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eUniversité de Paris, LPTHE, Paris F-75005, France
fTif Lab, Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano,
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Abstract: The past few years have seen a rapid development of machine-learning algo-

rithms. While surely augmenting performance, these complex tools are often treated as

black-boxes and may impair our understanding of the physical processes under study. The

aim of this paper is to move a first step into the direction of applying expert-knowledge in

particle physics to calculate the optimal decision function and test whether it is achieved

by standard training, thus making the aforementioned black-box more transparent. In par-

ticular, we consider the binary classification problem of discriminating quark-initiated jets

from gluon-initiated ones. We construct a new version of the widely used N -subjettiness,

which features a simpler theoretical behaviour than the original one, while maintaining, if

not exceeding, the discrimination power. We input these new observables to the simplest

possible neural network, i.e. the one made by a single neuron, or perceptron, and we an-

alytically study the network behaviour at leading logarithmic accuracy. We are able to

determine under which circumstances the perceptron achieves optimal performance. We

also compare our analytic findings to an actual implementation of a perceptron and to a

more realistic neural network and find very good agreement.
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1 Introduction

The CERN Large Hadron Collider (LHC) is continuously exploring the high-energy fron-

tier. However, although well-motivated from a theoretical viewpoint, no conclusive evidence

of new particles or interactions, and no significant cracks in the Standard Model (SM) of

particle physics have been found. This challenges the particle physics community, theo-

rists and experimenters alike, to find new ways to interrogate and interpret the data. In

the context of analyses involving hadronic final states, jet substructure has emerged as an

important tool for searches at the LHC. Consequently, a vibrant field of theoretical and ex-

perimental research has developed in the past ten years, producing a variety of studies and

techniques [1]. Many grooming and tagging algorithms have been developed, successfully

tested, and are currently used in experimental analyses [2–7].

The field of jet substructure is currently undergoing a revolution. The rapid develop-

ment, within and outside academia, of machine-learning (ML) techniques is having a pro-

found impact on particle physics in general and jet physics in particular. In the context of

high-energy physics, ML classification algorithms are typically trained on a control sample,

which could be either Monte Carlo pseudo-data or a high-purity dataset, and then applied

to an unknown sample to classify its properties. These ideas have been exploited in particle

physics for a long time. However, because of limitations on the algorithms’ efficiency and on
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computers’ power, so-far algorithms were applied to relatively low-dimensional projections

of the full radiation pattern that one wished to classify. Even so, such projections usually

correspond to physically-motivated observables, such as, e.g. the jet mass, jet shapes, and

therefore limitation in performance was mitigated with physics understanding. The cur-

rent ML revolution moves away from low- dimensional projections and exploit deep neural

network (NN) to perform classification. Early progress was made on supervised classifica-

tion of known particles [8–12] to the point where powerful network architectures are now

available [13–17] and the focus lies on improving the stability [18–22] of these approaches.

These techniques, developed by both theorists and experimentalists, have already been

tested in the LHC environment and dedicated studies have been performed by the ATLAS

and CMS collaborations [23–25]. Despite its rapid development and the unquestionable

improvements that ML brings to particle physics, it is often met with a certain degree of

suspicion, because physicists often feel uneasy about relying on black-box techniques. We

believe that the situation is not too dissimilar to the one we faced a decade ago, at the

birth of jet substructure. At the time there was a plethora of new tagging algorithms and

a deeper understanding was reached only when theoretical studies based on QCD were

performed, see e.g. [26–38].

A common expectation is that well-trained networks can achieve the performance of

the likelihood ratio, i.e. they can learn a monotonic function of the likelihood ratio. In this

paper, we are in the almost-unique position to analytically derive the weights corresponding

to a cut on the likelihood ratio for a realistic problem and to test whether they agree

with a network trained the usual way. Inspired by the successful approach of the past, we

want to anchor this investigation in perturbative QCD, with a first-principle understanding

approach, by looking at a situation where most studies can be performed analytically, and

afterwards by investing how our findings in the simplest case compare to a more general

setup.

For this current study, we focus on an issue that has received a great deal of both

theoretical and experimental attention, namely the ability of disentangling jets that can be

thought as having originated by the fragmentation of a high-energy quark (henceforth quark

jets), from the ones originated from a gluon (henceforth gluon jets) [39]. In particular, in

section 2, we introduce a variant of the well-known N -subjettiness variables [40] based on

the primary Lund plane declustering tree [41]. This primary N -subjettiness TN is more

amenable to an all-order QCD analysis, which we perform at leading logarithmic (LL)

accuracy, while maintaining, if not improving, the quark/gluon discrimination power. This

definition is such that, if we measure the N -subjettiness variables {T1 . . .Tn}, then, at LL,

a cut on the likelihood ratio simply corresponds to a cut on Tn. With this definition,

and within the stated accuracy, we are able to write simple analytic expressions for the

cumulative distributions and for the so-called area under the curve (AUC), which measures

the discriminating power of the observable, for any value of n.1

We then move in section 3 to use the aforementioned primary N -subjettiness variables

as input to a NN. Because we expect the optimal discriminant to be a cut on Tn, we

1Expressions for cumulative distributions can also be obtained for the standard N -subjettiness definition,

see e.g. [29, 42], although their complexity increases with n to a point where other quantities, such as, for

instance, the AUC are no longer tractable analytically.
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can start by considering the simplest possible NN, namely a single neuron, or perceptron,

with n inputs and one output. This opens up the interesting possibility of performing

analytic calculations that describe the behaviour of the perceptron at LL accuracy in QCD

and allow us to determine the optimal decision function. The ability to fully control the

behaviour of a ML technique analytically from first-principles is the main novelty of this

paper. In sections 4 and 5, we compare our theoretical findings with actual networks with

architecture of increasing complexity using pseudo-data, which we generate either according

to a leading-logarithmic distribution in QCD (section 3) or using a general-purpose Monte

Carlo parton shower (section 5). Finally, we draw our conclusions in section 6.

2 Quark/gluon tagging with N -subjettiness

In the framework of perturbative QCD, final-state jets, i.e. collimated sprays of hadrons,

are formed by the fragmentation of high-energetic partons, which emerge from the hard

scattering. While the association of a single parton, say a quark or a gluon, to a final-state

jet is an intrinsically ambiguous — if not ill-defined — operation, essentially because of

higher-order corrections — it is however possible to employ operational definitions that

associate the value of a measurable quantity to an enriched sample of quarks or gluons [39,

43]. Many such observables have been proposed in the literature, ranging from more

traditional jet observables such as angularities [44] or energy-correlation functions [36], to

observables that exploit more modern jet substructure techniques, such us the iterated

soft-drop multiplicity [45] or the Les Houches multiplicity [46], to operational definitions

inspired by data science [47, 48].

A general approach to quantitatively assess the power of quark/gluon discrimination

was put forward in ref. [42]. The core idea of that approach is to measure multiple infra-red

and collinear (IRC) safe observables on a single jet as a means to characterise the available

emission phase space. The observables of choice were the N -subjettiness variables [40, 49]

τN , where the measurement of the first n variables {τ1 . . . τn} is able to resolve n emissions

in the jet.2 The N -subjettiness shape is one of the most used jet substructure variables.

As its name suggests, it aims to identify jets with an N -prong structure, taking inspiration

from the event-shape N -jettiness [52]. In order to achieve this, a set of axes a1, . . . , aN is

introduced and the N -subjettiness is defined as

τ
(β)
N =

1

ptR
β
0

∑
i∈jet

pti min(∆β
ia1
, . . . ,∆β

iaN
), (2.1)

where β is a free parameter often set to unity, pt and R0 are the jet transverse momentum

and radius respectively and ∆iaj =
√

∆y2iaj + ∆φ2iaj is the distance between particle i

and the axis aj in the azimuth-rapidity plane. Note that the axes aj can be defined in

several ways, for a review see for instance ref. [1]. Crucially, IRC safety guarantees that

2There is indeed more information in a jet than what is captured by this set of N -subjettiness variables.

