
 

Far East Journal of Theoretical Statistics 
© 2019 Pushpa Publishing House, Prayagraj, India 
http://www.pphmj.com 
http://dx.doi.org/10.17654/TS057020143 
Volume 57, Number 2, 2019, Pages 143-170  ISSN: 0972-0863 

 

Received: September 16, 2019;  Accepted: October 16, 2019 
2010 Mathematics Subject Classification: 00A71, 65C20. 
Keywords and phrases: model selection, model choice, model averaging, model uncertainty. 

MODEL OF MODELS: A NEW PERSPECTIVE TO DEAL 
WITH MODEL UNCERTAINTY 

Silvia Figini1, Pierpaolo Uberti2 and Maria Laura Torrente2 
1Department of Political and Social Sciences 
University of Pavia and RIDS 
Italy 
e-mail: silvia.figini@unipv.it 

2DIEC Department of Economics 
University of Genova 
Italy 
e-mail: uberti@economia.unige.it 
e-mail: marialaura.torrente@economia.unige.it 

Abstract 

This paper presents a novel methodological approach called the Model 
of Models (MoM). MoM concerns the selection of the best model for a 
given partition of the data derived from the realization of the 
independent variables. Compared to ensemble techniques and model 
averaging approaches proposed in the literature, MoM does not require 
a selection of which models to include in the pool of models and it 
works without resorting to the combination of model predictions. 

MoM works on parametric and non parametric predictive models as 
well as any other dependent or independent variables. In the case of a 
partition of the data, the theoretical proposal derives the properties of 
MoM. The implementation of MoM, when no partition of the data is 
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available in advance, is performed using a new algorithm termed as 
MoMa. 

In order to show how MoM works, empirical evidence is provided on 
simulated data sets. 

The proved theoretical results coupled with the empirical evidence 
gathered from simulated data demonstrate that MoM is a good strategy 
to deal with model choice and model uncertainty. 

1. Introduction 

In recent years, a number of multi-model methods have been proposed to 
account for uncertainties arising from input parameters and the definition of 
model structure. 

As described in Singh et al. [20], the different sources of uncertainty in 
the modeling process can be categorized as: conceptual uncertainty (i.e., the 
conceptual model of the underlying system), parametric uncertainty (i.e., 
uncertainty linked to parameters and absence of data) and stochastic 
uncertainty (i.e., uncertainty in predictions). 

In general, the methods proposed in the literature believe that it is more 
appropriate to consider multi-model predictive uncertainty than to rely on a 
single conceptual model. Traditional estimation procedure generally begins 
with model selection (see e.g., Lin et al. [15] and Klebanov et al. [14]). Once 
a specific model has been selected, subsequent estimation is conducted using 
the selected model without taking into consideration the uncertainty from the 
selection process. 

Model averaging estimation which incorporates model uncertainty into 
the estimation process (see e.g., Ranjan and Gneiting [18]) is an alternative to 
this procedure. In recent years, there has been rising interest in model 
averaging from the frequentist (see e.g., Wang et al. [22], Ando and Li [1], 
Ando and Li [2], Zhang et al. [23]), Bayesian (see e.g. Hoeting et al. [11], 
Raftery et al. [19]) and ensemble machine learning (see e.g., Breiman [3-5] 
and, Omer and Lior [17]) perspectives, and some important progress has 
been made. 
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Compared to the Frequentist Model Averaging (FMA) approach, there 
has been an enormous amount of literature on the use of the Bayesian Model 
Averaging (BMA) approach where the uncertainty of a model is considered 
by setting a prior probability to each candidate model. 

As pointed out by Fragoso et al. [8] the application of BMA is not 
always straightforward, which could lead to diverse assumptions and 
situational choices according to its different aspects. 

In contrast, the FMA approach requires no priors and the corresponding 
estimators are entirely determined starting from the data. For this reason, the 
FMA approach has received much attention over the last decade (see e.g., 
Hjort and Claeskens [12] and Hjort and Claeskens [13]). The performance of 
the FMA procedures largely depends on how to choose weights in 
estimation. Consequently, much of the work focuses on weight choice to 
achieve stable prediction. 

A different strategy to deal with model uncertainty comes from the 
pooling approach introduced by Stone [21]. Combining predictions from 
alternative models often improves those forecasts based on a single best 
model (see e.g., Geweke and Amisano [9]). Furthermore, when single models 
are subject to structural breaks and miss-identification errors, a pool 
approach based on many alternative models is expected to outperform 
methods that try to select the best forecasting model (see e.g., Geweke and 
Amisano [9], Figini et al. [7], Lv and Liu [16]). 

In this paper we propose a completely different approach to deal with 
model uncertainty and model choice called Model of Models (MoM): MoM 
concerns the selection of the best model for a given partition of the data 
derived from the realization of the independent variables. 

