
for 50 replicates are presented in Table 3.3.

In model fitting we decide to set α accordingly to the a priori number of cluster E(K).
The expected exact a priori number of cluster is E(K) =

∑n
i=1 α/(α + i − 1) (Pitman,

2002), and asymptotically α log[(α + n)/α] (Antoniak, 1974). We decided to set E(K)=2,
consequently the mass parameter of the Dirichlet process is α = 0.32. To aid the competitor
models in the changepoint identification procedure, we applied a 90% threshold for the
posterior similarity between partitions.
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Figure 3.2: Section 3.4.2: Boxplots of Adjusted Rand Index values evaluating the cluster-
ing performance with AR(1) data, for four competing models, and different values of the
autoregressive coefficient λ = {0.25, 0.5, 0.75, 0.9}, over 50 replicated datasets and 100 time
points

LLDPM consistently demonstrates strong performance in recovering changepoints across
all the metrics considered. In contrast, the GMDDP demonstrates lower performance in
this scenario compared to the previous one. Surprisingly, the LDDP of Quintana et al.
(2022) exhibits the best performance in terms of changepoint recovery. However, similar
to the GMDDP in the previous scenario, the LDDP is less reliable in terms of correctly
identifying the cluster structure. Considering both scenarios together, LDDP performs
poorly in the first simulation study, leading to the suggestion that users may benefit from
a more stable model that is not dependent on specific scenarios, such as LLDPM. Fur-
thermore, DRPM performs well with autoregressive data, but its performance diminishes
with increased dependence. It is worth highlighting that LLDPM and DRPM are the only
models specifically designed for studying partition dynamics. In contrast, LDDP, WDDP,
and GMDDP were not constructed for this specific purpose. Consequently, our simula-
tions suggest that partition-based approaches are generally more reliable and stable across
various scenarios.
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AR(1) coefficient Measure LLDPM DRPM LDDP WDDP GMDDP

λ=0.25

specificity 0.8683 (0.151) 0.8728 (0.152) 0.9971 (0.014) 0.8121 (0.066) 0.7700 (0.125)
accuracy 0.9147 (0.059) 0.5156 (0.044) 0.9987 (0.006) 0.5029 (0.032) 0.6173 (0.068)

recall 0.9175 (0.073) 0.2031 (0.097) 1.000 (0.000) 0.2323 (0.063) 0.4838 (0.065)
precision 0.9252 (0.065) 0.7473 (0.211) 0.9976 (0.012) 0.6043 (0.132) 0.7219 (0.115)

F1 0.9195 (0.055) 0.2972 (0.095) 0.9988 (0.006) 0.3280 (0.078) 0.5743 (0.064)
AUC 0.9145 (0.059) 0.5284 (0.040) 0.9986 (0.007) 0.5204 (0.031) 0.6308 (0.063)

λ=0.5

specificity 0.9082 (0.177) 0.9059 (0.178) 0.9943 (0.020) 0.8111 (0.061) 0.5514 (0.198)
accuracy 0.8913 (0.066) 0.5276 (0.039) 0.9973 (0.009) 0.5015 (0.036) 0.5800 (0.100)

recall 0.9038 (0.082) 0.1966 (0.134) 1.000 (0.000) 0.2306 (0.070) 0.6050 (0.104)
precision 0.8992 (0.074) 0.8368 (0.208) 0.9953 (0.016) 0.5772 (0.085) 0.6219 (0.111)

F1 0.8984 (0.061) 0.2886 (0.109) 0.9976 (0.008) 0.3249 (0.088) 0.6059 (0.082)
AUC 0.8904 (0.066) 0.5421 (0.044) 0.9971 (0.010) 0.5188 (0.034) 0.5866 (0.097)

λ=0.75

specificity 0.9226 (0.081) 0.9286 (0.066) 0.9671 (0.065) 0.7726 (0.071) 0.3514 (0.299)
accuracy 0.8707 (0.060) 0.5352 (0.036) 0.9847 (0.030) 0.4993 (0.061) 0.6533 (0.156)

recall 0.8838 (0.082) 0.1910 (0.077) 1.000 (0.000) 0.2602 (0.122) 0.9175 (0.092)
precision 0.8862 (0.089) 0.7940 (0.168) 0.9747 (0.049) 0.5618 (0.089) 0.6383 (0.139)

F1 0.8797 (0.062) 0.2972 (0.096) 0.9866 (0.026) 0.3474 (0.102) 0.7458 (0.107)
AUC 0.8697 (0.062) 0.5430 (0.040) 0.9836 (0.032) 0.5161 (0.058) 0.6345 (0.164)

λ=0.9

specificity 0.9127 (0.095) 0.9143 (0.096) 0.4586 (0.296) 0.7500 (0.094) 0.2811 (0.269)
accuracy 0.8533 (0.056) 0.5181 (0.054) 0.7407 (0.141) 0.4680 (0.052) 0.6290 (0.133)

recall 0.8600 (0.078) 0.1714 (0.091) 0.9875 (0.028) 0.2213 (0.066) 0.9334 (0.157)
precision 0.8701 (0.072) 0.7380 (0.223) 0.6977 (0.130) 0.5090 (0.131) 0.6020 (0.149)

F1 0.8618 (0.053) 0.2648 (0.123) 0.8112 (0.089) 0.3041 (0.081) 0.7420 (0.083)
AUC 0.8529 (0.057) 0.5300 (0.050) 0.7230 (0.150) 0.4856 (0.053) 0.5987 (0.136)

Table 3.3: Section 3.4.2: Summary statistics for changepoint detection with AR(1) data
and four competing models. The values correspond to the average (standard errors) over 50
simulations.

79



Chapter 3. Changepoint Detection with LLDPM

3.5 Application to Gesture Phase Segmentation

In this section, we present an analysis of video-recorded data for human gesture segmenta-
tion. The goal is to segment videos into distinct phases exhibiting different motion patterns,
e.g., to identify time lapses of the video that need to be removed from a clip (Parvathy et al.,
2021). More specifically, we employ the Gesture Phase Segmentation dataset, originally de-
scribed by Madeo et al. (2013), which is publicly accessible for download at the following
URL: https://archive.ics.uci.edu/ml/datasets/gesture+phase+segmentation. The
dataset contains sensor data recordings of users recounting comic book stories facing an
Xbox Microsoft KinectTM sensor. The dataset provides scalar velocity and acceleration
values for the left hand, right hand, left wrist, and right wrist at regular time intervals
(frames). These values were obtained by normalizing hand and wrist positions relative to
the head and spine position using a fixed displacement offset of 3 to measure velocity. Our
analysis focuses on the processed version of this data, which includes information about
the video phases: D (rest position, from the portuguese “descanso"), P (preparation), S
(stroke), H (hold), and R (retraction). To prepare the data for analysis, we follow Hadj-
Amar et al. (2023) and implement a preprocessing involving several stages. Initially, we
apply a 2-point moving average filter to smoothen the time series. Subsequently, we per-
form downsampling by selecting every 5 points uniformly, as recommended by Romanuke
(2021). This approach enables us to consider longer time lags while minimizing parameters
and computational complexity. The data was then transformed using the square root func-
tion, which has been shown by Hadj-Amar et al. (2023) to be suitable for accommodating
Gaussian distribution. Finally, we standardize the time series to ensure uniformity and
comparability. The processed data is visualized in Figure 3.3.

Gesture phase segmentation poses several challenges. Firstly, it is a subjective task with
no definitive starting point for each phase, resulting in varying segmentations by different
experts for the same video. Moreover, some phases exhibit similar patterns, like stationary
hand gestures such as the rest position and hold. Additionally, this data type can include
nuisance movements, such as touching glasses while speaking, causing fluctuations in sensor-
recorded scalar velocity (Madeo et al., 2013). Thus, we simplify our analysis by focusing
our interest on just two phases: R (rest) and A (activities, specifically reading).

While Madeo et al. (2013) analyzed this dataset using Support Vector Machines (SVM)
to segment gesture data streams, they didn’t consider the temporal dependence between
partitions. Our goal, in contrast, is to detect the latent cluster structure at each frame
while capturing changepoints, using our proposed LLDPM random partition model with
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time dependence.

To implement model (3.5), we consider an a priori expected number of clusters set to 2,
corresponding to α = 0.5. The sampling variance is assumed as σ2 ∼ IG(a0 = 15, b0 = 3)

and we set τ2 ∼ IG(a0 = 15, b0 = 3). The prior probability of a changepoint is assumed
ηt ∼ Beta(at = 0.1, bt = 0.9), suggesting that the model assumes a relatively low prior
probability of a changepoint at each time point. For the distribution of the coefficient
βi,t, P0, we assume a Gaussian Normal distribution with a mean of µt = 0 and variance
τ2 = 0.52. Our MCMC chains run for 10,000 iterations, with the first half discarded as a
burn-in period.

Although we conducted comparisons with DRPM, WDDP, and GMDDP, we will focus
here on presenting the results solely for LLDPM. Figures and results for the other models
can be found in Appendix D.1. The LLDPM model primarily identifies changepoints during
the activity phase, which corresponds to the preparation, retraction, and stroke phases in
the video. Most of these changepoints occur during transitions between different phases,
with a higher frequency observed during the reading phases. These changepoints could
represent movements associated with the subject’s gesticulation and body language while
narrating or changes in hand and wrist positions while engaging in the assigned activity.

In the comparison with the other methods, we note that partition-based models tend to
identify fewer changepoints. More specifically, the LLDPM identified a number of change-
points falling between those of DRPM and the other alternative competitors, instilling
greater confidence in the model’s performance, especially in real data applications where
the ground truth is unknown. DRPM identified only 15 changepoints (4.3%), primarily at
the beginning of the time series. On the other hand, LDDP, WDDP, and GMDDP detected
14% of changepoints, classifying 50 out of 349 observations as changepoints (see Appendix
D.1).

Figure 3.5 illustrates the clustering of the eight sensors within a specific time window (for
representation purposes), chosen by minimizing the lower bound of the posterior expected
Variation of Information (VI). The numbers on the plot correspond to the sensors. Notably,
a distinct pattern allocation emerges, where all the sensors are grouped into a single primary
cluster. Additionally, a secondary pattern takes shape, forming two clusters: one containing
all the sensors from the left arm (odd numbers) and the other with sensors from the right
arm (even numbers) grouped together.
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Figure 3.3: Section 3.5: Human Gesture data. Scalar velocity of the left and right hand
and the wrists after preprocessing (T = 349).
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Figure 3.4: Section 3.5: Human Gesture data. Estimated Changepoints for the LLDPM
with a priori expected number of cluster 2. The two phases are visible in the background,
while the vertical lines represent the detected changepoints.
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Figure 3.5: Section Clusters for Gesture Phase Segmentation data calculated by minimum
VI. The colours represent different clusters. On the x-axis are reported a time window from
time 335 to time 340. The numbers correspond to the sensors.
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3.6 Discussion

In this chapter, we introduced an approach for modeling partitions with temporal depen-
dence, with an application to human gesture sensor data analysis. Our novel random
partition model links data partitions across different time points, extending the Dynamic
Linear Model for multivariate time series analysis. By characterizing the evolution of the
local level equation across partitions and detecting changepoints, our model effectively cap-
tures changes in cluster structures over time. Our approach maximizes the use of temporal
information while introducing dependence only when supported by the data, by incorporat-
ing spike-and-slab priors to model independence between partitions, thus increasing model
flexibility. We have illustrated the model’s performance with synthetic data, highlighting
its accuracy in recovering cluster structures and correctly identifying changepoints. In the
application to gesture data, our model appears to provide reasonable inference on change-
point detection, particularly during activity phases. Notably, the model identifies a primary
pattern allocation grouping all sensors and a secondary pattern with distinct left-arm and
right-arm sensor clusters.

