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Abstract
Despite the growing attention in the last years on the topic of systemic risk, a widely 
accepted definition of systemic crisis is missing. We use a theoretical scheme to subjec-
tively define a systemic event. This permits the analysis of a financial crisis as a standard 
binary classification problem, providing an intuitive and useful framework to compare sys-
temic risk measures defined in very different fields. Then we focus the empirical analysis 
on the comparison of the performance of correlation-based systemic risk measures using 
the standard tools for the evaluation of binary classifiers as the receiver operating charac-
teristic (ROC) curve and the area under the curve (AUC). We show that the binary clas-
sification framework is useful but unable to capture some significant differences among the 
measures under comparison. The experimental approach, developed on real financial data, 
is divided in an in-sample exercise, able to evaluate the descriptive power of the different 
systemic risk measures, and an out-of-sample application to evaluate the capacity of the 
measures in preventing and predicting systemic events. The forecasting ability of a meas-
ure can be fundamental for policy makers and investors respectively to stabilize market 
fluctuations and to reduce the losses.

Keywords  Systemic risk · Financial crises · Correlation-based systemic risk measures · 
Binary classification

1  Introduction

In recent years, starting from the 2008 subprime global financial crisis, economic crises 
and financial distress have become more frequent and severe, impacting the stability of 
the whole economic system. In addition, previous crises have shaken the world economy 
and illustrated the importance of systemic risk. As a result of this sense of uncertainty and 
instability, a current broad stream of research has addressed the notion of systemic risk. 
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The enormous social and political cost of this type of risk requires the design and imple-
mentation of specific tools to prevent financial crises.

At the state of the art, a formal widely accepted definition of systemic crisis is missing 
in the literature. Consequently, systemic risk, as the risk of a systemic event to occur, is a 
concept that remains vague and elusive. On one hand, the absence of a definition could be 
a limitation to the development of a unified theoretical framework. On the other hand, the 
size and the complexity of the financial system suggest that systemic risk assessment must 
be approached from a wide variety of perspectives, implying that more than one risk meas-
ure should be necessary. Therefore, a single consensus on a measure of systemic risk may 
neither be possible nor desirable; for a comprehensive review of the systemic risk measures 
proposed in the literature see Sect. 2.

Generally speaking, a systemic event occurs when many market participants are simul-
taneously affected by severe losses, which then spread through the whole system impacting 
its stability. Thus, systemic risk can be observed as a set of events that threaten the stabil-
ity or public confidence in the financial system. The European Central Bank, see Hart-
mann et al. (2009), page 134, associates systemic risk to the concept of financial instabil-
ity “so widespread that it impairs the functioning of a financial system to the point where 
economic growth and welfare suffer materially”. The goal of our research is to present an 
empirical comparison of different systemic risk measures, showing that the standard binary 
classification model, opportunely adapted to the present context, is a useful framework to 
compare different measures. Through the application on correlation-based systemic risk 
measure, the contribution of our paper is to identify a class of measures that over-perform 
the other measures both in a descriptive and in a predictive context.

Aiming at preserving the variegate universe of systemic risk measures proposed in the 
literature, we start our analysis from a very natural definition of systemic crisis by fixing 
its duration and severity in terms of average loss on a given period. This provides a simple 
unified framework, the standard binary classification model, where it is possible to com-
pare different systemic risk measures, independently from the economic variables and the 
models that are used to calculate them. The independent variable is represented by the sys-
temic risk measure while the binary dependent variable becomes the occurrence/not occur-
rence of a systemic crisis. It is then natural to use the ROC curve and the AUC as simple 
and intuitive tools to evaluate the performance of the alternative measures, see Hand and 
Till (2001) for a detailed review. We also show that some important differences among the 
measures remain hidden when working in the standard classification problem, suggesting 
that the theoretical framework is too simple to highlight some fundamental details. Moreo-
ver, since one main issue regarding systemic risk measures is their ability to prevent future 
crises, we show how to adapt the proposed framework to study the forecasting power of 
the different measures. This permits identifying which systemic risk measures could be 
suitable to be used by policy makers and investors as early warning indicators to prevent 
instability and losses in global financial markets.

The main focus of the present research is on the empirical comparison of the perfor-
mance of correlation-based systemic risk measures. Starting from the claim “correlation-
based measures are widespread, yet they measure only pairwise association and are largely 
wed to linear, Gaussian thinking, making them of limited value in financial-market con-
texts”, see Diebold and Yılmaz (2014), page 119, we argue three main results. First, we 
show how the correlation-based measures under comparison work fine in a descriptive 
context, with limited but significant differences among each other. Second, we illustrate 
that elementary correlation-based measures like the average correlation have a poor predic-
tive power, resulting in substantially limited help as early warning indicators. Third, we 



An empirical comparison of correlation‑based systemic risk…

1 3

highlight through empirical evidence that more sophisticated correlation-based systemic 
risk measures show interesting performance also in the out-of-sample forecasting frame-
work. For example, the measures that depend on the eigenvalues of the correlation matrix, 
as the family proposed in Maggi et al. (2020), are able to overcome the limitation on the 
pairwise structure of the correlation, controlling linear dependency among each possible 
portfolio created starting from the original variables. In order to test the robustness of our 
findings, we perform a sensitivity analysis varying the parameters of duration and severity 
that define the systemic event and we use two different financial indexes, the S &P500 and 
the Eurostoxx600, to approximate the whole economic system. No significant differences 
in the results are obtained when the settings of the experiment vary, supporting that our 
findings do not mainly depend on arbitrary choices.

The paper is organized as follows: Sect. 2 contains a comprehensive review of the recent 
literature on systemic risk measurement, Sect.  3 discusses the methodological proposal 
to compare systemic risk measures, Sect. 4 provides the empirical experiments and it is 
divided into three sub-Sections with respectively the data description and the definitions 
of the risk measures under comparison, the in-sample and the out-of-sample applications; 
Sect. 5 concludes the paper while the appendix provides a further empirical example per-
formed on a different database to testify the reproducibility of the results.