MoM does not require selecting which models to include in the pool of 
models and it works without resorting to the combination of model 
predictions. For this reason MoM can be classified as an objective approach 
to deal with model selection and model uncertainty. Broadly speaking, for 
each element of a given partition of the independent variables MoM selects 
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the best model from a model set. The model set is composed of parametric 
and non parametric predictive models. The competing models in the model 
set are estimated in advance from the whole data set while the partition of the 
independent variables is derived independently following the model 
estimation step. This overcomes the potential over-fitting issues. The results 
achieved using MoM hold for any partition of the independent variables. 

In the second part of the paper, the properties of MoM are derived and 
proved. Our idea is supported by a strong theoretical framework which is 
presented in Section 2; Section 3 shows the computational aspects to 
implement MoM and introduces the algorithm; Section 4 reports the 
empirical evidence at hand obtained on simulated data. Discussion of the 
theoretical and computational results is summarized in Section 5. 

2. MoM: Theoretical Proposal 

MoM is a new approach to deal with model selection and model 
uncertainty in predictive modeling. In this section we prove that single model 
selection for each partition of data provides better results in terms of fitting. 
MoM works with parametric, semi-parametric and non parametric predictive 
models characterized by quantitative or qualitative dependent and 
independent variables. 

In order to formalize MoM, let nxx ...,,1  be n independent variables 

taking values in the real intervals ....,,1 nAA  Let ,1
n

nAAA R⊆××= "  

let { } App s ⊂= ...,,1X  be a set of s input data and ( ) s
syy R∈= ...,,1y  

be the vector of s realizations of the dependent variable. 

Let 1≥m  be an integer number and let mff ...,,1  be real functions 

defined over .nA R⊆  Each function ,...,,1, mjf j =  is a model that 

relates the input data A⊂X  to the realizations y, and each vector =jŷ  

( ) ( ( ) ( )) ,...,,1,...,,1 mjpfpff s
sjjj =∈= RX  is the vector of predicted 

values. 
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The functions ,...,,1, mjf j =  constitute the model set and as pointed 

out in Section 1, are assumed to be given. The models ,...,,1, mjf j =  can 

differ both for the functional form and/or for the subset of the independent 
variables nxx ...,,1  used as explanatory variables. We do not assume any 

further restriction on the models; consequently, we can consider input models 
with completely different functional forms as well as input models which 
depend on an increasing number of parameters, as in the classical case of 
nested models as described in Definition 2.1. 

Definition 2.1 (Nested Models). Let mff ...,,1  be real functions defined 

over nA R⊆  and belonging to the families ....,,1 mFF  If ,1+∈ jjf F  for 

each ,1...,,1 −= mj  the models are said to be nested. 

As pointed out in Section 1, in order to deal with model uncertainty, 
different approaches of model average are proposed in the literature and the 
final results become a linear combination of the models under comparison 
(see e.g. Hoeting et al. [11], in the Bayesian framework). 

Definition 2.2 (Model Average). Let mff ...,,1  be real functions 

defined over ,nA R⊆  and let mcc ...,,1  be positive real numbers such that 

∑ = =m
j jc1 ;1  denote ( ) ....,,1 c=mcc  The model average cf  is the linear 

combination of the models mff ...,,1  over A defined by: 

∑
=

=
m

j
jj fcf

1
.c  (1) 

The selection of ( )mcc ...,,1  is crucial in model averaging approaches. In 

Bayesian Model Averaging ( )mcc ...,,1  is replaced by the posterior 

probability of each model selected in the model space, but in general the 
choice of ( )mcc ...,,1  is an open point of research. 
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We noticed that by choosing different vectors of the weights c it is 
possible to obtain classical model averaging, Bayesian model averaging, 
ensemble models and, in particular, when c has one unitary entry and 1−m  
null entries, the special case of model selection, in which one of the available 
models is chosen as the best model based on some given criterion. 

An important task in model selection is to derive measures of goodness 
for a model. A simple approach is to evaluate the error between the measured 
and the predicted values of the dependent variable (i.e., the difference 
between the vectors y and ( )Xf=ŷ  respectively). This distance function on 

the vector space sR  is useful to compare different models to predict y. A 
natural choice for the error is given by distance functions on the vector space 

.sR  A special case of distance functions is the Brier score, see Brier [6], 
which measures the model’s overall performance by taking into account the 
calibration and discrimination of each model. 

We recall that for any sR∈yx,  a distance ( )yx,sd  satisfies the 

following conditions: 

(1) ( ) ;,0, s
sd R∈∀≥ yxyx  

(2) ( ) 0, =yxsd  if and only if ;yx =  

(3) ( ) ( ) ;,,, s
ss dd R∈∀= yxxyyx  

(4) ( ) ( ) ( ) .,,,,, s
sss ddd R∈∀+≤ zyxzyyxzx  

In this paper we consider distance functions sd  on sR  of the form 

( ) ( )∑ == s
i iis yxdd 1 ,,, yx  with d a distance function on .R  Note that this 

choice includes special cases such as the Laplace’s distance ∑ = −s
i ii yx1 ,  

the Euclidean distance ( )∑ = −s
i ii yx1

2,  and distance functions induced by 

the power of the classical p-norm on ,sR  that is, ∑ = −s
i

p
ii yx1 ,  with p 

being a positive integer. 
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Definition 2.3. Let ,nA R⊆  let { }spp ...,,1=X  be a set of points of A 

and ( ) s
syy R∈= ...,,1y  be the vector of s realizations of the dependent 

variable. Let 21, ff  be real functions defined over A. 

