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Abstract

The price and the exchanged quantity volatility observed in real-world markets

may be explained, according to the existing empirical literature, in terms of the

endogenous fluctuations generated by the presence of nonlinearities. We then

replace with a sigmoid adaptive best response mechanism the linear partial ad-

justment best response rule considered in Mamada and Perrings (2020), where

the effect produced by quadratic emission charges on the dynamics of a Cournot

duopoly model with homogeneous goods was investigated. Moreover, the sig-

moid nonlinearity, in addition to being well suited to describe the bounded

output variations caused by physical, historical and institutional constraints,

makes the model able to generate interesting, non-divergent dynamic outcomes,

despite the linearity of the demand function and of marginal costs. Addition-

ally, following the suggestion in Mamada and Perrings (2020), we deal with the

more general case of differentiated products. Beyond analytically studying the

stability of the unique steady state, coinciding with the Nash equilibrium, and

the effect produced by the main parameters on the stability region, we propose

two dynamical approaches which allow to evaluate the environmental policy
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efficacy when the Nash equilibrium is not stable and thus the standard compar-

ative statics technique does not fit for the purpose. In particular, the former

approach, which is based on a comparison of emissions for different levels of

charges, shows that, also in case the Nash equilibrium is not stable, the con-

sidered environmental policy may be effective both with complements and with

substitutes. The latter approach, consisting in a comparison of emissions along

non-stationary trajectories and along the equilibrium path, in the proposed ex-

periments highlights that emissions are larger along non-stationary trajectories.

This gives us the opportunity to show how to act on the level of the asymptotes

of the sigmoid adjustment mechanism to reduce output variations, reaching at

one time a complete stabilization of the system and limiting pollution.

Keywords: Cournot duopoly, emission charges, environmental policy efficacy,

comparative dynamics

1. Introduction

According to the existing empirical literature (see e.g. [1, 2, 3]) the main

variables, i.e., good prices and exchanged quantities, connected with real-world

markets, especially those for agricultural commodities, display chaotic and er-

ratic behaviors, including volatility. In particular, those empirical studies sug-

gest that the therein identified dynamic phenomena may be explained in terms

of the endogenous fluctuations generated by the presence of nonlinearities. Also

the experimental literature (cf. for instance [4]) concerning the real markets

dynamics underlines the emergence of oscillatory behaviors in good prices and

exchanged quantities. Hence, in proposing a model to describe those contexts,

also in connection with ecological issues, firstly we have to guarantee that it is

able to generate interesting, i.e., non-stationary, non-divergent, dynamic out-

comes, so as to be “up to the task of adequately addressing the implications of

these complex system dynamics and the unpredictability which seems to be their

hallmark ”, quoting [5] in regard to ecological economics. Secondly, if we are in-

terested in investigating the effect produced by an environmental policy scheme
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on the generated pollution, we have to explain how the environmental policy

efficacy can be evaluated in the case of non-stationary trajectories. Namely,

the classical comparative statics technique, applied to the system equilibrium,

which is a steady state, is not empirically grounded in such a context, in which

the steady state is rarely stable. Thus, the need to develop alternative, dynam-

ical methods arises, based for instance on the behavior of the time series of the

cumulative aggregate emission. In this manner, the environmental policy effi-

cacy, to be measured in relation to an emission reduction, could be implied by

a negative variation of cumulative emissions over the considered time interval

as a consequence of an increased strictness of the environmental policy scheme.

We tackle both issues by revisiting the framework in [6], where the effects pro-

duced by emission charges on the dynamics of a Cournot duopoly model were

investigated. In more detail, motivated by the two points described above, we

replace the linear partial output adjustment rule considered therein, whose lin-

earity causes a discrepancy between the simulative outcomes and the empirical

data, with a gradual sigmoid version of the best response mechanism, character-

ized by the presence of two horizontal asymptotes, which help avoid diverging

trajectories and negativity issues. The same sigmoid formulation has been used

in different macro contexts e.g. in [7, 8], but, to the best of our knowledge, this

is the first time that such nonlinearity is introduced in the decisional mecha-

nism within a game theoretical framework. We stress that the sigmoid output

adjustment rule, in addition to opening the door to complex dynamics and to

giving us the opportunity to develop the above mentioned methods to test the

environmental policy efficacy, is also sensible from an economic viewpoint, since

it is well-suited to describe the bounded output variations caused by physical,

historical and institutional constraints. Namely, when the difference between

the best response and the current output level of a firm is positive, capacity

constraints will bound the increase in the production volume, because of the

limited expansion from time to time of capital and labor stock. When instead

the difference between the best response and the current output level of a firm

is negative, capital cannot be destroyed proportionally to that difference as the
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only factors that may lower productivity are attrition of machines from wear,

time, and obsolescence. Additionally, the labor factor imposes constraints, too:

indeed, due to the presence of trade unions, it is difficult, or impossible, to reduce

employment below a certain threshold level. Notice that the proposed sigmoid

adjustment mechanism is suitable to describe also the gradual output variations

deriving from the limits imposed by an environmental policy scheme aiming at

containing pollution by bounding production, due to the direct proportional-

ity linking them. In fact, acting on the levels of the horizontal asymptotes we

obtain a further tool to contain pollution, which stabilizes the dynamics, too.

The latter aspect turns out to be particularly relevant when emissions are larger

along non-stationary trajectories than along equilibrium paths. In such cases,

reducing output variations by lowering the distance between the asymptotes

allows at one time to decrease the system dynamic complexity and to limit pol-

lution. Moreover, with respect to the original setting in [6], where the goods

produced by the two firms were homogeneous, we assume that firms produce

differentiated goods, following the suggestion contained in the concluding sec-

tion of their work. On the other hand, in regard to emission charges, we stick

to the quadratic formulation considered therein.

As concerns the existing literature, we stress that in [9] we extended the set-

ting in [6] by introducing differentiated goods, but without altering the output

adjustment rule, while the effect played by the introduction of differentiated

goods and of a nonlinear output adjustment mechanism in the framework in [6]

has been investigated in [10]. However, in the latter work goods can be just

substitutes, not complements, and the quadratic emission charges can only be

convex, without the linear term considered in [6], so that the environmental

policy is always effective in the setting by [10]. Furthermore, in their context

the nonlinearity is represented by output dependent factors that replace the

constant adjustment coefficients in the best reply mechanism in [6], implying

that the system admits two boundary equilibria, in addition to the internal

equilibrium corresponding to the one in [6]. Moreover, [10] deal with the case

in which marginal production costs do not coincide across firms and analyze,
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among other issues, the conditions for market transitions between duopoly and

monopoly.

Turning back to the here considered setting, in studying it we start by ana-

lyzing the stability of the unique steady state, which coincides with the Nash

equilibrium, common to the framework in [9], as well as its bifurcations and

the role played by the main model parameters, finding that the equilibrium is

stable when the two goods are nearly independent, while complex dynamics

can arise when the dependence degree between the two goods is strong enough,

despite the linearity of the demand function and of marginal costs. We recall

that when the steady state is unstable in [6] the output quantities produced by

the two firms tend instead to become unbounded, positive or negative. Fur-

thermore, due to the introduction of the sigmoid adjustment mechanism, the

equilibrium stability region is reduced in the here analyzed context with re-

spect to [9]. On the other hand, as long as the Nash equilibrium is stable in

our framework, and we can thus rely on the classical comparative statics ap-

proach, we find a confirmation of the static results obtained in [9], which showed

that the considered environmental policy becomes detrimental when emission

charges increase too slowly with production. In order to deal with the cases

in which the Nash equilibrium is not stable, we propose two alternative, dy-

namic approaches to evaluate the environmental policy efficacy, based either on

a comparison of emissions for different levels of charges or on a comparison of

emissions along non-stationary trajectories and along the equilibrium path. The

proposed techniques are mainly numerical in nature, involving non-stationary

orbits. The former approach shows that, also when the Nash equilibrium is not

stable, the considered environmental policy may be effective in reducing pollu-

tion, both with complements and substitutes. In regard to the latter approach,

since in the proposed experiments it happens that emissions are larger along

non-stationary trajectories than along the equilibrium path, we explain how to

act on the levels of the asymptotes of the sigmoid in view of reducing output

variations, reaching a complete stabilization of the system and limiting pollu-

tion.
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We stress that, to the best of our knowledge, the existing literature on ecological

economics is either static (see for instance [11, 12, 13, 14]) or, even when the

proposed models are dynamical in nature, the focus is on the behavior of the

steady state (cf. e.g. [6, 15, 16, 17, 18]) and the investigation of the efficacy of

the considered environmental policy in non-stationary regimes is neglected. A

partial exception is represented by [10], where the authors study the dynamic

outcomes of their nonlinear model, while the environmental policy efficacy is

granted by the assumptions made therein. Notice that the nonlinearities con-

sidered in the present work and in [10] concern the decisional mechanism, even

if in a different manner, as explained in Section 2.

Indeed, the remainder of the paper is organized as follows. In Section 2 we

present the setting that we consider. In Section 3 we perform the model sta-

bility and bifurcation analysis. In Section 4 we investigate the efficacy of the

environmental policy from a dynamic viewpoint. In Section 5 we briefly discuss

our results and describe possible developments of the here studied framework.

2. The model

The extension to differentiated goods of the context in [6] has been briefly

presented in [9]. For the reader’s convenience and in order to add some impor-

tant aspects in its derivation, in what follows we describe the main steps related

to its static part, turning then to illustrating the sigmoid best response mecha-

nism, which allows us to keep the same Nash equilibrium found in [9], solving

at the same time the issue with diverging trajectories when equilibrium stabil-

ity is lost in the linear framework. Namely, the new formulation choice allows

for more realistic dynamic outcomes, suitable to mimic the volatility displayed

by the variables involved in real-world markets. Moreover, from the modeling

viewpoint, the sigmoid adjustment mechanism is appropriate to describe the

gradual output variations caused by material, historical and institutional con-

straints in the production side of an economy, as well as by the limits imposed

by an environmental policy scheme on production levels, due to their direct
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proportionality with emissions.3

Denoting by qi,t+1 the output level of firm i at time t + 1 and by qej,t+1 the

output level of firm j at time t + 1 expected by firm i at the end of period t,

with i 6= j ∈ {1, 2}, we assume that in time period t+1 ∈ N\{0} firm i ∈ {1, 2}

maximizes the expected profit function

πe
i,t+1 = (p− βiqi,t+1 − γqej,t+1)qi,t+1 − cq2i,t+1 − Ci,t+1 (2.1)

where p, c are positive parameters and Ci,t+1 is the emission charge, faced at

time t + 1 by firm i, that we will describe in (2.2). For the parameters βi and

γ, as usual in the case of differentiated goods, we suppose that |γ| < βi, with

i ∈ {1, 2}.