2 � Literature review

Although systemic risk is universally recognised as a threat to financial stability, provid-
ing a unique definition is hard. A robust framework for monitoring and managing financial 
stability should be able, at the same time, to incorporate many different perspectives and to 
adapt systemic risk measures to the ongoing evolution of the financial system. Since these 
features are relevant both for policymakers and speculators, academic research can give an 
important contribution to the understanding of the concept of systemic risk. Forecasting 
ability is one of the most important requirements a systemic risk measures should have, 
because financial crises have been one of the major causes of economic distress. Of course, 
an accurate prediction of crises through the study of predictive indicators of systemic 
risk may allow the management of market losses. In the economic literature many survey 
papers collect the multitude of systemic risk measures and related conceptual frameworks 
that have been proposed over the past several years. These papers enumerate and classify 
the indicators of systemic risk according to some convenient criteria predetermined by 
the authors. For example, Rodríguez-Moreno and Peña (2013) estimate and compare two 
groups of high-frequency market-based systemic risk measures called macro and micro. 
The measures that belong to the first group provide information about the financial sector, 
while the measures in the second group depend on the information from individual institu-
tions. Silva et al. (2017) present an analysis of the literature on systemic risk by ranking 
266 articles which were published no later than September 2016; this approach makes it 
possible to identify gaps in the literature on systemic risk and to select the most influen-
tial articles in the field. In Bisias et al. (2012) a selection of 31 quantitative measures of 
systemic risk studied in the economic literature are listed. This classification of systemic 
risk measures considers several taxonomies: the first taxonomy deals with data require-
ments, the second looks at supervisory scopes, which is of particular interest for policy 
makers while the third considers what could be easier for researchers to use, allowing them 
to quickly identify common themes, algorithms and data structures within each category. 
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In the following we provide a comprehensive enumeration of the most important studies 
on systemic risk published in the last ten years, grouping them for the similarities in the 
approaches, with the objective of depicting the variegate and intricate universe of systemic 
risk measures.

A part of the current literature on systemic risk concerns macroeconomic models of sys-
temic risk; for example, Giglio et al. (2016) study how systemic risk and financial market 
distress affect the distribution of shocks to real economic activity. They develop a new sys-
temic risk index based on an out-of-sample predictive quantile regression approach. Duca 
and Peltonen (2013) propose a financial stress index to identify the onset date of systemic 
financial crises; they also suggest a model that combines both domestic and global indica-
tors of macro-financial vulnerability to predict systemic financial crises.

Since the aggregate measurement of risks and imbalances does not capture everything, 
another branch of literature considers the analysis of contagion and the spread of a potential 
shock through the system. A large body of analysis is based on granular foundations and 
network measurements: Acemoglu et al. (2015) and Elliott et al. (2014) develop studies on 
network analysis and systemic financial linkages, Mezei and Sarlin (2016) build a network 
analysis that exploits the so called fuzzy cognitive map. In order to estimate systemic risk 
with graphical network models, Cerchiello and Giudici (2017) propose a framework based 
on two different sources, financial markets and financial tweets, and suggests a way to com-
bine them, using a Bayesian approach. Starting from the concept of connectedness, some 
papers study the phenomenon from the point of view of network connectedness, see Die-
bold and Yılmaz (2014) and Demirer et al. (2018). Various network-based approaches have 
been proposed to analyze the contribution of financial firms to systemic risk, given the net-
work interdependence among firms’ tail risk exposures, see Hautsch et al. (2015) and Betz 
et al. (2016). Härdle et al. (2016) derive an approach that allow to rank the systemic risk 
receivers and systemic risk emitters in the US financial market named Tail Event driven 
network (TENET). The TENET approach is also develop in Wang et al. (2018). Billio et al. 
(2012) suggest two econometric measures of systemic risk that capture the interconnect-
edness among the monthly returns of hedge funds, banks, brokers, and insurance compa-
nies based on principal components analysis (PCA) and Granger causality tests. A similar 
approach has also been studied by Zheng et al. (2012) and Zhang and Broadstock (2020).

A further line of research evaluates systemic risk using of prospective measures, see 
among the others (Allen et al. 2012). However, studies exploiting PCA can also be devel-
oped following a prospective approach, see Zheng et al. (2012).

Furthermore, Diebold and Yilmaz (2009) provide a simple and intuitive measure of 
interdependence of asset returns and/or their volatility. The authors formulate a quantita-
tive measure of such interdependence, referred to as a spillover index. This background 
is also developed using a generalized vector autoregressive model in which forecast-error 
variance decompositions are invariant with respect to the ordering of the variables. There-
fore, Diebold and Yilmaz (2012) proposed measures of both total and directional volatility 
spillovers.

In terms of systemic risk monitoring, stress tests are useful as a special case of forward-
looking analysis. Stress testing is codified in regulation and international standards, includ-
ing the Basel accord, see Pederzoli and Torricelli (2017).

Following Bisias’ classification, a complementary philosophy to the predictive measures 
is the cross-sectional measure: this approach aims at examine the co-dependence of insti-
tutions on each other’s “health”. Based on the Adrian and Brunnermeier (2011) analysis, 
many researches focus on conditional value at risk as a measure of systemic risk (Exposure 
CoVaR), see Laeven et al. (2016), Bernal et al. (2014) and López-Espinosa et al. (2012); 
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Lopez-Espinosa et al. (2015). The CoVaR approach can also be developed through a mul-
tivariate GARCH analysis, see Girardi and Ergün (2013). Reboredo and Ugolini (2015) 
assess systemic risk in European sovereign debt markets before and after the onset of the 
Greek debt crisis by taking conditional value at risk (CoVaR), characterized and calculated 
using copulas. Moreover, Bierth et al. (2015) implement a method based on CoVaR and 
panel regression. To evaluate the systemic risk in a cross-sectional dimension (Black et al. 
2016) calculate a distress insurance premium which integrates the characteristics of bank 
size, probability of default, and correlation. Unlike these papers, Acharya et al. (2017) have 
implemented market-based systemic distress indexes that consider a bank’s expected capi-
tal shortfall conditioned to systemic events, named systemic expected shortfall (SES) and 
marginal expected shortfall (MES). Acharya et al. (2012) focus on firms’ expected capital 
shortfall in the event of a crisis and is inspired by the SRISK measure defined as the capital 
a firm will need in the event of another financial crisis, see Brownlees and Engle (2017). 
This approach was also investigated in Engle et al. (2015).

In order to measure the systemic risk posed by individual institutions, Varotto and 
Zhao (2018) define a hybrid systemic risk indicator called rSYR. An interesting analysis 
is proposed by Sedunov (2016), which compares the performance of three institution-level 
measures of systemic risk exposure: CoVaR, SES and Granger causality. Instead, Cai et al. 
(2018) develop a new measure of bank interconnectedness using syndicated corporate loan 
portfolios. Empirical results show that the interconnectedness is positively correlated with 
several bank-level measures of systemic risk, including systemic capital shortfall (SRISK), 
distressed insurance premium (DIP) and CoVaR. Finally, it is important to look at systemic 
risk as measures of illiquidity and insolvency, see López-Espinosa et al. (2013).

Given this long and probably incomplete list of possible approaches to systemic risk, it 
seems safe to assume that more than one risk measure is needed to capture the overall com-
plex nature of the phenomenon.

3 � The methodological approach

We propose to use a comprehensive global financial index as a valuable proxy of the whole 
economic system. Operationally, given a time frame and a window length w, the depend-
ent variable wyt at time t is the average return of the index on the period from t − w + 1 to t, 
i.e. wyt =

1

w

∑t

i=t−w+1
yi . The measure of systemic risk at time t is indicated with mt . With-

out loss of generality, we assume that the measure mt is normalized, 0 ≤ mt ≤ 1 ∀t ; this 
assumption permits to directly interpret the value of the systemic risk measure as the prob-
ability of a systemic event to occur. In the present framework, a systemic event is defined 
as follows.