(a) If 

( )( ) ( )( )∑ ∑
= =

=
s

i

s

i
iiii pfydpfyd

1 1
21 ,,  

then model 1f  is equivalent to model ,2f  also denoted by .21 ff ≡  

(b) If 

( )( ) ( )( )∑ ∑
= =

≤
s

i

s

i
iiii pfydpfyd

1 1
21 ,,  

then model 1f  is no worse than model .2f  

Definition 2.3 provides a guideline to compare models in terms of fitting; 
as a result, the best model is selected. 

If different models for the data set X  and realizations y show different 
local fitting,1 selecting the best model by using some given performance 
criterion does not represent the best solution. On the other hand, choosing the 
best model in each element of a given partition of the data, thus reflecting the 
realization of the independent variable, could be considered an alternative 
approach to model selection. 

In this paper we prove that MoM has good and desirable properties in 
terms of fitting, and, in particular, it is no worse than classical model 
selection procedures. In other words, we suggest not choosing one model 
among other available models or combining the latter in some optimal 
average, but rather to use one specific model depending on the realizations of 
the independent variables. 

                                                           
1 We do not formally define the concept of local fitting of a model because the intuition to 
restrict the fitting performance analysis of a model to some subset of the domain is sufficient 
for the clarity of the paper. 
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In order to define MoM, the concept of restricted partition of A is 
required. 

Definition 2.4 (Restricted Partition). Let nA R⊆  and { }spp ...,,1=X  

be a set of points of A. A partition of A is a family { }rUUU ...,,1=  of sets 

such that: 

(1) ;...,,1 rkAUk =∀⊆≠∅  

(2) ,...,,1, rjkUU jk =∀∅=∩  with ;jk ≠  

(3) ∪r
k k AU1 .= =  

Furthermore, if the following additional condition holds: 

(4) ,...,,1, rkUk =∀∅≠X∩  

then U is called a X -restricted partition of A or restricted partition of A. 

Definition 2.4 differs from the standard definition of partition of a set for 
4. The formal definition of MoM is based on restricted partitions of A, i.e., 
partitions made up of subsets which are not disjoint from the given data set 

{ } ....,,1 App s ⊂=X  

Definition 2.4 compares the input models mff ...,,1  based on the 

distance function ( )∑ =
s
i ii yyd1 ˆ,  restricted to each subset ,...,,1, rkUk =  

of the restricted partition { }....,,1 rUUU =  

In order to derive MoM, Definition 2.5 described below, shows how to 
manage ....,,1 mff  

Definition 2.5 (Model of Models - MoM). Let nA R⊆  and =X  

{ }spp ...,,1  be a set of points of A. Let mff ...,,1  be real functions defined 

over nA R⊆  and let { }rUUU ...,,1=  be a restricted partition of A (see 

Definition 2.4). The (MoM) Uf  is a real function over A defined by: 
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( )
( )( )

( )( )⎪
⎩

⎪
⎨

⎧

∈

∈
=

α

α

,if

if 11

rU

U

U
Uf

Uf
f

r xx

xx
x ##  (2) 

where ( ) { }mUk ...,,1∈α  is: 

( ) ( ( ))
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=α ∑
∈

=

ki Up
ijimjk pfydU ,minarg ...,,1  (3) 

for each ....,,1 rk =  

In Proposition 2.6 we prove that for any restricted partition U of A the 
MoM is no worse than the original models mff ...,,1  (see Definition 2.4). 

Proposition 2.6. Let ,nA R⊆  let { } App s ⊂= ...,,1X  be a set of s 

input data and ( ) s
syy R∈= ...,,1y  be the vector of the realizations of the 

dependent variable. Let U be a restricted partition of A (see Definition 2.4). 
Let ,...,,1 mff  with ,1≥m  be real functions defined over A and Uf  be the 

MoM (see Definition 2.5). Then, the model Uf  is no worse than each model 

....,,1, mjf j =  

Proof. Let { }rUUU ...,,1=  and let ( ) ( )rUU αα ...,,1  be the indexes 

defined by formula (3). By using the properties of the restricted partition U 

(see Definition 2.4), the expression ( )( )∑ =
s
i iUi pfyd1 ,  can be rewritten as 

follows: 

( )( ) ( )( )∑ ∑ ∑
= = ∈

=
s

i

r

k Up
iUiiUi

ki

pfydpfyd
1 1

,,  

( ( )( ))∑ ∑
= ∈

α=
r

k Up
iUi

ki
k pfyd

1
.,  (4) 
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For each ,...,,1 mj =  by formula (3), it follows that: 

( ( )( )) ( ( ))∑ ∑
∈ ∈

α ≤
ki ki

k
Up Up

ijiiUi pfydpfyd .,,  (5) 

Combining (4) and (5) we get 

( )( ) ( ( ))∑ ∑ ∑
= = ∈

≤
s

i

r

k Up
ijiiUi

ki

pfydpfyd
1 1

,,  

( ( ))∑
=

=
s

i
iji pfyd

1
.,  

Therefore, by using Definition 2.3-(b) the Proposition is proved. 