Leveraging the representation in Section 3.2.2, our model can be adapted to the analysis
of multivariate data over multiple samples, where the samples are characterized by depen-
dencies originating from sources other than temporal factors, such as different experimental
conditions. Thus, the proposed model can consider diverse data structures and complex
inter-condition dependencies. Importantly, even in this extended scenario, the partitions
continue to follow a random partition model marginally, such as the Chinese restaurant
process, highlighting the model’s adaptability and versatility in capturing complex depen-
dencies in various datasets.

The study of how gesture phases cluster offers valuable insights into the mechanics
of human movement and holds the potential to significantly enhance gesture recognition
systems. We can integrate the cluster inference derived from our random partition model
as a predictor into a more general outcome model, e.g., to determine how various gesture
intervals might be associated with a propensity for risk-taking or other behavioral outcomes.
Thus, understanding these gesture phase clusters can lead to a deeper insight into human
behavior, taking into account all probabilistic uncertainties.

Finally, it is worth noting that while we have focused on a relatively straightforward
local-level model, an exciting avenue for future research is the development of dependent
random partition models capable of modeling latent state equations that emulate the behav-
ior of more complex dynamic linear models. This extension could encompass higher-order
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time dependencies, allowing for the exploration of more complex temporal relationships and
patterns in data. Similarly, we have assumed that the changepoint selection indicator γi,t is
independent across times. More in general, it could depend on time-varying covariates, such
as respiratory data or measurements of expended effort in the analysis of human gesture
data. Such developments have the potential to significantly enhance our ability to capture
and understand time-varying clustering structures in complex time series data across a wide
range of domains and applications.
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Appendix

3.A Proof of Proposition

In the following, we provide the proof of the proposition stated in the article.

A.1 Proposition 1

Proof. (the proof can be written in a more compact form)

We consider two separate cases, namely the distribution of π1 and the distribution of
any πt, with t = 2, . . . , T . We call P the space of all partitions of size n, and we have

p(π1) =
T∑
t=2

∑
πt∈P

p(π1:T )

= p∗(π1)
T∑
t=2

∑
πt∈P

T∏
t=2

[
(1− ηt)δπt−1(πt) + ηt p

∗(πt)
]

= p∗(π1)

T∑
t=3

∑
πt∈P

T∏
t=4

[
(1− ηt)δπt−1(πt) + ηt p

∗(πt)
]

×
∑
π2∈P

[(1− η2)δπ1(π2) + η2 p
∗(π2)] [(1− η3)δπ2(π3) + η3 p

∗(π3)]

= p∗(π1)

T∑
t=3

∑
πt∈P

T∏
t=4

[
(1− ηt)δπt−1(πt) + ηt p

∗(πt)
]

×
∑
π2∈P

[(1− η2)(1− η3)δπ1(π2)δπ3(π2) + (1− η2)η3δπ1(π2)p
∗(π3)

+ η2(1− η3)δπ3(π2)p
∗(π2) + η2η3p

∗(π2)p
∗(π3)]

= p∗(π1)

T∑
t=3

∑
πt∈P

T∏
t=4

[
(1− ηt)δπt−1(πt) + ηt p

∗(πt)
]

× [(1− η2)(1− η3)δπ1(π3) + (1− η2)η3p
∗(π3) + η2(1− η3)p

∗(π3) + η2η3p
∗(π3)]

= p∗(π1)

T∑
t=3

∑
πt∈P

T∏
t=4

[
(1− ηt)δπt−1(πt) + ηt p

∗(πt)
]

× [(1− η2)(1− η3)δπ1(π3) + (η2 + η3 − η2η3)p
∗(π3)]
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= p∗(π1)

T∑
t=3

∑
πt∈P

[(1− η̃3)δπ1(π3) + η̃3p
∗(π3)]

T∏
t=4

[
(1− ηt)δπt−1(πt) + ηt p

∗(πt)
]
,

where, for any t = 2, . . . , T , η̃t is defined by

η̃2 = η2

η̃t = 1− (1− ηt)
t−1∏
r=2

(1− η̃r), for t = 3, . . . , T.

By iterating the same procedure, we get

p(π1) = p∗(π1)
∑

πT∈P

[(1− η̃T )δπ1(πT ) + η̃T pCRP(πT ;α)]

= p∗(π),

that is, π1 is marginally distributed as p∗(·). As for a generic πt, with t = 2, . . . , T , we
have:

p(πt) =

T∑
r=1
r ̸=t

∑
πr∈P

p(π1:T )

=
T∑

r=2
r ̸=t

∑
πr∈P

T∏
r=3

[
(1− ηr)δπr−1(πr) + ηr p

∗(πr)
]

×
∑
π1∈P

p∗(π1) [(1− η2)δπ2(π1) + η2 p
∗(π2)]

=
T∑

r=2
r ̸=t

∑
πr∈P

T∏
r=3

[
(1− ηr)δπr−1(πr) + ηr p

∗(πr;α)
]
[(1− η2)p

∗(π2) + η2 p
∗(π2)]

=
T∑

r=2
r ̸=t

∑
πr∈P

p∗(π2)
T∏

r=3

[
(1− ηr)δπr−1(πr) + ηr p

∗(πr)
]
.

By iterating the same procedure for the first t− 1 terms of the first sum, we get

p(πt) = p∗(πt)

T∑
r=t+1

∑
πr∈P

T∏
r=t+1

[
(1− ηr)δπr−1(πr) + ηr p

∗(πr)
]
.

From this point the proof proceeds exactly as for the case of π1, which we already studied.
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That is, πt is marginally distributed as p∗(·).

3.B Posterior MCMC details

B.1 General case

Starting from the distribution of p(π(b)t | γ(b−1)
t , . . .), at each iteration b = 1, . . . , B, we can

write the full conditional distributions (forgetting the subscription (b) in the conditional
part of the formula to have less notation involved), as follows

p(π
(b)
t | γ(b−1)

t , . . .) ∝
∑

γ
(b−1)
t ∈{0,1}

ηγtt (1− ηt)
1−γt

[
(1− γt)δπt−1(πt) + γtpCRPα(πt)

]
×[

(1− γt+1)δπt+1(πt) + γt+1pCRPα(πt+1)
]
G(Yt | πt)

∝
[
(1− ηt)δπt−1(πt) + ηtpCRPα(πt)

]
×[

(1− γt+1)δπt+1(πt) + γt+1pCRPα(πt+1)
]
G(Yt | πt).

Given this conditional distribution we have to consider two different cases, when γt+1 = 1

and γt+1 = 0,

1. If γ(b−1)
t+1 = 1:

p(π
(b)
t | γ(b−1)

t , . . .) ∝
[
(1− ηt)δπt−1(πt) + ηtpCRPα(πt)

]
pCRPα(πt+1)G(Yt | πt)

∝
[
(1− ηt)δπt−1(πt) + ηtpCRPα(πt)

]
G(Yt | πt)

∝ (1− ηt)G(Yt | πt−1)δπt−1(πt) + ηtpCRPα(πt)G(Yt | πt);

that is, given that γt+1 = 1, πt coincides with πt+1 with probability proportional
to (1 − ηt)G(Yt | πt+1). Besides, it is generated from a distribution proportional to
pCRPα(πt)G(Yt | πt) (second issue) with probability proportional to∑

πt∈Pt
pCRPα(πt)G(Yt | πt) (first issue). However, to generate this new partition we

encounter two main issues: how to evaluate the sum over all the possible partition and
how to generate a new partition weighted by G(Yt | πt). Solutions to these problems
are presented in Section 3.3.

2. If γ(b−1)
t+1 = 0:
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p(π
(b)
t | γ(b−1)

t , . . .) ∝
[
(1− ηt)δπt−1(πt) + ηtpCRPα(πt)

]
δπt+1(πt)G(Yt | πt)

∝ (1− ηt)δπt−1(πt)G(Yt | πt−1) + ηtpCRPα(πt+1)G(Yt | πt);

that is, given γt+1 = 0, πt coincides with πt−1 with probability proportional to (1 −
ηt)δπt−1(πt)G(Yt | πt−1) and it coincides with πt+1 with probability proportional to
ηtpCRPα(πt+1)G(Yt | πt). Hence, since γt+1 = 0, we have that P (πt ≡ πt+1) = 1.

To update γt, in each iteration of the gibbs sampling b = 1, . . . , B, we have to evaluate:

• p(γ
(b)
t = 1 | π(b)t , . . .) ∝ η

(b−1)
t pCRPα(πt);

• p(γ
(b)
t = 0 | π(b)t , . . .) ∝ (1− η

(b−1)
t )δ

π
(b)
t−1

(π
(b)
t );

In particular,

1. If π(b)t = π
(b)
t−1, then

• p(γ
(b)
t = 1 | π(b)t , . . .) ∝ η

(b−1)
t pCRPα(πt−1)

• p(γ
(b)
t = 0 | π(b)t , . . .) ∝ (1− η

(b−1)
t )

2. If π(b)t ̸= π
(b)
t−1, then P (γ(b)t = 1) = 1.

Then, we can update the parameters β such that

P (β
(b)
t | π(b)t , . . .) ∝

|πt|∏
j=1

∏
i∈Cj(πt)

P (yi,t | β∗j,t)P0(β
∗
j,t).

Moreover, the posterior distribution of η(b)t with prior distribution ηt ∼ Beta(a, b) is again a
Beta distribution but with updated parameters: p(η(b)t | . . .) ∼ Beta(a+ γ

(b)
t ; b+ 1− γ

(b)
t ).

B.2 The location Normal kernel scenario

In this Section we provide more details related to the specification of the distribution for
the MCMC algorithm described in Section 3.3. In particular, in the following there are the
distribution involved in the gibbs sampling scheme when we specified a location Normal
kernel for Yi,t (i = 1, . . . , n and t = 1, . . . , T ).
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Starting from the full model (3.5). Let

Yi,t|βi,t
ind∼ N(βi,t;σ

2);

βt | πt ∼
|πt|∏
j=1

P0

(
β∗j,t
)
;

P0 = N(µ; τ2).

We can express the joint distribution as

p(Y ,π,γ) =
T∏
t=1

ηγtt (1− ηt)
1−γt

T∏
t=1

[
(1− γt)δπt−1(πt) + γtpCRPα(πt)

]
G(Yt | πt).

where in this specific setting, we have that

logG(Yt|πt) =
|πt|∑
j=1

−nj
2

log(2π)− nj log σ − log τ +
1

2
log

σ2τ2

njτ2 + σ2

−1

2

nj∑
i=1

y2i,t −
1

2τ2
µ2 +

1

2

σ2τ2

njτ2 + σ2
·
( µ

tau2
+

∑nj

i=1 yi,t
σ2

)
.

Before proceed with the MCMC scheme, we implement a warmup step that includes
sampling from a CRPα partitions for each time t. To speed up this step, it is convenient
to run it in parallel. Then, in each gibbs sampling iteration b = 1, . . . , B. Our strategy
iterates four main steps:

1. update π(b)t from p(π
(b)
t | γ(b−1)

t , . . .);

2. update γ(b)t from p(γt | π(b)t , . . .);

3. update β(b)
t from p(β

(b)
t | . . .);

4. update all the hyperparameters;

5. reshuffling step.

Following this procedure for each iteration b allows to obtain the MCMC chains for the
posterior inference. The full conditional distributions are provided in the previous section.
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B.3 Reshuffling step

Sampling from πt given Yt it is achieved by means of the warmup step where we use a Pólya
urn to generate several realizations of πt|Yt and create a list St of partitions, from which
we can draw whenever we need to sample from πt|Yt. This is done for t = 1, . . . , T leading
to T lists of partitions: {S1, . . . ,St, . . . ,ST }.

