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Fair Least Core: efficient, stable and unique
game-theoretic reward allocation

in Energy Communities by row-generation
Davide Fioriti, Member, IEEE, Giancarlo Bigi, Antonio Frangioni, Mauro Passacantando, and Davide Poli

Abstract—Energy Communities are increasingly proposed as a
tool to boost renewable penetration and maximize citizen partic-
ipation in energy matters. These policies enable the formation
of legal entities that bring together power system members,
enabling collective investment and operation of energy assets.
However, designing appropriate reward schemes is crucial to
fairly foster individuals to join, as well to ensure collaborative and
stable aggregation, maximizing community benefits. Cooperative
Game Theory, emphasizing coordination among members, has
been extensively proposed for ECs and microgrids; however, it
is still perceived as obscure and difficult to compute due to its
exponential computational requirements. This study proposes a
novel framework for stable fair benefit allocation, named Fair
Least Core, that provides uniqueness, reproducibility, stability
and fairness. A novel row-generation algorithm is also proposed
that allows to efficiently compute the imputations for coalitions of
practical size. A case study of ECs with up to 100 members shows
the stability, reproducibility, fairness and efficiency properties of
proposed model. The results also highlight how the market power
of individual users changes as the community grows larger, which
can steer the development of practical reliable, robust and fair
reward allocations for energy system applications.

Index Terms—Energy Community, game theory, Fair Least
Core, EnergyCommunity.jl, Mixed-Integer Linear Programming
(MILP), coalition fairness and stability

I. INTRODUCTION

A. Motivation

SEVERAL governments worldwide [1], [2] are promoting
Energy Communities (EC) as a mean to stimulate invest-

ments in renewable assets and increase citizenship participa-
tion in energy matters. New policies enable the creation of
a legal entity, called ”Energy Community”, that aggregates
households, companies and public institutions as members.
ECs are entitled to own and operate energy assets, and promote
the coordination of demand and supply among the members
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exploiting them [2]. Hence, there is a pressing need for their
optimal design, taking into account suitable reward schemes
to incentivize member participation.

To maximize collective benefits [3], Cooperative Game
Theory has been extensively proposed, also in the field of
Energy Communities and microgrids. The Shapley Value has
been widely considered the reference indicator for fairness
[4], but suffers from stability concerns [5]. On the other hand,
the Core and Nucleolus techniques ensure stable allocations
[6], but not necessarily fair ones. In general, both approaches
are costly from the computational viewpoint, especially in
the planning phase, so that their use in practice may be
challenging. Recent indicators based on convex measures such
as the variance, combined with stability-enforcing methods,
have shown promising results to achieve fair and stable allo-
cations; yet, computational burden is still a major concern and
uniqueness is not guaranteed [6], [7].

This study proposes novel algorithmic procedures and ef-
ficient implementation techniques to plan the proper design
of Energy Communities and guarantee fair and stable reward
allocation within them.

B. Design of Energy Communities and aggregators

In recent times, governments worldwide have introduced
supportive policies for renewable energy communities [8].
Their main target is the promotion of no-profit social, environ-
mental, and economic targets [3], while meeting the technical
challenges that the energy transition is demanding. Beyond
fostering decarbonization, these initiatives have yielded broad
benefits for power systems, including enhanced reserve provi-
sions [9], reduced grid congestions [10], increased renewable
penetration [11], and social welfare improvement [2]. How-
ever, to fully realize these advantages, effective coordination
among assets, consumers, and prosumers is essential. This
responsibility falls on aggregators, tasked with implementing
efficient planning and operation, as well as defining incentive
mechanisms that promote community goals and cohesion.

Traditionally, aggregators are for-profit entities that monitor
and manage the energy system on behalf of consumers and
prosumers. As per EU regulation, aggregators cannot be ECs
themselves, given their for-profit nature [3]. However, they can
have a support role in its creation, management and operation;
for this reason, they can be regarded as a player in the EC
and, as such, they shall be rewarded appropriately, also not to
incur in the so-called agency problem [6]. Their role in energy
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management is better known, although most studies regarding
advanced market structures [12], demand-side management
[13], [14] and stochastic approaches [15] have been generally
focused on large energy players. Furthermore, small and
medium consumers, namely the target of EC policies, have
rarely played an active role in energy markets and even less
in providing flexibility or ancillary services [16]. Previous
studies have primarily emphasized economically-driven tech-
niques devoted to optimally operate the aggregate [17], using
Mixed-Integer Linear Programming (MILP). Some of them
have explored maximizing the aggregate’s social welfare, but
may have overlooked the fair distribution of profits among
participants [18], [19]. In particular, the fair stable reward
of aggregators—a critical but complex topic—has been rarely
considered in the literature [6]. For these reasons, in this study
we develop a MILP planning model able to account for the
role of members, including the aggregator, and their fair and
stable reward.

C. Competitive and Cooperative reward allocations
In the context of local energy markets and ECs, competitive

or cooperative incentive mechanisms are commonly proposed,
yet generally in the field of operation rather than of planning
[12]. In competitive approaches, users operate independently
to maximize their individual benefits, potentially competing
with each other for scarce common resources [12], [19]. In
this case, there is no guarantee that the solution maximizes the
utility of the aggregate, thus competition can be detrimental.
Non-cooperative strategies, such as those proposed in [20] and
[21] that include operational flexibility, focus on optimizing
the actions of individual aggregators or users in a local energy
market or network. Nash’s theory is widely adopted in this
context to identify the market equilibrium [12], [22], [23].
Even if competition may suit some scenarios, cooperation
can be limited, thus potentially leading to sub-optimal results,
which can oppose the social goal desirable by policies, such as
the EU regulation [8]. Moreover, most non-cooperative tech-
niques rely on bidding by members [12], an approach whose
practicality is not entirely confirmed on the large scale. In
typical ECs, users are less likely to individually perform active
trading, and therefore cooperative approaches are particularly
relevant [6], [11]. In these approaches users cooperate towards
the best outcome for the entire community and distribute
rewards according to each individual contribution [19], with
no detrimental effect on the global benefit. The Shapley Value
is generally considered the reference indicator for fair reward
sharing in coalition games [4], [24], [25]. However, it suffers
from stability issues, i.e., there is no guarantee that no subset
of users is better off from leaving the community [26], [27],
as proven in [6] in the context of the design ECs, including
investment costs. Moreover, the computation of the Shapley
value is very demanding (see also Section III-G), and stability
concerns remain even with approximations [24]. The center-of-
gravity of the imputation-set value (also known as egalitarian
value) and the egalitarian non-separable contribution value,
both first introduced in [28] and further analyzed in [29]–[31],
are alternative fair allocation methods which are less compu-
tationally demanding, and therefore have found application,