One could study, for instance, an extended set of N -subjettiness variables [50], energy-flow polynomial [51],

or counting observables, e.g. [45]. We thank Andrew Larkoski and Ben Nachman for comments on this

point.
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N -subjettiness distributions can be meaningfully calculated in perturbative QCD. These

distributions have been the subject of several theoretical investigations [29, 30, 53] (see

also [34, 54, 55] for theoretical studies on the related observable D2). The N -subjettiness

distributions were calculated explicitly at LL accuracy, i.e. in the limit in which all emissions

are strongly ordered, in ref. [42] for the cases n = 1, 2, 3. Furthermore, the Authors of

ref. [42] were able to calculate from first-principle familiar quantities that enter statistical

analyses. We start our discussion with a brief recap of the elements in ref. [42] which are

relevant for our current study.

The likelihood ratio, which according to the Neyman-Pearson lemma [56] provides the

best single-variable discriminant, is simply given by the ratio of the probability distributions

computed for background (gluons) and signal (quark) jets:

L(τ1, . . . , τn) =
pB
pS

=
pg(τ1, . . . , τn)

pq(τ1, . . . , τn)
, (2.2)

where

pi(τ1, . . . , τn) =
1

σi

dσi
dτ1 · · · dτn

, i = q, g. (2.3)

In order to assess the discriminating power of an observable, Receiver Operating Char-

acteristic (ROC) curves are often considered. These curves show the background (gluon)

efficiency against the signal (quark) efficiency and are remarkably useful to directly com-

pare the performance of different tools. Furthermore, note that ROC curves are invariant

under monotonic rescaling of the inputs.

For a single-variable observables V ≡ V (τ1, . . . , τn), one can define the normalised

cumulative distribution

Σi(v) =

∫
dτ1 . . . dτn pi(τ1, . . . , τn) Θ(V (τ2, . . . , τn) < v). (2.4)

The ROC curve is then obtained as

ROC(x) = Σg

(
Σ−1q (x)

)
(2.5)

where x is the signal (quark) efficiency. The area under the ROC curve (AUC) can be

used as a quantifier of the discrimination power, where AUC = 0 corresponds to perfect

performance.3 For example, if one considers an IRC observable v that only resolves one

emission, e.g. v = τ1, then the LL cumulative distributions for quarks and gluons simply

differ by their colour factor, leading to the so-called Casimir scaling:

ROC(x) = (x)
CA
CF , AUC =

∫ 1

0
dxx

CA
CF =

CF
CF + CA

. (2.6)

The fact that τn resolves n emissions inside the jet results in a rather complicated

structure, even in the limit where the emissions are strongly ordered. This is because the

3Note than one could have alternatively defined the ROC curve as showing the background rejection

against the signal efficiency i.e. ROC(x) = 1 − Σg
(
Σ−1
q (x)

)
. In this case the perfect performance would

correspond to AUC = 1.
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emissions that set the values of the observables τi, which are always gluons at LL accuracy,

can either be primary emissions, i.e. they originate from the original hard parton which

could be a quark or a gluon, or they can originate from subsequent gluon splittings. If

we consider, for instance, the case of a jet initiated by a hard quark, one ends up with

n contributions with colour factors Cn−iF CiA, i = 0, · · · , n − 1. Furthermore, a rather

intricate resummation structure emerges, i.e. a Sudakov form factor with both CF and CA
contributions and depending on the complete tower of n emissions. It is clear that this

intricate structure does not facilitate analytical calculations, especially because, in this

study, we are not interested in considering pq and pg as final results, but rather, as inputs

for subsequent calculations.

As a consequence, we find convenient to introduce a variant of N -subjettiness that

is sensitive, at LL accuracy, only to primary emissions, such that the distributions pi are

determined by strongly-ordered gluon emissions off the initial hard parton. We present

this new observable in the next section.

2.1 Primary N-subjettiness

We define the new observable primary N -subjettiness as follows. Starting from a jet of

radius R0, one first builds the list of primary Lund declusterings [41]:

1. Recluster the jet constituents with the Cambridge/Aachen algorithm [57, 58].

2. Iteratively undo the last step of the clustering j → j1 + j2, with pt1 > pt2. At step i

(i = 1, . . . ,m), define

p̃ti = pt2 and ∆i =
√

∆y212 + ∆φ212. (2.7)

Repeat the procedure with j = j1, i.e. following the harder branch of the declustering.

3. When the declustering terminates, i.e. when j is no longer coming from a j1 + j2
clustering, define p̃t0 as the transverse momentum of j.

From the set of transverse momenta, we can define the momentum fractions

zi =
p̃ti∑m
i=0 p̃ti

i = 0, . . . ,m, (2.8)

where we note that the final hard momentum p̃t0 is included in the normalisation. This

produces a set of values (zi,∆i), for i = 1, . . . ,m, that we order such that z1∆
β
1 ≥ z2∆β

2 ≥
· · · ≥ zm∆β

m. The primary N -subjettiness is then defined as4

TN =

m∑
i=N

zi

(
∆i

R0

)β
. (2.9)

Note that T1 ≥ · · · ≥ Tn, like with the standard N -subjettiness τN . The primary N -

subjettiness definition in eq. (2.9) is very similar to the standard N -subjettiness definition

with the main difference that it is computed based on primary Lund declusterings. The

definition of the momentum fractions zi is such that
∑m

i=0 zi = 1.

4Note that an alternative definition, equivalent at leading-logarithmic accuracy, but different beyond,

would be to define T
(max)
N = zN

(
∆N
R0

)β
.
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2.2 Primary N-subjettiness at leading-logarithmic accuracy

By construction, the leading-logarithmic (LL) expression for the n-dimensional differen-

tial distribution is obtained by considering strongly-ordered independent emissions off the

originating hard parton (either a quark or a gluon). In this strongly-ordered limit, only

the first term in the r.h.s. of eq. (2.9) should be kept, i.e. TN ≈ zN (∆N/R0)
β . In that

context, the structure of the leading-logarithmic resummation is particularly trivial: one

gets a factor for each of the n emissions associated with T1, . . . ,Tn as well as a Sudakov

factor vetoing any additional real emission with z(∆/R0)
β > Tn.5 This yields

pi(T1, . . . ,Tn) =

 n∏
j=1

R′(Tj)
Tj

 (Ci)
n exp [−CiR(Tn)] , (2.10)

where i = q, g refers to the flavour of the jet (with Cq = CF and Cg = CA). The radiator R,

which and has been stripped of its colour factor, is computed in the soft-and-collinear-limit

including running-coupling corrections, as appropriate for our LL accuracy:

R(T) = 2

∫ 1

0

dθ2

θ2

∫ 1

0

dz

z

αs(zθptR0)

2π
Θ(zθβ > T) =

2

β

∫ 1

T

dθβ

θβ

∫ 1

T/θβ

dz

z

αs(zθptR0)

π
. (2.11)

We have also introduced R′(T) = dR(T)
d log(1/T) , where log x always denotes the natural loga-

rithm of x.

An important observation is the following. From eq. (2.10) we note that the structure

of the probability distributions at LL in QCD for primary definition of N -subjettiness is

the same for quark and gluon jets except for the colour factor, CF or CA which appears as

an overall factor in both the R′ pre-factors and the Sudakov exponent. (This is not case

with the standard definition of N -subjettiness). Consequently, the likelihood ratio eq. (2.2)

at LL becomes

LLL =

(
CA
CF

)n
exp [−(CA − CF )R(Tn)] , (2.12)

which is a monotonic function of R(Tn), and hence at LL of Tn, only. Therefore, at LL,

a cut on the likelihood ratio is equivalent to a cut on Tn. The remarkable simplicity

of this result is the strongest motivation for introducing primary N -subjettiness. This

observable is thus the ideal laboratory to study analytically how a neural network that

takes the primary N -subjettiness variables as inputs performs. Due to the simplicity of

the classifier — a cut on a single variable — we expect that even the simplest network,

i.e. a single neuron, should be enough to achieve optimal classification performance, i.e. a

perceptron should be able to learn a function which is monotonically related to likelihood

ratio. Studying more complex architectures — especially including one or more hidden

layers — would be very interesting but is not in the scope of this exploratory work.