An acceleration step or reshuffling step would require an update of the visited partitions
at the end of each iteration. Say that after a given iteration the current configuration is,
for example,

π1 ≡ π2 ≡ π3︸ ︷︷ ︸
π∗
1

̸= π4.︸︷︷︸
π∗
2

In this case we would update:

π∗1 | Y1,Y2,Y3; (3.11)

π∗2 | Y4 (3.12)

where 3.12 is straightforward and 3.11 requires more care.
Our model is such that, after marginalizing β,

Y1,Y2,Y3 ∼
3∏

j=1

G(Yj | π∗1)

and we need to sample from

P (π∗1 | Y1,Y2,Y3) ∝ P (π∗1)
3∏

j=1

P (Yj | π∗1) ∝ pCRPα(π
∗
1)

3∏
j=1

G(Yj | π∗1). (3.13)

An option is to use a Pólya urn (details not obviuos) but this would be a problem cause it
involves a Gibbs sampler within a Gibbs sampler. To avoid this mechanism we exploit the
lists {S1, . . . ,St, . . . ,ST } with a sampling importance resampling step:

i. Say we sample:

- m1 draws from S1 (i.e. from π1 | Y1);

- m2 draws from S2 (i.e. from π2 | Y2);

- m3 draws from S3 (i.e. from π3 | Y3).
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We get a m = m1 +m2 +m3 candidate partitions from S ∗
1 ⊂ S1 ∪ S2 ∪ S3.

ii. We assign a weight wj for each partition πj in S ∗
1 , with j = 1, . . . ,m. Each weight

is given, up to a proportional constant, by evaluating 3.13 at π∗j = πj .

iii. We sample one new value for π∗1 from S ∗
1 , with probabilities w1, . . . , wm.

3.C Simulated Data

In this Appendix we present additional plot referring to examples of synthetic data presented
in Section 3.4.
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Figure 3.6: Independent data with n = 20 subjects and 100 time points. The orange
vertical lines correspond to changepoints.
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Figure 3.7: Autoregressive data with n = 20 subjects and 30 time points. The orange
vertical lines correspond to changepoints. The autoregressive coefficient is 0.9.
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3.D Real data

In this Appendix we present additional plot referring to data and performances of the
models presented in Section 3.5.

D.1 Gesture Phase Segmentation
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Figure 3.8: Gesture data after preprocessing with 349 time points and the phases of the
video on the background.
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Figure 3.9: Gesture data after preprocessing with 349 time points and the grouped phases
of the video on the background.

−2

0

2

4

0 100 200 300

Times

S
ca

la
r 

ve
lo

ci
ty

Phase

Rest
Reading

Figure 3.10: Changepoints detection with a priori expected number of cluster 2 for Gesture
Phase data with DRPM model. In the background is possible to see the two phases, while
the vertical lines are the changepoints.
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Figure 3.11: Changepoints detection with a priori expected number of cluster 2 for Gesture
Phase data with LDDP model. In the background is possible to see the two phases, while
the vertical lines are the changepoints.
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Figure 3.12: Changepoints detection with a priori expected number of cluster 2 for Gesture
Phase data with WDDP model. In the background is possible to see the two phases, while
the vertical lines are the changepoints.
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Figure 3.13: Changepoints detection with a priori expected number of cluster 2 for Gesture
Phase data with GMDDP model. In the background is possible to see the two phases, while
the vertical lines are the changepoints.
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Chapter 4

A generalization of the latent Dirichlet allocation

4.1 Introduction

Information retrieval, social media analysis, semantic mining, spam filters, and genomics are
only a few of the main fields where topic modeling is of great interest. These models can be
used for searching results by understanding the topics in documents and matching them to
user queries or by identifying the topics of interest to users for recommending relevant arti-
cles, products, or contents. Furthermore, combining topic modeling with sentiment analysis
helps to determine the sentiment expressed within specific topics. The analysis of topics in
text documents has been extensively studied to enable computers to obtain meaning from
language processing with the purpose of content summarization, document clustering and
content recommendation. Over recent years, several techniques of text analysis have been
explored, especially challenging for computer science and statistics researchers. The goal is
to provide a document representation in terms of latent topics distribution. An example
with three documents represented as a mixture of three topics is provided in Figure 4.1.
Using these techniques, it is possible to identify the text’s primary subjects and determine
their importance within the text using topic modeling approaches.

Topic modeling is a statistical technique used in natural language processing (NLP) and
text mining to uncover the underlying themes or topics within a collection of documents.
It is particularly useful for organizing, summarizing, and understanding large text corpora.
The fundamental idea behind topic modeling is that each document is a mixture of several
topics, and each observed word in a document is attributed to one of these topics. By
discovering these topics and their proportions in each document, we gain insight into the
main themes and structure of the corpus. Moreover, topics are considered latent variables,
i.e. they are not directly observable but inferred from the distribution of words in docu-
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Document 1 Document 2 Document 3 Topics

Figure 4.1: On the left, representation of three documents as mixtures of three topics (red,
blue and green). On the right, histograms of words attributed to the different topics.

ments. For these techniques the “bag-of-words” assumption is implied, i.e. the arrangement
of words in a document holds no significance; what truly matters is the frequency of each
word’s occurrence. This is an assumption of exchangeability for the words in a document
(Aldous et al., 1985).

Let us consider a set of D text documents, labelled as C, also called “corpus”. Each
document in this collection, denoted as the d-th document, is essentially a sequence of Nd

words, which can be expressed as (wd,1, . . . , wd,Nd
)⊺. Here, wd,n indicates the n-th word of

the d-th document, with d ranging from 1 to D and n spanning from 1 to Nd. The distinct
words present in the corpus constitute the “vocabulary”, represented by the set V containing
V unique words. Topic modeling methods work on the principle that any word within a
document is generated from one of T possible topics. Consequently, the representation of
the d-th document can be viewed as a vector θd = (θd,1, . . . , θd,T )

⊺, where θd,t depicts the
ratio of words in the d-th document that are derived from topic t, with t = 1, . . . , T . It is
evident that θd falls within the T -dimensional simplex, ST = {θ : θt > 0,

∑T
t=1 θt = 1}. In

a parallel fashion, each topic is denoted by a discrete probability distribution, ϕt, across
the vocabulary V. For every topic, from t = 1 to T , ϕt resides in SV .

The Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is one of the most widely
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used statistical tools for topic modeling. LDA uses word probabilities to represent topics,
coherently with the framework sketched above. For each topic, the set of the most probable
words with the highest probabilities typically gives a good representation of what the topic
is about. The LDA improved the way of approaching topic models, when compared to the
Non-Negative Matrix Factorization (NMF), proposed by Lee and Seung (1999). NMF fac-
torizes the document-term matrix, i.e. a matrix that describes the frequency of terms that
occur in a collection of documents, into two lower-dimensional matrices, one representing
topics and the other representing the distribution of topics in documents. Another way
to detect topics within a text using decomposition is the Latent Semantic Analysis (LSA)
(Deerwester et al., 1990). LSA, also known as Latent Semantic Indexing (LSI), uses sin-
gular value decomposition to reduce the dimensionality of the term-document matrix and
discover latent topics. A predecessor to LDA, based on LSA, was presented by Hofmann
(1999) with the name of Probabilistic Latent Semantic Analysis (pLSA). It models the like-
lihood of words in documents given topics directly. However, it may suffer from overfitting
when the number of topics is large relative to the size of the dataset. While pLSA was
an important step in the development of probabilistic topic modeling, it has been largely
superseded by Latent Dirichlet Allocation, which addresses its limitations, like overfitting,
and provides a more principled probabilistic framework for topic modeling.

In the past two decades, there has been a proliferation of models built upon LDA. A
comprehensive review of the principal methods for topic modeling derived from LDA from
2003 to 2016 can be found in Jelodar et al. (2019). More recent developments in Bayesian
graphical models and related probabilistic topic modeling, as well as some noteworthy
applications, are presented in Wood (2014). It is worth mentioning the Dynamic Topic
Models (DTM), introduced by Blei and Lafferty (2006), which extends LDA to model how
topics evolve over time in a corpus, making it suitable for analyzing temporal data. The
online LDA (Hoffman et al., 2010) is an efficient and scalable variant of LDA, designed
for processing large datasets in an online manner. Benton and Dredze (2018) introduced
the deep Dirichlet Multinomial regression. It combines LDA with Dirichlet-Multinomial
regression, allowing to capture topic associations with covariates or metadata, incorporating
arbitrary document-level features to inform topic priors.

However, a typical problem that is not addressed by all these methodologies, based on
LDA, is the incapacity to model topic correlation as well as to allow positive correlations
between topics. These limitations are attributable to the stiffness of the Dirichlet distribu-
tion, which is the standard prior for the topic distributions involved in the LDA. Blei and
Lafferty (2007) presented a solution using the logistic-Normal distribution. A critic to this
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approach is that the interpretability of the topic is set aside in favor of easy correlation
computation. Indeed, in this technique the logistic-Normal distribution is employed as the
distribution for the categorical probability parameters after they have been translated from
a Euclidean space to the simplex. It presents a notable challenge in interpreting parame-
ters. This complexity stems from the log-ratio transformation that enables the model to be
defined on the space of real numbers. Our proposed model has the goal of overcoming all
these problems. It is fully interpretable since the distributions are defined on the proper
bounded domain, i.e. the simplex. Furthermore, it still maintains many of the properties
of the Dirichlet distribution.

A first extension of the Dirichlet distribution in this direction was presented by Ongaro
and Migliorati (2013), where only negative correlations are allowed. Successively, Ongaro
et al. (2020) presented an extension with more parameters, which helps in modeling compo-
sitional data in a more flexible way. This distribution is the basis of the extension of the LDA
presented in Section 4.3. The advantage of employing the extended flexible Dirichlet (EFD)
distribution lies in its enhanced parameterization, which ensures increased flexibility in the
covariance matrix. As a specific instance of the EFD, the traditional Dirichlet distribution
can be reclaimed through an appropriate choice of its parameters.

4.2 Corpus generating mechanisms

In this section, the two main techniques to generate documents for topic modelling analyses
are introduced. In particular, we are going to explain in detail the LDA and Correlated
Topic Model (CTM). They require to specify a distribution for the topics, which inherits
the properties and the limits of the chosen distribution.

4.2.1 Latent Dirichlet Allocation

The LDA is a generative probabilistic model composed of a three-level hierarchical Bayesian
structure introduced by Blei et al. (2003). In the LDA, documents are represented as
random mixtures over latent topics, and each topic has its own distribution over a set of
words V.

The LDA model assumes that documents belonging to a corpus are composed by T

common topics, each document being thought of as a probability distribution θd over the
topics, d = 1, . . . , D. Moreover, a topic is represented as a probability distribution ϕt over
the vocabulary V, t = 1, . . . , T . Thus, a document and a topic may be depicted as a point

106



4.2. Corpus generating mechanisms
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Figure 4.2: DAG describing LDA model. The unobserved variables are drawn as circles
whereas the observed ones are filled by blue color. Rhombuses represent hyperparameters.
The outer rectangle represents documents, while the inner one represents the repeated topics
and words within a document.

in the T -part (ST ) and V -part (SV ) simplices, respectively. Under the LDA model, the
generative process of the d-th document in a corpus is composed of three steps:

(i) generate a vector of topics distribution θd ∼ Dir(α);

(ii) for each word wd,n, generate a topic zn from a Zn ∼ Categorical(1,θd);

(iii) generate a word wd,n from the specific distribution over V for the topic zn, that
is Wd,n|zn = t ∼ Categorical(1,ϕt), ϕt ∼ Dir(β).