among others, in energy settings [32], [33]. The former assigns
to each player an equal share over its individual worth, while
the latter exploits the same idea for the marginal contribution
of each player. However, they cannot be applied in the EC
setting since the peculiar role of the aggregator cannot be
taken into account. Moreover, they have the same stability
issue as the Shapley value. The set of reward allocations
(a.k.a., imputations) that guarantee stability is named Core,
and is typically not a singleton. However, imputations within
the Core may be marginally stable, i.e., a subset may be
equally better off inside or outside the community. For these
reasons, the stricter formulations of the Least Core [15] and
Nucleolus [34] have been proposed: the former maximizes
the benefit of the coalition that is most likely to exit the
community, whereas the latter iteratively applies the same
concept to each most likely coalition to leave. Conversely
to Core and Least Core, Nucleolus is proven to be unique
[35], which is a desirable property, but the corresponding
computational approaches are very challenging, as proven,
e.g., in [36] and references therein.

D. Computational challenges of game-theoretic allocations

Despite its benefits, the combinatorial nature of cooperative
game theory is a significant barrier to its practical use. In
case studies involving a small number of members, their
enumerative formulation can be used [6], [37], but with com-
munities exceeding 20-30 members the computational require-
ments quickly become prohibitive. In [38] an approximation
for the Shapley Value has been proposed that reduces the
combinations by about 99%; yet, concerns on stability still
apply. Nucleolus and Least Core have been used in various
studies but only for system operation [27], [39], with no
application to ECs. One of the few exceptions is [6], but the
computational approach used there does not scale efficiently
with size. A decomposition algorithm of Nucleolus based on
Benders’ decomposition is proposed in [27], but it is not
applicable in the EC field given the intrinsic binary nature
of membership of each user to the EC. To overcome that, a
simplification of Nucleolus has been proposed using a pure
Variance equivalence [7], but stability concerns were over-
looked. For these reasons, in [6] a methodology is proposed
to stabilize imputation; yet, the approach is still combinatorial
and limited to few members. An alternative solution is offered
by the Owen sharing method [15] that distributes the reward
based on the equivalent market prices created by the dual
solution of the optimization problem for the bidding of wind
generators. However, while being simple to calculate, the
Owen solution may not achieve desirable properties such as
these of Least Core, Nucleolus or Shapley Value [40]. Row-
generation has been shown to be a promising approach for
decomposing Nucleolus-like formulations [41], among other
problems [42], but it has not been applied to EC. For these
reasons, it is considered in this study and combined with Core,
Least Core and Variance mechanisms.

E. Contributions and organization of the paper

The main contributions of our work are as follows:
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1) definition of generalized reward allocation schemes,
named Fair Core and Fair Least Core, that aim at
maximizing fairness and stability of reward allocations;

2) uniqueness and reproducibility for Fair Core and Fair
Least Core;

3) novel algorithm to efficiently calculate reward allocation
methods for ECs of arbitrary composition, including
row-generation and smart decomposition of the EC plan-
ning problem that have been implemented in the open-
source packeges EnergyCommunity.jl [43] and Theory-
OfGames.jl [44];

4) application and validation of the algorithm to several
reward allocation mechanisms and comparison with ex-
isting methodologies, e.g. Shapley Value and Nucleolus;

5) evaluation of the impact of EC size into the fair reward
allocation to provide policy recommendations.

The remainder of the paper is organized as follows. Sec-
tion II describes the EC and its mathematical optimization
problem. Section III reviews the literature about reward al-
location by game theory. Section IV details the general fair
stable reward allocation proposed in this study, whose efficient
computation is detailed in Section V and Section VI. The
case study and results are reported in Section VII and VIII,
respectively. Finally, conclusions are drawn.

II. THE ENERGY COMMUNITY PLANNING

A. Business model

According to the literature [6] and the European Union
regulation [1], an EC operates as a non-profit entity, sharing
all revenues among its members after fulfilling its obligations;
technical support by third-parties, e.g. aggregators, is admitted.
Accordingly, this study focuses on the business model depicted
in Fig. 1, where members create the legal entity Energy
Community and can engage with an aggregator to maximize
the overall benefits. An EC coordinated by an aggregator is
denoted with ”CO”. Without the aggregator, the community is
still able to create an EC, referred to as Aggregated Non-
Cooperative (ANC), but it cannot coordinate consumption
and production nor the investments to achieve the maximum
economic performance. The EC is awarded an economic
benefit for every unit of energy that is produced by a user
and virtually consumed by another user in the same time
step [16]. Each user has its own energy provider and can
invest in renewable assets or storage, in case keeping full
ownerhip of such devices. In the CO configuration, users
collaborate to maximize the overall benefit measured with Net
Present Value (NPV) [32], and they shall be remunerated fairly.
Finally, in cases where no EC is established, referred to as
the Non-Cooperative (NC) configuration, users invest in local
decentralized resources to maximize their own profits. This
scenario serves as the baseline for the analysis.