Definition 1  (Systemic event) Given a positive integer w and a threshold loss l, a systemic 
event on the period from t − w + 1 to t occurs when wyt ≤ l.

In words, a systemic event occurs when the average return of the global referring index 
on a given period of length w is lower than the chosen threshold loss l. This definition is 
simple, intuitive and subjective, because it requires to set the duration of a systemic event, 
the amount of the average loss and the index that represents the whole economic system. 
Moreover, Definition 1 potentially transforms wyt into a binary variable, permitting to use 
the standard techniques developed for the evaluation of binary classifiers. To highlight the 
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intuition, we plot in Fig. 1 the points (mt,
w yt) for some values of t, putting the dependent 

variable wyt on the vertical axis and the systemic risk measure mt on the horizontal axis. In 
Fig. 1 the horizontal line represents the threshold l given in Definition 1 while the vertical 
line is a threshold m on the probability of a systemic event.1 The two lines divide the plane 
in four regions, called respectively N–W, N–E, S–W and S–E, that can immediately be 
related to the entries of the standard confusion matrix used in binary classification prob-
lems. While the entries of the confusion matrix are the absolute frequencies of the four 
possible results in a binary classification problem, in the present context, they correspond 
to the number of points that belongs to each of the four regions. The perfect classifica-
tions are given by the sum of the points in N–W and S–E, corresponding respectively to 
the case of low values of mt and absence of a systemic event and high values of mt and the 
occurrence of a systemic event. The values of mt are considered high or low with respect 
to the choice of the threshold m . The remaining two regions of the plane correspond to the 
classification errors or miss-classifications. N–E contains the so-called false positives: in 
this case the value of mt is high but no systemic event occurs. The region S–W contains the 
false negatives, the situation in which the value of mt is low while a systemic event occurs.

One peculiar difficulty in the description and prediction of systemic events, as it is clear 
from Fig. 1, is that a suitable measure of systemic risk should be able to overcome the issue 
that severe systemic events are, hopefully, extremely rare with respect to the periods where 
the economy and the markets behave normally. In general, the two alternatives of the clas-
sification problem are very unbalanced in terms of frequency. This phenomenon is usual 
in many binary classification applications; for example, in credit risk detection, see Figini 
and Uberti (2010), the number of clients of a bank not returning a loan is usually very lim-
ited with respect to the total number of clients. In the present framework, it is possible to 
partially overcome the structural problem of the unbalanced frequencies by changing the 
parameters l and w in Definition 1. One further peculiarity of binary classification models 

Fig. 1   A graphical example of a 
scatter plot for the points (mt,

w yt) 
and their classification

10

0

1  As in the standard classification framework, the dependent variable is a binary variable, in our case the 
presence/absence of a systemic event. The independent variable is a continuous variable, in this case the 
probability of a systemic event to occur. To binarize the probability a standard approach is to set a threshold 
value.
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is the difference between the two classification errors. In the present case, the false nega-
tive is a severe error in terms of potential economic impact since it represents the situation 
in which the risk measure remains silent when a crisis occurs. On the opposite, the impact 
of a false positive is limited, generating only an opportunity cost: the risk measure provides 
a positive signal inducing to shed against a potential systemic event that does not occur.

To compare different risk measures in terms of discriminating capacities it is then natu-
ral to use classic tools as the ROC curve and the AUC. The ROC curve is obtained through 
the calculation of the confusion matrix for some given values of the threshold m ∈ [0, 1] . 
This permits a global evaluation of the classifier avoiding an arbitrary choice of m , see 
Hand and Till (2001). Given l, m and defining Card(⋅) as the function that counts the num-
ber of elements of a set, the confusion matrix can be written as:

Varying m and computing the correspondent confusion matrix is then possible to draw the 
ROC curve plotting the True positive rate against the False positive rate. Consequently, the 
AUC is calculated as the area under the ROC curve.

Finally, if we want to evaluate the forecasting power of a given systemic risk measure, 
it is then sufficient to replace the backward-looking dependent variable with its forward-
looking version yw

t
 , where yw

t
=

1

w

∑t+w

i=t+1
yi.

4 � Empirical analysis

In this section we perform an empirical comparison to test the differences among alter-
native systemic risk measures, applying the methodological framework described in 
Sect. 3. The section is divided in three sub-sections: the first sub-section contains a brief 
data description and the enumeration of the systemic risk measures under comparison. 
The other two sub-sections provide respectively the in-sample and the out-of-sample 
experiments.

4.1 � Data and measures

We choose to use the S &P500 as the comprehensive financial index able to represent 
the whole economic system.2 The systemic event is then investigated on the base of the 
returns of the constituents of the S &P500 grouped in sectors. The implicit assump-
tion is that during a systemic event high severity losses in each sector of the economic 
system occur simultaneously causing a global drop. The data set is composed by the 
time series of the daily returns from January 3, 1990 to February 23, 2021 of the S 
&P500 index and its sector sub-indexes: FINANCIALS, INFORMATION TECHNOL-
OGY, TELECOMMUNICATION SERVICES, HEALTH CARE, INDUSTRIALS, 

[
Card

{
(mt,

w
yt) ∶ mt ≤ m,w yt ≥ l

}
Card

{
(mt,

w
yt) ∶ mt > m,w yt ≥ l

}

Card
{
(mt,

w
yt) ∶ mt ≤ m,w yt < l

}
Card

{
(mt,

w
yt) ∶ mt > m,w yt < l

}
]
.

2  The choice of the S &P500 as a valuable proxy of the whole economic system is as standard as arbitrary. 
The economic system is unique, what changes is the proxy to represent it. Therefore we perform an analo-
gous empirical experiment choosing the EUROSTOXX600 index as the approximation of the economic 
system to test the robustness of our findings. The results with respect to the EUROSTOXX600 are collected 
in the appendix.
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CONSUMER DISCRETIONARY, ENERGY, CONSUMERS STAPLES, UTILITIES, 
MATERIALS.

Let A be the T × n matrix where each column Ai for i = 1,… , n contains the time series 
of the normalized returns of the ith sector. In the present application T = 8125 and n = 10 . 
The returns of the S &P500 are collected in the column vector y with T = 8125 observa-
tions. We refer to �(Ai,Aj) as the Pearson correlation coefficient between Ai and Aj . The 
quantities �1,… , �n are the n singular values of matrix A, taken in decreasing order.

We list in the following the definitions of the systemic risk measures under comparison.