A graphical representation of the model can be seen in Figure 4.2. The Direct Acycled
Graph (DAG) shows how to generate a corpus with LDA model implementing the afore-
mentioned steps. The LDA further assumes that both topics and words are randomly drawn
from Dirichlet distributions. LDA exploits all the properties of interpretability, identifiabil-
ity and conjugacy of the specified priors. Moreover, it allows each document to be a mixture
of topics with different proportions. Heterogeneity in grouped data displaying multiple un-
derlying patterns is taken into account with this specification. However, the LDA may
encounter difficulties with short or noisy documents and may not effectively capture nu-
anced topic shifts within documents. The constraint of allowing only negative correlations
between topics might impact the outcomes of this model. In practice, the quality of the
results can be sensitive to the choice of hyperparameters, and these may require careful
tuning.
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4.2.2 Correlated Topic Model

The CTM is a versatile probabilistic graphical model used for the analysis of document
collections, particularly in the field of natural language processing. Introduced by Blei and
Lafferty (2007), CTM extends the popular LDA model by incorporating possible positive
correlations among topics. CTM has found applications in various domains, including text
analysis, content recommendation systems, and information retrieval (e.g., Aznag et al.,
2013). The relationship between the finite support (i.e., the simplex) and the natural
parameterization is defined as follows:

ηt = log
( θt
θT

)
, t = 1, . . . , T.

However, various values of η = (η1, . . . , ηT ) can produce the same mean parameter and
this representation does not provide the most concise exponential family for the categorical
distribution. The generative process of the d-th document in a corpus is quite similar to
the LDA’s one, with the main difference of the distribution for η. The logistic-Normal
distribution makes the assumption that η follows a multivariate normal distribution and
is subsequently transformed into the simplex through the inverse of this mapping, i.e.
f(ηt) = exp(ηt)/

(
1 +

∑T−1
j exp(ηj)

)
. The main steps of the generative process are

(i) generate a topics distribution ηd|µ,Σ ∼ N(µ,Σ);

(ii) for each word wd,n, generate a topic zn from a Zn ∼ Categorical(1, f(ηd));

(iii) generate a word wd,n from the specific distribution over V for the topic zn, that
is Wd,n|zn = t ∼ Categorical(1,ϕt), ϕt ∼ Dir(β).

Figure 4.3 shows the graphical representation of the CTM model. One of the key proper-
ties of CTM is its ability to capture topic correlations, which allows it to model complex
dependencies among topics in documents. Unlike the LDA, which assumes that topics are
negatively correlated, CTM allows the topics to be even positively correlated through a
shared Gaussian distribution. This modeling choice makes the CTM particularly suitable
for tasks where topics often co-occur or exhibit patterns of positive association, such as
in analyzing large-scale text corpora. Nevertheless, CTM is not without drawbacks. One
notable limitation is its increased computational complexity compared to the LDA, as it
involves estimating additional parameters for modeling topic correlations. This complexity
can make CTM less scalable for very large datasets. Additionally, interpreting the learned
correlations among topics can be challenging, as the model’s parameters may not have
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Figure 4.3: DAG describing CTM method. The unobserved variables are drawn as circles
whereas the observed ones are filled by blue color. Rhombuses represent hyperparameters.
The outer rectangle represents documents, while the inner one represents the repeated topics
and words within a document.

straightforward semantic interpretations. This issue is due to the log-ratio transformation
which allows the model to be specified on the real number space.

Notwithstanding the previously mentioned issues concerning both LDA and CTM, a
solution is provided by a flexible and intrepretable distribution defined on the simplex. In
the next section, we propose to assume that topics are distributed according to a sound
distribution that maintains the good properties of the Dirichlet: the extended flexible
Dirichlet distribution (Ongaro et al., 2020). The resulting generalization of the LDA is
named extended flexible LDA (EFLDA).

4.3 Extended flexible latent Dirichlet allocation

Before introducing the EFLDA, it is important to see in detail the advantage of having
a new distribution for the topic priors. This novelty improves the LDA model while still
preserving its good properties.

4.3.1 Extended flexible Dirichlet

The EFD is an identifiable finite mixture with Dirichlet components, that is

EFD(θ;α, τ ,p) =
T∑
t=1

ptDir(θ;α+ τtet), (4.1)
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where Dir(·;α) denotes the probability density function of the Dirichlet distribution with
parameter α = (α1, . . . , αT ) with αt > 0, θ and p lie in ST , τ = (τ1, . . . , τT ), τt > 0,
t = 1, . . . , T , and et is a vector of zeros except for the t-th element which is equal to one.
Its probability density function (p.d.f.) can be written as:

f(θ;α, τ ,p) =
( T∏

t=1

θαt−1
t

Γ(αt)

) T∑
i=1

pi
Γ(α+ + τi)Γ(αi)

Γ(αi + τi)
θτii , (4.2)

where α+ =
∑T

t=1 αt.

The Dirichlet is obtained as a special case of the EFD distribution by imposing the
following constraints on the parameter space:τt = 1

pt =
αt
α+

t = 1, . . . , T. (4.3)

Furthermore, by imposing αt = 1, t = 1, . . . , T , to conditions in (4.3), it is possible to
recover a uniform distribution on ST .

It is noteworthy that the EFD distribution retains many good properties of the Dirichlet
one (e.g., identifiability, explicit expressions of joint moments and closure under many
relevant operations on the simplex). Moreover, from Equation 4.3 it emerges that the EFD is
characterized by a set of additional parameters, if compared with the Dirichlet. This richer
parameterization guarantees flexibility in modeling dependences, though still preserving
interpretability to a large extent (see Ongaro et al., 2020). In particular, Ongaro et al.
(2020) showed that, despite the simplex space naturally induces negative associations, the
EFD distribution may admit positive correlations among a subset of its elements. Positive
correlations may be obtained by considering vectors τ and p such that the discrete random
variable Q, which takes values τt with probability pt (t = 1, . . . , T ), is characterized by
large variability.

As shown in Ongaro et al. (2020), it is straightforward to obtain the joint moments of
X ∼ EFD(α, τ ,p) from the Dirichlet moments thanks to the mixture representation:

E
[
Xt

]
= αtk1 + τt

pt
α+ + τt

,
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Var
(
Xt

)
= α2

t

(
k2 − k21

)
+

ptτi

(
2αt + τt + 1

)
(
α+ + τt

)(
α+ + τt + 1

)
+ αtk2 −

p2t τ
2
t(

α+ + τt

)2 − k1
2αtptτt
α+ + τt

,

Cov
(
Xt, Xl

)
= αtαl

(
k2 − k21

)
− ptplτtτl(

α+ + τt

)(
α+ + τl

)
+

αtplτl
α+ + τl

( 1

α+ + τl + 1
− k1

)
+

αlptτi
α+ + τt

( 1

α+ + τt + 1
− k1

)
,

(t, l = 1, . . . , T, t ̸= l) where:

k1 =
T∑

r=1

pr
α+ + τr

and k2 =
T∑

r=1

pr(
α+ + τr

)(
α+ + τr + 1

) .

The positive correlation implied by the EFD can be attributed to the arrangement of cluster
means. In particular, it is allowed by the possibility that two clusters might align along
a straight line with a positive slope. Focusing on the cluster structure under the EFD
framework, the mean of the generic r-th Dirichlet mixture component (i.e., cluster) is a
linear convex combination of a common barycenter ᾱ = α

α+ and the r-th simplex vertex er:

µEFD
r =

α+ τrer
α+ + τr

= wrᾱ+ (1− wr) er,

where wr =
(

α+

α++τr

)
. This formulation results in the mean vector of the generic r-th

component having its r-th element higher than the corresponding element of the other
component means. This introduces a straightforward, yet fairly intricate, form of differ-
entiation among components/clusters. Additionally, each mean µEFD

r lies on the segment
connecting the barycenter and the r-th simplex vertex. Each τr exclusively influences the
corresponding r-th cluster mean. By increasing τr, this mean vector varies componentwise
from ᾱ to the r-th vertex er in a continuous and monotonic manner. An example of the
cluster structure with symmetric and asymmetric barycenter is shown in Figure 4.4.
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Figure 4.4: Graphical representation of the EFD’s mixture structure with ternary dia-
grams. Green triangles represent the common barycentre ᾱ, while blue triangles represent
component-specific mean vectors. Left panel: equal αt values. Right panel: different αt

values.

4.3.2 Extended flexible latent Dirichlet allocation

Let us consider a corpus composed of D documents. Under the EFLDA model, the gener-
ative process of the d-th document in a corpus C, is composed of three steps:

(i) generate a topics distribution θd ∼ EFD(α,p, τ ) ∈ ST ;

(ii) for each word wd,n, generate a topic zn from a Zn ∼ Categorical(1,θd);

(iii) generate a word wd,n from the specific distribution over V for the topic zn, that
is Wd,n|zn = t ∼ Categorical(1,ϕt), ϕt ∼ Dir(β).

Figure 4.6 represents the graphical model to generate data from EFLDA. The hyperpa-
rameters α.τ ,p, and β have to be chosen. An example of data generated from this model,
with T = 3 topics, can be seen in Figure 4.5. The two panels show the ternary plots of
the distribution of the topics on the simplex, which are equilateral triangles allowing for
a convenient and common representation of 3-part simplex elements (see Aitchison, 2003).
Noteworthily, it is possible to see how the distribution is changing with different values of
τ . In particular, different values of the barycenter, e.g. the magnitude of τ with respect to
α, lead to more separated cluster.
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Figure 4.5: Ternary diagrams showing data generated from EFLDA with different choice
of the hyperparameters. Vt represents topic t for t = 1, 2, 3.
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Figure 4.6: Direct Acycled Graph (DAG) describing EFLDA method. The unobserved
variables are drawn as circles, whereas the observed ones are filled by blue color. Rhombuses
represent hyperparameters. The outer rectangle represents documents, while the inner one
represents the repeated topics and words within a document.

4.3.3 A special case: the flexible Dirichlet

As a special case of the EFD distribution, we can obtain the flexible Dirichlet (FD), intro-
duced by Ongaro and Migliorati (2013). In the following, we will present the key formulas,
as the FD serves as the topic distribution for all the results discussed in Section 4.5

The FD is a distribution defined on the T -part simplex and it is characterized by the
following p.d.f.:

FD(x;α, τ,p) =
Γ
(
α+ + τ

)
∏T

t=1 Γ
(
αt

)( T∏
t=1

xαt−1
t

) T∑
i=1

pi
Γ
(
αi

)
Γ
(
αi + τ

)xτi , (4.4)
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where p ∈ ST is the vector of mixing weights, α ∈ RT
+, α+ =

∑T
t=1 αt, and τ > 0. The FD

allows also for a representation as a (structured) finite mixture of Dirichlet distributions,
that is

FD(x;α, τ,p) =
T∑
t=1

ptDir(x;α+ τet). (4.5)

It is also noteworthy to mention that the FD includes the Dirichlet distribution as a special
case: Equation 4.4 coincides with the Dirichlet distribution if τ = 1 and pt = αt/α

+ for
t = 1, . . . , T .

The FD distribution is characterized by D additional parameters if compared with the
Dirichlet, while, having fewer parameters than the EFD, e.g., unique elements in p and τ .
As a consequence, the FD still allows a more flexible modelization of the covariance matrix
than the Dirichlet. Indeed, if X ∼ FD(α, τ,p), then the following expressions hold for its
first two-order moments:

E [Xt] = µt =
αt + τpt
α+ + τ

,

Var (Xt) =
µt(1− µt)

α+ + τ + 1
+

τ2pt(1− pt)

(α+ + τ)(α+ + τ + 1)
,

Cov (Xt, Xl) = − µtµl
α+ + τ + 1

− τ2ptpl
(α+ + τ)(α+ + τ + 1)

(t, l = 1, . . . , T ; t ̸= l).