We recall that, according to [19], the expression for the inverse demand function

entering (2.1) can be derived by assuming that in an economy with a monop-

olistic sector with two firms, each one producing a differentiated good, and a

competitive numeraire sector, there is a continuum of consumers of the same

type with a utility function U separable and linear in the numeraire good, so

that there are no income effects on the monopolistic sector, and it is possible to

perform partial equilibrium analysis. In symbols, the representative consumer

has to maximize in each time period U(q1, q2) − ρ1q1 − ρ2q2, i.e., the utility

function subject to the budget constraint, where ρi is the price of good i and

U(q1, q2) = p1q1 + p2q2 − 1
2

(
β1q

2
1 + β2q

2
2 + 2γq1q2

)
, with pi and βi positive,

β1β2 − γ2 > 0 and piβj − pjγ > 0 for i 6= j ∈ {1, 2}. Dealing, like in [6], with

the simplified case in which p1 = p2 = p and β1 = β2 = β, the utility function

reads as U(q1, q2) = p(q1 + q2) −
β
2

(
q21 + q22

)
− γq1q2, with p and β positive,

and |γ| < β, as supposed above. In particular, if γ > 0 utility decreases when

3Indeed, in Section 4 we shall show that acting on the position of the sigmoid map asymp-
totes may represent a form of direct intervention on output and emission levels through a
modification in the bound to the strategy variation between one period and the following one,
in contrast with the indirect nature of the pollution control obtained by means of emission
charges in (2.2). Furthermore, by changing the position of the asymptotes we will make the
system converge toward the Nash equilibrium, starting from a situation characterized by the
presence of a different (periodic or complex) attractor, so that comparative statics results
become economically grounded.
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consuming the two goods together, i.e., they are substitutes; if γ < 0 utility

increases when consuming the two goods together, i.e., they are complements;

if γ = 0 utility is not affected by a joint consumption of the two goods, i.e., they

are independent. The homogeneous good framework is obtained in the limit

case γ = β = k, where k is the price-depressing effect of oligopoly. Taking the

FOC of U(q1, q2)−ρ1q1−ρ2q2, it is straightforward to obtain ρi = p−βqi−γqj

for i 6= j ∈ {1, 2} as inverse demand functions. Further details can be found in

[20, 19].

Concerning Ci,t+1, [6], followed by [9], propose the quadratic formulation for

emission charges

Ci,t+1 = bui,t+1 +
1

2
du2

i,t+1, (2.2)

with b > 0, d ∈ R and where, denoting by ε > 0 the emissions per unit output4,

ui,t+1 = εqi,t+1 are emissions by firm i ∈ {1, 2} at time t+1. [6] use d as bifurca-

tion parameter, finding that it has a stabilizing effect on the system equilibrium

in the case of homogeneous goods. Moreover, the sign of d determines if the

marginal emission charge

dCi,t+1

dui,t+1
= b+ dui,t+1

is positive or negative. Since the marginal emission charge cannot be negative,

when d < 0 the constraint

0 < qi,t+1 <
−b

εd
(2.3)

emerges. Notice that, ceteris paribus, an increase in d produces a raise in emis-

sion charges in (2.2) both when d is positive and when it is negative. However,

in the former case the marginal emission charge increases with u, while in the

latter case it decreases. In such eventuality, according to (2.3), the maximum

value u can assume is given by −b/d. See Fig. 1 for a graphical illustration.

4In the analysis performed in the present paper, also in view of comparing our results with
those obtained in [9], we assume, as in [6], that emissions per unit output coincide across firms.
On the other hand, in order to test the robustness of our findings, in a future work we will
deal with firm-specific emissions per unit output, similar to what done e.g. by Matsumoto
and Szidarovszky (2022) in a homogeneous good framework with non-point source (NPS)
pollution.

8



(A) (B)

Figure 1: In (A) we draw the graph of Ci in (2.2) as a function of u for b = 1, and d = −2 in
blue, d = −1 in cyan, d = 0 in green, d = 1 in yellow, d = 2 in orange. In (B) we represent

the corresponding marginal emission charges dCi
du

as a function of u, using the same color
distribution as in (A).

Turning back to (2.1), since

∂πe
i,t+1

∂qi,t+1
= p− bε− (2(β + c) + dε2)qi,t+1 − γqej,t+1 (2.4)

for i 6= j ∈ {1, 2}, expected profits are strictly concave when

2(β + c) + dε2 > 0. (2.5)

This condition is satisfied when Ci in (2.2) is convex for i ∈ {1, 2}, i.e., for d ≥ 0,

as well as for d ∈
(
− 2(β+c)

ε2
, 0
]
, in which case Ci is concave, but production

variations lead to emission charge variations close to those that we would have

in the linear case, corresponding to d = 0. Assumption (2.5) will be maintained

along the manuscript. Moreover, setting ∂πe
i,t+1/∂qi,t+1 in (2.4) equal to 0 we

obtain

Ri,t+1(q
e
j,t+1) =

p− bε− γqej,t+1

2(β + c) + dε2
(2.6)

as best response function for i 6= j ∈ {1, 2}, representing the optimal strategy

for firm i in period t + 1, given the strategy for firm j expected by firm i for

that same period. Notice that Ri,t+1(q
e
j,t+1) is well defined under (2.5).

Imposing like in [6] that firms have static expectations, it holds that qej,t+1 = qj,t,

so that (2.6) can be rewritten as

Ri,t+1(q
e
j,t+1) = Ri,t+1(qj,t) =

p− bε− γqj,t
2(β + c) + dε2

. (2.7)
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Hence, calling (q∗1 , q
∗

2) the solution to the system





q1 = R1(q2)

q2 = R2(q1)

which arises by supposing that both firms simultaneously produce the best re-

sponse output to their opponent’s strategy, we find like in [9] that the unique

(symmetric) Nash equilibrium is given by

(q∗1 , q
∗

2) =

(
p− bε

2(β + c) + dε2 + γ
,

p− bε

2(β + c) + dε2 + γ

)
. (2.8)

In order to avoid negativity issues, we can assume that p > bε and that 2(β +

c)+dε2+γ > 0, similar to what done in [6] in the case of homogeneous products,

or we can suppose that p < bε and 2(β+c)+dε2+γ < 0. Like in [9], taking into

account also (2.5), we will need to split the model analysis in Section 3 according

to those two scenarios in the case of complements, while with substitutes the

numerator and the denominator of the Nash equilibrium can just be positive.

As mentioned at the beginning of the section, we will deal with a sigmoid

best response mechanism, which on the one hand allows for nontrivial and realis-

tic erratic dynamic outcomes, and, on the other hand, is suitable to describe the

gradual output variations deriving both from the limits imposed by an environ-

mental policy scheme aiming at containing pollution by bounding production, as

well as from the technical and institutional constraints that pertain the produc-

tion side of an economy. Namely, when the difference between the best response

and the current output level is positive, capacity constraints will bound the in-

crease in the production volume, due to the limited expansion from time to time

of capital and labor stock; when instead the difference between the best response

and the current output level is negative, capital cannot be destroyed propor-

tionally to that difference as the only factors that may reduce productivity are

attrition of machines from wear, time, and obsolescence. Furthermore, also the

labor factor imposes limits: indeed, due to the presence of trade unions, it is

difficult, or impossible, to reduce employment below a certain threshold level.

In more detail, firms, due to an adjustment capacity constraint, in [6, 9] modify
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their output level according to the size and the extent of the difference between

the best response and the current output level in just a partial way. However,

rather than the linear formulation adopted in [6, 9]

qi,t+1 = qi,t + λ(Ri(qj,t)− qi,t), (2.9)

where the reactivity parameter λ varies in (0, 1) and, to lighten notation, Ri(qj,t)

stands for Ri,t+1(qj,t), i.e., the best response function in (2.7) of firm i at time

t+ 1 to the output qj,t produced by firm j at time t, for i 6= j ∈ {1, 2}, we will

now consider

qi,t+1 = qi,t + δ

(
υ + δ

υ e−σ(Ri(qj,t)−qi,t) + δ
− 1

)
. (2.10)

Moving qi,t to the left-hand side of (2.10), we obtain that the output variation

of firm i 6= j ∈ {1, 2} between the next period and the current one is described

by the sigmoid map

g(x) := δ

(
υ + δ

υ e−σx + δ
− 1

)
, (2.11)

with x measuring the difference between the next period optimal strategy and

the current output volume, so that (2.10) can be rewritten as

qi,t+1 − qi,t = g(Ri(qj,t)− qi,t). (2.12)

Before looking at the features of g, let us introduce the concept of relative

variation, that we will denote by RV , and which at time t for firm i is defined

as

RVi,t :=
qi,t+1 − qi,t
Ri(qj,t)− qi,t

, (2.13)

with i 6= j ∈ {1, 2}, i.e., as the ratio between the output variation in a given

period and the difference between the optimal output and the current strategy.

Thanks to such notion, we will be able to compare in a more formal manner our

adjustment mechanism in (2.10) with that in (2.9), considered in [6], as well as

with the nonlinear updating rule adopted by [10], which reads as

qi,t+1 = qi,t +Kqi,t(Ri(qj,t)− qi,t), (2.14)
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for i 6= j ∈ {1, 2} and K ∈ (0,+∞).

Computing the relative variation in the three different scenarios, we obtain

RVi,t = λ in relation to (2.9), RVi,t = Kqi,t in relation to (2.14), while RVi,t

has no explicit formulation in connection with (2.10), but we will derive below

some qualitative properties for it. The common feature for the relative variation

in the three settings is that it is always linked with the reactivity, given just by

λ for (2.9), by K for (2.14), and by σ for (2.10). Of course, the connection be-

tween the relative variation and the reactivity is different in each case. Indeed,

in [6] the two notions coincide, the relative variation being constant, while in

the setting by [10], that may be considered as an extension of the former frame-

work, the relative variation proportionally increases with the current production

volume, the proportionality factor being given by the reactivity. Also in regard

to the sigmoid adjustment rule in (2.10), the relative variation is not constant,

depending on the current production level.