•	 The average correlation (AC) is a real-valued function of the matrix A defined as 

•	 The cumulative risk fraction (CRF), see Billio et al. (2012), is a real-valued function 
of the matrix A defined as 

•	 The market rank indicator (MRI), see Figini et al. (2020), is a real-valued function 
of the matrix A defined as 

•	 The condition number (CN), see Golub and Van Loan (1989), is a real-valued func-
tion of the matrix A defined as 

•	 The arithmetic rank indicator (ARI), see Maggi et al. (2020), is a real-valued func-
tion of the matrix A defined as 

•	 The variance inflation factors (VIF), see Belsley et al. (2005), of A are defined as 

 where R2

j
 is the coefficient of determination of the linear regression of Aj with respect 

to 
{
Ai ∣ i = 1,… , n, i ≠ j

}
 . The maximum variance inflation factor (M-VIF) is defined 

as 

(1)AC(A) =
2

n(n − 1)

n∑

i,j=1,i≠j

|�(Ai,Aj)|,

(2)CRFk(A) =

∑k

j=1
�
2

j
(A)

∑n

j=1
�
2

j
(A)

k = 1,… , n

(3)
MRIk(A) =

�1(A)

�∏k

j=1
�n−j+1(A)

� 1

k

k = 1,… , n

(4)CN(A) =
�1(A)

�n(A)

(5)ARIk(A) =
�1(A)

1

k

∑k

j=1
�n−j+1(A)

k = 1,… , n

(6)VIFj(A) =
1

1 − R2

j

, j = 1,… , n

(7)M-VIF(A) = max
{
VIF1(A),… ,VIFn(A)

}
.
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•	 The Mahalanobis distance (dM) , see Mahalanobis (1936), is a real-valued function of 
the matrix A defined as 

 where A$ is the last row of matrix A.

Remark 1  We note that, thank to the assumption on matrix A, in particular thank to the fact 
the columns of A are assumed to be standardized, all of the systemic risk measures listed 
above depend on the correlation between the sectors constituting the S &P500 index. In 
particular, the AC is a function of the correlation coefficients among the columns of A; the 
CRF as the MRI, the CN and the ARI are functions of the singular values of A, that are the 
square roots of the eigenvalues of A′A . In the present case A′A is the correlation matrix. 
The VIF depends on the R2 of the linear regressions between the columns of A; the R2 
directly depends on the correlation between the two variables under investigation since it 
is equal to 0 or 1 respectively when there is null correlation or a perfect linear correlation. 
The Mahalanobis distance is a Euclidean weighted distance that depends on the inverse of 
the covariance matrix; in the present case, as already highlighted, the covariance matrix 
coincides with the correlation matrix. For these reasons all the considered measures can be 
interpreted as correlation-based systemic risk measures.

Remark 2  The totality of the correlation-based systemic risk measures under comparison 
belong to the family of the proper measures of connectedness, as introduced in Maggi et al. 
(2020); we refer to that paper for the proofs of the theoretical properties of the measures.

Remark 3  Some of the correlation-based systemic risk measures listed above, the 
MRI and the ARI, depend on the value of an extra parameter k. Note that, for k = 1 , 
MRI = ARI = CN . The parameter k measures how many dimensions of the space of the 
economic system represented by the columns of A are at risk of being lost in terms of 
diversification opportunities for the investors. While in CN the parameter k = 1 , the MRI 
and the ARI are obtained setting k = 3 , highlighting that financial crisis can correspond to 
situations in which rank(A) < n − 1 ; the economic interpretation of the algebraic result on 
the matrix A is that during financial crises it becomes very difficult to effectively diversify 
because all of the activities tend to positive correlate and show similar behaviors.

Starting from the definitions given above, we briefly resume the strengths and weak-
nesses of the measures under comparison. The AC depends exclusively on the entries of 
the correlation matrix; it is very simple and intuitive but it suffers from the fact that the 
dependence structure is pairwise and linear. The CRF, MRI, CN and ARI are functions of 
the singular values of the correlation matrix; thanks to this peculiarity, they overcome the 
issue related to the pairwise structure of the correlation while they are still calculated in 
a linear dependence context. The idea behind the CRF is opposite with respect to the one 
inspiring MRI, CN and ARI: the CRF depends on the weight of the first principal compo-
nent while MRI, CN and ARI are calculated on the basis of the smaller principal compo-
nents. Note that even if, usually, the increase of the first principal component corresponds 
to a decrease of the last components, it can also happen that a change in the weight of 
the first principal component is not reflected by a correspondent opposite variation in the 
weight of the last component. For this reason the measures can react differently to market 

(8)dM(A) =
√

A$(A
�A)−1A�

$
,
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changes. The M-VIF is a function of the R2 of specific linear regressions as pointed out in 
the definition; it is calculated in a linear framework as all the other measures but it rep-
resents an alternative way to overcome the issue related to the pairwise structure of the 
correlation. Finally, the Mahalanobis distance (dM) is completely different from the other 
measures; its main drawbacks have to be found in the relation with the Normal distribution 
and in the fact that it depends only on the last available observation

4.2 � In‑sample descriptive comparison

In order to evaluate the descriptive power of the different systemic risk measures we pro-
pose an in-sample exercise.

With respect to Definition 1 we set w = 20 and a threshold loss l = −0.01 ; in words, 
a systemic event occurs when for w = 20 consecutive days, approximately one working 
month, the average daily return of the S &P500 index is less or equal than l = −0.01 . The 
analysis is performed through a rolling-window procedure: given the T = 8125 observa-
tions dataset as described in Sect. 4.1, we set the window length equal to w.3 Then, starting 
from w + 1 , the previous w observations in the vector y are used to check the occurrence 
of the systemic event while the first w rows of matrix A are used to calculate the correla-
tion-based systemic risk measures as defined in Sect. 4.1. The described process iteratively 
continues dropping the first return in vector y and the first row in matrix A and adding the 
returns of the subsequent period to update the values of the risk measures and check the 
occurrence of the systemic event. This iterative procedure performed on the entire dataset 
produces the couples (mt,

w yt) to be analyzed as described in Sect. 3. Figure 2 contains the 
ROC curves obtained using the systemic risk measures listed in the previous section as the 
independent variables; in Table 1 are summarized the values of the AUC for each measure.

Fig. 2   ROC curves for the S 
&P500 index, window length 
w = 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3  In this case, for simplicity, the length of the rolling window used for the calculation of the risk measure 
coincides to the length of the window used for the definition of the systemic event; in general it is not nec-
essary for the two windows to have the same length.
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On the basis of Fig.  2 and Table  1 the following comments are evident. First, in the 
descriptive framework almost all the proposed systemic risk measures show a very simi-
lar behavior. The only exception is the Mahalanobis distance that is associated with a low 
value of AUC close to 50% and a ROC curve close to the diagonal, revealing a limited 
classification power that makes its performance almost indistinguishable from the one of 
a random classifier. The other measures are characterized by high values of AUC between 
0.93 and 0.96 and ROC curves that are close to the perfect classification. This means that 
the considered correlation-based systemic risk measures seem to be able to correctly clas-
sify the presence or absence of a systemic event in a descriptive context. Moreover, consid-
ering that all the ROC curves intersect, it is impossible, in the present context, to identify 
a systemic risk measure that is generally preferable with respect to the others. While the 
overall analysis shows a substantial equivalence in terms of classification performance of 
the correlation-based systemic risk measures under comparison, a more detailed investiga-
tion can highlight significant differences within the measures. Let compare, for example, 
the AC and the MRI. Figure 3a, contains the scatter plot with respect to the AC; the vertical 
lines in the graph correspond to different values of m . The conditional densities in Fig. 3b 
are obtained applying the MatLab Gaussian kernel smoothing function, see Peter (1985), 
to the points (wyt,mt > m) . Figure 4 is the analogous to 3 with respect to MRI. Looking at 
the results, when conditioning to high values of the risk measure, the conditional densities 
in Figs. 3b and 4b move leftwards and flatten for both the measures. However, the MRI 
clearly over-performs the AC in terms of classification accuracy.