To better grasp the mixture structure of the FD, we can inspect the form of its
component-specific barycentres λ1, . . . ,λT :

λt = (1− δ)α/α+ + δet, where δ =
τ

α+ + τ
. (4.6)

Equation 4.6 shows that λt can be expressed as a weighted average of the vector ᾱ = α/α+

and the simplex’s vertex et with a weight depending on τ . Thus, the vector ᾱ can be thought
of as a “common” barycentre. Figure 4.7 illustrates the component-specific barycentres’
behavior by means of ternary diagrams. Specifically, by joining the λt’s (red triangles) with
a segment, an equilateral triangle with edges parallel to the simplex’s edges is obtained.

Looking at the formulas of the moments we can notice how the EFD allows for rele-
vant generalizations of the FD dependence structure. The cluster structure under the FD
framework has that only one parameter, τ , determines the distance of the D cluster means
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Figure 4.7: Ternary diagrams showing the FD’s mixture structure. Green triangles repre-
sent the common barycentre ᾱ, while red triangles represent component-specific mean vectors
λt. Left panel: equal αt values. Right panel: different αt values.

from each other and from the common barycenter ᾱ in a symmetric manner. Specifically, as
τ → 0, all clusters tend to have the same Dirichlet distribution, whereas when τ → ∞, they
converge onto the corresponding vertices of the simplex. The D mean vectors of the FD
form the vertices of a D-dimensional shifted and scaled simplex that is strictly contained
within the original D-dimensional simplex, with edges parallel and proportional to those
of the latter (Migliorati et al., 2017). In contrast, under the EFD there are no constraints
on the edges. Specifically, EFD allows even strong positive correlations. This type of cor-
relation can be found in real compositional data, even if the unit sum constraint naturally
induces negative correlations as well.

4.3.4 Flexible latent Dirichlet allocation

For the sake of completeness, the flexible LDA (FLDA) model has the following generative
process:

(i) generate a topics distribution θd ∼ FD(α,p, τ) ∈ ST ;

(ii) for each word wd,n, generate a topic zn from a Zn ∼ Categorical(1,θd);

(iii) generate a word wd,n from the specific distribution over V for the topic zn, that
is Wd,n|zn = t ∼ Categorical(1,ϕt), ϕt ∼ Dir(β).

As for the EFD, it is possible to prove that the FD is conjugate to the multino-

115



Chapter 4. A generalization of the latent Dirichlet allocation

mial/categorical scheme, thus we can define the conditional distribution as

θd|z, C,α, τ,p ∼ FD
(
α+ cd, τ,p∗

d/p
∗+
d

)
, cd = (c1,d,·, . . . , cT,d,·)

⊺, (4.7)

where ct,d,· represents the number of words generated by topic t in document d, p∗+d =
T∑
t=1

p∗d,t, and the generic element of p∗
d =

(
p∗d,1, . . . , p

∗
d,T

)⊺
is given by

p∗d,t = pt
(αt + τ)[ct,d,·]

(αt)[ct,d,·]
, t = 1, . . . , T, (4.8)

with x[n] = x(x+ 1) · · · · · (x+ n− 1) denoting the rising factorial function.

Figure 4.6 with equal τ also represents the DAG for the FLDA. As for EFLDA, the
hyperparameters α, τ,p and β have to be chosen. Noticeable, in Figure 4.8, it is possible
to see that increasing τ creates better separated clusters.
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Figure 4.8: Ternary diagrams showing data generated from FLDA with different choices
of the hyperparameters. Vt represents topic t for t = 1, 2, 3.

4.4 Posterior Inference

The estimation procedure for the parameters involved in the LDA and EFLDA models,
specifically the elements in Θ = {θ1, . . . ,θD} and Φ = {ϕ1, . . . ,ϕT }, cannot be fulfilled by
using standard techniques such as the maximum likelihood. This is because of the presence
of the topic labels, which are latent variables complicating the complete-data likelihood
function. Blei et al. (2003) showed that the posterior distribution of the hidden variables
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given a document is intractable to compute. So, they provided an alternative variational-
inference approach for estimating the quantities of interest. However, this approach requires
the derivation of some challenging equations that may be difficult to compute, especially
for the EFLDA model, and above all it gives only approximate solutions.

Thus, we prefer an approach based on MCMC techniques, such as the collapsed Gibbs
sampling (CGS). Here, the basic idea is to generate one parameter at a time, by drawing it
from its full conditional distribution. The main difference with respect to a standard Gibbs
sampler is that full conditionals are computed by marginalizing some parameters out; the
estimates of the dropped parameters are computed by means of closed-form expressions
(e.g., by taking advantage of some conjugacy properties). Griffiths and Steyvers (2004)
proposed a CGS approach to estimate the parameters of the LDA model by computing
the full conditionals of the topic labels Zd,n, and by deriving a closed-form expression for
estimates of the elements in Θ and Φ. To sketch the CGS, it is useful to define some
quantities:

• ct,d,w =

Nd∑
n=1

1(zd,n = t, wd,n = w): number of times that word w is assigned to topic

t in document d;

• ct,d,· =
V∑

v=1

ct,d,v: number of words assigned to topic t in document d;

• ct,·,w =

D∑
d=1

ct,d,w: number of times word w is assigned to topic t across documents;

• ct,·,· =

V∑
v=1

ct,·,v is the total number of words assigned to topic t.

In the LDA model, the full conditional distribution for Zd,n, namely the probability
that wd,n is assigned to topic t (t = 1, . . . , T ) given all the other topic assignments z−(d,n)

(where z−(d,n) represents the vector of topic assignments z with the exclusion of the topic
assignment zd,n), takes the following form:

p(t) = p
(
Zd,n = t|z−(d,n), C,α,β

)
∝

(
αt + c−t,d,·

)(
βwd,n

+ c−t,·,wd,n

)
(
β+ + c−t,·,·

) (4.9)

(t = 1, . . . , T ), where the notation c− refers to the previously defined counts excluding the
n-th word of document d, and wd,n indicates which term of the vocabulary is associated
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with the n-th word in document d (i.e., wd,n = v means that the n-th word of document
d is the v-th element of the vocabulary). We can sample from these full conditionals by
simply generating values from a discrete random variable with support {1, 2, . . . , T} and
probability mass function (p.m.f.) whose kernel is given by (4.9).

Thanks to the conjugacy property of the Dirichlet to the multinomial/categorical sam-
pling, we can derive the following posterior expressions:

θd|z, C,α ∼ Dir(α+ cd), cd = (c1,d,·, . . . , cT,d,·)
⊺; (4.10)

ϕt|z, C,β ∼ Dir(β + ct), ct = (ct,·,1, . . . , ct,·,V )
⊺. (4.11)

These posteriors allow estimating the elements in Θ and Φ. Indeed, by having a sample
of size B for the topic labels, namely z(b), b = 1, . . . , B, we can estimate θd and ϕt as the
posterior mean of (4.10) and (4.11), respectively:

θ̂
(b)
d =

α+ c(b)d

α+ +Nd
, ϕ̂

(b)
t =

β + c(b)t

β+ + c
(b)
t,·,·
.

4.4.1 Full conditionals - FLDA

The CGS scheme for the flexible LDA (FLDA) is similar to the previously described LDA
scheme. Indeed, the main difference is related to the expressions of the full conditionals,
which vary given the FD distribution imposed on θd. It is possible to prove that

p(t) = p(Zd,n = t|z−(d,n), C,α, τ,p,β) ∝ (4.12)

∝

(
αt + c−t,d,·

)(
βvd,n + c−t,·,wd,n

)
(
β+ + c−t,·,·

) { T∑
h=1

p∗d,h + p∗d,t

( τ

αt + c−t,d,·

)}
,

t = 1, . . . , T , where p∗d,t is defined as in Equation 4.8. According to the posterior distribution
of θd reported in (4.7), an estimate is obtained by computing the posterior mean of the FD
distribution, namely

θ̂
(b)
d =

α+ c(b)d + τp∗
d
(b)/p

(b)
+

α+ + τ +Nd
.
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4.4.2 Full conditionals - EFLDA

For EFLDA, we have a similar CGS as for the FLDA one. The only difference relies on the
specification of p(t) that is as follows,

p(t) = p(Zd,n = t|z−(d,n), C,α, τ ,p,β) ∝
(
αt + c−t,d,·

)(
βwd,n

+ c−t,·,wd,n

)(
β+ + c−t,·,·

)
×

{
T∑

h=1

p∗d,h

(α+ + τh + c−·,d,·)(α
+ + τh)

[c−·,d,·]

+
p∗d,t

(α+ + τt + c−·,d,·)(α
+ + τt)

[c−·,d,·]

(
τt

αt + c−t,d,·

)}
,

where p∗d,h = pd,h
(αh+τh)

[ch,d,·]

α
[ch,d,·]
h

. Noteworthily, unlike Equation 4.9, the second factor in

Equation 4.13 depends on the cluster structure. Consequently, the posterior mean of θd is

θ̂
(b)
d,t =

αt + c
(b)
d,t/p

(b)
+

α+ + τ +Nd
+

τtp
∗
d,t

(b)

α+ + τt +Nd
.

Finally, the CGS for the LDA, the FLDA, and the EFLDA models can be summarized
by Algorithm 2.

Algorithm 2 Collapsed gibbs sampling for topic modelling
1: Initialize the vector z (randomly) and compute the counts ct,d,v;
2: for b = 1, . . . , B do:
3: for each word in the corpus do:
4: sample sample a new topic z

(b)
d,n for wd,n from p(z);

5: update the counts ct,d,v;
6: end for
7: Use z(b) to compute the estimates θ̂(b)d and ϕ̂(b)

t .
8: end for
9: end

The full conditionals p(t) are given by (4.9) for the LDA, by (4.12) for the FLDA, and
by (4.13) for the EFLDA respectively. More details on the full conditional distributions
can be found in Appendix 4.A.
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4.5 A focus on the FLDA

In this section, we present some simulation studies and a real data application concerning
the FLDA model. The former is an extensive simulation study presented in Giampino et al.
(2023) where LDA and FLDA are compared in a synthetic setting. The latter shows an
application to real data on a corpus of books, where the true number of topic represents
the number of books involved in the analysis (Ascari and Giampino, 2023).

4.5.1 Simulation study

In this section, we compare the LDA and the FLDA models through a simulation study
involving three distinct corpus-generating schemes. All the considered scenarios share the
number of topics and the dimension of the corpus. Indeed, we consider corpora containing
D = 250 documents with an average length of ε = 600 words. Documents have been
populated by considering an artificial vocabulary of V = 300 unique words which may be
generated according to T = 3 latent topics.

The three simulating scenarios differ in their corpus-generating mechanism. In the
first scenario, we generate each element θd from a Dirichlet distribution with parameter
α = (10, 25, 15). In the second scenario, each θd is generated from an FD with parameters
α = (10, 25, 15),p = (0.5, 0.3, 0.2), and τ = 30. Lastly, we consider a logistic-Normal with

parameters µ = (−2, 3) and Σ =

[
2 1

1 6

]
as distribution for generating each θd in the

third scenario. Thus, the underlying true data-generating mechanisms are the LDA (first
scenario), the FLDA (second scenario), and the CTM (third scenario) models.

Figure 4.9 shows the generated vectors θ∗1, . . . ,θ∗D in the three scenarios by means of
a ternary diagram. It is worth noting that three very different patterns are recovered,
characterized by one main group of θ∗d values (first scenario), three distinct groups (second
scenario), and most θ∗d values with at least one null component (third scenario). These θ∗d
vectors are going to be considered as the true vectors of topic proportions generating the
corpora.