We observed that different restricted partitions U and V of A could lead 
to equivalent models, that is VU ff ≡  (see Definition 2.3-(a)). This happens 

when U and V have the same number r of subsets and XX ∩∩ kk VU =  

∅≠  holds for each ....,,1 rk =  

Furthermore, we remark that Proposition 2.6 holds whatever restricted 
partition U is chosen. Despite this evidence related to the fitting 
performances, it is clear that the MoM Uf  depends on the choice of the 

restricted partition U but, in practice, some partitions of the data will perform 
better than others. This leads us to introduce the concept of refinement of a 
partition as described in Definition 2.7. 

Definition 2.7 (Refinement of a Partition). Let U and V be two different 
restricted partitions of A (see Definition 2.4). The partition U is a refinement 
of V, denoted by ,VU ≤  if every element of U is a subset of an element of 
V. 

When we compare the MoM corresponding to the two restricted 
partitions U and V, with ,VU ≤  the model Uf  corresponding to the finer 

partition is no worse than the model ,Vf  as proved in Proposition 2.8. 

Proposition 2.8 links the selection of the partition with the fitting 
performance of the MoM. 
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Proposition 2.8. Let ,nA R⊆  let { } App s ⊂= ...,,1X  be a set of s 

input data and ( ) s
syy R∈= ...,,1y  be the vector of realizations of the 

dependent variable. Let U and V be restricted partitions of A (see Definition 
2.4) and suppose that U is a refinement of V. Let ,...,,1 mff  with ,1≥m  be 

real functions defined over A, and Uf  and Vf  be MoM (see Definition 2.5). 

Then, the model Uf  is no worse than the model .Vf  

Proof. Let { }rVVV ...,,1=  and { };...,,1 rUUU ′=  let ( ) ( )rVV αα ...,,1  

and ( ) ( )rUU ′αα ...,,1  be the indexes defined by formula (3). Using 

Definition 2.4 and the properties of partition U, expression 

( )( )∑ =
s
i iUi pfyd1 ,  can be rewritten as follows: 

( )( ) ( )( )∑ ∑ ∑
=

′

= ∈

=
s

i

r

k Up
iUiiUi

ki

pfydpfyd
1 1

,,  

( ( )( ))∑ ∑
′

= ∈
α=

r

k Up
iUi

ki
k pfyd

1
.,  (6) 

Since U is a refinement of V, 1≥≥′ rr  and there exists a partition 
{ }rIII ...,,1=  of the set { }r′...,,1  such that the sets { }hj IjU ∈|  are 

subsets of ,hV  for each ....,,1 rh =  Obviously, for each ,...,,1 rh =  the 

family of sets { }hj IjU ∈|  is a partition of .hV  Consequently, expression 

(6) can be rewritten as follows: 

( )( ) ( ( )( ))∑ ∑ ∑
=

′

= ∈
α=

s

i

r

k Up
iUiiUi

ki
k pfydpfyd

1 1
,,  

( ( )( ))∑ ∑ ∑
= ∈ ∈

α=
r

h Ij Up
iUi

h ji
j pfyd

1
.,  (7) 
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By formula (3), for each ,...,,1, rhIj h =∈  it easily follows that: 

( ( )( )) ( ( )( ))∑ ∑
∈ ∈

αα ≤
ji ji

hj
Up Up

iViiUi pfydpfyd .,,  (8) 

Combining (7) and (8) we obtain 

( )( ) ( ( )( ))∑ ∑ ∑ ∑
= = ∈ ∈

α≤
s

i

r

h Ij Up
iViiUi

h ji
h pfydpfyd

1 1
,,  

( ( )( ))∑ ∑
= ∈

α=
r

h Vp
iVi

hi
h pfyd

1
,  

( )( )∑
=

=
s

i
iVi pfyd

1
.,  

Therefore, using Definition 2.3-(b) the proposition is proved. 

As a consequence of Proposition 2.8, we can derive the following 
corollary. 

Corollary 2.9. Assume that the hypotheses of Proposition 2.8 hold. Let 

11 UUU tt ≤≤≤ − "  be a finite sequence of restricted partition refinements 

of the set A and tUU ff ...,,1  be the corresponding MoMs (see Definition 

2.5). Then, for each ,1...,,1 −= tk  the model 1+kf  is no worse than the 

model ,kf  that is 

( ) ( ) ( )∑ ∑ ∑
= = =

≤≤≤
−

s

i

s

i

s

i
UiUiUi fydfydfyd tt

1 1 1
.,,, 11 "  

Proof. The proof is trivial and directly follows from Proposition 2.8 and 
Definition 2.3-(b). 