Turning back to the mechanism in (2.12), we notice that g in (2.11) is increasing

and that it passes through the origin. Moreover, it is bounded from below by

−δ and from above by υ. The presence of the two horizontal asymptotes helps

avoid diverging trajectories and negativity issues. In particular, by raising (resp.

lowering) υ and δ we obtain an increase (resp. decrease) in the possible out-

put variations, which have to be contained in the interval (−δ, υ). Notice that

acting on υ (resp. δ) produces an effect when the best response is above (resp.

below) the current production level. We show the graph of the sigmoid function

g for different values of the reactivity σ in Fig. 2, where we denote by y the

output difference between tomorrow and today output levels by firm i. Namely,

σ is a non-negative parameter describing the intensity with which the difference

between the best response and the current output level determines the output

variation. For σ = 0, firms are completely insensitive to that difference and they

keep their output unchanged in time, so that qi,t+1 − qi,t = 0 for every t. In the

limit σ → +∞, the sigmoid approaches a piecewise constant function, taking

just the lowest and the highest possible values: indeed, the value of g coincides

with −δ for negative values of the signal Ri(qj,t) − qi,t and with υ for positive
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values of Ri(qj,t)−qi,t. Moreover, as observed above, σ influences, together with

υ and δ, the relative variation in connection with (2.12), that, recalling (2.13),

is given by

RVi,t =
g(Ri(qj,t)− qi,t)

Ri(qj,t)− qi,t
. (2.15)

Notice that, looking at (2.10) and recalling the meaning of variable x introduced

after (2.11), x = 0 corresponds to the Nash equilibrium (q∗1 , q
∗

2) in (2.8), as

the best response function formulation is still the one in (2.7). Since g is an

increasing map passing through the origin, x = 0 coincides also with the unique

steady state for (2.10). Some features of RVi,t easily follow from (2.11) and

(2.15), observing that: (I) g(x)/x → 0+ when x → ±∞;

(II) g(x)/x is an even map when υ = δ;

(III)
g(x)

x
→ σ̃ :=

υδσ

υ + δ
when x → 0. (2.16)

Namely, (I) implies that for us there is no direct proportionality between RVi,t

and qi,t, contrary to what occurs in the setting by [10], where with (2.14) the

relative variation proportionally increases with the current production volume.

Indeed, with (2.10) RVi,t tends to vanish when the production volume is far

from the current optimal output level. In particular, due to (II), such decrease

in RVi,t is symmetric with respect to positive or negative values of the signal

Ri(qj,t) − qi,t that have the same modulus if the upper and lower asymptotes

of g are at the same distance from the horizontal axis. Finally, by (III) in

(2.16) the relative variation at the steady state coincides with σ̃, which, taking

into account the joint effect of σ, υ and δ, will be called joint reactivity in

what follows. Notice that σ influences σ̃, without modifying the value of the

asymptotes and that, like in the linear framework proposed in [6] it would be

possible to consider different values of the reactivity parameter λ for the two

firms, also in the present nonlinear setting we could assume personalized values

of the sensitivity parameter σ. However, since this hypothesis would overburden

the analysis, making the interpretation of the results less neat, similar to [6],

where the reactivity parameter is homogeneous for the two firms, we prefer to

deal with the case in which the value of σ coincides for firms.
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(A) (B) (C)

Figure 2: The graph of the sigmoid function g in (2.11), for a low (in (A)), intermediate (in
(B)) and high (in (C)) value of σ.

3. Local stability and bifurcation analysis

Let us start by investigating how the presence of the sigmoid adjustment

mechanism influences, with respect to the linear framework with differentiated

goods considered in [9], the local stability of the Nash equilibrium for (2.10),

which for i 6= j ∈ {1, 2} may be explicitly written as





q1,t+1=q1,t + δ
(

υ+δ

υ e−σ(R1(q2,t)−q1,t)+δ
− 1
)
=q1,t + δ

(
υ+δ

υ e
−σ

(
p−bε−γq2,t

2(β+c)+dε2
−q1,t

)

+δ

− 1

)

q2,t+1=q2,t + δ
(

υ+δ

υ e−σ(R2(q1,t)−q2,t)+δ
− 1
)
=q2,t + δ

(
υ+δ

υ e
−σ

(
p−bε−γq1,t

2(β+c)+dε2
−q2,t

)

+δ

− 1

)

(3.1)

Calling F : (0,+∞)2 → (0,+∞)2 the planar map associated with the above

dynamical system, in Subsection 3.1 we will deal with the cases of substitutable

and independent goods, in which γ ∈ [0, β), so that the framework with homo-

geneous goods, corresponding to γ = β, is encompassed as limit case, while in

Subsection 3.2 we will focus on complements, with γ ∈ (−β, 0).

3.1. Substitutable and independent goods

In the present subsection, we deal with the case γ ∈ [0, β). Since (2.5) has

to be satisfied, it follows that 2(β + c) + dε2 + γ > 0. Hence, the positivity of
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the Nash equilibrium (q∗1 , q
∗

2) in (2.8) requires that

p− bε > 0, (3.2)

similar to [6]. Consequently, the following result, which highlights the destabi-

lizing role of the joint reactivity σ̃ = υδσ
υ+δ

introduced in (2.16), holds true:

Proposition 3.1. When γ ≥ 0, under (2.5) and (3.2), (q∗1 , q
∗

2) in (2.8) is ad-

missible according to (2.3) for d > − b(2β+2c+γ)
εp

. If this is the case, (q∗1 , q
∗

2) is

locally asymptotically stable for System (3.1) when d > − 2β+2c−γ
ε2

and σ̃ <

2
1+ γ

2(β+c)+dε2
.

Proof. We are going to derive the local stability conditions for our system at

the steady state by using Jury (1964) conditions

(i) det(J) < 1;

(ii) 1 + tr(J) + det(J) > 0;

(iii) 1− tr(J) + det(J) > 0,

(3.3)

where J = JF (q
∗

1 , q
∗

2) is the Jacobian matrix for F computed at (q∗1 , q
∗

2), which

reads as

JF (q
∗

1 , q
∗

2) =




1− σ̃ − σ̃γ
2(β+c)+dε2

− σ̃γ
2(β+c)+dε2

1− σ̃


 (3.4)

and that is well defined by (2.5). Since as expressions for the determinant and

for the trace of J we respectively find

det(J) = σ̃2

(
1−

γ2

(2(β + c) + dε2)2

)
− 2σ̃ + 1, tr(J) = 2− 2σ̃,

condition (iii) reads as

1−
γ2

(2(β + c) + dε2)2
> 0, (3.5)

so that, setting A := 1− (γ2/(2(β+ c)+dε2)2), we have that A has to lie in the

interval (0, 1). Condition (i) is then equivalent to

σ̃ <
2

A
, (3.6)
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while condition (ii) holds if and only if

Aσ̃2 − 4σ̃ + 4 > 0. (3.7)

It is straightforward to check that (3.6) and (3.7) are jointly satisfied when

σ̃ <
2

1 + γ
2(β+c)+dε2

. (3.8)

Moreover, since (3.5) can be equivalently rewritten as

(2(β + c) + dε2 − γ)(2(β + c) + dε2 + γ) > 0 (3.9)

and by (2.5) it holds that 2(β + c) + dε2 + γ > 0, then (3.5) is equivalent to

2(β + c) + dε2 − γ > 0 (3.10)

as well, which can be rewritten as

d > −
2β + 2c− γ

ε2
. (3.11)

Since, by (2.5), the conditions in (2.3) lead to

d > −
b(2β + 2c+ γ)

εp
, (3.12)

the desired conclusion follows from (3.8), (3.11) and (3.12). �

Comparing the above result with the findings obtained in [9], Proposition 3.1

highlights an overall reduction in the stability region for (q∗1 , q
∗

2) with respect to

Proposition 3 therein due to the introduction of the sigmoid adjustment mecha-

nism in (2.10). Namely, under (3.2) in the nonlinear context we observe stricter

conditions for stability than in its linear counterpart, arising from the destabi-

lizing role played by the joint reactivity σ̃ (cf. (3.8)). Specifically, when (3.8)

is violated, a period-doubling bifurcation occurs at the steady state,5 possibly

5According to [21], page 249, this is a consequence of the fact that a violation of (3.8) occurs
when condition (ii) in (3.3) becomes an equality, so that the Jacobian matrix in (3.4) admits
a real eigenvalue equal to −1. Analogously, a period-doubling bifurcation occurs at the steady
state with complements when (3.17) in the proof of Proposition 3.2 is violated. Of course, the
same is still true when (3.8) and (3.17) are rewritten in order to make explicit a parameter
different from σ̃, such as d or γ. In this respect, we remark that a period-doubling bifurcation
occurs on increasing σ̃ or |γ| (cf. Corollaries 3.5 and 3.6 for γ), while a period-doubling
bifurcation occurs on decreasing d (see Corollaries 3.1 and 3.3). We can then equivalently say
that a period-halving bifurcation occurs on increasing d.
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opening the door to interesting dynamic phenomena. We illustrate two differ-

ent scenarios, according to the sign of d, in Fig. 3, where we let σ vary. More

precisely, for a positive value of d, if (3.2) holds true, the only condition in

Proposition 3.1 that can be violated is the last one, i.e., that in (3.8). Indeed,

for the parameter configuration considered in Fig. 3 (A), where d = 0.1, (3.8)

reads as σ̃ < 1.413 or, equivalently, as σ < 4.176, since δ = 0.4 and υ = 2.2.

In fact, in that bifurcation diagram σ varies in (0, 6.5) and (q∗1 , q
∗

2) in (2.8) is

stable for low values of σ, while above the stability threshold we observe a cas-

cade of period-doubling bifurcations leading to chaos. On the other hand, when

dealing with negative values for d, no condition in Proposition 3.1 is granted.

In particular, in Fig. 3 (B) we fix d = −0.4 and, for the chosen parameter

set, conditions (2.5) and (3.2) are fulfilled, as well as the stability condition in

(3.11), which reads as d > −0.480, while (3.8) reads as σ̃ < 1.089, or equiva-

lently σ < 3.217. Hence, like in (A), also in this case the steady state is stable

for low values of σ. On the other hand, since the admissibility condition in (2.3)

leads to6 qi < 0.370 for i ∈ {1, 2}, it is fulfilled just for σ ∈ (0, 3.660). This is

indeed the interval for σ depicted in Fig. 3 (B), where we have to interrupt the

bifurcation diagram before the cascade of period-doubling bifurcations (cf. also

Footnote 2). We stress that, both in (A) and in (B), orbits do not diverge when

the steady state is not stable, thanks to the introduction of the sigmoid ad-

justment mechanism, differently from what happens with the linear adjustment

rule considered in [6, 9]. Notice that for the parameter configurations in Fig. 3

(A) and (B), disregarding the parameters not encompassed in the model linear

formulation, (q∗1 , q
∗

2) in (2.8) is stable for the dynamical system analyzed in [9]

since the stability condition in (3.11), common to that framework (cf. Proposi-

tion 3 therein), is fulfilled. We also stress that considering γ = β = 3.1 in Fig.