Finally, to define the T = 3 topics, we generated vectors ϕ∗
1,ϕ

∗
2, and ϕ∗

3 by sampling
from a Dirichlet distribution with V -dimensional parameter β = (1, . . . , 1).

We replicate each scenario R = 100 times, by generating R different corpora and fitting
both the LDA and the FLDA models. The aim of the simulation study is to compare
the estimates of the two models with the real parameters, and establish the most reliable
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Figure 4.9: Ternary diagrams representing the vectors of topic proportions generated from
Dirichlet for LDA (top-left), from FD for FLDA (top-right), and from logistic-Normal for
CTM (bottom) models.
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method.

We fit the models by considering the CGS illustrated in the previous section. More
specifically, for each replica we run a single chain composed of B = 2000 iterations and
discard 1000 iterations as a warm-up (see Figure 4.10 for traceplots).

To estimate both the LDA and the FLDA parameters, one needs to specify the model
hyper-parameters. In the LDA, the only quantity to specify is the T -dimensional vector
α, which is typically chosen with equal elements α1 = · · · = αT = α so as to adopt a
symmetric Dirichlet distribution in a weakly-informative fashion. Many authors proposed
some default values for the common α, such as α = 0.1 (Teh et al., 2006) or α = 50/T (Qiu,
2014; Steyvers and Griffiths, 2007; Xia et al., 2013). In this simulation study, we prefer a
value of α = 1 so to select a uniform distribution on the simplex ST . For the FLDA, the
implementation of some default choices is more tricky. Indeed, we have to specify the value
of α,p, and τ , and these parameters have a direct impact on the cluster structure of the
FD distribution, which cannot (and should not) be treated by adopting a default choice.
In a scenario with no prior information available, we decided to implement a preliminary
step aimed at obtaining values for the α,p, and τ . More precisely, by having the estimates
from the chains θ̂1, . . . , θ̂D from the LDA model, we use them as data points to estimate
the parameters of a FD distribution. This inferential problem may be handled both via
an EM-based procedure (Migliorati et al., 2017) or by a Bayesian approach implemented
through the Stan language (Stan Development Team, 2017). Both these approaches provide
initial estimates α̂, p̂, and τ̂ that can be used to run the CGS described in Section 3.3. We
implemented the second approach. Topic assignments have been initialized randomly.

To compare the estimates provided by the LDA and the FLDA models, we take advan-
tage of three measures, namely the Kullback-Leibler (KL) divergence, and its symmetrized
(SKL) version (Kullback and Leibler, 1951), and the Aitchison AIT distance (Aitchison,
1990). These metrics measure the discrepancy existing between two compositional vectors,
thus larger values are associated with “farther” vectors. In particular, let x and y be two
compositional vectors defined on the same simplex space ST . Then, the above metrics are
defined as:

dKL(x,y) =
T∑
t=1

xt log

(
xt
yt

)
,

dSKL(x,y) = dKL(x,y) + dKL(y,x),

and
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Figure 4.10: Traceplots of the MCMC chains for each topic and for each model. In red
the iterative means.
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dAIT (x,y) =

√√√√ T∑
t=1

(
log

(
xt

µ0(x)

)
− log

(
yt

µ0(y)

))2

,

where µ0(x) =
(∏T

t=1 xt

)1/T
denotes the geometric mean of the elements of x.

In this framework, we can use these measures to compare an estimated vector of pa-
rameters (i.e., θ̂d or ϕ̂t) with the true vector (θ∗d or ϕ∗

t ).

In particular, Figure 4.11 shows the mean of the distances computed between θ∗d and
its estimate θ̂(r)d in the r-th simulating replicate. For example, each point in the boxplots
in the first column of Figure 4.11 represents the value

d
(r)
AIT =

1

D

D∑
d=1

dAIT

(
θ̂
(r)
d ,θ∗d

)
, r = 1, . . . , R.

It is easy to see that the FLDA model provides estimates for the topic proportions that are
closer to the corresponding true values than the LDA’s estimates in all the three considered
scenarios and according to all the considered metrics. Therefore, the FLDA, contrarily to
the LDA, shows robustness with respect to the data generating mechanism.

Interestingly, the estimates provided by the FLDA are better than the ones from the
LDA model independently from the corpus-generating mechanism. This is probably due
to the additional step of estimating the FD’s parameters using the results provided by the
LDA model and, consequently, improving it.

Similar considerations hold for the estimation of the topics, namely the parameters
ϕ1,ϕ2, and ϕ3. Figure 4.12 shows the boxplots of the distances between the r-th estimate
ϕ̂
(r)
t and the true ϕ∗

t , e.g. d(r)AIT,t = dAIT

(
ϕ̂
(r)
t ,ϕ∗

t

)
. In all the plots we can note a general

superiority of the FLDA model with respect to the classical LDA. The only partial exception
is the estimation of the third topic (i.e., ϕ3) when the corpus is generated according to a
correlated topic model (CTM), that is a scenario where we expect both the LDA and the
FLDA models to perform badly. In that case, the two approaches seem to provide similar
results. Please note that in estimating the two remaining vectors ϕ1 and ϕ2 in the CTM
scenario, the FLDA still provides better estimates.

Lastly, since the CGS estimation procedure for both the LDA and FLDA models pro-
vides Monte Carlo samples of z, we can compare them with the set of true topics associated
with each word in the corpus. Such a comparison is performed by considering the nor-
malized Pearson’s χ2 statistic (Agresti, 2012). Figure 4.13 summarizes these normalized

124



4.5. A focus on the FLDA

AIT KL SKL

D
ata from

 LD
A

D
ata from

 F
LD

A
D

ata from
 C

T
M

0.04

0.08

0.12

0.16

0.02

0.03

0.04

0.05

0.06

0.07

0.15

0.20

0.25

0.30

0.02

0.04

0.06

0.08

0.010

0.015

0.020

0.025

0.030

0.15

0.20

0.25

0.4

0.5

0.6

0.7

0.3

0.4

0.5

2.0

2.1

2.2

2.3

Divergences

V
al

ue

Model

FLDA

LDA

Figure 4.11: Boxplot representing the mean distance between the estimated θds and the
true θ∗ds. Each column refers to a metric, and each row corresponds to one of the simulated
scenarios.
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Figure 4.13: Normalized Pearson’s χ2 statistic evaluating the association between real and
predicted words’ topic.

statistics for the two models in the three simulative scenarios. The FLDA still shows better
performance (i.e., predicted topics more associated with real topics) than the LDA.

4.5.2 Real data application: The Great Library Heist

This application is related to “The Great Library Heist”, which is a popular topic model
application. Supposed that during the night, a vandal broke into their professor’s study and
tore three books into single chapters. The single chapters are not labeled, so the professor is
not able to cluster them so to restore the original books. In the following, we consider three
books “Great Expectations”, “20000 Leagues Under the Sea”, and “Pride and Prejudice”,
and use their D = 166 chapters as documents forming the corpus. We will consider T = 3

latent topics, each of them hopefully representing one of the destroyed books. Words in
the corpus C compose a vocabulary V of V = 16531 unique terms. We run both the LDA
and the FLDA models for B = 5000 iterations. Figure 4.14 displays the estimated topic
proportions θd for all the documents, by conditioning on the true topic (i.e., the original
book).

We can note from Table 4.1 that both the LDA and FLDA models represent chapters
from “Great Expectations” as mainly composed of terms arising from topic 1. The FLDA,
thanks to the flexible covariance matrix of the FD, improves the LDA performance by
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providing θd’s more concentrated towards 0 or 1 than those provided by the LDA. Similar
conclusions hold true for chapters from “20000 Leagues Under the Sea” and “Pride and
Prejudice”, which are characterized by high proportions of words from topics 2 and 3,
respectively. Topics generated by the FLDA are represented by illustrating the 20 most
probable words (Figure 4.15).
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Great Expectation Pride & Prejudice 20000 Leagues under the Sea
LDA FLDA LDA FLDA LDA FLDA

θ1 0.9663 0.9892 0.0076 0.0019 0.0669 0.002
θ2 0.0053 0.0012 0.0045 0.001 0.9876 0.9967
θ3 0.0203 0.0064 0.9878 0.9967 0.0054 0.0015

Table 4.1: Element-wise median of the fitted θ̂d stratified by original book and model.

4.6 Future developments

Topic modeling techniques have gained widespread popularity due to their remarkable ca-
pacity to offer clear interpretations of latent topics within large textual datasets. These
methods have enabled researchers and analysts to uncover meaningful patterns and insights
from vast troves of unstructured textual data. In recent years, the field of topic modeling
has seen significant advancements, particularly with the emergence of more flexible mixture
structures like the extended flexible Dirichlet distribution and its subsequent evolution, the
extended flexible latent Dirichlet allocation model. These innovations represent a leap for-
ward in the realm of topic modeling, providing a more nuanced and powerful approach to
uncovering hidden topics within documents, especially if characterized by strong positive
correlation.

Moreover, the EFLDA model offers a richer parametrization, which plays a crucial
role in the optimization and efficiency of its implementation. The MCMC runs in 0.18
seconds per iteration in a scenario with a vocabulary of 300 unique words, 200 documents,
and over 120,000 words. This parametric richness empowers researchers to fine-tune the
model’s performance to better suit their specific objectives and datasets. It allows for
greater control and adaptability in the topic modeling process, ultimately leading to more
accurate and insightful results. This model exploits the EFD distribution that, as the
Dirichlet distribution, is defined on the simplex. It also maintains the good properties of
the Dirichlet distribution, e.g. conjugacy with the multinomial/categorical distribution,
identifiability and recovering of moments and full conditionals in closed form.

Currently, our research efforts are focused on the exploration of various synthetic data
scenarios, each generated using distinct schemes. Within this scope, we are meticulously
examining the model’s responsiveness to different numbers of topics, and concurrently, we
are conducting a comprehensive performance analysis, juxtaposing the EFLDA against
traditional LDA models.
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In terms of goals, the overarching objective in the realm of topic modeling remains to
develop models that can provide deeper and more nuanced insights into the underlying
structure of text data. This includes not only improving the accuracy of topic identifica-
tion but also enhancing the interpretability of these topics. In conclusion, topic modeling
techniques like EFLDA have revolutionized our ability to extract meaningful information
from unstructured text. Their flexibility and parametric richness make them powerful tools
for uncovering latent topics within documents.
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Appendix

Appendix

4.A Full conditionals

The derivation of the full conditional distributions is based on Carpenter (2010). We use
the same notation provided along Chapter 4.