Table 1   AUCs Risk measure AUC​

AC 0.9386
CRF 0.9381
MRI 0.9614
CN 0.9474
ARI 0.9633
M-VIF 0.9361
d
M

0.6008
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Fig. 3   Scatter plot with respect to the AC and the correspondent conditional distributions of returns
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The scatter plots for the two measures depicted in Figs. 3 and 4 strongly qualitatively 
differ. Considering the AC, almost all the points belong to a unique cloud of points uni-
formly distributed on the graph. On the opposite, if we look at the distribution of the 
points with respect to the MRI, we can notice that most of the points are clustered on the 
top-left of the graph, while few points are located on the bottom-right. This qualitative 
consideration highlights that the MRI shows a better discriminating power than the AC. 
In this context, the discriminating power is the capacity to separate the small number of 
observations corresponding to the rare severe systemic events from the large majority of 
points where the economic system behaves normally.

In our opinion, the fact that this significant difference between the measures remains 
hidden when comparing them through the ROC curves and the AUCs depends on many 
components. First, the time series employed in our analysis contain more than 8000 
daily observations. We believe that the request to classify a huge number of daily obser-
vations can worsen the issue of handling an imbalanced database. Second, regarding the 
evaluation of the best performing classifier, the experimental approach developed on the 
base of the ROC curve and related concepts, only partially captures the complex behav-
ior of each individual measure and it is probably useful only for a first global gross 
assessment. In our opinion, this depends on the fact that the ROC curves and related 
tools are developed to compare binary classifiers with the goal of making the compari-
son independent from the arbitrary choice of the threshold used for the binarization of 
the independent variable. In the present case, to highlight the fundamental differences 
in terms of classification performance between the different measures, it is necessary to 
focus on what happens for extremely high values of mt , when the severe systemic events 
are expected to occur. The comparison between the AC and the MRI, even though all the 
measures are normalized, also suggests that in practical applications each systemic risk 
measure requires to choose a specific suitable threshold value.

With respect to the conditional distributions depicted in Figs. 3 and 4, Table 2 shows 
the mean, standard deviation and Value at Risk at the 1% (V@R) for each of the corre-
lation-based risk measures under comparison. The V@R as risk indicator is employed 
because it is widely used by practitioners and it explicitly accounts for the risk of losses. 
More specifically, three effects can be recognized from Table  2 while increasing the 
threshold ( m ) on the measure: the mean of the conditional distributions decreases, the 
standard deviation increases and the V@R of the market index increases. This first 
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Fig. 4   Scatter plot with respect to the MRI and the correspondent conditional distributions of returns
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macroscopic evidence suggests that the measures are suitable indicators for discriminat-
ing between the presence or absence of a systemic crisis.

The results resumed in Table 2 are very interesting. The first evidence is how the 
different measures behave very similarly when we compare the distributions of returns 
of the index conditioned to small values of the threshold. In our opinion this is not an 
argument against the necessity of using different measures, but the empirical evidence 
of the fact that the data are strongly unbalanced. With respect to a length of the time 
series of T = 8125 , the events that verify the conditions of Definition 1 with the cho-
sen levels of w and l are approximately 50. If we focus on the last column of Table 2 
it is possible to notice very interesting and significant differences between the meas-
ures. The measure associated with the most extremes values of the conditional distri-
bution is the MRI, showing the best performance in terms of classification power. We 
want to underline how, in this context, apparently small differences between the results 
hide a considerable economic impact. For example, if we compare the CRF and the 

Table 2   Daily average return, standard deviation and Value at Risk at 1% significance level of the returns 
distributions conditioned to given percentiles of the correlation-based risk measures under comparison

uncond wyt|mt 50
th

prctl
wyt|mt 90

th

prctl
wyt|mt 95

th

prctl
wyt|mt 99

th

prctl

AC
   mean 0.0003 − 0.0001 − 0.0011 − 0.0022 − 0.0039
   stdev 0.0022 0.0026 0.0038 0.0043 0.0040
   V@R1% 0.0067 0.0088 0.0155 0.0170 0.0178

CRF
   mean 0.0003 − 0.0001 − 0.0013 − 0.0023 − 0.0052
   stdev 0.0022 0.0026 0.0037 0.0044 0.0051
   V@R1% 0.0066 0.0088 0.0155 0.0171 0.0198

MRI
   mean 0.0003 − 0.0001 − 0.0014 − 0.0024 − 0.0046
   stdev 0.0022 0.0027 0.0037 0.0043 0.0054
   V@R1% 0.0067 0.0089 0.0155 0.0170 0.0200

CN
   mean 0.0003 − 0.0001 − 0.0013 − 0.0021 − 0.0040
   stdev 0.0022 0.0027 0.0038 0.0041 0.0053
   V@R1% 0.0067 0.0089 0.0155 0.0167 0.0195

ARI
   mean 0.0003 − 0.0001 − 0.0014 − 0.0024 − 0.0045
   stdev 0.0022 0.0026 0.0037 0.0043 0.0053
   V@R1% 0.0067 0.0089 0.0155 0.0170 0.0198

M-VIF
   mean 0.0003 − 0.0001 − 0.0014 − 0.0019 − .0037
   stdev 0.0022 0.0027 0.0038 0.0042 0.0052
   V@R1% 0.0067 0.0089 0.0155 0.0169 0.0191

d
M

   mean 0.0003 0.0001 − 0.0002 − 0.0005 − 0.0008
   stdev 0.0022 0.0023 0.0027 0.0029 0.0034
   V@R1% 0.0067 0.0075 0.0099 0.0118 0.0152
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MRI with respect to the V@R1% the difference is equal to ≈ 0.0022 . Recalling that the 
empirical exercise is built on daily data, this apparently small difference of detected 
daily expected loss at a significance level of 1% corresponds to a monthly difference of 
0.0022 ∗ 20 ≈ 4.4%.

Considering the arbitrariness of the choice of the parameters that define the systemic 
event, l = −0.01 and w = 20 , in the previous example, we perform an analogous experi-
ment for different values of w = 15, 20, 25 and l = −0.005,−0.01,−0.015,−0.02 aiming 
at supporting the robustness of our findings. Each combination of w and l results in a 
different binarization of the original data. The results are collected in Table 3.