We now present bare-bones, yet sufficient for the present
discussion and computational testing, mathematical models for
EC planning and operations. These models are in agreement
to the most recent EU and Italian regulation [16]. We remark
that more sophisticated EC models (including, e.g., operations
on different market, other generation units with more complex

Fig. 1. Business model of the Energy Community

operational constraints, multi-energy aspects, and even the rep-
resentation of time-variant dynamics by stochastic approaches)
could be used without significantly impacting the proposed
approach or the computational algorithm, as discussed in
details later on. The modular structure of the developed open-
source tools makes it easy to adapt to such types of model
improvements.

B. Users’ objective
When no EC is established, the objective of each user j is

to maximize its own NPV, reported in (1), composed of the net
profit for selling/buying electricity to/from the market (Ry) for
each year y ∈ Y , the investment costs (Iy) that are non-null
only at the first year (y = 0), the operating charges due to
peak tariffs and maintenance charges (OPy), the replacement
costs of the assets (RPy) and the recovery value (RVy), which
is non-null only at the end of the project. Net economic
flows with the energy market are modelled in (2), accounting
for users-specific tariffs that are represented by selling prices
(π+

j,t), buying prices (π−
j,t), including grid tariffs and taxes,

and excises (πex
j,t) for each time step t ∈ T ; the weight

mT
t accounts for granularity and number of representative

days. PU±
t denotes the power exchanged at the Point of

Delivery (POD), where positive apex stands for injection into
the distribution grid; PL

t is the consumer demand. According
to (4), for every tariff horizon w ∈ W (for instance in
Italy corresponding to a month), the peak charges OPy are
dynamically accounted for considering the peak tariff cPw and
the actual maximum power exchanged PUmax

w at the POD.
Yearly maintenance costs OPy , represented by the second
term of (4), are proportional to the investment capacity xa

of each asset a of the set of assets Aj of user j, according
to a coefficient ca,M . Replacement charges RPy detailed in
(5) apply when an asset reaches its end of life NY,a, while
the residual value of assets is recovered as described in (6). r
represents the discount rate.

NPV j =
∑
y∈Y

Rj,y − Ij,y −OPj,y −RPj,y +RVj,y
(1 + r)y

(1)

Rj,y =
∑

tm
T
t

(
π+
j,tP

U+
j,t − π−

j,tP
U−
j,t − πex

j,tP
L
j,t

)
(2)

Ij,0 =
∑

a c
a,I
j xaj (3)

OPj,y =
∑

wm
W
w cPj,wP

Umax
j,w +

∑
a∈Aj

xaj c
a,M
j (4)

RPj,y =

{∑
a∈Aj

xaj c
a,I
j if mod (y,NY,a

j ) = 0

0 else
(5)

RV j,|Y | =
∑
a∈Aj

xaj c
a,I
j

NY,a
j − mod (|Y | − 1, NY,a

j )

NY,a
j

(6)
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C. Constraints

This section details the major technical constraints of each
user. The power balance within each internal system is en-
sured through (7), where PU±

j,t denotes the power dispatch
at the user’s POD, P c±

j,t represents the power dispatch of the
battery converter (with + indicating supply and − indicating
absorption), PR

j,t corresponds to the renewable production, and
PL
j,t is the demand. AC

j denotes the converters of user j.

PU+
j,t − PU−

j,t +
∑
c∈AC

j

[
P c−
j,t − P c+

j,t

]
− PR

j,t = −PL
j,t ∀ t (7)

The peak power at the user POD is calculated with (8),
where T̂w denotes the set of time steps corresponding to
the peak power period w ∈ W . Constraint (9) specifies that
the renewable production PR

j,t of each user j at time step t
must not exceed the sum (over all renewable technologies
r ∈ AR

j ) of the maximum available power dispatch, which
is proportional to the installed capacity xr,Uj and its specific
power production pr,Uj,t .

PUmax
j,w ≥ max

{
PU+
j,t̂

, PU−
j,t̂

}
∀w, t̂ ∈ T̂w (8)

PR
j,t ≤

∑
r∈AR

j
pr,Uj,t x

r,U
j ∀t (9)

The energy balance of the batteries is modeled using (10), em-
ploying cyclical notation (Eb,U

j,0 = Eb,U
j,|T |); equations account

for the roundtrip efficiency ηbj of the battery b, including its
corresponding converter c = c(b) ∈ AC

j , belonging to the
set AB

j . The peak power capacity is ensured by (11), while
the maximum and minimum allowed state of charge are taken
into account in (12) using coefficients βb,max

j and βb,min
j . The

variables xbj and x
c(b),U
j represent the rated energy capacity

of battery b and the power capacity of the corresponding
converter, respectively.

Eb
j,t = Eb

j,t−1 −∆P
c(b)+
j,t /

√
ηbj +∆P

c(b)−
j,t

√
ηbj ∀b, t (10)

P c±
j,t ≤ xc,Uj ∀c, t (11)

xbjβ
b,min
j ≤ Eb

j,t ≤ xbjβ
b,max
j ∀b, t (12)

D. Energy Community objective and shared energy

In a Cooperative Energy Community, the overall goal is
to maximize the so-called social welfare SWCO(K) of the
community K, which includes the NPV of each member j
and the total reward RSH

y allocated to the community, as
detailed in (13). The total reward annually awarded to an EC is
formulated in (14), where πSH

t is the regulated unitary reward
and PSH

t is the shared energy virtually net-metered. PSH
t is

defined as the minimum between the overall production and
consumption, as modelled in (15).