Analytic studies of a perceptron will be the topic of section 3, but, before moving to

that, let us derive a couple of results that allow us to establish primary N -subjettiness

5As usual, this is equivalent to saying that real and virtual emissions cancel each other for z(∆/R0)β < Tn

and only virtual corrections contribute for z(∆/R0)β > Tn. These virtual corrections trivially exponentiate.
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as an appealing observable on its own, rather than just a shortcut to more tractable an-

alytic results. Firstly, it is interesting to obtain an analytic expression for the cumulative

distribution with a cut T on Tn. As we have just seen, this is equivalent to a cut on the

likelihood. We have

Σi(Tn < T) =

∫ 1

0
dT1

∫ T1

0
dT2· · ·

∫ Tn−2

0
dTn−1

∫ Tn−1

0
dTn pi(T1, . . . ,Tn) Θ(Tn < T)

=

∫ 1

0
dT1

∫ T1

0
dT2· · ·

∫ Tn−2

0
dTn−1

∫ min[Tn−1,T]

0
dTn pi(T1, . . . ,Tn) , (2.13)

where i = q, g. The latter expression splits naturally in two terms: if Tn−1 < T, we simply

find Σi(Tn−1 < T); if Tn−1 > T, the exponential in (2.10) factors out and we obtain

e−CiR(T)

∫ 1

T

dT1

∫ T1

T

dT2· · ·
∫ Tn−2

T

dTn−1 pi(T1, . . . ,Tn) = e−CiR(T)C
n−1
i Rn−1(T)

(n− 1)!
. (2.14)

By induction we arrive at

Σi(Tn < T) = e−CiR(T)
n∑
k=1

Ck−1i Rk−1(T)

(k − 1)!
=

Γ(n,CiR(T))

Γ(n)
, (2.15)

where Γ(n, x) is the incomplete Gamma function.

It is also possible to find an analytic expression for the AUC. Exploiting the ROC

curve definition in eq. (2.5), we can write the AUC as an integral of the quark and gluon

distributions:

AUC =

∫ 1

0
dT1q

∫ T1q

0
dT2q · · ·

∫ Tn−1,q

0
dTnq

∫ 1

0
dT1g

∫ T1g

0
dT2g · · ·

∫ Tn−1,g

0
dTng

· pq(T1q,T2q, · · · ,Tnq) pg(T1g,T2g, · · · ,Tng) Θ(Tnq > Tng) . (2.16)

The details of the integration are not all trivial and are thus given in appendix A. Here we

just quote the final result:

AUC = 1−
(

CFCA
(CF + CA)2

)n Γ(2n)

Γ(n)Γ(1 + n)
2F1

(
1, 2n, 1 + n;

CA
CF + CA

)
. (2.17)

We can compare the values given by this expression with the ones computed in [42] for the

standard definition of N -subjettiness.

n = 1 → AUCstandard = 0.308, AUCprimary = 0.308

n = 2 → AUCstandard = 0.256, AUCprimary = 0.226

n = 3 → AUCstandard = 0.231, AUCprimary = 0.173 .

We conclude that, at least at LL, a cut on the primary N -subjettiness Tn provides better

quark/gluon discrimination power than a cut on the standard N -subjettiness. The compar-

ison of the two different definitions when evaluated on Monte-Carlo generated pseudo-data

will be discussed in section 5.

– 7 –
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2.3 Fixed-coupling limit

In the previous section we have obtained analytic expressions for primary N -subjettiness

distributions that are valid at LL, including running-coupling effects. Henceforth, for sake

of simplicity, we are going to consider the fixed coupling limit of eq. (2.11). In this limit,

the probability distributions for quarks and gluons eq. (2.10) is

pi(T1, . . . ,Tn) =

(
αs
πβ

)n
(2Ci)

n
n∏
j=1

(
log (1/Tj)

Tj

)
exp

[
− αs
πβ

Ci log2 Tn

]
, (2.18)

and the likelihood ratio eq. (2.12) consequently becomes

LLL-f.c. =

(
CA
CF

)n
exp

[
−CA − CF

β

αs
π

log2 Tn

]
. (2.19)

In order to further simplify our notation, we can also reabsorb the factor αs/(πβ) in a

redefinition of the variables Ti, or, equivalently, we can define the colour factors CF and

CA in units of αs/(πβ). We will do the latter, introducing C̃i = αsCi
πβ . We will also express

eq. (2.18) in terms of different variables xi = xi(Ti). We therefore rewrite eq. (2.18) as

pi(x1, . . . , xn) = r′(x1) · · · r′(xn)
(
C̃ni exp

[
−C̃i r(xn)

])
. (2.20)

In particular, we will consider the following three choices:

log square: xi(Ti) = Li ≡ log2 Ti, r(Ln) = Ln, r′(Li) = 1, (2.21)

log: xi(Ti) = li ≡ log(1/Ti), r(ln) = l2n, r′(li) = 2li, (2.22)

linear: xi(Ti) = Ti, r(Tn) = log2 Tn, r′(Ti) = 2
log(1/Ti)

Ti
. (2.23)

3 Perceptron analytics

3.1 Generic considerations

In this section we will investigate the simplest neural network, namely the perceptron,

where the input layer is directly linked to the output through a single neuron, as depicted

in figure 1a. Analytically, this means that the network output y is a function of a weighted

linear combination of the inputs:

y = f(~x · ~a+ b) (3.1)

with ~x vector of the input variables, while ~a is the vector of the weights of the neuron and

b is a bias. The function f , called activation function, allows us to introduce an element of

non-linearity in the network. In this paper we will focus on the sigmoid, which is widely

adopted in the ML community. The sigmoid is defined as

f(x) ≡ σ(x) =
1

1 + e−x
, (3.2)

– 8 –
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1

x1

...

xn

f

b

a1

an

(a) The perceptron consists of n input units and

one output y = f(~a · ~x+ b).

−4 −2 2 4

0.5

1

x

σ(x)

(b) The sigmoid activation function, eq. (3.2).

Figure 1. Sketch of a perceptron (left) and of the sigmoid activation function (right).

and it is shown in figure 1b. Alternative functional forms are possible. For instance, in

this context, one could replace the sigmoid with a rectified version (hard-sigmoid):

f(x) = max(0,min(x, 1)) . (3.3)

The neural network learns the best choice of the weights by minimising the cost func-

tion, which quantifies the difference between the expected value of the network ŷ and the

predicted value y (given by eq. (3.1)). In this study we are focusing on the issue of quark

versus gluon discrimination, which is an example of a binary classification problem, where

we have ŷ = 0 (associated with quarks) or ŷ = 1 (associated with gluons). In this context,

the cross-entropy loss is one of the most common choice for the loss function

C(y, ŷ) = −(1− ŷ) log(1− y)− ŷ log(y) . (3.4)

This is what we will use for this paper. However, many of the results we obtain also apply

to other loss functions, such as, for instance, the quadratic loss:

C(y, ŷ) = (y − ŷ)2 . (3.5)

In order to train the NN, one usually starts with a so-called training sample, i.e. a

collection of input vectors {~xi}, each labelled as a quark jet or as a gluon jet. If we have

a training sample of 2N inputs, equally divided between signal and background labels, we

can write the cost function as:

C̃(~a, b) =
1

2N

N∑
i=1

[
C
(
f(~x

(q)
i · ~a+ b), 0

)
+ C

(
f(~x

(g)
i · ~a+ b), 1

)]
. (3.6)

The input variables ~x (i) are generated according to a probability distribution pi(~x),

with pq (pg) being the probability distribution of the inputs ~x for quark (gluon) jets. If

the training sample is large, as it usually is, we can rewrite the above equation in the

continuous limit:

C̃(~a, b) =
1

2

∫
d~x
[
pq(~x)C(f(~x · ~a+ b), 0) + pg(~x)C(f(~x · ~a+ b), 1)

]
. (3.7)
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In a general classification problem, the probability distributions of the inputs are unknown.

However, in the context of QCD studies, we can exploit expert-knowledge: if we choose

the input variables ~x as IRC safe observables, we can apply the powerful machinery of

perturbative quantum field theory to determine these distributions at a well-defined and,

in principle, systematically improvable accuracy.

In what follows, we will use the primary N -subjettiness variables {Ti} as inputs for

our perceptron. Using the results obtained in section 2, we will evaluate eq. (3.7) using

probability distributions calculated at LL accuracy. We will then study the global minimum

of the cost function. We will focus on the sigmoid activation function, eq. (3.2), and the

cross-entropy loss, eq. (3.4), although analogous results can be obtained for the quadratic

loss, eq. (3.5). More specifically, our goal is to establish whether the set of weights ~a and bias

b that minimises eq. (3.7) corresponds to a cut on Tn, which corresponds to the likelihood

ratio at LL accuracy, cf. eq. (2.12). This corresponds to checking a1 = · · · = an−1 = 0.6

Note that the values of an and b are not fixed by our LL analysis, even though the network

training will converge to some fixed values, corresponding to the minimum of the cost

function. We will show that the ability of the perceptron to find the likelihood ratio

crucially depends on the functional form of the input variables. We shall consider three

cases, all based on the primary N -subjettiness, namely Ti, log Ti and log2 Ti.