We provide some comments on the results in Table  3. First, the missing values 
depend on the fact that for some specific choices of w and l there are no events; for 
example, in our database, there does not exist a period of w = 20 consecutive days 
associated with a daily average loss 0.02. The results in Table 3 confirm the findings: 
in the in-sample framework, the main differences among the measures can be seen in 
terms of conditional V@R while, apparently, the measures look very similar in terms 
of AUC . There is no single measure that can be identified as definitively the best; 

Table 3   S &P500 index, 
in-sample sensitivity analysis: 
value at risk at 1% significance 
level of the returns distributions 
conditioned to 99th percentile 
and AUC for different levels of 
l and w 

The bold is used to highlight the highest values within the competing 
measures on the given time window w and loss l, while [-] denotes the 
missing values

V@R1% l = −0.005 l = −0.01 l = −0.015 l = −0.02

w = 15

   AC 0.0211 0.7834 0.9188 0.9772 0.9707
   CRF 0.0223 0.7981 0.9180 0.9871 0.9888
   MRI 0.0223 0.8187 0.9251 0.9762 0.9793
   CN 0.0208 0.7817 0.9031 0.9443 0.9712
   ARI 0.0225 0.8217 0.9258 0.9805 0.9809
   M-VIF 0.0188 0.7772 0.8857 0.9329 0.9694
   d

M
0.0133 0.5951 0.6079 0.5012 0.7792

w = 20

   AC 0.0178 0.7977 0.9386 0.9823 [–]
   CRF 0.0198 0.8184 0.9466 0.9901 [–]
   MRI 0.0200 0.8501 0.9614 0.9878 [–]
   CN 0.0195 0.8388 0.9474 0.9802 [–]
   ARI 0.0198 0.8492 0.9633 0.9885 [–]
   M-VIF 0.0191 0.8366 0.9361 0.9748 [–]
   d

M
0.0151 0.5874 0.6008 0.7681 [–]

w = 25

   AC 0.0147 0.8178 0.9583 0.9847 [–]
   CRF 0.0165 0.8345 0.9679 0.9991 [–]
   MRI 0.0167 0.8798 0.9796 0.9977 [–]
   CN 0.0173 0.8807 0.9747 0.9967 [–]
   ARI 0.0167 0.8758 0.9790 0.9976 [–]
   M-VIF 0.0167 0.8903 0.9761 0.9956 [–]
   d

M
0.0132 0.6486 0.7193 0.8071 [–]
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nevertheless, the measures showing better performance are the ones that depend on the 
eigenvalues of the correlation matrix while the dM is permanently the worse.

4.3 � Out‑of‑sample forecasting comparison

The out-of-sample exercise compares the alternative measures of systemic risk in terms of 
predictive power with the aim of understanding which of them are more suitable to be used 
in a forecasting context.

The values of the parameters are preserved with respect to the definition of crisis, 
w = 20 and l = −0.01 . The analysis is performed through a rolling-window procedure: 
given the T = 8125 observations dataset as described in Sect.  4.1, we set the window 
length equal to w. Then, starting from w + 1 , the next w observations in the vector y are 
used to check the future occurrence of the systemic event while the first w rows of matrix 
A are used to calculate the correlation-based systemic risk measures as defined in Sect. 4.1. 
The described process iteratively continues dropping the first return in vector y and the 
first row in matrix A and adding the returns of the subsequent period to recalculate the risk 

Fig. 5   S &P500 returns distribu-
tion conditioned to the 99th 
percentile

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
0

50

100

150

200

250

300

-0.02 -0.018 -0.016 -0.014 -0.012 -0.01 -0.008 -0.006 -0.004

0

5

10

15

20

25

30

35

40

(a)

-0.02 -0.018 -0.016 -0.014 -0.012 -0.01 -0.008 -0.006 -0.004 -0.002
0

5

10

15

20

25

30

35

40

45

50

(b)

Fig. 6   Left tails of S &P500 returns distribution conditioned to the 99th percentile
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measures and check the occurrence of the systemic event on y. This iterative procedure 
performed on the entire dataset produces the couples (mt, y

w
t
) to be analyzed as described 

in Sect. 3.
In Fig. 5 the returns distributions conditioned to the 99th percentile are depicted against 

the unconditional distribution of returns. This comprehensive representation only provides 
a first general impression on the fact that the Mahalanobis distance does not work and that 
the discriminating power of all the other measures is lower in the forecasting framework if 
compared to the descriptive performance.

Focusing on the left tail of the conditioned distribution of returns, we are able to high-
light interesting differences among the measures. In particular, Fig. 6 shows two opposite 
behaviors: in sub-figure (a) it is possible to notice how the left tails of the returns distribu-
tion conditioned to the AC and CRF are lighter compared to the left tail of the uncondi-
tional distribution. This evidence empirically shows that the AC and the CRF are not useful 
in forecasting systemic events. In sub-figure (b) the left tails of the returns distributions 
conditioned to the other measures are depicted. It is evident how, even if with different lev-
els, the MRI, the CN, the ARI and the M-VIF are able to discriminate extreme events also 
in a forecasting framework. From a graphical point of view, the measure that shows the 
better performance is the M-VIF.

Considering the importance of the predictive power of systemic risk measures, we intro-
duce a shift parameter we to evaluate how in advance a measure is able to provide the warn-
ing signal. We underline that early warnings could be extremely helpful in having the time 
to shed against future possible losses or financial turbulence. We set four values for the 
parameter we = 0 , 5, 20 or 60 to investigate four stylized scenarios in which the measures 
are tested for their capacity to anticipate a systemic event that is going to occur respectively 
tomorrow, in one week, in one month or in a one trimester. The AUCs for the different 
measures in the four scenarios are resumed in Table 4.

The first evidence is that the forecasting power of the measures decreases with the 
increase of the shift parameter we . This phenomenon is expected and it is clear both from 
the values of the AUCs collected in Table 4 and from the graphical behavior of the ROC 
curves in Fig. 7. The values of AUC approach approximately 0.5 when we increases and 
the ROC curves flatten on the diagonal making the results indistinguishable from a random 
classifier.

Comparing the performance of the single measures we can notice that few of them show 
very interesting forecasting power on a short term horizon (we = 0) : in particular the MRI, 
the ARI and the M-VIF are the best with associated AUC values close to 80%. When the 
forecasting horizon gets longer the above mentioned measures remain the best among the 

Table 4   AUCs for different level 
of w

e

we 0 5 20 60

AC 0.6903 0.6131 0.3908 0.4513
CRF 0.7213 0.6867 0.6072 0.5507
MRI 0.7844 0.7694 0.6122 0.5436
ARI 0.7775 0.7614 0.6098 0.5326
CN 0.7882 0.7713 0.5980 0.6076
d
M

0.6363 0.5863 0.4196 0.5155
M-VIF 0.7825 0.7362 0.6799 0.6303
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considered measures; the MRI and the ARI maintain very interesting performance on the 
weekly horizon while the M-VIF seems to over-perform in longer term horizons.

In Table 5 we present the results of a sensitivity analysis performed in the out-of-sample 
framework for we = 0 , l = −0.005,−0.01,−0.015,−0.02 and w = 15, 20, 30.