SWCO(K) =
∑
j∈K

NPV j +
∑
y∈Y

RSH
y

(1 + r)y
(13)

RSH
y =

∑
t π

SH
t mT

t P
SH
t (14)

PSH
t = min

{∑
j∈K PU+

j,t ,
∑

j∈K PU−
j,t

}
∀t (15)

E. Energy Community problems

1) Coordinated EC problem (CO): In abstract terms, let uj
be the operation (PU±

j,t , PUmax
j,w , PR

j,t, P
c±
j,t , Eb

j,t) and invest-
ment variables (xa,Uj,t ) of each user j, and s the power shared
in an EC. The mathematical problem for the coordinated EC
is shown in (16), where matrix Mj and vector bj denote the
constraints in Section II-C, while constants cj and lj represent
the cost coefficients discussed in Section II-B. The shared
power s is constrained to be lower than or equal to the total
energy production and consumption, by using matrices D±,
through the identity PU±

j = D±uj ; δ > 0 represents the
weighted reward for every unit of shared power.

SWCO(K) = max
∑

j∈K(cTj uj + lj) + δT s

s.t. Mjuj ≤ bj ∀j ∈ K
s ≤ ∑

j∈K D+uj
s ≤ ∑

j∈K D−uj

(16)

This formulation turns out to be useful in the discussion of
the other EC problems described below.

2) Non-Coordinated users problem (NC): As discussed
in Section II-B, in this case each user maximizes its own
profitability regardless of the others. Let SWNC(K) be the
optimal objective function of the optimization of the whole
community with no user interaction, as in (17). No shared
energy applies and hence no coordination is incentivized.

SWNC(K) =
∑

j∈K max cTj uj + lj
s.t. Mjuj ≤ bj

(17)

It is worth noticing that the problem in (17) is similar to (16),
but no shared energy applies. That indeed leads each user
problem to be independent.

3) Aggregated-Non-Coordinated EC problem (ANC): Fi-
nally, we consider the so-called Aggregated-Non-Coordinated
EC problem, where users create an EC, but no aggregator
is present to coordinate the operation of the system, nor to
recommend coordinated investments to the users. In this case,
the users are expected to behave as in the NC problem, but also
benefit from the (probably low) shared energy corresponding
to the non-coordinated system operation. Let uNC

j be the
optimal decision vector of user j in the NC problem, then
the overall objective function of the whole community under
ANC conditions can be described as in (18):

SWANC(K) = SWNC(K)+max δT s

s.t. s ≤ ∑
j∈K D+uNC

j

s ≤ ∑
j∈K D−uNC

j

(18)

It is worth noticing that the problem in (18) is similar to (16),
but the decision variables uj are set to the NC optimal solution.
Accordingly, users constraints (Mju

NC
j ≤ bj) are satisfied by

definition of uNC
j , and hence excluded from the optimization.

III. GAME-THEORETIC REWARD ALLOCATION

A. Preliminary definitions: benefit and surplus of a coalition

A cooperative game with transferable utility can be devised
to reward the participants in the EC. The set of players I is
made by the set J of users that may join the community and
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the aggregator A. The characteristic function v measures the
common benefit of the possible ECs between the players who
agree to join it eventually including the aggregator. Each user
can always choose its own NC optimal solution, therefore this
is considered as the base case configuration. When the Aggre-
gator A participates, the CO optimal solution can be achieved
and the corresponding benefit is the difference between the
optimal performance of CO and NC configurations; otherwise,
no coordination is created and the benefit of the community
is limited to the difference between the optimal ANC and NC
configurations.

The mathematical expression of the characteristic function
for any coalition K ⊆ I is given by

v(K) =

{
SWCO(KA)− SWNC(KA) if A ∈ K,

SWANC(K)− SWNC(K) if A /∈ K,
(19)

where KA = K \ {A}.
To identify the improvement of benefit for each user or

aggregator in the presence of the community, we consider the
set

B =
{
∆ ∈ R|I|

+ :
∑

i∈I ∆i = v(I)
}

(20)

which describes the possible ways the overall improvement
v(I) is shared between them. Once an allocation ∆ ∈ B is
chosen, the improved NPV of each user j with respect to the
base case (NC) is given by

NPV F
j = NPV NC

j +∆j . (21)

For ease of presentation, we introduce the concept of surplus
σ(K,∆) of a coalition K ⊆ I with respect to allocation ∆ as

σ(K,∆) =
∑

i∈K ∆i − v(K). (22)

When σ(K,∆) is positive, the users are better off within the
community rather than being on their own.

B. Core

The Core [45] is the set of reward allocations that guarantees
that no coalition of the whole community I is worse off within
the community than outside, i.e.,

C(I, v) = {∆ ∈ B : σ(K,∆) ≥ 0 ∀K ∈ P} , (23)

where P = {K ⊂ I : K ̸= ∅} is the set of proper subsets of
I . This property ensures the stability of the coalition, in that
no user is expected to benefit from leaving the community. As
it is defined by a finite number of linear inequalities, C(I, v)
is a polytope and may contain uncountably many allocations.

C. Least Core

The Least Core [46] is the set of allocations that maximize
the benefit for the least profitable coalition, i.e.,

LC(I, v) =
{
∆ ∈ B : σ(K,∆) ≥ θLC ∀K ∈ P

}
, (24)

where

θLC = max θ
s.t. σ(K,∆) ≥ θ ∀K ∈ P

∆ ∈ B
(25)

While the Core might be empty, the Least Core is always
nonempty. In particular, if θLC < 0 then the Core is empty.
Otherwise, if θLC > 0 the Least Core is a proper subset of
the Core, while they coincide whenever θLC = 0. Clearly, the
computational burden of LC is equivalent to the Core.

D. Nucleolus

Given any allocation ∆, let ψ(∆) be the order vector of
satisfaction, i.e., the vector of surpluses arranged in non-
decreasing order. The Nucleolus [35] is the unique allocation
that lexicographically maximizes the vector ψ. In comparison
with core and least core, Nucleolus is computationally harder
to compute. Indeed, the computation of θLC is just the first
step of the lexicographic maximization of ψ.