A.1 LDA

p(w, z, θ, ϕ | α,β) = p(ϕ | β)p(θ | α)p(z | θ)p(w | ϕ, z)

=

T∏
t=1

p
(
ϕt | β

) D∏
d=1

p
(
θd | α

) D∏
d=1

Nd∏
n=1

p
(
zd,n | θd

) D∏
d=1

Nd∏
n=1

p
(
wd,n | ϕzd,n

)
We want to compute the probability that topic za,b is assigned to wa,b (i.e., the b-th

word of document a ) given z−(a,b), all the other topic assignments to all the other words.

p
(
za,b | z−(a,b),w,α,β

)
=
p
(
za,b, z−(a,b),w | α,β

)
p
(
z−(a,b),w | α,β

)
∝ p
(
za,b, z−(a,b),w | α,β

)
= p(z,w | α,β)

=

∫∫
p(w, z, θ, ϕ | α,β)dθdϕ

=

∫∫
p(ϕ | β)p(θ | α)p(z | θ)p(w | ϕ, z)dθdϕ

=

∫
p(z | θ)p(θ | α)dθ

∫
p(w | ϕ, z)p(ϕ | β)dϕ

=

∫ D∏
d=1

p
(
zd | θd

)
p
(
θd | α

)
dθ

∫ T∏
t=1

p
(
ϕt | β

) D∏
d=1

Nd∏
n=1

p
(
wd,n | ϕzd,n

)
dϕ

=
D∏

d=1

∫
p
(
zd | θd

)
p
(
θd | α

)
dθd︸ ︷︷ ︸

(I)

×
T∏
t=1

∫
p
(
ϕt | β

) D∏
d=1

Nd∏
n=1

p
(
wd,n | ϕzd,n

)
dϕt︸ ︷︷ ︸

(II)

We can further define counts c−(a,b) that are defined in the same way as the other counts
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described in Chapter 4, only without the counts for position (a, b). This means that:

• ct,d,· =

c
−(a,b)
t,d,· + 1 if t = za,b and d = a

c
−(a,b)
t,d,· otherwise

• ct,,j =

c
−(a,b)
t,·,j + 1 if t = za,b and j = wa,b

c
−(a,b)
t,·,j otherwise

Let’s compute term (I) assuming that θd ∼ Dir(α):

(I) =
D∏

d=1

∫
p
(
zd | θd

)
p
(
θd | α

)
dθd =

D∏
d=1

∫ Nd∏
n=1

θd,zd,n

Γ
(
α+
)

∏T
t=1 Γ

(
αt

) T∏
t=1

θαt−1
d,t dθd

=
D∏

d=1

∫ Γ
(
α+
)

∏T
t=1 Γ

(
αt

) T∏
t=1

θ
ct,d,·
d,t

T∏
t=1

θαt−1
d,t dθd

=
D∏

d=1

∫ Γ
(
α+
)

∏T
t=1 Γ

(
αt

) T∏
t=1

θ
ct,d,·+αt−1
d,t dθd

=

D∏
d=1

∫ Γ
(
α+
)

∏T
t=1 Γ

(
αt

)∏T
t=1 Γ

(
ct,d,· + αt

)
∏T

t=1 Γ
(
ct,d,· + αt

) Γ
(∑T

t=1 ct,d,· + αt

)
Γ
(∑T

t=1 ct,d,· + αt

)
×

T∏
t=1

θ
ct,d,+αt−1
d,t dθd

=
D∏

d=1

Γ
(
α+
)

∏T
t=1 Γ

(
αt

) ∏T
t=1 Γ

(
ct,d,· + αt

)
Γ
(∑T

t=1 ct,d,· + αt

)
×
∫ ∑T

t=1 ct,d,· + αt

)
∏T

t=1 Γ
(
ct,d,· + αt

) T∏
t=1

θ
ct,d,·+αt−1
d,t dθd

︸ ︷︷ ︸
=1

=

D∏
d=1

Γ
(
α+
)

∏T
t=1 Γ

(
αt

) ∏T
t=1 Γ

(
ct,d,· + αt

)
Γ
(∑T

t=1 ct,d,· + αt

)
Let’s compute term (II) assuming that ϕt ∼ Dir(β) :
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(II) =
T∏
t=1

∫
p
(
ϕt | β

) D∏
d=1

Nd∏
n=1

p
(
wd,n | ϕzd,n

)
dϕt

=

T∏
t=1

∫ Γ
(
β+
)

∏V
j=1 Γ

(
βj

) V∏
j=1

ϕβt−1
t,j

D∏
d=1

Nd∏
n=1

ϕzd,n,wd,n
dϕt

=
T∏
t=1

∫ Γ
(
β+
)

∏V
j=1 Γ

(
βj

) V∏
j=1

ϕ
βj−1
t,j

V∏
j=1

ϕ
ct,,j
t,j dϕt

=

T∏
t=1

∫ Γ
(
β+
)

∏V
j=1 Γ

(
βj

) V∏
j=1

ϕ
ct,j+βj−1
t,j dϕt

=
T∏
t=1

∫ Γ
(
β+
)

∏V
j=1 Γ

(
βj

)∏V
j=1 Γ

(
ct,,j + βj

)
∏V

j=1 Γ
(
ct,,j + βj

) Γ
(∑V

j=1 ct,·,j + βj

)
Γ
(∑V

j=1 ct,·,j + βj

) V∏
j=1

ϕ
ct,,j+βj−1
t,j dϕt

=
T∏
t=1

Γ
(
β+
)

∏V
j=1 Γ

(
βj

) ∏V
j=1 Γ

(
ct,,j + βj

)
Γ
(∑V

j=1 ct,,j + βj

) ∫ Γ
(∑V

j=1 ct,,j + βj

)
∏V

j=1 Γ
(
ct,,j + βj

) V∏
j=1

ϕ
ct,,j+βj−1
t,j dϕt

︸ ︷︷ ︸
=1

=
T∏
t=1

Γ
(
β+
)

∏V
j=1 Γ

(
βj

) ∏V
j=1 Γ

(
ct,·,j + βj

)
Γ
(∑V

j=1 ct,,j + βj

)
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So, the full-conditionals have the form

p
(
za,b |z−(a,b),w,α,β

)
=

D∏
d=1

∫
p
(
zd | θd

)
p
(
θd | α

)
dθd ×

T∏
t=1

∫
p
(
ϕt | β

) D∏
d=1

Nd∏
n=1

p
(
wd,n | ϕzd,n

)
dϕt

=

D∏
d=1

Γ
(
α+
)

∏T
t=1 Γ

(
αt

) ∏T
t=1 Γ

(
ct,d,· + αt

)
Γ
(∑T

t=1 ct,d,· + αt

) ×
T∏
t=1

Γ
(
β+
)

∏V
j=1 Γ

(
βj

) ∏V
j=1 Γ

(
ct,,j + βj

)
Γ
(∑V

j=1 ct,,j + βj

)
∝

D∏
d=1

∏T
t=1 Γ

(
ct,d,· + αt

)
Γ
(∑T

t=1 ct,d,· + αt

) ×
T∏
t=1

∏V
j=1 Γ

(
ct,,j + βj

)
Γ
(∑V

j=1 ct,,j + βj

)
=
[∏
d̸=a

∏T
t=1 Γ

(
ct,d,· + αt

)
Γ
(∑T

t=1 ct,d,· + αt

)] · ∏T
t=1 Γ

(
ct,a,· + αt

)
Γ
(∑T

t=1 ct,a,· + αt

)
×

T∏
t=1

[∏
j ̸=wa,b

Γ
(
ct,·,j + βj

)]
Γ
(
ct,·,wa,b

+ βwa,b

)
Γ
(∑V

j=1 ct,·,j + βj

)
∝

∏T
t=1 Γ

(
ct,a,· + αt

)
Γ
(∑T

t=1 ct,a,· + αt

) ×
T∏
t=1

Γ
(
ct,·,wa,b

+ βwa,b

)
Γ
(∑V

j=1 ct,·,j + βj

)
∝

(∏
k ̸=za,b

Γ
(
c
−(a,b)
t,a,· + αt

))
Γ
(
c
−(a,b)
za,b,a,· + αza,b + 1

)
Γ
(
1 + α+ +

∑T
t=1 c

−(a,b)
t,a,·

) ·

·

 ∏
t̸=za,b

Γ
(
c
−(a,b)
t,·,wa,b

+ βwa,b

)
Γ
(
β+ +

∑V
j=1 c

−(a,b)
t,·,j

)
 Γ

(
c
−(a,b)
za,b,·,wa,b

+ βwa,b
+ 1
)

Γ
(
1 + β+ +

∑V
j=1 c

−(a,b)
za,b,′,j

)
Recalling that Γ(x+ 1) = xΓ(x), we can rewrite the previous formula as
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∝

(∏
t̸=za,b

Γ
(
c
−(a,b)
t,a,· + αt

))
Γ
(
c
−(a,b)
za,b,a,· + αza,b

)(
c
−(a,b)
za,b,a,· + αza,b

)
Γ
(
1 + α+ +

∑T
t=1 c

−(a,b)
t,a,·

)
×

 ∏
t̸=za,b

Γ
(
c
−(a,b)
t,·,wa,b

+ βwa,b

)
Γ
(
β+ +

∑V
j=1 c

−(a,b)
t,·,j

)
 Γ

(
c
−(a,b)
za,b,wa,b + βwa,b

)(
c
−(a,b)
za,b,·wa,b

+ βwa,b

)
Γ
(
β+ +

∑V
j=1 c

−(a,b)
za,b,·,j

)(
β+ +

∑V
j=1 c

−(a,b)
za,b,·,j

)
=

(∏T
t=1 Γ

(
c
−(a,b)
t,a,· + αt

))(
c
−(a,b)
za,b,a,· + αza,b

)
Γ
(
1 + α+ +

∑T
t=1 c

−(a,b)
t,a,·

)
 T∏

t=1

Γ
(
c
−(a,b)
t,·,wa,b

+ βwa,b

)
Γ
(
β+ +

∑V
j=1 c

−(a,b)
t,·,j

)

(
c
−(a,b)
za,b,·,wa,b

+ βwa,b

)
(
β+ +

∑V
j=1 c

−(a,b)
za,b,·,j

)
∝

(
c
−(a,b)
za,b,a,· + αza,b

)(
c
−(a,b)
za,b,·,wa,b

+ βwa,b

)
(
β+ +

∑V
j=1 c

−(a,b
za,b,·j

)
• c

−(a,b)
za,b,a, is the number of other words in document a that have been assigned to topic
za,b

• c
−(a,b)
za,b,·,wa,b

is the number of times the current word wa,b has been assigned to topic za,b

A.2 EFLDA

p(w, z, θ, ϕ | α, τ ,p,β) = p(ϕ | β)p(θ | α, τ ,p)p(z | θ)p(w | ϕ, z)

=
T∏
t=1

p
(
ϕt | β

) D∏
d=1

p
(
θd | α, τ ,p

)

×
D∏

d=1

Nd∏
n=1

p
(
zd,n | θd

) D∏
d=1

Nd∏
n=1

p
(
wd,n | ϕzd,n

)

We want to compute the probability that topic za,b is assigned to wa,b (i.e., the b-th
word of document a ) given z−(a,b), all the other topic assignments to all the other words.
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p
(
za,b | z−(a,b),w,α,β

)
=
p
(
za,b, z−(a,b),w | α,β

)
p
(
z−(a,b),w | α,β

)
∝ p
(
za,b, z−(a,b),w | α,β

)
= p(z,w | α,β)

=

∫∫
p(w, z, θ, ϕ | α,β)dθdϕ

=

∫∫
p(ϕ | β)p(θ | α)p(z | θ)p(w | ϕ, z)dθdϕ

=

∫
p(z | θ)p(θ | α)dθ

∫
p(w | ϕ, z)p(ϕ | β)dϕ

=

∫ D∏
d=1

p
(
zd | θd

)
p
(
θd | α

)
dθ

∫ T∏
t=1

p
(
ϕt | β

) D∏
d=1

Nd∏
n=1

p
(
wd,n | ϕzd,n

)
dϕ

=

D∏
d=1

∫
p
(
zd | θd

)
p
(
θd | α

)
dθd︸ ︷︷ ︸

(I)

×
T∏
t=1

∫
p
(
ϕt | β

) D∏
d=1

Nd∏
n=1

p
(
wd,n | ϕzd,n

)
dϕt︸ ︷︷ ︸

(II)

We can further define counts c−(a,b) that are defined in the same way as the above
counts, only without the counts for position (a, b). This means that:

• ct,d,· =

c
−(a,b)
t,d,· + 1 if t = za,b and d = a

c
−(a,b)
t,d,· otherwise

• ct,·,j =

c
−(a,b)
t,·,j + 1 if t = za,b and j = wa,b

c
−(a,b)
t,·,j otherwise
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Let’s compute term (I) assuming that θd ∼ EFD(α, τ ,p) :