Corollary 2.9 shows how the goodness of fit of the corresponding MoM 

tUU ff ...,,1  weakly increases when the sequence of restricted partitions is 

composed by successive refinements. 
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The restricted partitions U of A such that each subset contains a single 
point of X  generate the MoM Uf  with minimum value of the distance 

( )( )∑ =
s
i iUi pfyd1 .,  We noticed that these special cases are only interesting 

from a theoretical point of view. In practice, the MoM works better on 
restricted partitions of A with a small number of elements. 

Proposition 2.6 proves that, compared to classical techniques, the MoM 
generally improves the fitting performances. Unfortunately, this 
improvement has a drawback in terms of continuity of the MoM. Generally 
speaking, even if we assume that the input models mff ...,,1  are continuous 

functions on A, most times the MoM Uf  is not continuous on A. There exists 

at least one point Ax ∈0  such that: 

( ) ( ).lim 0
0

xfxf UU
xx

≠
→

 

Using Definition 2.4, it is intuitive that the points lying on the border of 
different subsets of U are points of potential discontinuity for the MoM. 

Supposing that the (topological) borders of two subsets of U, say iU  and 

,jU  with ,ji ≠  are not disjoint, the intersection of the borders of iU  and 

jU  contains at least one point of A, denoted by .0x  In order to check the 

continuity/discontinuity of the MoM at ,0x  we compute ( ).lim 0 xfUxx→  

From the definition of the topological border, each neighborhood of 0x  

contains both points of iU  and ,jU  so we can compute the following two 

limits: 

( )( )0
0
lim xff i

i
UU

Uxxx
α

∈|→
=  

( )( ).lim 0
0

xff j
j

UU
Uxxx

α
∈|→

=  

In general, ( )( ) ( )( ),00 xfxf ji UU αα ≠  thus the MoM is not continuous in .0x  
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The size of the potential discontinuity points of Uf  depends on the 

number of subsets in the restricted partition U of A. We must point out that, 
from a practical point of view, the discontinuity points of Uf  may lead, 

depending on the context, lead to unstable forecasts. In particular, in the 
neighborhood of each discontinuity point, an infinitesimal variation of the 
input variable could imply a discrete jump of the value of the dependent 
variable. In practical applications, in order to reduce the border regions 
between partition elements and the potential discontinuities of the MoM, we 
need to minimize the number of subsets of the restricted partition. In order to 
clarify how MoM works, let us look at Example 2.10. 

Example 2.10. Let 1=n  and X  be a set of 40=s  points in ,R  as 

depicted in Figure 1-(a). The independent variable xx =1  takes values in the 

interval [ ].5.6,0  Let us consider the Euclidean distance ( )∑ = −s
i ii yy1

2ˆ  and 

3=m  polynomial models 321 ,, fff  of degree 1, 2, 3, respectively: 

38043.013802.01 +−= xf  

4166.017331.00056368.0 2
2 +−= xxf  

037973.05659.028876.0031524.0 23
3 ++−= xxxf  

as shown in Figure 1-(b). Note that 1f  and 2f  are nested in 3f  (see 

Definition 2.1). The goodness of each model is: 

( )( )∑
=

=−
40

1

2
1 5646.1

i
ii pfy  

( )( )∑
=

=−
40

1

2
2 5553.1

i
ii pfy  

( )( )∑
=

=−
40

1

2
3 .7874.0

i
ii pfy  
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(a)          (b) 

Figure 1. (a) The data set X  and the vector of responses y; (b) the graphs of 
the three models: 1f  (solid line), 2f  (dashed line) and 3f  (dash-dot line). 

The restricted partition { }321 ,, UUUU =  of [ ]5.6,0=A  is: 

[ ) [ ) [ ].5.6,2.4,2.4,82.1,82.1,0 321 === UUU  

For each 3,2,1=k  the index ( )kUα  defined in (3) is: 

( ) ( ) ( ) .3,1,3 321 =α=α=α UUU  

The MoM Uf  is shown in Figure 2-(a). The goodness of the MoM is 

( )( )∑ = =−40
1

2 ,7059.0i iUi pfy  which is strictly smaller than 

( ( ))∑ = −40
1

2,i iji pfy  3,2,1=j  as Proposition 2.6 states. 

    
(a)          (b) 

Figure 2. The data set ,X  the vector of responses y and the graph of the 
MoM Uf  (figure (a)) and the MoM Vf  (figure (b)). 
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Figure 2-(a) shows the discontinuity points introduced with the MoM, 
82.10 =x  and .2.41 =x  Let us consider the restricted partition =V  

{ }654321 ,,,,, VVVVVV  of [ ],5.6,0=A  where: 

[ ) [ ) [ )1.3,82.182.1,8.08.0,0 321 === VVV  

[ ) [ ) [ ].5.6,03.503.5,2.42.4,1.3 654 === VVV  

Note that V is a refinement of U. For each ,6...,,1=k  ( )kVα  as defined 

in (3) is: 
( ) ( ) ( ) 133 321 =α=α=α VVV  

( ) ( ) ( ) .333 654 =α=α=α VVV  

The MoM Vf  is shown in Figure 2-(b). The goodness of the model is 

( )( )∑ = =−40
1

2 6994.0i iVi pfy  which is not greater than 

( )( )∑ = =−40
1

2 ,7059.0i iUi pfy  as Proposition 2.8 states. 