3 (A) and (B), so that goods are homogeneous, we obtain dynamics analogous

to the ones detected in those bifurcation diagrams, where the interdependence

6Notice that, when the Nash equilibrium is unstable, (2.3) has to be satisfied by all pro-
duction levels, not just by those computed at the equilibrium.
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degree between goods is already very high. In particular, for the parameter

configurations in Fig. 3 (A) and (B) except for γ = β = 3.1, (q∗1 , q
∗

2) in (2.8),

which in the case of homogeneous goods reads as

(q∗1 , q
∗

2) =

(
p− bε

3β + 2c+ dε2
,

p− bε

3β + 2c+ dε2

)
,

is stable for the dynamical system considered in [6] since the stability condition

in (3.11), which becomes d > −β+2c
ε2

, is fulfilled for those parameter values.

(A) (B)

Figure 3: The bifurcation diagram of q1,t+1 in (3.1) with respect to σ and initial conditions
q1,0 = 0.25, q2,0 = 0.2, for p = 2.5, δ = 0.4, υ = 2.2, β = 3.1, c = 0.15, b = 0.4, ε = 2.7, γ =
3, and d = 0.1 in (A), d = −0.4 in (B).

In regard to comparative statics, we remark that the same conclusions contained

in Propositions 1 and 2 in [9], showing that, with substitutable and independent

goods, under (3.2), the components of the Nash equilibrium in (2.8) decrease

when b, d or ε increase in the model linear formulation, hold true with the

sigmoidal adjustment mechanism, too. Hence, the efficacy of the environmental

policy described by the emission charges in (2.2) would seem not to be affected

by the nonlinear output adjustment rule introduced in the present work. On

the other hand, as underlined in [9], a comparative statics result is economically

grounded if it concerns an equilibrium which is asymptotically stable and thus

orbits converge towards it after a transient period. Due to the above highlighted

destabilizing role played by σ̃, that concerns the case of complements, too (cf.

Subsection 3.2), we can then say that the significance of the comparative statics

analysis is reduced when dealing with the model nonlinear formulation in (3.1),

rather than with its linear counterpart. Accordingly, in Section 4 we will present

alternative, dynamic approaches to evaluate the environmental policy efficacy,
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based either on a comparison of emissions along non-stationary trajectories and

along the equilibrium path or on a comparison of emissions for different levels

of charges in (2.2), described by increasing values of d.

Still in regard to d, we observe that it is possible to rewrite the statement of

Proposition 3.1 in order to make its role explicit starting from (3.8) as follows:

Corollary 3.1. When γ ≥ 0, under (2.5) and (3.2), (q∗1 , q
∗

2) in (2.8) is admis-

sible according to (2.3) for d > − b(2β+2c+γ)
εp

. If this is the case, (q∗1 , q
∗

2) is locally

asymptotically stable for System (3.1) for σ̃ < 2 and

d > max

{
−2(β + c)

ε2
+

γ

ε2
,
−2(β + c)

ε2
+

γ

ε2
(
2
σ̃
− 1
)
}
.

Hence, similar to what happened with the model linear formulation in [6], in

the case of homogeneous goods, and in [9], with substitutable and independent

products, under (2.5) and (3.2) parameter d plays just a stabilizing role on the

Nash equilibrium, when it influences its stability. Namely, it can also happen

that, under (2.5) and (3.2), the equilibrium in (2.8) is stable for any admissible

value for d according to (2.3). However, with respect to [6, 9], we now have one

extra stability condition, involving σ̃, and thus more frameworks may arise. We

represent the three main possibilities7 in Fig. 4, where we take d as bifurcation

parameter and the various values of p and σ allow for a different ordering among

the thresholds contained in Corollary 3.1. In particular, calling d1, d2 the sta-

bility thresholds therein, da the admissibility threshold coming from (2.3) and

dc the threshold coming from (2.5), i.e.,

d1 := −2(β+c)
ε2

+ γ
ε2
, d2 := −2(β+c)

ε2
+ γ

ε2( 2
σ̃
−1)

,

da := − b(2β+2c+γ)
εp

, dc := − 2(β+c)
ε2

,

(3.13)

7Notice indeed that no crucial differences emerge when the smaller between the two stability
thresholds d1 and d2 in (3.13) lies above or below the admissibility threshold da. In regard
to the comparison between d1 and d2, with substitutes we have that d1 < d2 for σ̃ > 1. In
particular, this remark applies to the limit case in which γ = β, i.e., when we are dealing with
homogeneous goods. We finally stress that d1 and d2 coincide when products are independent.
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for the parameter configuration in Fig. 4 (A) it holds that dc = −0.892 <

d2 = −0.754 < d1 = −0.480 < da = −0.469. Since the stability thresholds

d1 and d2 are below the admissibility threshold da, the Nash equilibrium is

stable for all values for which it is admissible, as highlighted by the bifurcation

diagram in Fig. 4 (A), that we draw for d ∈ (−0.469, 0). Moreover, the steady

state is decreasing with d, in agreement with Proposition 1 in [9]. On the

other hand, for the parameter values considered in Fig. 4 (B) it holds that

da = −1.005 < dc = −0.892 < d2 = −0.754 < d1 = −0.480. Hence, although

this time both stability thresholds d1 and d2 are larger than da and satisfy (2.5),

which imposes d > dc, also the admissibility condition in (2.3), that leads to

qi < − 0.4
2.7d for i ∈ {1, 2}, since d varies, has to be taken into account. It is

straightforward to check that (q∗1 , q
∗

2) is admissible at the stability threshold

d = d1, since q∗i = 0.053 < − 0.4
2.7d1

= 0.309 for i ∈ {1, 2}. Hence, by continuity,

it should be possible to represent the corresponding bifurcation diagram for

values of d in a left neighborhood of d1. However, due to a monotone divergence

phenomenon which occurs as soon as d is below d1, in Fig. 4 (B) we draw the

bifurcation diagram for d ∈ [−0.480,−0.450) only, where the Nash equilibrium is

locally asymptotically stable.8 We stress that at d = d1 = −0.480 a saddle-node

bifurcation occurs.9 In regard to the divergence issue, we recall that the sigmoid

adjustment mechanism bounds in each period the output variation and thus

lowers the speed of divergence of the orbits, sometimes completely preventing

divergence, like e.g. in Figs. 3 and 7. However, this is not always the case,

8Actually, it would be possible to represent the bifurcation diagram in Fig. 4 (B) e.g. for
d ∈ [−0.480, 0), but, in order to better highlight what occurs in the proximity of the stability
threshold d = d1, we focus on a smaller interval of values for d. A similar remark applies to
the choice of the range for d in the bifurcation diagram in Fig. 4 (C).

9According to [21], page 249, when condition (iii) in (3.3) becomes an equality, and thus
the Jacobian matrix in (3.4) admits a real eigenvalue equal to +1, then a fold, a pitchfork or
a transcritical bifurcation occurs. Since condition (iii) in (3.3) becomes an equality just when
(3.11) is violated, we are in one of those three cases for d = d1. In particular, we can infer
that a saddle-node bifurcation occurs for the parameter configuration considered in Fig. 4 (B),
since, according to the chosen initial conditions, the production of one firm positively diverges,
while the production of the other firm negatively diverges. As we shall see in Subsection 3.2,
with complements, depending on the parameter values we deal with, (iii) in (3.3) is either
always or never fulfilled and thus no fold, pitchfork or transcritical bifurcations can occur in
that framework.

20



as shown by Fig. 4 (B). Finally, in Fig. 4 (C) we have da = −1.005 < dc =

−0.892 < d1 = −0.480 < d2 = −0.467, so that also in such framework both

stability thresholds d1 and d2 are larger than da and satisfy (2.5), too. Recalling

that, in the considered framework, the admissibility condition in (2.3) reads as

qi < − 0.4
2.7d for i ∈ {1, 2}, a numerical check shows that we can represent the

corresponding bifurcation diagram e.g. for d ∈ (−0.478,−0.450). This is indeed

the choice made in Fig. 4 (C), which confirms that the Nash equilibrium is stable

for d > d2, whereas for values of d slightly smaller than d2 we observe a cyclic

behavior, since at d = d2 a period-halving bifurcation occurs (cf. Footnote 2).

Similar to (B), also in this case it would be possible to consider a wider range

of values of d. However, since the values of q1 raise very rapidly for decreasing

values of d ≈ −0.480, we focus on a small variation interval for d in Fig. 4 (C),

in order to better focus on the steady state stability recovery.

(A) (B) (C)

Figure 4: The bifurcation diagram of q1,t+1 in (3.1) with respect to d and initial conditions
q1,0 = 0.25, q2,0 = 0.2, for δ = 0.4, υ = 2.2, β = 3.1, c = 0.15, b = 0.4, ε = 2.7, γ = 3, and
p = 3, σ = 1.478 in (A), p = 1.4, σ = 1.478 in (B), p = 1.4, σ = 3 in (C).

Notice that, differently from d, parameter b plays no role on the stability of the

Nash equilibrium, being not present in the Jacobian matrix in (3.4).

When making explicit the effect of γ on the stability of the Nash equilibrium

starting from Proposition 3.1, we obtain the following result, which shows that

an increasing degree of interdependence between goods is destabilizing:

Corollary 3.2. When γ ≥ 0, under (2.5) and (3.2), (q∗1 , q
∗

2) in (2.8) is admis-

sible according to (2.3) for γ > −
(
2(β + c) + dεp

b

)
. If this is the case, (q∗1 , q

∗

2)
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is locally asymptotically stable for System (3.1) when σ̃ < 2 and

0 ≤ γ < min
{
2(β + c) + dε2,

( 2
σ̃
− 1
) (

2(β + c) + dε2
)}

. (3.14)

Hence, in our duopoly setting with emission charges we obtain confirmation of

the destabilizing role of the degree of substitutability among commodities found

by [22] in a duopoly framework with differentiated goods and nonlinear demand

functions.

In regard to the threshold values in (3.14), i.e.,

γ1 := 2(β + c) + dε2, γ2 :=
( 2
σ̃
− 1
) (

2(β + c) + dε2
)
,

we notice that γ1 < γ2 if and only if σ̃ ∈ (0, 1), while the opposite inequality

holds true for σ̃ ∈ (1, 2).

Rather than illustrating Corollary 3.2, we will show in Fig. 7 possible bifur-

cation diagrams drawn for positive and negative values of γ, in relation to the

findings in the more general Corollary 3.5, which encompasses both the case of

substitutes and (Scenario I) of complements.