3.2 Minimisation of the cost function

In order to find the extrema of the cost function eq. (3.7), we consider the partial derivatives

with respect to a generic weight ai or b. With a simple application of the chain rule, we

find a set of n+ 1 simultaneous equations
∂C̃

∂ai
=

1

2

∫
d~x xif

′(~x · ~a+ b)
[
pq(~x)C ′(f(~x · ~a+ b), 0) + pg(~x)C ′(f(~x · ~a+ b), 1)

]
= 0,

∂C̃

∂b
=

1

2

∫
d~x f ′(~x · ~a+ b)

[
pq(~x)C ′(f(~x · ~a+ b), 0) + pg(~x)C ′(f(~x · ~a+ b), 1)

]
= 0,

(3.8)

where i = 1, . . . , n and the prime indicates the derivative of a function with respect to its

(first) argument.

In general, in order to solve the above system of simultaneous equations, we have

to explicitly compute the n-dimensional integral in eq. (3.8). However, in our case, it is

possible to find directly a solution at the integrand level. To this purpose, we observe that

when the equality
pq(~x)

pg(~x)
= −C

′(f(~x · ~a+ b), 1)

C ′(f(~x · ~a+ b), 0)
(3.9)

is satisfied for any value of ~x, then the system of equations is fulfilled. Since the cross-

entropy loss, eq. (3.4), satisfies C ′(y, 1) = − 1
y and C ′(y, 0) = −C ′(1 − y, 1), eq. (3.9) can

6We expect that these coefficients will receive corrections which are suppressed by powers of αs. These

corrections are negligible in the strict leading-logarithmic approximation, where only dominants contribu-

tions are kept.
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be simplified to
pq(~x)

pg(~x)
=

1− f(~x · ~a+ b)

f(~x · ~a+ b)
. (3.10)

We note that this result also holds, for instance, in the case of the quadratic loss.

More specifically, we want to compute eq. (3.8) for our probabilities pi given by

eq. (2.20). We explicitly consider 3 cases differing only by what is used as inputs to the

perceptron: “log-square inputs”, eq. (2.21), “log inputs”, eq. (2.22), and “linear inputs”,

eq. (2.23). In all three cases, we use the sigmoid activation function and the cross-entropy

loss. Given the following identities for the sigmoid function:

1− σ(x) = σ(−x) and σ′(x) = σ(x)σ(−x) , (3.11)

and the properties of the cross-entropy loss, eq. (3.8) may be rewritten as:

∂C̃

∂ai
=

1

2

∫
d~x xi r

′(x1) · · · r′(xn)[
C̃nF e

−C̃F r(xn) σ(~x · ~a+ b)− C̃nA e−C̃A r(xn) σ(−~x · ~a− b)
]

= 0,

∂C̃

∂b
=

1

2

∫
d~x r′(x1) · · · r′(xn)[
C̃nF e

−C̃F r(xn) σ(~x · ~a+ b)− C̃nA e−C̃A r(xn) σ(−~x · ~a− b)
]

= 0. (3.12)

Log-square inputs. Let us start by considering Li = log2 Ti as inputs to the perceptron.

In this case the probability distributions for quarks and gluons in the fixed-coupling limit

are given by eq. (2.21). This is a very lucky scenario because we can determine the minimum

at the integrand level. Indeed, the condition eq. (3.10) gives the constraint(
C̃F

C̃A

)n
exp

[
−(C̃F − C̃A)Ln

]
= exp

[
−~a · ~L− b

]
, (3.13)

leading to the following solution

a1 = · · · = an−1 = 0 , an = C̃F − C̃A, b = n log

(
C̃A

C̃F

)
. (3.14)

Hence, for the log-square inputs, the minimum of the cost function does agree with the

optimal cut on Tn dictated by the likelihood.

Note that, as C̃F < C̃A, the weight an is negative. This is expected, since the sigmoid

function is monotonic and we have mapped the gluon (quark) sample to output 1 (0), see

eq. (3.6), whereas the gluon sample has larger Ti and thus smaller Li: the negative sign of

an restores the proper ordering between inputs and output of the perceptron.

If we restrict ourselves to the case n = 2, it is also possible to explicitly perform the

integrals in eq. (3.7) and arrive at an analytic expression for the cost function. We report

this calculation in appendix B.
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Log inputs. We now turn our attention to logarithmic inputs l = − log Ti. In this case

we are not able to determine the position of the minimum at the integrand level and we

are forced to use the explicit constraints from eq. (3.12). In particular, we want to check if

the likelihood condition a1 = · · · = an−1 = 0 is still a solution of the system of this system

of n + 1 equations. To this purpose, we use eq. (3.12) with the probability distribution

given by eq. (2.22), then we set a1 = · · · = an−1 = 0, thus explicitly obtaining
∂C̃

∂ai
= 2n−1

∫ ∞
0

dln ln Ii(ln)

[
C̃nF exp(−C̃F l2n)

1 + exp(−anln − b)
− C̃nA exp(−C̃Al2n)

1 + exp(anln + b)

]
= 0,

∂C̃

∂b
= 2n−1

∫ ∞
0

dln ln I0(ln)

[
C̃nF exp(−C̃F l2n)

1 + exp(−anln − b)
− C̃nA exp(−C̃Al2n)

1 + exp(anln + b)

]
= 0, (3.15)

where Ii(ln) is the result of the integration over l1, . . . , ln−1

Ii(ln) =

∫ ln

0
dln−1 ln−1· · ·

∫ l2

0
dl1 l1 vi , with v0 = 1 , vi = li . (3.16)

Up to an irrelevant overall multiplicative constant, these integrals are easily found to be

I0(ln) ∝ l2n−2n , Ii(ln) ∝ l2n−1n for i = 1, . . . , n . (3.17)

Replacing this result in eq. (3.15), we see that all of the derivatives with respect to ai,

i = 1, . . . , n give rise to the same equation, and thus the system of n + 1 simultaneous

equation reduces to a system of just two independent equations, for any n. These two

equations correspond to two lines in the (an, b) plane. If these two lines never cross, then

the system has no solution, the minimum of the cost function is not at a1 = . . . an−1 = 0

and thus the perceptron is not able to correctly reproduce the likelihood. If instead these

lines meet at some (ān, b̄), then the minimum of the cost function does correspond to the

likelihood ratio. Despite numerous attempts, we have not been able to perform the final

integration over ln in eq. (3.15) analytically. However, we can perform the integration

numerically and plot the result in the (an, b) plane. This is done in figure 2a, where,

without loss of generality, we have concentrated on the case n = 2. It is clear from the plot

that the two curves do meet in a point and hence the perceptron is able to find the correct

minimum, i.e. the one dictated by the likelihood with a1 = 0.

The explicit n-dependence of the coefficients an and bn can be found numerically by

solving the system of equations. Furthermore, it is possible to obtain analytically the

scaling of an with respect the colour factors, as detailed in appendix C. We find that, once

we have factored out C̃
−1/2
F , the resulting coefficient only depends on the ratio of colour

factors:

an√
C̃F

= F

(
C̃A

C̃F

)
, (3.18)

where F is a function that we have not determined.
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Figure 2. Solutions of eq. (3.12), in the case n = 2 and with a1 = 0, plotted as points in the

(a2, b/a2) plane, for log (left) and linear (right) inputs.

Linear inputs. We now move to consider linear inputs of the perceptron, i.e. the variables

Ti directly. We follow the same logic as in the case of the logarithmic inputs, namely we

want to check whether there is a minimum of the cost function satisfying a1 = · · · = an−1 =

0. Following the same steps as before, we have
∂C̃

∂ai
= 2n−1

∫ 1

0

dTn
Tn

log
1

Tn
Ii(Tn)

[
C̃nF exp(−C̃F log2 Tn)

1 + exp(−anTn − b)
− C̃nA exp(−C̃A log2 Tn)

1 + exp(anTn + b)

]
= 0,

∂C̃

∂b
= 2n−1

∫ 1

0

dTn
Tn

log
1

Tn
I0(Tn)

[
C̃nF exp(−C̃F log2 Tn)

1 + exp(−anTn − b)
− C̃nA exp(−C̃A log2 Tn)

1 + exp(anTn + b)

]
= 0,

(3.19)

with

Ii(Tn) =

∫ 1

Tn

dTn−1
Tn−1

log
1

Tn−1
· · ·
∫ 1

T2

dT1

T1
log

1

T1
wi , with w0 = 1 , wi = Ti . (3.20)

There is a crucial difference between the integrals in eq. (3.20) and the corresponding ones

in the case of the logarithmic inputs, eq. (3.16): the cases with 1 ≤ i ≤ n lead to n different

constraints. For sake of simplicity, let us consider n = 2. We have

Ii(T2) =

∫ 1

T2

dT1

T1
log

1

T1
vi =


1
2 log2 T2 , i = 0,

1− T2 + T2 log T2 , i = 1,

1
2T2 log2 T2 , i = 2.