The results of the sensitivity analysis confirm what obtained in the previous experiment. 
Considering the AUC, many measures look very similar while they strongly differ if we 
consider the conditional V@R. One striking example is given by the AC that is the best 
measure in terms of AUC for w = 15, 20 while it significantly under-perform in detecting 
the big losses as showed by the V@R.

5 � Conclusions

Policy makers and investors need to describe and predict systemic events in order to pre-
vent or, at least, reduce the negative impact of financial crises and market downturns. Then, 
it is essential to compare the performance of the different systemic risk measures proposed 
in the literature.

In this paper we define a systemic event in a very natural way through the specifica-
tion of its duration and the associated average loss. After choosing a comprehensive 
financial index that represents the whole economic system, we perform an empirical 
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Fig. 7   ROC curves with respect to the correlation-based risk measures under comparison, shift parameter 
we = 0, 5, 20, 60
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Table 5   S &P500 index, out-
of-sample sensitivity analysis 
for w

e
= 0 : value at risk at 1% 

significance level of the returns 
distributions conditioned to 99th 
percentile and AUC for different 
levels of l and w 

The bold is used to highlight the highest values within the competing 
measures on the given time window w and loss l, while [-] denotes the 
missing values

V@R1% l = −0.005 l = −0.01 l = −0.015 l = −0.02

w = 15

   AC 0.0121 0.6574 0.7919 0.8831 0.7359
   CRF 0.0144 0.6537 0.7889 0.9192 0.8240
   MRI 0.0119 0.6550 0.8126 0.9083 0.8501
   CN 0.0084 0.6420 0.7621 0.8455 0.8339
   ARI 0.0117 0.6566 0.8226 0.9166 0.8538
   M-VIF 0.0083 0.6372 0.7416 0.8217 0.8300
   d

M
0.0135 0.5144 0.5017 0.6218 0.6907

w = 20

   AC 0.0045 0.6680 0.6903 0.5265 [–]
   CRF 0.0055 0.6610 0.7213 0.6051 [–]
   MRI 0.0087 0.6677 0.7844 0.7030 [–]
   CN 0.0096 0.6557 0.7882 0.7126 [–]
   ARI 0.0089 0.6659 0.7775 0.6905 [–]
   M-VIF 0.0144 0.6522 0.7825 0.6929 [–]
   d

M
0.0077 0.5414 0.6363 0.5185 [–]

w = 25

   AC 0.0039 0.6206 0.5166 0.3778 [–]
   CRF 0.0041 0.6320 0.6286 0.4076 [–]
   MRI 0.0043 0.6402 0.7027 0.5215 [–]
   CN 0.0060 0.6475 0.7269 0.6050 [–]
   ARI 0.0043 0.6379 0.6951 0.4985 [–]
   M-VIF 0.0120 0.6501 0.7023 0.5345 [–]
   d

M
0.0065 0.5750 0.5536 0.0350 [–]

Fig. 8   ROC curves
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comparison of alternative correlation-based systemic risk measures. From a descrip-
tive perspective and in a standard binary classification framework, the measures based 
on the correlation of markets’ sectors show a considerably high power in correctly 
discriminate periods of crisis and financial turbulence. Although the overall com-
parison does not highlight significant differences among the measures, except for the 
Mahalanobis distance that shows a very peculiar behavior, a more detailed analysis of 

Table 6   AUCs Risk measure AUC​

AC 0.8026
CRF 0.8865
MRI 0.9003
CN 0.8482
ARI 0.9133
M-VIF 0.8409
d
M

0.6866
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Fig. 9   Scatter plot with respect to the AC and the correspondent conditional distributions of returns
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Fig. 10   Scatter plot with respect to the MRI and the correspondent conditional distributions of returns
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the performance focusing on the left tail of the returns distribution conditioned to high 
values of the measures reveals significant differences in terms of discriminating power. 
In particular, the measures based on the eigenvalues of the correlation matrix over-
perform the other correlation-based measures; in our opinion, this is due to the fact 
that the eigenvalues of the correlation matrix carry the information on the dependence 
among all the constituents of the whole economic system, overcoming the pairwise 
structure of the correlation. The out-of-sample experiment confirms and reinforces the 
results of the descriptive exercise. The measures based on the eigenvalues of the cor-
relation matrix show non-negligible discriminating power when used in a predictive 
context. On the opposite, the average correlation, which performed attractively in the 
descriptive context, seems to lose all its utility when used in a forecasting framework. 
Surprisingly, even if based on the eigenvalues of the correlation matrix, also the CRF 
shows a poor discriminating power. On the basis of the empirical results, the measures 

Table 7   Daily average return, standard deviation and Value at Risk at 1% significance level of the returns 
distributions conditioned to given percentiles of the correlation-based risk measures under comparison

uncond wyt|mt 50
th

prctl
wyt|mt 90

th

prctl
wyt|mt 95

th

prctl
wyt|mt 99

th

prctl

AC
   mean 0.0003 − 0.0003 − 0.0013 − 0.0019 − 0.0022
   stdev 0.0025 0.0028 0.0033 0.0032 0.0018
   V@R1% 0.0080 0.0092 0.0099 0.0099 0.0065

CRF
   mean 0.0003 − 0.0003 − 0.0016 − 0.0021 − 0.0022
   stdev 0.0025 0.0029 0.0037 0.0037 0.0020
   V@R1% 0.0080 0.0092 0.0125 0.0130 0.0070

MRI
   mean 0.0003 − 0.0001 − 0.0009 − 0.0013 − 0.0023
   stdev 0.0025 0.0029 0.0035 0.0038 0.0045
   V@R1% 0.0080 0.0092 0.0122 0.0136 0.0162

CN
   mean 0.0003 0.0000 − 0.0001 0.0001 − 0.0010
   stdev 0.0025 0.0028 0.0030 0.0031 0.0040
   V@R1% 0.0080 0.0090 0.0104 0.0118 0.0146

ARI
   mean 0.0003 − 0.0002 − 0.0012 − 0.0016 − 0.0030
   stdev 0.0025 0.0029 0.0036 0.0039 0.0043
   V@R1% 0.0080 0.0092 0.0127 0.0137 0.0158

M-VIF
   mean 0.0003 0.0000 − 0.0001 0.0000 − 0.0004
   stdev 0.0025 0.0027 0.0031 0.0031 0.0036
   V@R1% 0.0080 0.0089 0.0104 0.0119 0.0132

d
M

   mean 0.0003 0.0002 0.0000 − 0.0001 0.0000
   stdev 0.0025 0.0027 0.0029 0.0029 0.0031
   V@R1% 0.0080 0.0086 0.0100 0.0108 0.0127
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Table 8   Eurostoxx index, 
in-sample sensitivity analysis: 
value at risk at 1% significance 
level of the returns distributions 
conditioned to 99th percentile, 
AUCs for different level of 
threshold l and window w 

The bold is used to highlight the highest values within the competing 
measures on the given time window w and loss l, while [-] denotes the 
missing values