3.2. The case of complements

In the present subsection, we deal with the case γ < 0. Accordingly, under

(2.5), two different scenarios ensure the positivity of the Nash equilibrium in

(2.8), i.e.,

p− bε > 0, 2(β + c) + dε2 + γ > 0, (3.15)

or

p− bε < 0, 2(β + c) + dε2 + γ < 0. (3.16)

The former scenario, in which (2.5) is granted and that occurs either when d ≥ 0

or for small values of γ in absolute value when d < 0, leads to findings similar

to, but not coinciding with, those described in Subsection 3.1. In the latter

scenario, that occurs for large values of γ in absolute value and for negative

values of d, (2.5) is instead not guaranteed and outcomes will be drastically

different from those detected in the other cases. In order to easily refer to the

scenarios related to (3.15) and (3.16), in what follows we will call them Scenario

I and Scenario II, respectively, and we will analyze them separately.
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3.2.1. Analysis of Scenario I

The dynamic result, which represents the counterpart to Proposition 3.1,

reads as follows:

Proposition 3.2. When γ < 0, under (3.15), (q∗1 , q
∗

2) in (2.8) is admissible

according to (2.3) for d > − b(2β+2c+γ)
εp

. If this is the case, (q∗1 , q
∗

2) is locally

asymptotically stable for System (3.1) when σ̃ < 2
1− γ

2(β+c)+dε2
.

Proof. Using Jury conditions like in the proof of Proposition 3.1, we find again

(3.5), equivalent to (3.9), as well as (3.6) and (3.7). However, this time, since γ

is negative, (3.6) and (3.7) are jointly fulfilled when

σ̃ <
2

1− γ
2(β+c)+dε2

. (3.17)

Moreover, by (3.15), (3.9) is equivalent to (3.10) and to (3.11). Since, still by

(3.15), the conditions in (2.3) lead to (3.12) and it holds that

−
b(2β + 2c+ γ)

εp
> −

2β + 2c+ γ

ε2
> −

2β + 2c− γ

ε2
,

the assertion follows by (3.12) and (3.17). �

Similar to what happened with substitutes, we notice that although the same

conclusions about comparative statics contained in Propositions 4 and 5 in [9],

according to which the components of the Nash equilibrium in (2.8) decrease

when b, d or ε increase, hold true with the sigmoidal adjustment mechanism, too,

the significance of the comparative statics analysis is reduced when dealing with

the model nonlinear formulation in (3.1), since the stability region in Proposition

3.2 for (q∗1 , q
∗

2) in (2.8) is reduced with respect to Proposition 6 in [9], obtained

for the model linear formulation. Indeed, in that setting the Nash equilibrium is

stable under (3.15) anytime it is admissible according to (2.3), i.e., when (3.12)

holds true, while with the sigmoidal adjustment mechanism the extra condition

in (3.17), highlighting the destabilizing role played by the joint reactivity σ̃,

is required for stability. In particular, two different possibilities, according to

the sign of d, are illustrated in Fig. 5, where we let σ vary, finding outcomes

23



which bear resemblance to those detected in Fig. 3, as well as some differences.

Namely, for the parameter configuration considered in Fig. 5 (A), where d = 0.1,

since (3.15) holds true and (3.12) is guaranteed by the positivity of d, the only

condition in Proposition 3.2 that can be violated is the one in (3.17), which reads

as σ̃ < 1.413 or equivalently as σ < 4.176, since υ = 2.2 and δ = 0.4. Indeed,

in that bifurcation diagram σ varies in (0, 10) and (q∗1 , q
∗

2) in (2.8) is stable

for low values of σ, while after the period-doubling bifurcation occurring at

σ = 4.176 (cf. Footnote 2), we observe a secondary Neimark-Sacker bifurcation

at σ = 5.112, at which the period-two cycle loses stability and quasiperiodic

dynamics emerge. When considering negative values for d, no condition in

Proposition 3.2 is granted. In particular, in Fig. 5 (B) we fix d = −0.1 and,

for the chosen parameter set, condition (3.15) is fulfilled, while (3.17) reads

as σ̃ < 1.316, or equivalently σ < 3.888. Hence, like in (A), also in this case

the steady state is stable for low values of σ. On the other hand, since the

admissibility condition in (2.3) leads to qi < 1.481 for i ∈ {1, 2}, it is fulfilled

just for σ ∈ (0, 5.334). This is indeed the interval for σ depicted in Fig. 5 (B),

which is sufficient to witness the secondary Neimark-Sacker bifurcation of the

period-two cycle, followed by quasiperiodic dynamics.10 Both in Fig. 5 (A)

and (B) orbits do not diverge after the steady state stability loss, differently

from the linear framework considered in [6, 9], thanks to the introduction of the

sigmoid adjustment mechanism.

We stress that the threshold values in Fig. 3 (A) and in Fig. 5 (A) for σ coincide

because in the two bifurcation diagrams we considered the same parameter

values, except for γ = 3 in the former, and γ = −3 in the latter, so that

10In this respect we remark that choosing a more negative value of d would allow us to draw
the bifurcation diagram for a smaller interval of values for σ. For instance, for d = −0.15 we
should interrupt the diagram in Fig. 5 (B) just after the secondary Neimark-Sacker bifurcation.
The same remark applies to Fig. 3. Namely, in (B) therein we have to truncate the bifurcation
diagram just after the period-doubling bifurcation with d = −0.4, while if we chose d = −0.1
in Fig. 3 (B), we would obtain a bifurcation diagram more similar to the one in Fig. 3 (A),
encompassing complex dynamics.
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(A) (B)

Figure 5: The bifurcation diagram of q1,t+1 in (3.1) with respect to σ and initial conditions
q1,0 = 0.25, q2,0 = 0.2, for p = 2.5, δ = 0.4, υ = 2.2, β = 3.1, c = 0.15, b = 0.4, ε = 2.7, γ =
−3, and d = 0.1 in (A), d = −0.1 in (B).

|γ| = 3 in either case.11 Namely, we will see in Corollary 3.6 in Subsection 3.3,

which encompasses the frameworks of substitutes and of complements, that,

since d > 0 in Figs. 3 (A), 5 (A) and (3.2) holds true in both frameworks, then

|γ| determines the stability threshold value for σ̃, as it follows by making the

latter parameter explicit (cf. (3.19)).

Let us now state the analogues of Corollaries 3.1 and 3.2, which are obtained

by highlighting in the statement of Proposition 3.2 the role of d and of γ,

respectively.

In regard to the former, making d explicit in (3.17), we obtain the following:

Corollary 3.3. When γ < 0, under (3.15), (q∗1 , q
∗

2) in (2.8) is admissible ac-

cording to (2.3) for d > − b(2β+2c+γ)
εp

. If this is the case, (q∗1 , q
∗

2) is locally asymp-

totically stable for System (3.1) for σ̃ < 2 and

d >
−2(β + c)

ε2
−

γ

ε2
(
2
σ̃
− 1
) .

When illustrating the different dynamic scenarios compatible with Corollary

3.3, starting from the threshold values for d in (3.13), we notice that dc and d1

are no more involved, while the admissibility condition da is still necessary, and,

in place of d2, we need to consider d′2 := −2(β+c)
ε2

− γ

ε2( 2
σ̃
−1)

. Hence, the only two

11Notice that in Fig. 5 (B) we had to consider a different value for d < 0 with respect
to Fig. 3 (B) due to the admissibility condition (3.12), with consequent different threshold
values for σ in Figs. 3 (B) and 5 (B) although having |γ| = 3 in both bifurcation diagrams.
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possibilities are given by d′2 < da and da < d′2. We represent them in Fig. 6 (A)

and (B), respectively, where we take d as bifurcation parameter, for different

values of p and σ. In more detail, with the parameter configuration in Fig. 6

(A) (coinciding with that in Fig. 4 (A), except for the opposite value for γ) it

holds that d′2 = −0.754 < da = −0.173. Since the stability threshold d′2 is below

the admissibility threshold da, the Nash equilibrium is stable for all values for

which it is admissible, as confirmed by the bifurcation diagram in Fig. 6 (A),

that we draw for d ∈ (−0.173, 0). Notice that the steady state is decreasing with

d, in agreement with Proposition 4 in [9]. On the other hand, for the parameter

values considered in Fig. 6 (B)12 it holds that da = −0.471 < d′2 = −0.467.

Thus, although this time the stability threshold d′2 is larger than da, in order to

take into account the admissibility condition in (2.3), that leads to qi < − 0.4
2.7d for

i ∈ {1, 2}, since d varies, we can represent the corresponding bifurcation diagram

just for d ∈ (−0.469, 0). However, in Fig. 6 (B) we focus on d ∈ (−0.469,−0.4),

to better highlight that (q∗1 , q
∗

2) is locally asymptotically stable for (3.1) when

d > d′2, whereas for values of d slightly smaller than d′2 we observe a cyclic

behavior, that is replaced by monotone divergence for lower values of d.

(A) (B)

Figure 6: The bifurcation diagram of q1,t+1 in (3.1) with respect to d and initial conditions
q1,0 = 0.25, q2,0 = 0.2, for δ = 0.4, υ = 2.2, β = 3.1, c = 0.15, b = 0.4, ε = 2.7, γ = −3, and
p = 3, σ = 1.478 in (A), p = 1.1, σ = 3 in (B).

12We stress that with the parameter configuration in Fig. 4 (B) and γ = −3 we would have
found again the scenario with d′

2
< da in Fig. 6 (B). Hence, in this case, unlike in (A), we

had to consider a different parameter configuration with respect to Fig. 4 (B).
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Making explicit in the statement of Proposition 3.2 the role of γ rather than

that of d, we obtain the next:

Corollary 3.4. When γ < 0, under (3.15), (q∗1 , q
∗

2) in (2.8) is admissible ac-

cording to (2.3) for γ > −
(
2(β + c) + dεp

b

)
. If this is the case, (q∗1 , q

∗

2) is locally

asymptotically stable for System (3.1) when σ̃ < 2 and

0 > γ >
(
1−

2

σ̃

) (
2(β + c) + dε2

)
.

The effect on the Nash equilibrium of γ, that seems to be destabilizing in Corol-

lary 3.2 and stabilizing in Corollary 3.4, will be better highlighted in Corollary

3.5 in Subsection 3.3, in which γ can take both positive and negative values.

Before stating that result, we complete the investigation of what occurs with

complements by focusing on Scenario II.

3.2.2. Analysis of Scenario II

Even under (3.16), the conclusions about comparative statics found in [9]

(cf. Propositions 7 and 8 therein) still hold true with the model nonlinear

formulation, showing that the environmental policy described by the emission

charges Ci in (2.2) is not effective in reducing pollution when d is negative

enough and thus emission charges increase too slowly with production. Namely,

under (3.16), which can be fulfilled just by values of d that are much lower than

0, the components of the Nash equilibrium in (2.8) increase with b, d and ε.