(3.21)

Thus, all the three equations appearing in (3.19), i.e. i = 0, 1, 2 provide independent

conditions. The system has solutions if the corresponding three curves in the (a2, b) plane

meet in one point. By numerically performing the integrations, we can check whether

this happens or not. This is done in figure 2b where it is clear that the three curves do

not intersect at a common point and hence the perceptron is unable to find the correct

minimum dictated by the likelihood.
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Let us summarise the findings of this section. Working in the leading logarithmic

approximation of QCD, we have analytically studied the behaviour of a perceptron with

sigmoid activation and cross-entropy cost function, in the context of a binary classification

problem. We have explicitly considered three variants of the primary N -subjettiness inputs:

squared logarithms, logarithms and linear inputs. In the first two cases the minimum of

the cost function captures the expected behaviour from the likelihood ratio, i.e. a1 =

· · · = an−1 = 0. This does not happen with linear inputs, although the configuration

a1 = · · · = an−1 = 0 is within the reach of the network. This is most likely due to the fact

that the simple perceptron with linear inputs struggles at correctly learning the probability

distributions which are intrinsically logarithmic. We expect that a more complex network

would be needed in this case and this is shown explicitly in section 5.

4 Perceptron numerics

In this section we validate our analytic findings with an actual implementation of a percep-

tron. In practice, we have used a simple implementation based on [59], with a learning rate

of 0.1 and a mini-batch size of 32.7 Because our first-principle analysis has been developed

at LL accuracy, in order to numerically test the perceptron performance we generate a

sample of pseudo-data according to the QCD LL distribution for quark and gluon jets. We

consider the three different input variants also used in the analytic study, namely square

logarithms, logarithms and the linear version of the N -subjettiness inputs. In order to

train our single-neuron network we use a sample of 1M events in the first two cases and

16M the for linear inputs, unless otherwise stated. Furthermore, we perform our study

as a function of number of N -subjettiness variables. Specifically, when we quote a given

value of n, we imply that all Ti with i ≤ n have been used as inputs. The results of this

study are collected in figure 3. Each plot shows the value of the network weights ai and b

after training, i.e. at the minimum of the cost function that has been found by the network

through back-propagation and gradient descent. The plot on the left is for log-square in-

puts, the one in the middle for log inputs and the one on the right for linear inputs. The

values of the weights determined by the network are shown as circles (for ai with i < n),

squared (for an) and triangles (for b), with the respective numerical uncertainties. In the

case of log-square and log inputs, we also show the behaviour obtained from our analytic

calculations in section 3. We find perfect agreement. In particular, the minimum of the

cost function found by the network is consistent with a1 = · · · = an−1 = 0. This does not

happen in the case of linear inputs, although the discrepancy is tiny.

It is interesting to investigate whether the theoretical issues for the linear inputs have

some visible effect on the network performance. In order to do so, we first perform a

study of the perceptron convergence as a function of the training sample size Ntrain. As

before, we repeat this study for each of the input variants previously introduced. We also

consider two different values of n: for the case n = 3 we build our inputs from T1,T2,T3,

while for n = 5, we also include T4 and T5. In figure 4 we plot the cost function as a

function of the training sample size. Figure 4 is obtained by training the perceptron with a

7We have also cross-checked our results against a standard PyTorch implementation.
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Figure 3. Perceptron parameters after training. When available, expected analytic results are

shown as dashed lines.

101 102 103 104 105 106 107

training sample size, Ntrain

0.4

0.6

0.8

1.0

1.2

1.4

co
st

 fu
nc

tio
n 

C

leading-log

NN convergence, n = 3
i

log(1/ i)
log2

i

(a) Inputs: n = 3.

101 102 103 104 105 106 107

training sample size, Ntrain

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
co

st
 fu

nc
tio

n 
C

leading-log

NN convergence, n = 5
i

log(1/ i)
log2

i

(b) Inputs: n = 5.

Figure 4. Convergence of the network as a function of the training sample size.

progressively increasing sample of pseudo-data generated on the fly according to the QCD

LL distribution. At fixed values of Ntrain, the cost function C̃ of the trained network is

then evaluated on a test sample of fixed dimension. This procedure is iterated a number of

times, and at the end, for each Ntrain, we take the average and standard deviation of the

different runs as a measure of the central value and uncertainty. The plots clearly show

that the convergence with linear inputs is slower than in the cases of log-squares and logs,

exposing the fact that the single-neuron network struggles to learn intrinsically logarithmic

distributions with linear inputs.

Furthermore, with the same set up, we can study the actual performance of the network

using ROC curves. To highlight deviations from the ideal case dictated by the likelihood
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Figure 5. ROC curves obtained from a trained perceptron with different inputs. Note that, in

order to highlight deviations from optimal performance, we show eq. (4.1). Thus, the closer these

curves are to zero, the better the performance.

ratio, the plots in figure 4 show

∆εg =
ROCNN

ROClik.
− 1, (4.1)

where ROCNN is the network ROC curve, while ROClik. is the ROC curve that corresponds

to a cut on Tn. We perform this study for two different sizes of the training sample: 1 M

and 16 M. We know from figure 4 that the former is enough to achieve convergence in the

case of log-square and log inputs but not for linear inputs. Thus, we expect to see larger

differences in this case. This is indeed confirmed by the plots in figure 5. The dash-dot-

dotted curve in blue, corresponding to linear inputs and a training done on a sample of

1 M events, indicates that the difference with respect the optimal case is of order 10% for

quark efficiencies εq < 0.6 in the case of n = 3 and exceeds 30% in the same region for

n = 5. If the training sample size is increased to 16 M, the perceptron with linear inputs

still performs worse than the other choices, although the difference after training is now

small and never exceeds 1%. For comparison, we also show the results for N -subjettiness

ratios as inputs. In this case, for n = 3, we include T1, T21 = T2
T1

and T32 = T3
T2

. In this

case, the expected ideal cut on Tn cannot be reproduced by any choice of the perceptron

weights ai and bias b. The perceptron performance in this case is consequently much worse

even after a training on our largest sample.

5 Monte Carlo studies

In the previous section, we have validated the results of section 3, using the same setting

as for our analytical calculations, namely a single-neuron network fed with primary N -

subjettiness variables (or functions thereof) distributed according to QCD predictions at

– 16 –



J
H
E
P
0
9
(
2
0
2
0
)
1
9
5

leading-logarithmic accuracy. This setup is somehow oversimplified, and one may wonder

how our results compare in term of performance and convergence to a fully-fledged neural

network trained on Monte Carlo pseudo-data. In addition, we have adopted the primary

N -subjettiness definition, whose nice analytical properties naturally justifies its use in our

theoretical studies. However, this alternative definition so far has been compared to the

standard definition only in terms of AUC at LL accuracy. Even though the purpose of

this work is not a detailed comparison of the two definitions, we need to make sure that

primary N -subjettiness performs sensibly as a quark/gluon tagger.