(I) =

D∏
d=1

∫
p
(
zd | θd

)
p
(
θd | α, τ ,p

)
dθd

=

D∏
d=1

∫ Nd∏
n=1

θd,zd,n
1∏T

t=1 Γ
(
αt

)( T∏
t=1

θαt−1
d,t

)
·

T∑
h=1

ph
Γ
(
αh

)
Γ
(
α+ + τh

)
Γ
(
αh + τh

) θτhd,hdθd

=
D∏

d=1

∫ ( T∏
t=1

θ
ct,d,
d,t

) 1∏T
t=1 Γ

(
αt

)( T∏
t=1

θαt−1
d,t

)
·

T∑
h=1

ph
Γ
(
αh

)
Γ
(
α+ + τh

)
Γ
(
αh + τh

) θτhd,hdθd

=
D∏

d=1

∫ ( T∏
t=1

θ
ct,d,·+αt−1
d,t

) 1∏T
t=1 Γ

(
αt

) ·
T∑

h=1

ph
Γ
(
αh

)
Γ
(
α+ + τh

)
Γ
(
αh + τh

) θτhd,hdθd

=

D∏
d=1

∫
1∏T

t=1 Γ
(
αt

) ·
T∑

h=1

ph
Γ
(
αh

)
Γ
(
α+ + τh

)
Γ
(
αh + τh

) ( T∏
t=1

θ
ct,d,,+αt−1
d,t

)
θτhd,hdθd

=
D∏

d=1

1∏T
t=1 Γ

(
αt

) ·
T∑

h=1

ph
Γ
(
αh

)
Γ
(
α+ + τh

)
Γ
(
αh + τh

) ∫ ( T∏
t=1

θ
ct,d,+αt−1
d,t

)
θτhd,hdθd

=

D∏
d=1

1∏T
t=1 Γ

(
αt

) ·
T∑

h=1

ph
Γ
(
αh

)
Γ
(
α+ + τh

)
Γ
(
αh + τh

) ∏T
t=1 Γ

(
αt + ct,d,·

)
Γ
(
αh + τh + ch,d,·

)
Γ
(
α+ + τh +

∑T
t=1 ct,d,·

)
Γ
(
αh + ch,d,·

)
=

D∏
d=1

( T∏
t=1

Γ
(
αt + ct,d,·

)
Γ
(
αt

) )
·

T∑
h=1

ph
Γ
(
αh

)
Γ
(
αh + ch,d,·

) Γ
(
αh + τh + ch,d,·

)
Γ
(
αh + τh

) Γ
(
α+ + τh

)
Γ
(
α+ + τh +

∑T
t=1 ct,d,·

)
(II) coincides with (II) of the LDA:

(II) =

T∏
t=1

Γ
(
β+
)

∏V
j=1 Γ

(
βj

) ∏V
j=1 Γ

(
ct,,j + βj

)
Γ
(
β+ +

∑V
j=1 ct,,j

) .
So, the full-conditionals have the form

p
(
za,b | z−(a,b),w,α, τ ,p,β

)
∝
{ D∏

d=1

( T∏
t=1

Γ
(
αt + ct,d,·

)
Γ
(
αt

) ) T∑
h=1

ph
Γ
(
αh

)
Γ
(
αh + τh + ch,d,·

)
Γ
(
α+ + τh

)
Γ
(
αh + ch,d,·

)
Γ
(
αh + τh

)
Γ
(
α+ + τh + c·,d,·

)}
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×
T∏
t=1

Γ
(
β+
)

∏V
j=1 Γ

(
βj

)∏V
j=1 Γ

(
ct,·,j + βj

)
Γ
(
β+ + ct,·,·

)
∝
{ D∏

d=1

[( T∏
t=1

Γ
(
αt + ct,d,·

)) T∑
h=1

ph
Γ
(
αh

)
Γ
(
αh + τh + ch,d,·

)
Γ
(
α+ + τh

)
Γ
(
αh + ch,d,

)
Γ
(
αh + τh

)
Γ
(
α+ + τh + c·,d,·

)]}

×
T∏
t=1

∏V
j=1 Γ

(
ct,·,j + βj

)
Γ
(
β+ + ct,·,·

)
∝
{∏

d̸=a

[( T∏
t=1

Γ
(
αt + ct,d,·

)) T∑
h=1

ph
Γ
(
αh

)
Γ
(
αh + τh + ch,d,·

)
Γ
(
α+ + τh

)
Γ
(
αh + ch,d,·

)
Γ
(
αh + τh

)
Γ
(
α+ + τh + c,,d,·

)]}

×
[( T∏

t=1

Γ
(
αt + ct,a,.

)) T∑
h=1

ph
Γ
(
αh

)
Γ
(
αh + τh + ch,a,·

)
Γ
(
α+ + τh

)
Γ
(
αh + ch,a,.

)
Γ
(
αh + τh

)
Γ
(
α+ + τh + c,,a,.

)]

×
T∏
t=1

[∏
j ̸=wa,b

Γ
(
ct,·,j + βj

)]
Γ
(
ct,·,wa,b

+ βwa,b

)
Γ
(
β+ + ct,·,·

)
∝
[( T∏

t=1

Γ
(
αt + ct,a,·

)) T∑
h=1

ph
Γ
(
αh

)
Γ
(
αh + τh + ch,a,·

)
Γ
(
α+ + τh

)
Γ
(
αh + ch,a,.

)
Γ
(
αh + τh

)
Γ
(
α+ + τh +

∑T
t=1 ct,a,·

)]

×
T∏
t=1

Γ
(
ct,·,wa,b

+ βwa,b

)
Γ
(
β+ + ct,·,·

)
∝
( ∏

t̸=za,b

Γ
(
αt + c

−(a,b)
t,a,·

))
Γ
(
αza,b + c

−(a,b)
za,b,a,· + 1

)

×
[ ∏
k ̸=za,b

Γ
(
c
−(a,b)
t,·,wa,b

+ βwa,b

)
Γ
(
β+ + c

−(a,b)
t,·,·

) ]Γ(c−(a,b)
za,b,·wa,b

+ βwa,b
+ 1
)

Γ
(
1 + β+ + c

−(a,b)
za,b,·,·

)
×
[ ∑
h̸=za,b

ph
Γ
(
αh

)
Γ
(
αh + τh + c

−(a,b)
h,a,·

)
Γ
(
α+ + τh

)
Γ
(
αh + c

−(a,b)
h,a,·

)
Γ
(
αh + τh

)
Γ
(
α+ + τh + 1 + c

−(a,b)
·,a,·

)
+ pza,b

Γ
(
αza,b

)
Γ
(
αza,b + τza,b + c

−(a,b)
za,b,a,· + 1

)
Γ
(
α+ + τza,b

)
Γ
(
αza,b + c

−(a,b)
za,b,a,· + 1

)
Γ
(
αza,b + τza,b

)
Γ
(
α+ + τza,b + 1 + c

−(a,b)
·,a,·

)]

Recalling that Γ(x+1) = xΓ(x) and let N−
a = c

−(a,b)
,a,· =

∑T
t=1 c

−(a,b)
t,a,· is the number of words

contained in document a without considering word b and x[n] = x(x+ 1) . . . (x+ n− 1) is
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the rising factorial function. We can rewrite the previous formula as

∝
{( ∏

t̸=za,b

Γ
(
αt + c

−(a,b)
t,a,·

))
Γ
(
αza,b + c

−(a,b)
za,b,a,·

)}(
αza,b + c

−(a,b)
za,b,a,·

)

×
[ ∏
t̸=za,b

Γ
(
c
−(a,b)
t,·,wa,b

+ βwa,b

)
Γ
(
β+ + c

−(a,b)
t,·,·

) ]Γ(c−(a,b)
za,b,·wa,b

+ βwa,b

)
Γ
(
β+ + c

−(a,b)
za,b,·,·

)
(
c
−(a,b)
za,b,·wa,b

+ βwa,b

)
(
β+ + c

−(a,b)
za,b,·,·

)
×
[ ∑
h̸=za,b

ph
Γ
(
αh

)
Γ
(
αh + τh + c

−(a,b)
h,a,·

)
Γ
(
α+ + τh

)
Γ
(
αh + c

−(a,b)
h,a,·

)
Γ
(
αh + τh

)
Γ
(
α+ + τh + 1 + c

−(a,b)
·,a,·

)
+ pza,b

Γ
(
αza,b

)
Γ
(
αza,b + τza,b + c

−(a,b)
za,b,a,·

)
Γ
(
α+ + τza,b

)
Γ
(
αza,b + c

−(a,b)
za,b,a,·

)
Γ
(
αza,b + τza,b

)
Γ
(
α+ + τza,b + 1 + c

−(a,b)
·,a,·

)
×

(
αza,b + τza,b + c

−(a,b)
za,b,a,·

)
(
αza,b + c

−(a,b)
za,b,a,·

) ]

∝
(
αza,b + c

−(a,b)
za,b,a,·

)
·

(
c
−(a,b)
za,b,·,wa,b

+ βwa,b

)
(
β+ + c

−(a,b)
za,b,·,·

)
×
[ T∑
h=1

ph
Γ
(
αh

)
Γ
(
αh + τh + c

−(a,b)
h,a,·

)
Γ
(
α+ + τh

)
Γ
(
αh + c

−(a,b)
h,a,·

)
Γ
(
αh + τh

)
Γ
(
α+ + τh + 1 + c

−(a,b)
,a,·,

)
+ pza,b

Γ
(
αza,b

)
Γ
(
αza,b + τza,b + c

−(a,b)
za,b,a,·

)
Γ
(
α+ + τza,b

)
Γ
(
αza,b + c

−(a,b)
za,b,a,·

)
Γ
(
αza,b + τza,b

)
Γ
(
α+ + τza,b + 1 + c

−(a,b)
,a,·

)
×


(
αza,b + τza,b + c

−(a,b)
za,b,a,·

)
(
αza,b + c

−(a,b)
za,b,a,·

) − 1

]

∝
(
αza,b + c

−(a,b)
za,b,a,·

)(c−(a,b)
za,b,wa,b + βwa,b

)
(
β+ + c

−(a,b)
za,b,·,·

)
×
[ T∑
h=1

ph
Γ
(
αh

)
Γ
(
αh + τh + c

−(a,b)
h,a,·

)
Γ
(
α+ + τh

)
Γ
(
αh + c

−(a,b)
h,a,·

)
Γ
(
αh + τh

)
Γ
(
α+ + τh + 1 + c

−(a,b)
,a,·

)
+ pza,b

Γ
(
αza,b

)
Γ
(
αza,b + τza,b + c

−(a,b)
za,b,a,·

)
Γ
(
α+ + τza,b

)
Γ
(
αza,b + c

−(a,b)
za,b,a,·Γ

(
αza,b + τza,b

)
Γ
(
α+ + τza,b + 1 + c

−(a,b)
,a,·,

)( τza,b

αza,b + c
−(a,b)
za,b,a,·

)]
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∝
(
αza,b + c

−(a,b)
za,b,a,·

)(c−(a,b)
za,b,·,wa,b

+ βwa,b

)
(
β+ + c

−(a,b)
za,b,·,·

)

×

[
T∑

h=1

ph

(
αh + τh

)[c−(a,b)
h,a,·

]
(
αh

)[c−(a,b)
h,a,·

] 1(
α+ + τh +N−

a

)(
α+ + τh

)[N−
a

]

+ pza,b

(
αza,b + τza,b

)[c−(a,b)
za,b,a,.

]
(
αza,b

)[c−(a,b
za,b,a,.

] 1(
α+ + τza,b +N−

a

)(
α+ + τza,b

)[N−
a

]( τza,b

αza,b + c
−(a,b)
za,b,a,·

)]
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