E. Shapley Value

The Shapley Value is the only allocation that jointly satisfies
efficiency, symmetry, dummy, and linearity properties [47].
The allocation of each player i ∈ I is the weighted average
of its marginal contribution to every coalition:

∆SV
i =

1

|I|
∑
K⊆I

(|I| − 1

|K|

)−1

[ v(K)− v(K \ {i}) ]. (26)

The Shapley Value may not belong to the Core and it is as
computationally intensive as the Core calculation.

F. Variance Core and Variance Least Core

In order to select an allocation in the Core or Least Core, [6]
proposed to minimize the squared distance from the uniform
allocation. The corresponding unique minima

∆V C = argmin

{∑
i∈I

[
∆i −

v(I)

|I|

]2
: ∆ ∈ C(I, v)

}
(27)

∆V LC = argmin

{∑
i∈I

[
∆i −

v(I)

|I|

]2
: ∆ ∈ LC(I, v)

}
(28)

have been named Variance Core (VC) and Variance Least
Core (VLC). In the authors’ opinion this approach appears
promising; in the following, we generalize its formulation also
including proof of uniqueness.

G. Computational concerns

The common computational issues involved in the reward
distributions schemes described above stem from the need
of computing the value of v(K) for every subset K ⊆ I .
This involves solving a number of optimization problems,
described in Section II-E, that is exponential in the size |I|
of the community. Consequently, these models can hardly be
used, with a naı̈ve computation approach, for problems larger
than 10-20 users [6]; this has so far limited the use of game
theoretical approaches in ECs and in the power systems field.

The complexity issue clears comes from the fact that the
above formulations involve a number of variables that grows
linearly with the size of the community I , but a number of
constraints that is exponentially in the number of coalitions
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K, i.e., of the order of 2|I|. Yet, it is well-known that in such
a case only a small fraction of the constraints are going to be
binding, i.e., that there exists a formulation with a manageable
number of constraints—corresponding to a small, well-chosen
set of coalitions—that is in fact equivalent to the full one. The
issue is that this set is not known in advance: however, row-
generation approaches have proven able to efficiently solve
problems of this type, provided that a proper separation oracle
can be developed to efficiently identify constraints (coalitions)
violated by a given solution. In the following, we show how
this can be done for a large class of practical EC models,
thereby allowing the actual use of game-theoretic concepts
for community of the scale required by practical applications.

IV. FAIR CORE AND FAIR LEAST CORE

A. Definition

Different measures of fairness rather than variance can be
considered. Therefore, we propose the general Fair Core (FC)
and Fair Least Core (FLC) reward allocation schemes in
the same fashion, by maximizing a generic strictly concave
function f that measures the fairness of allocation ∆ over the
Core or Least Core:

∆FC = argmax {f(∆) : ∆ ∈ C(I, v)} , (29)

∆FLC = argmax {f(∆) : ∆ ∈ LC(I, v)} . (30)

With respect to the existing approaches, the proposed frame-
work allows generalizing fairness measures while ensuring the
stability of the coalition. For example, f could capture the
solution closest to the egalitarian solution within the [L]C or
take into account social measures such as energy poverty [48].

B. Properties: existence, uniqueness, reproducibility and sta-
bility

When the Core is empty, ∆FC is not even defined. On
the contrary, ∆FLC always exists. Moreover, the choice of
strict concavity of f guarantees the uniqueness of the optimal
solution of the above problems, see for instance [49], so that
(29) and (30) define unique allocations. Note that VC and VLC
are special cases of FC and FLC, respectively: minimizing
variance is equivalent to maximizing negative variance, that
is a (strictly) concave function. Consequently, repeated tests
with different algorithms applied on FLC will always converge
to the same unique optimal solution. This guarantees that
the solution is reproducible, which is crucial for practical
applications as it helps prevent misinterpretations. Moreover,
as F[L]C belongs to [L]C by definition, then stability is
guaranteed [6], [26].

V. THE PROPOSED COMPUTATIONAL ALGORITHM

A. The algorithm

We focus on the solution of problem (30), since it is more
complex than (29) and than the computation of just one point
in the Core and Least Core.

The algorithm is divided into two consecutive stages. The
first aims at computing θLC together with one point of the
Least Core and, once the former is approximately known, the

START

Initialization
Preload a set Γ of coalitions

Solve Master Problem (31) to get ωM and ∆M

Solve Separation Problem (32) to get ωS and KS

ωM − ωS < ε Add KS to Γ

First stage

Set θ̂LC = ωM

Solve Master Problem (33) to get ∆M

Solve Separation Problem (32) to get ωS and KS

θ̂LC − ωS < ε Add KS to Γ

Second stage

STOP

No

Yes

No

Yes

Fig. 2. Proposed solution algorithm for the Fair Least Core.

second stage actually solves (30). In order to solve (29) the first
stage is not needed, as the Core is nothing else than the Least
Core (24) with θLC = 0. As a consequence, the computation
of just a point in the Core can be performed through the second
stage with the particular choice of f = 0.

Since the problems in both stages involve an exponential
number of constraints, we propose the use of a row-generation
technique to efficiently deal with them. The overall algorithm
is sketched in Fig. 2. Each stage proceeds by iteratively exe-
cuting a Master Problem (MP) and a Separation Problem (SP).
The MP generates candidate reward allocations by considering
only the constraints corresponding to a (small) subset Γ of
proper coalitions, that is iteratively revised. Given the optimal
solution of the MP, the SP seeks to find the coalition with the
lowest surplus, that is therefore added to the set Γ.

In the first stage, convergence is reached when the surplus
of MP matches the optimal value of SP. In the second stage, it
is reached when the coalition found by SP is feasible for the
MP, and this happens when the approximated value of θLC

computed at the first stage matches the optimal value of SP.
An important aspect to improve the performance of the

algorithm is the initialization of Γ with a well-chosen pre-
defined set of coalitions.