In this scenario however we find confirmation of the dynamic result in [9] (cf.

Proposition 9 therein), too, according to which the steady state is never stable,

when it is admissible. Namely, the counterpart to Propositions 3.1 and 3.2 reads

as follows:

Proposition 3.3. When γ < 0, under (2.5) and (3.16), (q∗1 , q
∗

2) in (2.8) is

admissible according to (2.3) for d < − b(2β+2c+γ)
εp

. If this is the case, (q∗1 , q
∗

2) is

always unstable for System (3.1).

Proof. Using Jury conditions, we find again (3.5), equivalent to (3.9), as well as

(3.6) and (3.7). However, since we are now supposing that 2(β+c)+dε2+γ < 0,
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this time from (3.9) it follows that

2(β + c) + dε2 − γ < 0,

which contradicts (2.5) with γ < 0. Hence, Jury conditions are never satisfied

for System (3.1) at (q∗1 , q
∗

2) , leading to the assertion. �

We will not illustrate the dynamics arising on increasing the main model pa-

rameters in this scenario, in which no stability thresholds are present, since

the numerical simulations we performed provided divergent outcomes, with no

emerging attractors.

In order to conclude the local stability analysis, we shall better highlight the

role of γ. This will be done in the next subsection, where we will derive results

that encompass both the case of substitutes and of complements under (3.15).

3.3. The role of the interdependence degree between goods

Merging Corollaries 3.2 and 3.4, we find the following:

Corollary 3.5. Under (2.5) and (3.15), (q∗1 , q
∗

2) in (2.8) is admissible accord-

ing to (2.3) for γ > −
(
2(β + c) + dεp

b

)
. If this is the case, (q∗1 , q

∗

2) is locally

asymptotically stable for System (3.1) when σ̃ < 2 and

(
1−

2

σ̃

) (
2(β + c) + dε2

)
< γ < min

{
2(β+c)+dε2,

( 2
σ̃
−1
) (

2(β + c) + dε2
)}

.

(3.18)

Although containing heavy conditions, Corollary 3.5 shows that increasing the

absolute value of γ has a destabilizing effect on System (3.1).

The statement of Corollary 3.5 is much simplified under the assumption that

d > 0, in which case there is no need for the admissibility condition in (2.3), (2.5)

is always fulfilled and (3.15) reduces to (3.2). Moreover, the stability condition

(3.10) derived in Proposition 3.1 is granted, and thus we easily obtain the next:

Corollary 3.6. Assuming that d > 0, under (3.2) it holds that (q∗1 , q
∗

2) in (2.8)

is locally asymptotically stable for System (3.1)

• for every value of |γ| < β if σ̃ ≤ η := 4β+4c+2dε2

3β+2c+dε2
;
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• for every value of |γ| <
(
2
σ̃
− 1
) (

2(β + c) + dε2
)
if η < σ̃ < 2;

• for no values of γ if σ̃ ≥ 2.

Proof. For d > 0, (3.18) reads as

|γ| <
( 2
σ̃
− 1
) (

2(β + c) + dε2
)
, (3.19)

which can be fulfilled by some values of γ just when σ̃ < 2, since 2(β+c)+dε2 >

0. Recalling that γ ∈ (−β, β), (3.19) imposes stricter bounds on γ exclusively

when
(
2
σ̃
− 1
) (

2(β + c) + dε2
)
< β, i.e., when σ̃ > η := 4β+4c+2dε2

3β+2c+dε2
∈ (1, 2).

The proof is complete. �

We illustrate the three scenarios described in Corollary 3.6 in Fig. 7, where we

show the bifurcation diagram of q1,t+1 in (3.1) for γ ∈ (−β, β) and different,

increasing, values of σ. Namely, for the parameter configurations considered

in Fig. 7 it holds that d > 0 and p > bε, so that (3.2) is fulfilled and it

is immediate to check that, similar to the results about comparative statics

contained in the above recalled Propositions 1, 2, 4 and 5 in [9], where the role

of b, d and ε was investigated, (q∗1 , q
∗

2) in (2.8) is decreasing for γ ∈ (−β, β) =

(−3.1, 3.1). Moreover, for the parameter η introduced in Corollary 3.6 it holds

that η = 1.400, and thus in Fig. 7 (A), for σ = 2, we have σ̃ = 0.677 < η,

so that the Nash equilibrium is locally asymptotically stable for every value of

γ ∈ (−3.1, 3.1); in Fig. 7 (B), for σ = 5.8, we have η < σ̃ = 1.963 < 2, so that the

Nash equilibrium is locally asymptotically stable just for γ ∈ (−0.136, 0.136),

according to (3.19); in Fig. 7 (C), for σ = 6, we have σ̃ = 2.031 > 2, so that

the Nash equilibrium is stable for no values of γ. We finally observe that, as

highlighted by Fig. 7 (B) and (C), when the steady state loses stability, via

period-doubling bifurcations (cf. Footnote 2), because of a high (in modulo)

interdependence degree between goods, complex dynamics may emerge due to

the presence of chaotic or quasiperiodic attractors, but no divergence issues arise

thanks to the bounds imposed by the sigmoidal function in (3.1).
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(A) (B) (C)

Figure 7: The bifurcation diagram of q1,t+1 in (3.1) for γ ∈ (−3.1, 3.1) and initial conditions
q1,0 = 0.25, q2,0 = 0.2, for p = 2.5, δ = 0.4, υ = 2.2, β = 3.1, c = 0.15, b = 0.4, d = 0.1, ε =
2.7, and σ = 2 in (A), σ = 5.8 in (B), σ = 6 in (C).

4. Dynamic approaches for the evaluation of the environmental policy

efficacy

We now discuss how to evaluate the environmental policy efficacy when the

steady state is not stable. Namely, in introducing our model we stressed that a

growing empirical literature (see e.g. [1, 2, 3]) highlights the chaotic behavior of

the main variables in various markets, and in particular in agricultural markets.

In order to be realistic, our model has to be able to reproduce the dynamic

phenomena identified by those empirical studies, according to which what we

see is the result of the action of underlying nonlinear mechanisms. Starting

then from the framework in [6], we replaced the linear output adjustment rule

considered therein with a sigmoid mechanism in view of obtaining interesting,

i.e., non-stationary, non-divergent, dynamic outcomes. The introduction of the

sigmoid mechanism, in addition to allowing for nontrivial dynamics, shrinks

the steady state stability region. Indeed, comparing Propositions 3.1, 3.2 and

3.3 with the corresponding results in [9], we observe a reduction in the stability

region for (q∗1 , q
∗

2) both in the case of substitutes and of complements in Scenario

I - in the latter framework the Nash equilibrium in [9] was always stable when

admissible - and a confirmation of its unconditional instability in Scenario II, in

consequence of the introduction of the sigmoid adjustment mechanism in (2.10).

Therefore, it is important to understand how the environmental policy efficacy

can be evaluated in the case of non-stationary trajectories. Namely, as long as
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the Nash equilibrium is stable, such as in Figs. 4 (A) and 6 (A), the efficacy

of the environmental policy can be assessed using the standard tool, which is

represented by the comparative statics analysis. In this respect, we recall that,

as mentioned in Section 3, according to Propositions 1 and 4 in [9], which hold

true with the nonlinear adjustment mechanism in (2.10), too, the environmental

policy described by the emission charges Ci in (2.2) is effective in reducing

pollution, i.e., the equilibrium pollution level falls with an increase in b or d,

with substitutes or under (3.15), while in agreement with Proposition 7 in [9] it is

detrimental under (3.16), since in such case the equilibrium pollution level raises

with an increase in b or d, due to the fact that, under (3.16), emission charges

increase too slowly with production. Nonetheless, when the steady state is not

stable, or when the considered scenario is characterized by the presence of an

attractor different from the Nash equilibrium, the comparative statics technique

is neither economically, nor empirically grounded. In such cases, we then need to

introduce alternative methods, based for instance on the behavior, for different

values of d, of the time series of the cumulative emissions, defined as the sum,

over a certain time interval [0, T ], of the aggregate emissions Ut := u1,t +u2,t =

ε(q1,t + q2,t) produced in time period t ∈ [0, T ] by both firms, i.e., in symbols

CET :=
∑T

t=0 Ut = ε
∑T

t=0(q1,t+q2,t). In this manner, the environmental policy

efficacy could be implied by a negative variation of cumulative emissions over

the chosen time interval as a consequence of an increase in d. We can use such

method to investigate the environmental policy efficacy e.g. in the contexts

considered in Figs. 4 (C) and 6 (B), where d was the bifurcation parameter.

To that aim, for the parameter values used therein we reproduce the two bifur-

cation diagrams for aggregate emissions Ut+1 in Fig. 8 (A) and (C), respectively,

where we fix three different values of d (colored in blue, red and green), some of

which lie in the interval where the steady state is unstable, while the remaining

ones belong to the stability interval of the Nash equilibrium. We show the corre-

sponding time series of the cumulative emissions CET for T ∈ [0, 100] in Fig. 8

(B) and (D), by using the same colors as in (A) and (C). In particular, in Fig. 8

(A) and (B) the blue color refers to d = −0.477, the red color to d = −0.471 and
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the green color to d = −0.465, while in Fig. 8 (C) and (D) the blue color refers

to d = −0.468, the red color to d = −0.443 and the green color to d = −0.418.

The initial conditions in (B) are U0 = ε(q1,0 + q2,0) = 2.7 ∗ 0.45 = 1.215 for the

blue and the red time series, and 2εq∗1 = 2 ∗ 2.7 ∗ 0.052 = 0.281 for the green

time series, while in (D) the initial conditions are U0 = 2.7 ∗ 0.45 = 1.215 for

the blue time series, 2εq∗1 = 2 ∗ 2.7 ∗ 0.074 = 0.399 for the red time series, and

2εq∗1 = 2 ∗ 2.7 ∗ 0.044 = 0.238 for the green time series. Since in (B) and (D)

the cumulative emissions for T ∈ [0, 100] are larger for lower values of d, this

means that increasing emission charges in (2.2) reduce pollution, and thus the

considered environmental policy is effective. We would find the same conclusion

by applying the just described method to the framework in Fig. 4 (B), too, in

agreement with the comparative statics result for Fig. 4 (A) (see Proposition

1 in [9]). Contrasting Fig. 8 (B) and (D), we observe that, although in both

(A) and (C) the considered values of d are equidistant, pollution decreases in

(B) rapidly for higher values of d, while in (D) the efficacy of the environmental

policy, although raising with d, slows down when d increases. In this sense, an

intense increase in d is more useful in (B) than in (D).