According to Proposition 2.6, the MoM is no worse than selecting a 
single model. 

In Proposition 2.11 we prove that for nested models (see Definition 2.1) 
the MoM outperforms single model selection and model averaging 
techniques. 

Proposition 2.11. Let ,nA R⊆  let { } App s ⊂= ...,,1X  be a set of s 

input data and ( ) s
syy R∈= ...,,1y  be the dependent variable. Let 

,...,,1 mff  with ,1≥m  be m nested models belonging to the families 

....,,1 mFF  Suppose that mF  is a vector space and that mf  is the best 

model of ,mF  such that: 

( )( ) .,minarg
1 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈|= ∑
=

s

i
miim fpfydf F  (9) 
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For each restricted partition U of A and any ( )mcc ...,,1=c  such that 

∑ = =m
j jc1 1  the MoM Uf  is no worse than the average model .cf  

Proof. Since ∑ == m
j jj fcf 1 ,c  with ,...,,1, mjf mjj =⊆∈ FF  and 

mF  is a vector space, it follows that ,mf F∈c  for any ( )mcc ...,,1=c  with 

∑ = =m
j jc1 .1  Therefore, from (9), it follows that: 

( )( ) ( )( )∑ ∑
= =

≤
s

i

s

i
iiimi pfydpfyd

1 1
.,, c  

Combining the previous inequality with Proposition 2.6, we get: 

( )( ) ( )( ) ( )( )∑ ∑ ∑
= = =

≤≤
s

i

s

i

s

i
iiimiiUi pfydpfydpfyd

1 1 1
.,,, c  

Using Definition 2.3-(b) the proposition is proved. 

3. MoMa: Model of Models Algorithm 

The implementation of the MoM requires the following inputs: 

mff ...,,1  alternative models to predict the dependent variable and a 

restricted partition of A. 

The restricted partition of A can usually be derived using unsupervised 
techniques based on clustering approaches (see e.g., Hastie et al. [10]). In 
Section 2 the existence of a restricted partition of A is assumed to be given 
and the MoM is defined on that partition. 

In practical applications, the choice of the restricted partition is 
independent and clustering algorithms could be used to randomly 
partitioning the data available. 

This section, starting from mff ...,,1  and a point in A, proposes an 

algorithm that iteratively constructs a restricted partition of A to obtain the 
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MoM. This approach allows us to define MoM even when no partition of the 
independent variables is provided in advance. The algorithm, which the 
authors call MoMa, works as follows. 

Model of Models Algorithm (MoMa) 

Given a set of s input data { } ,...,, 11
n

ns AAApp RX ⊆××=⊂= "  

with nAA ...,,1  real intervals, a vector ( ) s
syy R∈= ...,,1y  of the 

realizations of the dependent variable, a vector ( )mff ...,,1=f  of m real 

functions defined over A, 10 << p  and thresholds ,0 21 dd <<  the 

algorithm returns ( ),, αV  where { }rVVV ...,,1=  and ( )....,,1 rαα=α  

I. Set 0=k  and X=2Z  and set d as follows 

⎣ ⎦
⎣ ⎦

⎣ ⎦⎪⎩

⎪
⎨
⎧

⋅
>⋅
<⋅

=
.otherwise

if
if

22

11

sp
dspd
dspd

d  

II. While dZ ≥2  do 

(1) set 1+= kk  and ;1 ∅=Z  

(2) randomly choose an element 2Zp
i
∈∗  and move it from 2Z  to ;1Z  

(3) select the 1−d  points of 2Z  closest to ;∗ip  move these points from 

2Z  to ;1Z  

(4) compute the index ∗j  such that 

( ( ))∑
∈

=
∗ =

1

,minarg ...,,1
Zp

ijimj
i

pfydj  

(5) set ;∗= jj  

(6) while ∗= jj  and ∅≠2Z  do 
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(a) let ip  be the point of 2Z  closest to ;∗ip  

(b) compute the index j  such that 

( ( ))∑
∈

==

ii pZp
ijimj pfydj

∪1

,minarg ...,,1  

(c) if ∗= jj  then move ip  from 2Z  to ;1Z  

(7) set jZV kk =α= ,1  and .kr =  

III. If 02 >Z  then set 2,,1 ZVkrkk k ==+=  and 

( ( ))∑
∈

==α

2

.,minarg ...,,1
Zp

ijimjk
i

pfyd  

IV. Return { }rVVV ...,,1=  and ( )....,,1 rαα=α  

In order to obtain a significant frequency of observations for each 
element of the partition, (expressed in terms of number of data points in the 
corresponding subset of the partition), 1, dp  and 2d  are fixed in advance. 