The purpose of this section is to address some of these concerns, by extending the setup

of section 4 to a more realistic scenario, both in terms of the generation of pseudo-data

and of the network architecture employed in the analysis. First, we generate pseudo-data

with Pythia 8.230 [60], including hadronisation and multi-parton interactions. We simulate

dijet events qq → qq and gg → gg and we cluster jets with the anti-kt algorithm [61], as

implemented in FastJet [62], with jet radius R0 = 0.4. We keep jets with pt > 2 TeV

and |y| < 4. We then compute τN and TN (i.e. both N -subjettiness definitions) up to

the desired N = n for each jet. We set the N -subjettiness parameter β to 1. For the

standard N -subjettiness, we use the reference axes obtained from the exclusive kt axis

with winner-takes-all [63] recombination and a one-pass minimisation [49]. In addition to

linear, log-square and log functional forms and N -subjettiness ratios already adopted in

the previous section, we also consider a running-coupling-like input, obtained by evaluating

the radiator R(τi) of eq. (2.11) with a one-loop running coupling.8

The samples thus obtained are used to train either a single perceptron (as in the

previous section) or a full neural network. The perceptron is trained using the same imple-

mentation based on ref. [59], training over 50 epochs, with a learning rate of 0.5. The full

network uses a fully connected architecture implemented in PyTorch 1.4.0. The number

of inputs equals the number n of input N -subjettiness values (between 2 and 7). There

are three hidden layers with 128 nodes per layer and a LeakyReLu [64] activation function

with negative slope of 0.01 is applied following each of these layers. We train the network

using binary cross-entropy for a maximum of 50 epochs using the Adam [65] optimiser with

a learning rate of 0.005 and a mini-batch size of 32 events. During training, the area under

curve is evaluated after each epoch on a statistically independent validation set and train-

ing terminates if there is no improvement for 5 consecutive epochs [66]. The best model on

the validation set is then selected and evaluated on another independent test set for which

results are reported. Data are split 6 : 2 : 2 between training, validation, and testing. No

extensive optimisation of hyperparameters has been performed and training usually termi-

nates due to the early stopping criterion before reaching the maximally possible number

of epochs.

We start with a comparison of the primary and the standard definition of N -sub-

jettiness in terms of network performance. In figure 6a we plot the ROC curves for the

primary (solid lines) and standard (dashed line) definitions of N -subjettiness, and for

8We set αs(ptR0) = 0.09, and we regulate the divergence at the Landau pole by freezing the coupling

at a scale kt such that 2αs(ptR)β0 log(ptR0/kt) = 0.99.
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Figure 6. ROC curves obtained after training on a Pythia8 sample, using the N -subjettiness vari-

ables, with n = 3. To better highlight differences the vertical axes show the gluon rate normalised

by what is obtained using log2 Ti inputs for primary N -subjettiness trained on a full neural network.

The different colours correspond to different inputs to the neural network.

different choices of the input functional form (different colours). The gluon efficiencies are

normalised by the central value obtained with primary N -subjettiness with log2(Ti) inputs

trained on a full NN. The central values and the error bands are calculated by taking the

average and standard deviation of five different runs with randomly initialised weights.

We see that the performance of networks trained with the standard definition is worse

by 10–15% compared to the primary definition for mid-values of the quark efficiency, 0.4 .
εq . 0.8 and comparable elsewhere, except for a small region at large quark efficiency, εq &
0.9. Even though the benefit of using primary N -subjettiness is not as large as one could

have expected based on our leading-logarithmic calculations, we still observe a performance

improvement. We note also that at very small quark efficiency non-perturbative effects have

a sizeable effect, invalidating our arguments purely based on a perturbative calculation.

Furthermore, large εq correspond to the regime where the cut on N -subjettiness is no longer

small and our arguments based on the resummation of large logarithms no longer apply,

and one should instead consider the full structure of hard matrix elements.9 That said,

figure 6a shows that for the most of the range in quark efficiency, a better discrimination

is reached if we adopt the primary-N -subjettiness definition.

It is also interesting to compare the results obtained with different inputs in figure 6a.

Although one should expect that a full NN should ultimately reach the performance of

9Note that in that region, our Monte-Carlo pseudo-data, based on Pythia8, does not contain all the

details of the physics in any case.
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the likelihood independently on the choice of inputs, our practical setup still shows a mild

dependence on the choice of inputs. The key point is that the favoured inputs agree with

our analytic expectations from section 3 with logarithmic inputs (log τi, log2 τi and R(τi))

showing an equally-good performance, the linear inputs only marginally worse and the ratio

inputs showing a (few percent) worse discriminating power.10 Even though the convergence

of the neural network is more delicate for the case of ratio inputs (and, to a lesser extent, for

linear inputs), a performance similar to the optimal one reported in figure 6a for logarithmic

inputs could be achieved with a careful optimisation of the hyperparameters.

We now move to figure 6b, where we compare the ROC curves obtained with a full

neural network to those of a simple perceptron. In this plot we select the primary N -

subjettiness definition and we display results for the usual input choices. The solid lines

in figure 6b coincide with the ones in figure 6a. First, we observe that a perceptron

trained with Monte Carlo pseudo-data performs worse compared to the full NN for all the

considered input types. This is not surprising as the arguments in section 3 are based

on a simplified, leading-logarithmic, approach and subleading corrections can be expected

to come with additional complexity that a single perceptron would fail to capture. It

is actually remarkable that for εq & 0.6 a single perceptron typically gives performances

which are only 10% worse than the full network. This is not true if we consider N -

subjettiness ratio inputs, in which case the perceptron performance is sizeably worse than

the performance we get by using the full NN. This in agreement with the observation made

towards the end of section 4, namely that a more complex network architecture is able to

learn the correct weights for the ratio inputs, while the perceptron is not.

The behaviour of the other input types is relatively similar, although, quite surprisingly,

linear inputs tend to give a slightly better performance than logarithmic ones. The origin

of this is not totally clear. One can argue that the difference in performance between

linear and logarithmic inputs was small at leading-logarithmic accuracy and that several

effects — subleading logarithmic effects, hard matrix-element corrections, non-perturbative

effects, . . . — can lift this approximate degeneracy. One should also keep in mind that our

leading-logarithmic calculation is valid at small-enough quark/gluon efficiencies, while, as

the efficiency grows, we become sensitive to contributions from other kinematic domains.

We also note that if we increase the jet pt, e.g. if we look at 20 TeV jets at 100 TeV pp

collider, the difference between logarithmic and linear inputs becomes again comparable,

which is likely a sign that the phase-space at larger pt has an increased contribution from

the resummation region. We finally note that a simple cut on Tn, which is optimal at LL,

gives comparable results to the perceptron at large quark efficiencies εq & 0.7, but performs

rather worse otherwise.

Next, we study how the convergence of the network is affected by the choice of inputs.

In this context, convergence can mean two different things. Firstly, we can speak about

convergence of the network training (as we did in figure 4). This is shown in figure 7a,

for the area under the ROC curve (AUC) as a function of the number of training epochs

for a single perceptron. For this plot, we have used primary N -subjettiness and (mini-

10The choice of logarithmic inputs was also found to be helpful, on a phenomenological basis, in ref. [41].
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Figure 7. AUC convergence study for the Pythia8 sample as a function of the network parameters:

number of training epochs, network width and network depth. The different inputs are represented

with the same colours as in figure 6.

batch) stochastic gradient descend with a learning rate λ = 0.5. The better performance

obtained for linear inputs is confirmed in figure 7a. However, this happens at a cost in

convergence speed: where logarithmic inputs show an almost complete convergence after

a single epoch, linear inputs converge much slower.11 We also see that using ratios of N -

subjettiness as inputs yields a clearly worse AUC. Secondly, we can study convergence as a

function of the size of the network which can be either the network width at fixed number

of hidden layers, figure 7b, or the network depth at fixed number of neurons per hidden

layer, figure 7c. These plots also show that logarithmic inputs converge (marginally) faster

than linear inputs. Interestingly, after a full training (with 7 hidden layers and 128 neurons

per hidden layer), we recover a situation where logarithmic inputs give a slightly better

performance compared to linear inputs, as our analytic studies suggested.

As a final test, we study in figure 8 the AUC as a function of the number n of input

N -subjettiness variables. Results are shown for inputs distributed according to the leading-

logarithmic QCD distributions (as for our analytic calculations in section 3 and for our

tests in section 4) in figure 8a as well as for a Pythia8 sample in figure 8b. We show

the AUC for both the standard definition of N -subjettiness (red) and for our primary

definition (blue), and in both cases we show the results of training either a single perceptron

(open symbols) or a full NN (filled symbols). In the case of the Pythia8 sample, we

also show the AUC corresponding to a simple cut on either Tn or τn. For the case of

the leading-logarithmic distributions, we also provide the expectations from the actual

likelihood ratio (dashed lines). The latter is obtained from eq. (2.17) for the case of

primary N -subjettiness and by numerically integrating the equivalent of eq. (2.16) for

the standard definition. The lower panel shows the relative performance, normalised to the

likelihood, if it is available, or to the full NN otherwise. These results confirm once more our

11For lower learning rates, the fast convergence of logarithmic inputs is still observed, but linear inputs

converge even slower.
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Figure 8. AUC as a function of the number of inputs n. We show results for both the standard (red)

and primary (blue) definitions of N -subjettiness with training done either for a single perceptron

(open circles) or for a full NN (filled triangles). In all cases, log-square inputs have been used.