B. Initialization

The aim of the initialization is to populate the set Γ with
a pre-set, low number of coalitions, for each of which the
quantity v(K) must be computed. While computing v(K) has
generally lower computational requirements with respect to
the SP, doing so an exponential number of times is prohibitive.
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Pre-populating Γ has a cost proportional to the chosen size,
but on the other hand, a larger Γ can be expected to yield
faster convergence. Therefore, a trade-off exists that will be
explored in the computational section. Besides the number of
coalitions, we will show that their effective choice is crucial.

C. First stage

Given the set Γ, the Master Problem is

ωM = max { θ : ∆ ∈ B , σ(K,∆) ≥ θ ∀K ∈ Γ} , (31)

which is the relaxation of (25) obtained by only considering
the constraints corresponding to the coalitions in Γ. If the set
Γ is reasonably small, then (31) can be efficiently solved since
it has |I|+ 1 variables in total (θ and the allocation ∆). This
provides an optimal allocation ∆M and its value ωM . Since
(31) has less constraints than (25), then ωM ≥ θLC .

The Separation Problem checks if ∆M is actually feasible
for (24) by finding the coalition KS with lowest surplus

ωS = min
{
σ(K,∆M ) : K ∈ P

}
. (32)

If ωM = ωS , then θLC = ωM and ∆M belongs to the Least
Core. To lower the computational burden, the above equality
between the optimal values is checked up to some desired
precision ε, the approximate value θ̂LC = ωM is exploited
in the second stage and the first stage is considered over.
Otherwise, KS is added to Γ and the Master Problem (31)
is solved again.

D. Second stage

Given θ̂LC and the set Γ provided by the first stage, the
Master Problem in the second stage is

max
{
f(∆) : ∆ ∈ B , σ(K,∆) ≥ θ̂LC ∀K ∈ Γ

}
, (33)

which is an approximation of (30) since θ̂LC is kept fixed.
When θ̂LC = θLC , any optimal allocation ∆M of (33)
provides an upper bound f(∆M ) of the optimal value of (30)
and it is optimal if it is feasible for (30). Therefore, we stop
the second stage whenever ∆M is feasible in any case since
θ̂LC is always expected to be very close to the true value
θLC . Feasibility can be checked by solving the Separation
Problem (32) and comparing ωS with θ̂LC . If they are (ap-
proximately) equal, then ∆M is feasible, otherwise the optimal
coalition KS is added to the set Γ and a new iteration is
performed.

VI. THE SEPARATION PROBLEM

While the MP is a continuous optimization problem, the SP
is combinatorial. Yet, by exploiting the mathematical formu-
lation for the EC problems of Section II-E, it can be recast as
a MILP, and therefore solved efficiently for communities of
practical size, as shown in the following.

A. Mapping a generic coalition

The crucial challenge is to develop a proper row-generation
algorithm to efficiently solve the Separation Problem (32).
This requires in particular to describe the surplus function
defined in (22) for a generic coalition K ⊆ I . The funda-
mental modelling trick we exploit is to augment the models
of Section II-E with membership binary variables z ∈ {0, 1}|I|
to represent the chosen coalition; that is, zi equals 1 when
member i belongs to the coalition K, and 0 otherwise.

B. Benefit of a coalition

We now describe how to model the benefit v(K) of a coali-
tion, defined in (19), for any coalition K represented by the
variable z. Since the presence of the aggregator significantly
changes the structure of the mathematical problem in (19)
that must be solved, we separate the function v into the two
components, vW and vW/O, which represent the case with and
without the aggregator, respectively; that is,

v(K) = v(z) =

{
vW (z) if zA = 1,

vW/O(z) if zA = 0,
(34)

where zA is the membership variable of the aggregator.
1) Coalition with the aggregator: The benefit vW (z) rep-

resents the difference between (16) and (17), namely

vW (z) = max
u,s

∑
j∈J(c

T
j uj − cTj ū

NC
j zj) + δT s

s.t. Mjuj ≤ bjzj ∀j ∈ J
s ≤ ∑

j∈J D
+uj

s ≤ ∑
j∈J D

−uj

(35)

where the variables u of all members are formally included
together with the energy exchange s. Anyway their actual
occurrence is driven by the choice of the coalition addressed
by z. In fact, since Mjuj ≤ bj includes box constraints, zero-
ing the right-hand-side forces all variables uj to be zero, as
{uj : Mjuj ≤ 0} = {0}. This suggest to replace bj with
bjzj . Indeed, choosing zj = 0 implies uj = 0: member j
“disappears” from the problem and cannot contribute to the
energy exchange variables s and their reward, while on the
other hand not incurring in any cost. Conversely, when zj = 1
the constraint reads Mjuj ≤ bj and member j “operates
normally”, thereby contributing to the community but having
to pay its normal costs.

2) Coalition without the aggregator: The benefit vW/O(z)
is the difference between (18) and (17), which corresponds to

vW/O(z) = max
s

δT s

s.t. s ≤ ∑
j∈J D

+uNC
j zj

s ≤ ∑
j∈J D

−uNC
j zj

(36)

The summation in the constraints is extended to the whole set
of users J , but each term is multiplied by the membership
attribution zj to ensure no contribution to the shared energy
when the member does not belong to the community. The
above optimization problem has only the shared energy vari-
ables s, hence it is significantly smaller than (35) and this is
exploited in the subsequent decomposition.
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C. Procedure for SP decomposition

The Separation Problem (32) can be formulated by exploit-
ing the membership variables as the following MILP

min
z

∑
i∈I ∆

M
i zi − v(z)

s.t. 1 ≤ ∑
i∈I zi ≤ |I| − 1

z ∈ {0, 1}|I|
(37)

The objective function involves an inner maximization prob-
lem so that a min-max structure seems to appear. Since v(z)
compares with minus sign, the problem is actually a standard
minimization problem.