Of course, the value selection for 1, dp  and 2d  is crucial in real 

application and it represents a task for future research for the authors. 

We should point out that the MoMa algorithm respects several properties 
as pointed out in the following Propositions. 

Proposition 3.1. The MoMa algorithm stops in a finite number of steps 
and returns a pair ( ),, αV  where { }rVVV ...,,1=  is a partition of X  and 

( ) { } ....,,1...,,1
r

r m∈αα=α  

Proof. The stopping criterion of the MoMa is given in steps II and III; 
since in step I, 2Z  starts with X=2Z  and at each round of the algorithm at 

least one element ∗i
p  of 2Z  is removed from the set (step II.3, step II.6, step 

III), the condition ∅=2Z  is (possibly) reached after many iterations. 
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Regarding the correctness of the output, we simply prove that by 
induction that { }rVVV ...,,1=  is a partition of .X  Note that, during each 

iteration, by construction the set 21 ZZ ∪  does not change. In particular, 

during the first iteration, which is ,1=k  we have ,21 X=ZZ ∪  therefore 

running the loop, { }21, ZV  is a partition of .X  We suppose that, at the end  

of the k-th iteration, { }21 ,...,, ZVV k  is a partition of ,X  that is 

∪k
j jVZ 12 .\ == X  Then, at the ( )1+k -th iteration, we obtain 21 ZVk ∪+  

∪k
j jV1 ,\ == X  so { }211 ,,...,, ZVVV kk +  is a partition of .X  

Proposition 3.2. Let ,1
n

nAAA R⊆××= "  with nAA ...,,1  real 

intervals, { } App s ⊂= ...,,1X  be a set of s input data, ( )syy ...,,1=y  

sR∈  be the vector of realizations of the dependent variable and 
( )mff ...,,1=f  be a vector of m real functions defined over A. Let ( )α,V  

be the output of MoM Algorithm applied to ( ).,, fyX  Let r be the number 

of elements of V. For any partition { }rUUU ...,,1=  of A such that 

,kk VU =X∩  for ,...,,1 rk =  the MoM function Uf  is given by: 

( )
( )

( )⎪
⎩

⎪
⎨

⎧

∈

∈
=

α

α

.

11

r

U
Uiff

Uiff
f

r xx

xx
x ##  

Proof. Our first observation is that the partition U is a restricted partition 
of A. Since { }rVVV ...,,1=  is a partition of X  (see Proposition 3.1), using 

hypothesis ,kk VU =X∩  for ,...,,1 rk =  it follows that property (4) of 

Definition 2.4 is satisfied. 

We consider the generic k-th iteration of the MoMa: when step II.7 is 
executed (at the end of the internal loop starting at step II.6) the index kα  

satisfies: 
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( ( ))
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=|=α ∑
∈ ki Vp

ijik mjpfyd ...,,1,minarg  

( ( ))
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=|= ∑
∈ ki Up

iji mjpfyd ...,,1,minarg  

and the last equality is derived using the hypothesis .kk VU =X∩  

Analogously, if step III is executed, we have: 

( ( ))
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=|=α ∑
∈ ri Vp

ijir mjpfyd ...,,1,minarg  

( ( )) ....,,1,minarg
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=|= ∑
∈ ri Up

iji mjpfyd  

From formula (3) it follows that ( ),kk Uα=α  hence the proposition is 

proved. 

4. Empirical Evidence 

This section shows the empirical evidence achieved on the simulated 
data set, by using the MoMa algorithm on two different data examples. 

Example 4.1. Example 4.1 considers the data set introduced in Example 
2.10. Let X  be the set of 40 points in y,R  be the vector of 40 realizations 

(see Figure 1-(a)) and 321 ,, fff  be polynomial models of degree 1, 2, 3 (see 

Figure 1-(b)). 

Let us consider the Euclidean distance ( )∑ = −s
i ii yy1

2ˆ  and run the 

MoMa Algorithm (with parameters 6,1.0 1 == dp  and )102 =d  on X  

and on the vector of the real functions ( ).,, 321 fff=f  As a result, MoMa 
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returns ( ),, αV  where V is a partition of X  composed of 2 subsets made up 

of 10 and 30 points respectively. 

Figure 3 depicts the sets ( ) VVV ∈21,  using different symbols according 

to the associated model (the symbol + for ,1f  the symbol ∗  for 2f  and the 

symbol D  for .)3f  

 

Figure 3. The points of the partition ( )21, VVV =  of the set X  represented 

with different symbols, according to the corresponding model: + for 1f  and 

D  for .3f  

Let { }21, UUU =  be any partition of [ ]5.6,0=A  such that =X∩iU  

2,1, =iVi  and let Uf  be the corresponding MoM (see Proposition 3.2)): 

( )
( )
( )⎩

⎨
⎧

∈
∈

=
.if

if

23

11
Uf
Uf

fU xx
xx

x  

The goodness of fit of the MoM Uf  is: 

( )( )∑
=

=−
s

i
iUi pfy

1

2 ,7663.0  (10) 
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which is strictly smaller than ( ( ))∑ = −s
i iji pfy1

2,  for 3,2,1=j  (as 

proved in Proposition 2.6) and comparable with the values 

( ( ))∑ = =−s
i iUi pfy1

2 .7059.0  The result obtained in 10 is comparable 

with ( ( ))∑ = =−s
i iVi pfy1

2 6994.0  of the MoMs Uf  and Vf  as reported in 

Example 2.10. 