(A) (B) (C) (D)

Figure 8: In (A) and (C) we report the bifurcation diagrams of Ut+1 with respect to d for
the same parameter values used in Figs. 4 (C) and 6 (B), respectively. In (B) and (D) we
show the time series of cumulative emissions CET for T ∈ [0, 100] corresponding to the values
of d marked with different colors in (A) and (C), respectively. The initial conditions in (B)
are U0 = ε(q1,0 + q2,0) = 2.7 ∗ 0.45 = 1.215, connected with q1,0 = 0.25 and q2,0 = 0.2, for
the blue and the red time series, and 2εq∗

1
= 2 ∗ 2.7 ∗ 0.052 = 0.281 for the green time series,

while in (D) the initial conditions are U0 = 2.7 ∗ 0.45 = 1.215, connected with q1,0 = 0.25 and
q2,0 = 0.2, for the blue time series, 2εq∗

1
= 2 ∗ 2.7 ∗ 0.074 = 0.399 for the red time series, and

2εq∗
1
= 2 ∗ 2.7 ∗ 0.044 = 0.238 for the green time series.

In view of better comparing and understanding Fig. 8 (A) and (C), we draw in

Fig. 9 the time series of q1,t in dark blue and of q2,t in green for t ∈ [101, 140],
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(A) (B)

Figure 9: In (A) and (B) we show the time series of q1,t in dark blue and of q2,t in green
for t ∈ [101, 140], corresponding to the values of d marked in blue in Fig. 8 (A) and (C),
respectively.

corresponding to the values of d marked in blue in Fig. 8 (A) and (C), i.e.,

d = −0.477 and d = −0.468, respectively. We find that, although for the con-

sidered values of d both the bifurcation diagrams of q1,t+1 in Figs. 4 (C) and

6 (B) highlight the presence of a stable period-two cycle, in Fig. 9 (A) we wit-

ness an agreement between the periods of high/low production strategies for

the two firms, so that their outputs give a concordant contribution to aggregate

emissions in Fig. 8 (A), while in Fig. 9 (B) there is discordance between the

high/low output choice timing for the two firms, still giving rise to a decreasing

trend. Such difference between Fig. 9 (A) and (B) is the reason why in the

bifurcation diagram in Fig. 8 (A) we witness a period-two cycle for Ut+1 for

low values for d, like it was in Fig. 4 (C), while in Fig. 8 (C) we do not see

oscillations for Ut+1 even before the stability threshold value, i.e., d = −0.467.

The symmetry that we observe in Fig. 9 (A), and partially in (B), is caused

by the low heterogeneity degree in the model, concerning both the demand side

and the technology, since we are assuming that β1 = β2 = β and ε1 = ε2 = ε,

respectively.

We stress that in the time series in Fig. 9 (A) and (B) we introduced a transient

of 100 periods in order to show the asymptotic behavior of the production of

the two firms. We also remark that the choice of considering T ∈ [0, 100] in

our experiments in Fig. 8 (B) and (D) has no effect on the behavior of time

series for cumulative emissions. Namely, considering a larger time interval, the
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distance among the found time series would increase, but their ordering would

not change. Moreover, we underline that the proposed technique can be applied

to more general frameworks, in which looking at the corresponding bifurcation

diagram with respect to d is not clear what is the effect generated by an increase

in emission charges on produced quantities, and consequently on emissions.

Hence, thanks to our first method based on cumulative emissions we checked in

Fig. 8 the efficacy of the environmental policy introduced in (2.2) for the param-

eter configurations considered in Subsection 3.1 and in Scenario I in Subsection

3.2, in agreement with the comparative statics results obtained for substitutes

and complements under (3.15) in Propositions 1 and 4 in [9]. In regard to

Scenario II in Subsection 3.2, in which the Nash equilibrium is always unstable

when it is admissible, we can say that if the system reached the steady state and

remained on it despite the equilibrium instability, we would find that emissions

raise with an increase in d, in agreement with Proposition 7 in [9], i.e., the com-

parative statics result valid for the case of complements under (3.16). On the

other hand, since in Scenario II in Subsection 3.2 we are always in an instability

regime and the numerical simulations we performed display divergent outcomes,

with no emerging attractors, it is not possible to draw conclusions about the

environmental policy efficacy in that scenario. Namely, related comments can

be made just when orbits visit an attractor.

A different extension of the classical comparative statics analysis to the frame-

works in which the steady state is not stable may lead to what we could call

“comparative dynamics”, consisting in a comparison, for the given parameter

configuration and over a certain time interval, of cumulative emissions, starting

from the unstable Nash equilibrium and from a different point in the basin of

attraction of the stable periodic or complex attractor. We show what happens

in this respect both with substitutes, in Figs. 10 and 11, and with complements

under (3.15), in Figs. 12 and 13, starting in both cases from Fig. 7 (C) and

dealing with positive and negative values for γ, respectively.

Namely, in Fig. 10 (A) we draw the bifurcation diagram of q1,t+1 obtained for

the same parameter values used in Fig. 7 (C) but fixing γ = 3 and letting
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(A) (B)

Figure 10: In (A) the bifurcation diagram of q1,t+1 in (3.1) with respect to d ∈ (0.05, 0.15) with
initial conditions q1,0 = 0.1, q2,0 = 0.5, for p = 2.5, δ = 0.4, υ = 2.2, β = 3.1, c = 0.15, b =
0.4, ε = 2.7, σ = 6 and γ = 3. In (B) we show the time series of cumulative emissions CET

for T ∈ [0, 100] corresponding to d = 0.1, with initial condition u1,0 + u2,0 = 1.62, connected
with q1,0 = 0.1 and q2,0 = 0.5, for the blue points and 2εq∗

1
= 2 ∗ 2.7 ∗ 0.139 = 0.751 for the

red points.

d vary in (0.05, 0.15). Since the steady state (drawn in red, dashed line) is

always unstable for the considered parameter values and, according to the value

of d ∈ (0.05, 0.15), we observe a periodic or a chaotic attractor (in blue), in

order to perform a “comparative dynamics” exercise, we contrast in Fig. 10 (B)

the time series of cumulative emissions CET for T ∈ [0, 100] corresponding to

d = 0.1, with initial condition u1,0 + u2,0 = ε(q1,0 + q2,0) = 2.7 ∗ 0.6 = 1.62

for the blue points and u1,0 + u2,0 = 2εq∗1 = 2 ∗ 2.7 ∗ 0.139 = 0.751 for the red

points. We find that the cumulative emissions in the considered time interval

are larger along the non-stationary trajectory than along the equilibrium path.

Hence, we could try to contain emissions and to stabilize the system by acting

on the sigmoid adjustment mechanism, and in particular on the position of its

horizontal asymptotes. In this respect, we recall the bounding role played by

the horizontal asymptotes, whose level, as explained in Section 2, is controlled

by parameters υ and δ. Indeed, reducing υ lowers the upper asymptote, which

plays a role when the best response is above the current production level, while

decreasing δ raises the lower asymptote, which intervenes when the best response

is below current production level. Starting from the framework in Fig. 10 and

acting for instance on υ, we obtain the effect illustrated in Fig. 11, where in (A)

and (C) we show that, as desired, the complexity of the dynamics decreases by

lowering υ. In more detail, fixing the remaining parameters as in Fig. 10 (A), in
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Fig. 11 (A) for υ = 1.35 we obtain a periodic attractor (in blue), i.e., a period-

four or a period-two cycle for d ∈ (0.05, 0.15), while the steady state (drawn in

red, dashed line) is always unstable for such values of d. Drawing in Fig. 11

(B) the time series of cumulative emissions for T ∈ [0, 100] corresponding to

d = 0.1, with initial condition u1,0 + u2,0 = ε(q1,0 + q2,0) = 2.7 ∗ 0.6 = 1.62

for the blue points and u1,0 + u2,0 = 2εq∗1 = 2 ∗ 2.7 ∗ 0.139 = 0.751 for the

red points, we find, like in Fig. 10 (B), that cumulative emissions are larger

along the non-stationary trajectory than along the equilibrium path. Reducing

υ further to 0.5 in Fig. 11 (C), we finally obtain the complete stabilization

of the system. This shows that the sigmoid adjustment mechanism can be

effective in reducing pollution, by acting on the maximum allowed production

variation. As argued above, in consequence of the system stabilization, the

comparative statics analysis becomes economically grounded. We recall that,

for the case of substitutes, the corresponding comparative statics result in [9]

(cf. Proposition 1 therein) states that the equilibrium pollution level falls with

an increase in emission charges. We stress that the outcome about the system

stabilization is independent from the choice of considering T ∈ [0, 100] in regard

to the time frame, as well as from the choice of d = 0.1, since for any value of

d ∈ (0.05, 0.15) we would obtain the same conclusion, whether in Fig. 10 (A)

we observe a periodic or a chaotic attractor.

(A) (B) (C)

Figure 11: In (A) and (C) we report the bifurcation diagrams of q1,t+1 in (3.1) with respect
to d ∈ (0.05, 0.15) with initial conditions q1,0 = 0.1, q2,0 = 0.5, for p = 2.5, δ = 0.4, β =
3.1, c = 0.15, b = 0.4, ε = 2.7, σ = 6, γ = 3, and υ = 1.35 in (A), υ = 0.5 in (C), respectively.
In (B) we show the time series of cumulative emissions CET for T ∈ [0, 100] corresponding to
(A) with d = 0.1, with initial conditions u1,0 + u2,0 = 1.62, connected with q1,0 = 0.1 and
q2,0 = 0.5, for the blue points and 2εq∗

1
= 2 ∗ 2.7 ∗ 0.139 = 0.751 for the red points.
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(A) (B)

Figure 12: In (A) the bifurcation diagram of q1,t+1 in (3.1) with respect to d ∈ (0.05, 0.15)
with initial conditions q1,0 = 0.25, q2,0 = 0.2 for the blue points and q1,0 = 0.1, q2,0 = 0.5
for the green points, for p = 2.5, δ = 0.4, υ = 2.2, β = 3.1, c = 0.15, b = 0.4, ε = 2.7, σ = 6
and γ = −3. In (B) we show the time series of cumulative emissions CET for T ∈ [0, 100]
corresponding to d = 0.1185, with initial condition u1,0 + u2,0 = 1.215, connected with
q1,0 = 0.25 and q2,0 = 0.2, for the blue points, u1,0 + u2,0 = 1.62, connected with q1,0 = 0.1
and q2,0 = 0.5, for the green points, and 2εq∗

1
= 2 ∗ 2.7 ∗ 0.325 = 1.757 for the red points.