When available, results for the likelihood have been included (dashed lines) and used to normalise

the results in the lower panel. When not available, the normalisation is to the full NN results. For

the Pythia8 sample we also show the results of a cut on τn (or Tn) only (crosses).

earlier findings. First, primary N -subjettiness performs better than the standard definition,

although the difference, clearly visible in the leading-log distributions, is only marginal

with the Pythia8 sample. Then, in the case of a leading-log distribution, the optimal

performance of the primary N -subjettiness is already captured by a single perceptron, while

for the case of standard N -subjettiness only the full NN is able to reach a performance

on par with the likelihood expectation. For the Pythia8 sample, the training of the full

NN leads a reduction of the AUC compared to a single perceptron for both N -subjettiness

definitions. The improvement is however smaller for the primary definition (∼ 10%) than

for the standard one (∼ 15%). This is likely a reminiscence of the behaviour observed at

leading logarithmic accuracy. It is interesting to observe that the performance of a simple

cut on Tn, which is optimal at LL, is comparable to the perceptron at small n, while it

degrades as n increases. This is most likely due to the fact that at large n we become

more sensitive to non-perturbative corrections and consequently our LL approximation is

no longer sufficient. Conversely, a cut on τn, while giving a performance comparable to

that of the perceptron for n = 2, degrades more rapidly at larger n.
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6 Conclusions and outlook

In this paper we have investigated the behaviour of a simple neural network made of just

one neuron, in the context of a binary classification problem. The novelty of our study

consists in exploiting the underlying theoretical understanding of the problem, in order to

obtain firm analytical predictions about the perceptron performance.

In particular, we have addressed the question of distinguishing quark-initiated jets

from gluon-initiated ones, exploiting a new variant of the N -subjettiness (IRC-safe) family

of observables that we dubbed primary N -subjettiness. As the name suggests, these ob-

servables are only sensitive, to LL accuracy, to emissions of soft gluons off the original hard

parton, while standard N -subjettiness also depends on secondary gluon splittings, already

at LL. Thanks to the simple all-order behaviour of observables {T1 . . .Tn} we have been

able to determine that the optimal discriminant at LL, i.e. one which is monotonically re-

lated to the likelihood ratio, is just a cut on Tn. We have also been able to obtain analytic

expressions for the area under the ROC curve and the area under the ROC curve which are

standard figures of merit for a classifier’s performance. Furthermore, we have found that,

besides having nicer theoretical properties, TN typically outperforms τN as a quark/gluon

tagger, in the range of quark efficiencies that is typically employed in phenomenological

analyses.

The central part of this study has been the analytic study of the LL behaviour of a

perceptron that takes primary N -subjettiness variables as inputs. We have considered a

perceptron with a sigmoid as activation function and the cross-entropy as loss function.

The main question we have raised is whether the values of the perceptron weights at the

minimum of the cost function correspond to the aforementioned optimal LL classifier, i.e. a

cut on the last primary N -subjettiness considered. We have been able to show analytically

that this depends on the actual functional form of the inputs fed to the network. The

perceptron is able to find the correct minimum if logarithms (or square logarithms) of the

N -subjettiness are passed, but fails to do so with linear inputs. This reflects the fact that

the LL distributions of the inputs are indeed logarithmic. These analytic results are fully

confirmed by a numerical implementation of the perceptron, which has been trained on

pseudo-data generated according to a LL distribution. Furthermore, we have also found

that, in the case of linear inputs, the learning rate of the perceptron is substantially slower

than for logarithmic inputs. As a by-product, we were also able to find, in a few cases,

closed analytic expressions for the network cost function.

Finally, we have considered a more realistic framework for our analysis. Firstly, we have

trained the perceptron pseudo-data generated with a general-purpose Monte Carlo parton

shower, and we have obtained qualitative agreement with the analytic study. Secondly,

we have observed that when considering a full neutral network, we obtain a comparable

performance with all the variants of the inputs, with the possible exception of the N -

subjettiness ratios, which requires more fine-tuning to be brought to the same performance.

Our work highlights in a quantitative way the positive role that first-principle under-

standing of the underlying physical phenomena has in classification problems that employs

ML techniques. Even if a similar degree of performance is ultimately achieved with a full
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NN regardless of the type of inputs, a knowledge of the underlying physics is helpful to

build a simpler network less dependent on a careful optimisation of the hyperparameters.

Furthermore, we stress that the use of theoretically well-behaved observables has allowed

us to perform our analysis at a well-defined, and in principle improvable, accuracy. We

believe that this is an important step towards the consistent use of ML in experimental

measurements that are ultimately aimed at a detailed comparison with theoretical predic-

tions.

Our current analysis suffers from the obvious limitations of being conducted at LL and

for just a very simple network. We believe that going beyond LL accuracy for primary

N -subjettiness is not only interesting, but desirable. The first reason would be to see if the

simple resummation structure we see at LL accuracy survives at higher orders. Then, this

very first analysis places primary N -subjettiness as a promising substructure observable.

One is therefore tempted to also investigate its performance in the context of boosted vector

boson or top tagging, although one might expect that these classification problems benefit

from constraints beyond primary emissions. Furthermore, in the framework of our analytic

study of ML techniques, it would be interesting to see if at a higher accuracy one is still

able to find a simple combination of architecture, cost function and network inputs that

guarantees, analytically, optimal performance. More generally, we look forward to future

work where perturbative QCD helps designing better ML techniques with a comfortable

degree of analytic control.
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A Details of the analytic calculations

In this appendix we report details of the analytic calculation of the area under the ROC

curve (AUC). We start from the generic definition of the AUC and we exploit the definition

of the ROC curve given in eq. (2.5):

AUC =

∫ 1

0
dxROC(x) =

∫ 1

0
dxΣB

(
Σ−1S (x)

)
, (A.1)
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where, for a given observable V , the cumulative distribution for signal or background as a

function of a cut v reads as in eq. (2.4), which we rewrite as:

Σi(v) =

∫
dt pi(t) Θ(V (t) < v), i = S,B. (A.2)

We now perform a change of variable from the efficiency x to the cut on the observable v,

which results in the following Jacobian factor:

dx

dv
=

dx

dΣ−1S (x)
=
dΣS (v)

dv
. (A.3)

Thus, we have

AUC =

∫ 1

0
dvΣB (v)

dΣS (v)

dv
(A.4)

=

∫ 1

0
dv

∫
dtB pB(tB) Θ(V (tB) < v)

∫
dtS pS(tS) δ(V (tS)− v) (A.5)

=

∫
dtB

∫
dtS pB(tB)pS(tS) Θ(V (tB) < v(tS)), (A.6)

which is the expression presented in eq. (2.16).

We now specialise to our case and we consider the probability distributions pq and pg
for primary N -subjettiness at LL accuracy, which are given in eq. (2.10). We first integrate

over quark variables and exploiting the result found in eq. (2.15), we obtain∫ 1

0
dT1q · · ·

∫ Tn−1,q

0
dTnq pq(T1q,T2q, · · · ,Tnq) Θ(Tnq > Tng) = 1−Γ(n,CFR(Tng))

Γ(n)
. (A.7)

The integral over Tng can be performed using the following integration-by-parts identity:∫ T

0
dT′CA

R′(T′)
T′

e−CAR(T′) Γ(n,CFR(T′))

= e−CAR(T)Γ(n,CFR(T))− CnF
(CF + CA)n

Γ(n, (CF + CA)R(T)) . (A.8)

We see that iteratively the following kind of integrals appear:∫ T

0
dT′CA

R′(T′)
T
R(T′)m Γ(n, (CF + CA)R(T′))

=
CA

1 +m

(
Γ(n+ 1 +m, (CF + CA)R(T))

(CF + CA)1+m
−R(T)1+mΓ(n, (CF + CA)R(T))

)
. (A.9)

In the end we obtain:∫ 1

0
dT1g · · ·

∫ Tn−1,g

0
dTng pg(T1g,T2g, · · · ,Tng) Γ(n,CFR(Tng))

= Γ(n)− CnF
(CF + CA)2n−1

n−1∑
k=0

Γ(n+ k)

Γ(k + 1)
CkA(CF + CA)n−1−k. (A.10)

The sum can be performed explicitly, leading to the result presented in eq. (2.17) .
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B Analytic results for the cost function

In section 3 we have looked for a minimum of the cost function, eq. (3.7), by computing from

the very beginning the derivatives with respect to the NN weights. This procedure allowed

us to determine analytically the position of the minimum for the case of log-square inputs.