Example 4.2. Let 2=n  and X  be a set of 300=s  points in ,2R  as 

depicted in Figure 4, and y be the vector of 300 realizations. The independent 
variables take values in [ ] [ ].5,55,5 −×−=A  Let us consider the models 

321 ,, fff  and the Euclidean distance ( )∑ = −s
i ii yy1

2.ˆ  The following 

values give a measure of the goodness of fit of the models: 

( ( ))∑ =
=−

s
i ii pfy

1
2

1 1296.21  

( ( ))∑ =
=−

s
i ii pfy

1
2

2 8069.6  

( ( ))∑ =
=−

s
i ii pfy

1
2

3 .9841.29  (11) 

 

Figure 4. The data set X  and the vector y of realizations. 
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Run MoMa (with parameters 20,02.0 1 == dp  and )302 =d  on the 

data set ,X  using the realizations y and the vector of real functions 

( ).,, 321 fff=f  MoMa returns the pair ( ),, αV  where V is a partition of 

X  made up of 5 subsets and ( ).2,3,3,1,2=α  The sets of the partition 

{ }54321 ,,,, VVVVVV =  have the following cardinalities: 

6314525 321 === VVV  

.2740 54 == VV  

Figure 5 shows the partitions obtained in each iteration of MoMa. During 
the first iteration the subset 1V  is derived and the corresponding model is 2f  

(see subfigure (step 1)). In this case the goodness of fit corresponding to 2f  

is given by the value 6.8069 as in (11). Then, during the second, the third and 
the fourth iterations, the remaining points of X  are split into the subsets 

32, VV  and 4V  connected to the models 31, ff  and 3f  respectively (see 

subfigures (step 2), (step 3) and (step 4)). In these cases the numerical values 
representing a measure of the goodness of fit are 6.6927, 6.6518 and 6.6515. 
We observe that, according to Proposition 2.8, the three values are 
decreasing, meaning that the goodness of fit of the model under construction 
is improved. Finally, during the last iteration, the points still lying in X  are 
gathered in the subset 5V  and associated to the model 2f  (see Figure 6). 

Let { }54321 ,,,, UUUUUU =  be any partition of [ ] [ ]5,55,5 −×−=A  

such that 5...,,1, == iVU ii X∩  and let Uf  be the corresponding MoM 

(see Proposition 3.2)): 

( )

( )

( )

( )

( )

( )⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∈

∈

∈

∈

∈

=

.if

if

if

if

if

52

43

33

21

12

Uf

Uf

Uf

Uf

Uf

fU

xx

xx

xx

xx

xx

x  
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step 1         step 2 

    

step 3         step 4 

Figure 5. The partitions of X  after the first 4 iterations of MoMa. In 
subfigure (step k), ,4...,,1=k  the points of the subsets kVV ...,,1  are shown 

according to the associated model ( ),forandfor,for 321 fff D∗+  while 

the points still lying in X  are represented with the dot symbol. 

The goodness of fit of the MoM Uf  is: 

( )( )∑
=

=−
s

i
iUi pfy

1

2 ,6515.6  

which is strictly smaller than ( ( ))∑ = −s
i iji pfy1

2,  for ,3,2,1=j  as 

proved in Proposition 2.6. 
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Figure 6. The partition of the set :X  the points of the subsets 51 ...,, VV  are 

represented according to the associated model: + for ∗,1f  for 2f  and D  for 

.3f  

5. Conclusions 

This paper presents a novel approach called Model of Models (MoM). 
MoM concerns the selection of the best model for a given partition of the 
data derived from the realization of the independent variables. Compared to 
model averaging approaches proposed in the literature to deal with model 
uncertainty, MoM does not require the selection of models to include in the 
pool of models and it works without resorting to the combination of model 
predictions. 

MoM works on parametric and non parametric predictive models. The 
selection of the partition of the independent variables is derived following 
the model estimation step. This helps to overcome the issue related to over-
fitting. Assuming a partition of the data, the authors implement the 
methodological proposal introducing a new algorithm which they call 
MoMa. 
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The theoretical results at hand, coupled with the empirical evidence 
achieved on simulated data, underline that MoM is a good strategy to deal 
with model choice and model uncertainty. 

In terms of practical application, future points of research can be 
summarized in: elicitation of the parameters involved in the MoMa algorithm 
and unsupervised techniques to derive optimal partition of the data. Further 
research will consider testing the forecasting ability of MoM within a cross 
validation framework. 
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