To further increase the efficiency of the algorithm, since the
computation of vW/O(z) involves significantly less variables
than vW (z), the restriction of (37) without the aggregator
fixing zA = 0 is solved first. If the optimal value is enough
to identify a coalition to add to Γ, then it is added without
fully solving (37). Otherwise, also the case with the aggregator
(zA = 1) is analyzed. The following steps summarize the
above procedure:

1) solve (37) with the additional constraint zA = 0 to get
the optimal value ωS

0 and the corresponding optimal
solution KS

0 ;
2) add KS

0 to Γ in the first stage if ωM − ωS
0 ≥ ε, in the

second if θ̂LC − ωS
0 ≥ ε;

3) otherwise, solve (37) with the additional constraint zA =
1 to get ωS .

Moreover, to further speed-up calculations, the separation
problem generates a constraint whenever an incumbent integer
solution violates the least core value of the master problem.

It is worth noting that the adoption of more complex EC
models has marginal impact on the proposed approach, as
long as changes to the objective function and constraints are
mixed-integer convex, which is a de-facto standard in energy
modelling. In such a case, the mathematical framework, the
decomposition technique and also the developed open-source
EnergyCommunity.jl [43] and TheoryOfGames.jl [44] tools
proposed in this study can be easily adapted.

VII. CASE STUDY

A. Description

To validate the methodology, we applied the proposed
approach to a realistic case study that describes ECs of various
sizes (10-100) for a peri-urban area in Italy. Yet, the approach
does not depend on specifics of the Italian case. The demand
data have been adapted from the dataset measured from a
Portuguese substation [50], whose consumption patterns are
similar to the Italian ones, with average peak demand in
the range 12-40 kW. Given their abundance, solar and wind
resources have been considered, and their time series have
been obtained from [51]. To avoid market distortion, the
market prices of 2019 have been selected.

B. Users composition

In this study, we considered EC with sizes of 10, 20, 30,
50 and 100 members, which aligns to expected values in
the Italian context. To stress the computational performances,

about 70% of the members are prosumers that may install PV,
wind and/or battery technologies with variable asset availabil-
ity and costs; users n. 5, 7 and 10 are pure consumers with
no assets. To keep results comparable and highlight trends, the
ECs with size larger than 10 have been obtained by replicating
the composition of the 10-user EC. For instance, in the 30-
user EC, members 11 and 21 perfectly match user 1. This is
justified by the observation that typical consumers in the power
grid do have similar habits and, consequently, similar demand
patterns. However, the methodology is absolutely general and
applicable to ECs of any size and composition.

C. Main techno-economic parameters

The cost of installing photovoltaic (PV) systems is between
1.4 and 1.7 kC/kWp, with a space limitation up to 100
kWp. Wind turbines cost 3 kC/kW. Lithium batteries cost
400 C/kWh plus 200 C/kW (converter) and have a round-trip
efficiency of 92%. The lifetime of PV is 25 years, while wind
turbines, batteries, and converters have a lifespan of 20, 15,
and 10 years, respectively. Yearly maintenance charges have
been estimated between 1 and 2% of the initial investment.
Purchase and selling prices of 18 cC/kWh, including taxes,
and 5 cC/kWh, respectively, have been assumed, with monthly
peak power charges of 3 C/kW/month [16].

D. Testing procedure

To validate the proposed framework, we used Shapley
Value, Nucleolus, Core, Least Core, Variance Core and Vari-
ance Least Core as reward allocation functions for the con-
sidered ECs. We applied the approach described in Section V
and Section VI to the latter four allocation functions for all
EC configuration. In order to compare the effectiveness of
our approach, we also performed the complete enumeration
of all coalitions. Due to obvious computational limitations,
this has been done only for the cases of 10 and 20 users.
For our approach we performed a sensitivity analysis on the
pre-coalition set Γ, considering up to 6 configurations. The
notation of the pre-loading is as follows: [1] denotes that Γ is
pre-loaded with all the coalitions with up to 1 member, [1, |J |]
denotes the coalitions with 1 or |J | members, and so on.

In the following section, we first compare the enumerative
approach with the iterative one, to show the equivalence of
their results but the far superior performances of the latter,
which makes it usable for large ECs. We then perform a
sensitivity analysis with respect to the size of the community,
to suggest guidelines for fair stable reward allocations.

The instances have been solved with the open-source En-
ergyCommunity.jl [43] and TheoryOfGames.jl [44] packages,
with underlying MILP solver CPLEX 22.1.0, using 10 threads
on a 72-core Xeon computer with 1.2TB RAM. For all sizes
below 100 the algorithm stops whenever a relative tolerance
of 1% or an absolute tolerance of 10C is met; for the 100-
member EC the tolerances have been rather set to 5% and
100C.
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TABLE I
PERCENTAGE DIFFERENCE BETWEEN FINAL SURPLUS ωS AND TRUE

VALUE.

EC size Precoal. Core LC VC VLC
10 All 0.0* 0.0* 0.0* 0.0*
20 [1, 20] 0.0* 0.0* 0.0* 0.0*

*below 10−3

VIII. RESULTS

A. Validation of results

Table I and Table II validate the iterative technique de-
scribed in Section V-VI by reporting the percentage difference
between its results and those of the traditional enumerative
computation. Table I confirms that the iterative approaches

TABLE II
MAXIMUM PERCENTAGE DIFFERENCE OF USERS’ ALLOCATION BETWEEN

THE ITERATIVE AND ENUMERATIVE APPROACHES.

EC size Precoal. Core LC VC VLC
10 [1] 100.00 50.26 0.0* 0.27
10 [1, 2] 75.04 50.26 0.0* 0.27
10 [1, 10] 142.73 50.22 0.0* 0.0*
10 [1, 2, 3] 116.02 36.29 0.0* 0.27
10 [1, 9, 10] 100.00 95.51 0.0* 0.0*
20 [1, 20] > 1000 38.66 0.0* 0.95

*below 10−3
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Fig. 6. Community surplus (θLC ) by EC size - precoalitions [1, |J |].

successfully capture the true surplus value, computed by
complete enumeration, with differences compatible with the
target tolerance. Table II rather shows the maximum per-
centage difference across users in reward allocation. The
results show that the VC and VLC allocations have negli-
gible differences with respect to the exact solutions, which
confirms reproducibility in agreement with the theory. On the
contrary, the computations of allocations in Core and Least
Core are merely feasibility problems. Therefore, it is natural
that different procedures point to allocations that are far from
each other, although having comparable surplus. This is in
agreement with the theory and further confirms the importance
of finding allocations that are uniquely defined, such as the
F[L]C proposed in Section IV.