In the case of logarithmic and linear inputs, although we have not been able to perform all

the integrals analytically, we have nonetheless reduced the problem of the determination of

the position of the minimum of the cost function to a one-dimensional integration, which

we have performed numerically.

An alternative approach would be to determine an analytic expression for the cost

function, as a function of the NN weights and bias, which we would have to, in turn,

minimise. As we shall see in this appendix, this approach is not as successful as the one

presented in the main text. The integrals that appear in the determination of the cost

function eq. (3.7) are rather challenging and we have been able to solve them only in a

couple of simple cases. Namely, we limit ourselves to the case n = 2 with log-square inputs,

by using the sigmoid as activation function, and we report results for the cross-entropy loss,

eq. (3.4), and the quadratic loss, eq. (3.5). Even if the NN setup is minimal, the derivation

of explicit expressions for the cost function may be instructive as they represent a first-

principle determination of a NN behaviour and they could be valuable in the context

of comparisons between experimental measurements that make use of machine-learning

algorithms and theoretical predictions.

B.1 Cross-entropy loss

We start by considering the cost function eq. (3.7) with the cross-entropy loss. Explicitly:

C̃(XE)(a1, a2, b) =
1

2

∫ ∞
0

dL2

∫ L2

0
dL1

[
C̃2
F e
−C̃FL2

(
− log

(
1

1 + ea1L1+a2L2+b

))

+ C̃2
A e
−C̃AL2

(
− log

(
1

1 + e−a1L1−a2L2−b

))]
.

(B.1)

Note that the replacement C̃F ↔ C̃A is equivalent to (a1, a2, b) ↔ (−a1,−a2,−b), due to

the symmetries of the functions involved. We first observe that the integral over L1 gives

rise to a dilogarithm. In order to evaluate the integral over L2 we make use of the following

result:

I(XE)(CR, c, d) = C2
R

∫ ∞
0

dx e−CRx Li2

(
−ecx+d

)
(B.2)

= CRLi2

(
−ed

)
+


−c log

(
1 + ed

)
− c2

CR

(
1− 2F1

(
1,−CR

c , 1−
CR
c ;−ed

))
(c < 0)

0 (c = 0)

−c log
(
1 + ed

)
− c2

CR 2F1

(
1, CRc , 1 + CR

c ;−e−d
)

(c > 0)
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The analytic expression that we obtain for the cost function is

C̃(XE)(a1, a2, b) =
1

2a1

[
− (I(XE)(C̃F , a1 + a2, b)− I(XE)(C̃F , a2, b))

+ (I(XE)(C̃A,−(a1 + a2),−b)− I(XE)(C̃A,−a2,−b))
]
. (B.3)

From section 3, we already now that the minimum is located at a1 = 0. However, given the

structure of the explicit result after integration, eq. (B.3), it is highly nontrivial to recover

the position of the minimum analytically, due to the presence of a1 both at denominator

and in the arguments of hypergeometric function.

B.2 Quadratic loss

An analogous calculation can be performed in the case of the quadratic loss eq. (3.5). We

have to calculate

C̃(χ2)(a1, a2, b) =
1

2

∫ ∞
0

dL2

∫ L2

0
dL1

[
C̃2
F e
−C̃FL2

(1 + e−a1L1−a2L2−b)2
+

C̃2
A e
−C̃AL2

(1 + ea1L1+a2L2+b)2

]
.

(B.4)

As in the case of the cross-entropy loss, the integral over L1 is straightforward. We then

make use of the following identity to perform the remaining integral over L2:

I(χ2)(CR, c, d) = C2
R

∫ ∞
0

dx e−CRx
[
log
(

1 + ecx+d
)

+
1

1 + ecx+d

]

= CR log
(

1 + ed
)

+


c+ (CR − c) 2F1

(
1,−CR

c , 1−
CR
c ;−ed

)
(c < 0)

CR
1+ed

(c = 0)

CR + (c− CR) 2F1

(
1, CRc , 1 + CR

c ;−e−d
)

(c > 0) .

(B.5)

We find

C̃(χ2)(a1, a2, b) =
1

2a1

[(
I(χ2)(C̃F , a1 + a2, b)− I(χ

2)(C̃F , a2, b)
)

−
(
I(χ2)(C̃A,−(a1 + a2),−b)− I(χ

2)(C̃A,−a2,−b)
)]
. (B.6)

As for eq. (B.3), the position of the minimum is hard to find analytically. To check whether

we recover the result obtained in eq. (3.14), we can numerically look for the minimum of

eqs. (B.3) and (B.6). For illustration purposes, we fix C̃A and C̃F to CA and CF respectively.

In figure 9 we plot each cost function around the found minimum point. We see that the

condition a1 = 0 and the (negative) value of a2 = CF −CA ' −1.67 are indeed confirmed.

C Scaling of an in the log inputs case

In this appendix we would like to study the scaling of an with respect to C̃F and C̃A. In

order to simplify the notation, in this appendix we will rename x ≡ ln and a ≡ an.
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a1

0.02 0.01
0.00

0.01
0.02

a2

1.70
1.69

1.68
1.67

1.66
1.65

1.64
1.63

1.1172
1.1173
1.1174
1.1175
1.1176

1.1177

(a) Cross-entropy loss.

a1

0.02 0.01 0.00 0.01 0.02

a2

1.69
1.68

1.67
1.66

1.65
1.64

0.381275
0.381300
0.381325
0.381350
0.381375
0.381400
0.381425
0.381450

(b) Quadratic loss.

Figure 9. Cost function as a function of a1 and a2 around the minimum point. b has been

accordingly fixed to the value in eq. (3.14).

We first expand in series around x = 0 the sigmoid functions which appear in eq. (3.15):

1

1 + e−a x−b
=

eb

1 + eb
+
∞∑
k=1

ak f (k)(eb)xk , (C.1)

− 1

1 + ea x+b
= − 1

1 + eb
+
∞∑
k=1

ak f (k)(eb)xk , (C.2)

where:

f (k)(eb) =
(−1)1+k eb

Γ(1 + k)(1 + eb)1+k
× polynomial in eb with degree of k − 1 . (C.3)

Note that the two series with index k appearing on the r.h.s. of eqs. (C.1)–(C.2) are the

same. By substituting eqs. (C.1)–(C.2) under integration, eq. (3.15) becomes:∫ ∞
0

dxxm

[
C̃nF e

−C̃F x2

(
eb

1 + eb
+

∞∑
k=1

ak f (k)(eb)xk

)

+ C̃nA e
−C̃Ax2

(
− 1

1 + eb
+

∞∑
k=1

ak f (k)(eb)xk

)]
= 0 (C.4)

with m = 2n or m = 2n− 1. Given the following integration identity:∫ ∞
0

dxxm e−c x
2

=
1

2
√
cm+1

Γ

(
m+ 1

2

)
, c > 0 (C.5)

we obtain:

Γ
(
m+1
2

)
2(1 + eb)

 C̃nF e
b√

C̃m+1
F

− C̃nA√
C̃m+1
A


+
∞∑
k=1

ak f (k)(eb)
Γ
(
m+1+k

2

)
2

 C̃nF√
C̃m+1+k
F

+
C̃nA√
C̃m+1+k
A

 = 0 . (C.6)
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We now divide by
√
C̃2n−m−1
F and collect 1/

√
C̃kF in the second bracket:

Γ
(
m+1
2

)
2(1 + eb)

eb −( C̃A
C̃F

)(2n−m−1)/2


+

∞∑
k=1

 a√
C̃F

k

f (k)(eb)
Γ
(
m+1+k

2

)
2

1 +

(
C̃A

C̃F

)(2n−m−1−k)/2
 = 0 . (C.7)

This equation suggests that:

an√
C̃F

= F

(
C̃A

C̃F

)
. (C.8)

which is the relation quoted in the main text.
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