V@R1% l = −0.005 l = −0.01 l = −0.015 l = −0.02

w = 20

   AC 0.0065 0.7871 0.8026 0.7816 [–]
   CRF 0.0070 0.8339 0.8865 0.9308 [–]
   MRI 0.0162 0.7272 0.9003 0.9913 [–]
   CN 0.0146 0.6368 0.8482 0.8961 [–]
   ARI 0.0158 0.7655 0.9133 0.9992 [–]
   M-VIF 0.0132 0.6142 0.8409 0.8850 [–]
   d

M
0.0127 0.5750 0.6866 0.3885 [–]

w = 25

   AC 0.0052 0.8155 0.8580 [–] [–]
   CRF 0.0053 0.8667 0.9560 [–] [–]
   MRI 0.0128 0.8485 0.9741 [–] [–]
   CN 0.0124 0.8045 0.9617 [–] [–]
   ARI 0.0123 0.8528 0.9717 [–] [–]
   M-VIF 0.0097 0.7977 0.9154 [–] [–]
   d

M
0.0117 0.6507 0.9008 [–] [–]

w = 30

   AC 0.0041 0.8251 0.8265 [–] [–]
   CRF 0.0064 0.8937 0.9413 [–] [–]
   MRI 0.0120 0.8792 0.9445 [–] [–]
   CN 0.0090 0.8470 0.9546 [–] [–]
   ARI 0.0120 0.8807 0.9422 [–] [–]
   M-VIF 0.0083 0.8364 0.8989 [–] [–]
   d

M
0.0110 0.6952 0.9210 [–] [–]

Fig. 11   Eurostoxx returns 
distribution contioned to the 99th 
percentile
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that depend on the eigenvalues of the correlation matrix seem to be preferable in prac-
tice, both in a descriptive and in a forecasting framework.

Appendix

In order to strengthen the empirical analysis developed in Sect. 4, we perform a similar 
empirical exercise only changing the referring global financial index. In this application, 
we use the Eurostoxx index (EUROSTOXX600) as a proxy of the whole economic sys-
tem. Precisely, we consider the daily returns of the EUROSTOXX600 and its 18 secto-
ral sub-indexes: AUTOS, BANKS, BASIC RES, CHEMICAL, CONSTRUCT, ENERGY, 
FIN SERV, FOOD &BEV, HLTHCARE, INDUSTRIAL, INSURERS, MEDIA, PG̋OODS, 
RETAIL, TECH, TELCOS, TRAVEL &LESR, UTILITIES.

In‑sample descriptive comparison EUROSTOXX600

The EUROSTOXX600 in-sample exercise confirms the results obtained with the S &P500. 
In general, looking at the ROC curves and related AUC values in Fig. 8 and Table 6, the 
correlation-based systemic risk measures perform well in a descriptive context.

Moreover, the scatter plots and conditional densities with respect to the AC and the MRI 
are compared in Figs. 9 and 10. Looking at the results, the discriminating power of MRI is 
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Fig. 12   Left tails of Eurostoxx returns distribution contioned to the 99th percentile

Table 9   AUCs for different level 
of w

e

we 0 5 20 60

AC 0.5884 0.5281 0.3271 0.3490
CRF 0.7251 0.7112 0.5527 0.4680
MRI 0.7696 0.7977 0.6059 0.3522
ARI 0.8103 0.7942 0.6233 0.3457
CN 0.6771 0.7743 0.5725 0.4234
d
M

0.5108 0.5071 0.5434 0.3973
M-VIF 0.6378 0.7200 0.5895 0.4492
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significantly higher than the one of AC in term of descriptive performance. This evidence 
is highlighted and resumed in Table 7, where for each threshold we determine the value of 
mean, standard deviation and V@R1% related to each measure.

In Table 8 we provide a sensitivity analysis considering different parameters of severity 
and duration.

Out‑of‑sample forecasting comparison EUROSTOXX600

Let consider the predictive power of the systemic risk measures under comparison 
(Fig. 11). The left tails of the returns distribution conditioned to the AC and CRF show that 
these measures are unable to discriminate the presence/absence of financial crises in a pre-
dictive context, whereas other measures seem to be useful in forecasting systemic events, 
as shown in Fig. 12.

In Table 9 we test the predictive power of each measure for different values of the shift 
parameter we . In general, predictive power decreases as the time horizon increases. Consid-
ering we = 5 and we = 20 we note that the predictive power decreases, but the MRI and the 
ARI outperform the other measures showing interesting forecasting power (Fig. 13).

The following results suggest a further consideration: M-VIF does not outperform the 
other measures in long-term horizons as in the previous empirical analysis of S &P500 
index.
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Fig. 13   ROC curves for Eurostoxx index, shift parameter we = 0, 5, 20, 60
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Table 10 contains a sensitivity analysis for different values of w and l, we = 0 , when 
the eurostoxx index is used as representative of the whole economic system

In conclusion, this second empirical application based on the use of the EURO-
STOXX600 as the global referring financial index substantially confirms the results 
obtained with respect to S &P500.
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Table 10   Eurostoxx index, out-
of-sample sensitivity analysis 
for w

e
= 0 : value at risk at 1% 

significance level of the returns 
distributions conditioned to 99th 
percentile, AUCs for different 
level of threshold l and window 
w 

The bold is used to highlight the highest values within the competing 
measures on the given time window w and loss l, while [-] denotes the 
missing values

V@R1% l = −0.005 l = −0.01 l = −0.015 l = −0.02

w = 20

   AC 0.0025 0.6090 0.5884 0.4722 [–]
   CRF 0.0029 0.6568 0.7251 0.8603 [–]
   MRI 0.0125 0.5981 0.7696 0.8817 [–]
   CN 0.0125 0.5649 0.6771 0.7674 [–]
   ARI 0.0104 0.6145 0.8103 0.9303 [–]
   M-VIF 0.0082 0.5311 0.6378 0.6880 [–]
   d

M
0.0078 0.5226 0.5108 0.7333 [–]

w = 25

   AC 0.0019 0.5547 0.5324 [–] [–]
   CRF 0.0018 0.6228 0.8732 [–] [–]
   MRI 0.0065 0.6156 0.9766 [–] [–]
   CN 0.0118 0.6070 0.9697 [–] [–]
   ARI 0.0080 0.6158 0.9726 [–] [–]
   M-VIF 0.0058 0.6024 0.9609 [–] [–]
   d

M
0.0134 0.5648 0.4529 [–] [–]

w = 30

   AC 0.0003 0.4916 0.3145 [–] [–]
   CRF 0.0004 0.5814 0.7313 [–] [–]
   MRI 0.0056 0.5924 0.8637 [–] [–]
   CN 0.0115 0.5698 0.8451 [–] [–]
   ARI 0.0055 0.5959 0.8637 [–] [–]
   M-VIF 0.0043 0.5633 0.8120 [–] [–]
   d

M
0.0061 0.5332 0.8319 [–] [–]
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