In fact, we shall reach analogous conclusions also with complements, when (3.15)

holds true. In this case, starting again from Fig. 7 (C), we draw in Fig. 12 (A)

the bifurcation diagram of q1,t+1 obtained for the same parameter values used

therein but fixing γ = −3 and letting d vary in (0.05, 0.15), which highlights a

multistability phenomenon. Since the steady state (drawn in red, dashed line) is

always unstable for the considered parameter values and we observe two coexist-

ing chaotic attractors (in blue and in green), interrupted just by some periodicity

windows, in order to perform a comparative dynamics exercise, we contrast in

Fig. 12 (B) the time series of cumulative emissions CET for T ∈ [0, 100] cor-

responding to d = 0.1185, with initial condition u1,0 + u2,0 = ε(q1,0 + q2,0) =

2.7 ∗ 0.45 = 1.215 for the blue points, u1,0 +u2,0 = 2.7 ∗ 0.6 = 1.62 for the green

points, and u1,0+u2,0 = 2εq∗1 = 2∗2.7∗0.325 = 1.757 for the red points. We find

again that the cumulative emissions in the considered time interval are larger

along the non-stationary trajectories than along the equilibrium path. Hence,

also in this case we could try to contain emissions and to stabilize the system by

acting on the sigmoid adjustment mechanism, and in particular by lowering the

upper asymptote. Reducing υ we obtain the effect illustrated in Fig. 13, where

in (A) and (C) we show that, as desired, the complexity of the dynamics de-

creases when υ becomes smaller. In more detail, fixing the remaining parameters
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as in Fig. 12 (A), in Fig. 13 (A) for υ = 1.28 we find (in blue) a quasiperiodic

attractor in two pieces which disappears for increasing values of d ∈ (0.05, 0.15)

and a stable period-two cycle emerges via a reverse Neimark-Sacker bifurcation,

while the steady state (in red, dashed line) is always unstable. Drawing in Fig.

13 (B) the time series of cumulative emissions CET for T ∈ [0, 100] correspond-

ing to d = 0.1 with initial condition u1,0+u2,0 = ε(q1,0+q2,0) = 2.7∗0.45 = 1.215

for the blue points and u1,0 + u2,0 = 2εq∗1 = 2 ∗ 2.7 ∗ 0.336 = 1.814 for the red

points, we find that the cumulative emissions are larger along the quasiperiodic,

non-stationary trajectory than on the Nash equilibrium. Lowering υ further to

0.5 in Fig. 13 (C), we finally reach the stabilization of the system. This shows

that the sigmoid adjustment mechanism is effective in reducing pollution, by

acting on the maximum allowed production variation, also with complements

under (3.15). Notice that such outcome is in agreement with the corresponding

comparative statics result in [9] (cf. Proposition 4 therein), stating that the

equilibrium pollution level falls with an increase in emission charges, which be-

comes economically grounded when υ is low enough, so that the steady state

is stable. Again, the stabilization of the Nash equilibrium is independent from

the choice of dealing with T ∈ [0, 100] and d ∈ (0.05, 0.15).

Summarizing, through our first method, based on a comparison of emissions

for different levels of charges, we have found that increasing values for d raise

the dynamic efficacy of the considered environmental policy, while the second

approach, i.e., the “comparative dynamics” technique, has highlighted that, in

order to reduce pollution, guaranteeing the convergence to the Nash equilibrium

is preferable to allowing for complex or periodic behavior in the firms’ output,

and that acting on the asymptotes may correspond to a direct control of emis-

sions, in contrast with the indirect nature of the pollution control obtained by

means of the emission charges in (2.2). In this respect, we stress that the di-

rect control exerted by acting on the sigmoid asymptotes stabilizes the Nash

equilibrium without inducing any variation in the output level, contrary to the

indirect control described by (2.2) which, according to Propositions 1 and 4

in [9], induces a negative variation in output. The above described conclusions
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have been reached for the parameter configurations considered in Section 3 both

with substitutes and in Scenario I therein with complements under (3.15). On

the other hand, due to the fact that, according to Proposition 3.3, the Nash

equilibrium is never stable under (3.16) and that divergence issues arise in the

numerical simulations we performed for Scenario II in Section 3, our techniques

do not allow us to draw conclusions about the efficacy of the environmental

policy when dealing with complements under (3.16).

(A) (B) (C)

Figure 13: In (A) and (C) we report the bifurcation diagrams of q1,t+1 in (3.1) with respect to
d ∈ (0.05, 0.15) with initial conditions q1,0 = 0.25, q2,0 = 0.2 for p = 2.5, δ = 0.4, β = 3.1, c =
0.15, b = 0.4, ε = 2.7, σ = 6, γ = −3, and υ = 1.28 in (A), υ = 0.5 in (C), respectively. In
(B) we show the time series of cumulative emissions CET for T ∈ [0, 100] corresponding to
(A) with d = 0.1, with initial conditions u1,0 + u2,0 = 1.215, connected with q1,0 = 0.25 and
q2,0 = 0.2, for the blue points, and 2εq∗

1
= 2 ∗ 2.7 ∗ 0.336 = 1.814 for the red points.

5. Conclusion

In agreement with the results of the growing empirical and experimental lit-

erature (see e.g. [4, 1, 2, 3]), which highlights the chaotic behavior of the main

variables involved in various markets, and in particular in agricultural commod-

ity markets, we proposed a model able to generate interesting, erratic dynamic

outcomes. In more detail, starting from the Cournot duopoly framework with

quadratic emission charges and homogeneous goods in [6], we replaced the linear

partial adjustment best response mechanism considered therein with a sigmoid

adaptive best response rule, which, in addition to help avoid diverging trajec-

tories and negativity issues, is also sensible from an economic viewpoint, being

suitable to describe the gradual output variations caused by material, historical

and institutional constraints in the production side of an economy, as well as
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by the limits imposed by an environmental policy scheme on production lev-

els, due to their direct proportionality with emissions. Moreover, following the

suggestion contained in the concluding section of [6], we assumed that firms

produce differentiated goods. Beyond analytically studying the stability of the

unique steady state, which coincides with the Nash equilibrium, and the ef-

fect produced by the main parameters on the stability region, we proposed two

dynamical methods which allow to evaluate the environmental policy efficacy

when the Nash equilibrium is not stable and thus the standard comparative

statics approach does not fit for the purpose. Involving non-stationary orbits,

the proposed techniques are mainly numerical in nature. In particular, the

first technique, which is based on a comparison of emissions for different lev-

els of charges, showed that, also when the Nash equilibrium is not stable, the

considered environmental policy may be effective both with complements and

substitutes. The second method, consisting in a comparison of emissions along

non-stationary trajectories and along the equilibrium path, in the proposed

experiments highlighted the presence of larger emissions along non-stationary

trajectories. Hence, it gave us the opportunity to illustrate how an intervention

on the sigmoid asymptotes may correspond to a direct control of emissions - in

contrast with the indirect nature of the pollution control obtained by means of

the considered emission charges - that also allows for a complete stabilization of

the system, so that comparative statics results become economically grounded,

starting from a situation characterized by the presence of a different attractor.

In more detail, in making our numerical experiments, we have not only seen

that the position of the asymptotes of the sigmoid is crucial in determining the

system dynamics, but also that small variations in other parameters, such as

the interdependence degree between goods, may generate important differences

in the outcomes. In this respect we mention the work [23], which suggests that

a particularly careful choice of the (e.g. fiscal or environmental) policy to imple-

ment is needed when dealing with nonlinear models in which complex dynamics

and bifurcation phenomena can emerge.

We believe that the analyzed setting can be the starting point for other research
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works.

At first, we deem it essential to fully develop all dynamical aspects hidden inside

the proposed model, in order to make it more realistic. Two possible extensions

of the studied framework in such direction are represented respectively by the

description of the environment as a sector interacting with the economic sphere

and by the possibility of describing the transition among different market struc-

tures via an evolutive approach based on relative profitability of markets.

Regarding the former extension, in agreement with the seminal work by [24],

where the environment and its neglect are expressed through a dynamic equa-

tion, we could enrich the model by the introduction of one or more dynamic

equations describing the evolution of the environment and its mutual interac-

tions with the economic sector. In this manner, differently from the standard

approach which depicts the environment in a parametric manner, it would be

possible to deal with dynamical models consisting of coupled equations, in or-

der to make explicit the effect of the economic activities on the evolution of the

environment, as well as the impact of the environmental features on the eco-

nomic activities, both in a direct manner, through consumption and production

choices, and in an indirect way, through environmental policies. The addition

of the dynamic equation(s) describing the environment evolution would make

our “semi-dynamic” model fully dynamic and nonlinear. Usually, in that kind

of models complex phenomena emerge, such as bifurcations, chaotic behavior,

coexistence among different attractors. According to [25, 26], the environmental

policy efficacy should be evaluated in those dynamic nonlinear models. In this

respect, we stress that along the paper we measured the efficacy of the consid-

ered environmental policy in terms of its effectiveness in reducing emissions. Of

course, a reduction in emissions is a consequence of an output decrease. A more

general evaluation of an environmental policy scheme would require to deal with

an oligopoly model that takes into account further variables, i.e., the factors of

production, such as the employed labor (see e.g. [27]).

In regard to the latter extension, concerning the transition among different

market structures, we start by recalling that [6] tackle the issue of the market
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structure endogeneity, focusing in particular on the conditions that may lead

from duopoly to monopoly, investigated also in [10] under the assumption that

marginal production costs do not coincide across firms. An alternative approach

to the problem of the market structure endogeneity could be evolutive13 in na-

ture, with firms deciding whether to operate or not in a given market on the

basis of a profitability signal, such as the comparison between the profitability

of the market with respect to the average profitability of other markets. In this

manner the number of firms operating in a market would become an endogenous

variable. Such approach would allow to more generally investigate the condi-

tions which lead, possibly in a reversible manner, from a market structure to

another one.

Different extensions of the proposed framework, which would be useful in view

of testing the robustness of the here obtained results, could concern the formu-

lation of the demand functions of firms and their technology heterogeneity in

regard to emissions. In regard to the first point, following e.g. [22, 30], we might

deal with nonlinear demand functions deriving from an underlying CES utility

function. Regarding instead the second point, we recall that emissions per unit

output not coinciding across firms have been considered e.g. in [11, 17]. We will

investigate in a future work the effects of such more realistic assumption, not

only in regard to the local stability analysis, but also from a policy viewpoint,

so as to understand for instance whether the symmetries that we witnessed in

the time series in Fig. 9 persist or not.

This research did not receive any specific grant from funding agencies in the

public, commercial, or not-for-profit sectors.

13See [28, 29] for an evolutive approach to environmental policy issues.
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