B. Convergence characteristics

Fig. 3 and Fig. 5 highlight the computational time and the
convergence characteristics of the proposed method for the 10-
and 20-member ECs. Fig. 3 clearly confirms that the iterative
algorithm can dramatically reduce computational requirements
by 20x even for the 10-member EC, and beyond 16000x for

This article has been accepted for publication in IEEE Transactions on Energy Markets, Policy, and Regulation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEMPR.2024.3495237

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10

User/Aggregator

0

100

200

B
en

ef
it

 [
k€

]
SV

 (
en

um
)

0

100

200

B
en

ef
it

 [
k€

]
VC

0

100

200

B
en

ef
it

 [
k€

]
VL

C

Agg user1 user2 user3 user4 user5 user6 user7 user8 user9 user10

10 20 30 50 10
0

EC size

10 20 30 50 10
0

EC size

10 20 30 50 10
0

EC size
10 20 30 50 10
0

EC size

10 20 30 50 10
0

EC size

10 20 30 50 10
0

EC size

10 20 30 50 10
0

EC size

10 20 30 50 10
0

EC size

10 20 30 50 10
0

EC size

10 20 30 50 10
0

EC size

10 20 30 50 10
0

EC size

10
20
30
50
100

EC size

Fig. 7. Benefit (∆) by user and aggregator: bars represents the average value by user type and error bars highlight the variation.

the 20-member EC. As the enumerative technique required
longer than 2 months to compute, and the computational
requirements grew exponentially, no validation was possible
for larger ECs. A proper pre-loading can have a significant
impact on the iterative algorithm, as the [1, |J |] choice reduced
the computational cost by about 64% with respect to [1]; this is
why it is the reference case for the subsequent investigations.

The efficiency of the algorithm is confirmed in Fig. 4,
which shows that the computational cost scales relatively
proportional to the size of the community. This is a significant
improvement with respect to the exponential requirements of
traditional techniques illustrated in Fig. 3. Moreover, in Fig. 5
we plot the difference ωM−ωS in the first stage and θ̂LC−ωS

in the second stage that is used as convergence criterion of
the proposed algorithm (Section V); the picture shows that
the algorithm generally converges fairly quickly in a limited
number of iterations.

Overall, these results confirm the potential ability of the
proposed algorithm to scale in size, making game-theoretical
allocation approaches feasible for large ECs. This is helped by
the fact that large ECs are often composed by a small share
of prosumers, which significantly reduces the design decisions
and therefore the expected computational efforts, and that
performances of MILP solvers are continuously improving.

C. Benefit and reward allocation by size of community
Finally, we show in Fig. 6 and Fig. 7 the effect of EC

size on the community surplus and reward allocation by
user, respectively. Fig. 6 interestingly shows that the surplus
decreases the larger the EC size till reaching a plateau at 50–
100 member. Indeed, the larger the EC, the lower each user’s
market power within the community, which in turn decreases
the LC value. However, the marginal reduction decreases the
larger the community. As the LC changes, the users’ relative
reward allocation changes, to reflect the different market power
within the community. These results suggest that F[L]C and
the proposed computational effort can account for market
power among users and the aggregator. This allows policy
makers to take actions for limiting possible market distortions.

Fig. 7 shows the expected user benefit in terms of ∆ by
member type and reward allocation. For simplicity, as for

20-member EC or larger the users are identically replicated,
error bars depict the maximum and minimum benefit allocation
between the same member types. First, it is worth noting that
error bars are negligible, which means that each member type
is remunerated in the same way. For example, in the 100-
members EC there are 10 instances of member types ”user1”
that are all remunerated with the same value, which goes in
favor of stability and fairness.

These results highlight the role of pure consumers in sup-
porting EC policies and as such policy action should encourage
their participation. On the other hand, depending on the EC
composition, they may obtain undesirable market power that
the proposed algorithm can account for. Therefore, results
recommend policy measures, numerically supported by tools
like the one here proposed, to avoid increasing market share
by any of the players (aggregator, consumers and producers).

IX. CONCLUSIONS

Based on the state-of-the-art on game-theoretic allocations,
this paper proposes and discusses the novel fair stable reward
allocations Fair Core and Fair Least Core for Energy Com-
munities, that are implemented in available, well-engineered
open-source packages. These successfully maximize fairness
of benefit allocation, while enforcing stability by ensuring that
no member is worse off within the community than outside
(by the largest possible margin in the Least Core variant).
The new allocations guarantee uniqueness and reproducibility,
which go in favor of the practical use of the methodology.

Crucially, the work also proposes a row-generation algo-
rithm to reduce the hitherto staggering computational re-
quirements for game-theoretic benefit allocations. The new
algorithm has been extensively validated on communities up
to 100 members and can scale even further for very large ECs.
The results suggest that the methodology is a breakthrough that
makes game-theoretic allocations practical for large coalitions
while ensuring uniqueness, reproducibility, and stability. As
an example of the managerial and policy insights that the
methodology offers, our case study shows that market power
may emerge within members of the community, which has
impact on reward allocation and hence should be regulated.
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This paper lays the foundations for reproducible, fair, and
stable reward allocations, and it can be expected to steer re-
search in the design of incentive schemes for Energy Commu-
nities, power systems, and beyond. Future studies may explore
the role and remuneration of future flexibility markets in ECs,
including sector-coupled considerations, and/or uncertainties
in major techno-economic parameters.
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