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We study regular non-semisimple Dubrovin-Frobenius manifolds in dimensions 2, 3, 4. Our results

rely on the existence of special local coordinates introduced by David and Hertling for regular flat F-

manifolds endowed with an Euler vector field. In such coordinates the invariant metric of the Dubrovin-

Frobenius manifold takes a special form which is the starting point of our construction. We give a

complete classification in the case where the Jordan canonical form of the operator of multiplication by

the Euler vector field has a single Jordan block and we reduce the classification problem to a third-order

ODE and to a system of third-order PDEs in the remaining three-dimensional and four-dimensional

cases. In all of the cases we provide explicit examples of Dubrovin-Frobenius potentials.

INTRODUCTION

Dubrovin-Frobenius manifolds have been intro-

duced by Boris Dubrovin as a coordinate-free refor-

mulation of the so called Witten-Dijkgraaf-Verlinde-

Verlinde (WDVV)-equations of two-dimensional

topological field theories (see8) and play an impor-

tant role in many areas of mathematics (quantum co-

homology, Gromov-Witten theory, singularity theory,

integrable PDEs etc). Some constructions in the the-

ory of Dubrovin-Frobenius manifolds rely on an ad-

ditional assumption: the existence of a holonomic

frame of idempotents. Dubrovin-Frobenius mani-

folds having this property are called semisimple or

massive since in a physical context they correspond to

massive perturbations of two-dimensional topological

field theories. Semisimple Dubrovin-Frobenius man-

ifolds are characterized by the existence of a special

set of local coordinates, called Dubrovin canonical

coordinates or simply canonical coordinates, reduc-

ing the structure constants of the product to a constant

canonical form. A generalization of canonical coor-

dinates in the non semisimple regular case was found

by David and Hertling in5. David-Hertling canonical

coordinates depend on the Jordan normal form of the

operator of multiplication by the Euler vector field.

In this paper using these coodinates we construct ex-

plicit examples of non semisimple regular Dubrovin-

Frobenius manifolds in the case of a single Jordan

block.

The paper is organized as follows: In section 1

we recall the definition of Dubrovin-Frobenius mani-

fold and some known results in the semisimple case.

In Section 2 we introduce David-Hertling canoni-

cal coordinates for regular non semisimple Dubrovin-

Frobenius manifolds and some general properties of

the invartiant metric in such coordinates. In Section

3 we focus on the case of a single Jordan block in

dimensions 2,3 and 4 and in Section 4 we briefly dis-

cuss the case of multiple Jordan blocks both in dimen-

sions 3 and 4.

I. DUBROVIN-FROBENIUS MANIFOLDS: THE
SEMISIMPLE CASE

Following Dubrovin8 we introduce the notion of

Dubrovin-Frobenius manifold.

Definition I.1 A Dubrovin-Frobenius manifold M is

a manifold equipped with a metric η , a commutative

associative product ◦ on the tangent space with unit

e and a second distinguished vector field E called the

Euler vector field satisfying the following conditions

• Invariance of the metric:

ηil cl
jk = η jl cl

ik (I.1)

• Flatness of the metric:

Rm
i jk = ∂ jΓ

m
ik − ∂iΓ

m
jk +Γs

ikΓm
s j −Γs

jkΓm
is = 0 (I.2)

• Symmetry of ∇c:

∇ic
l
jk = ∇ jc

l
ik (I.3)

• Constancy of e:

∇ie
k = 0 (I.4)
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• Homogeneity conditions:

LEci
jk = ci

jk, LEei =−ei, LEηi j = (2− d)ηi j

(I.5)

for some constant d. Here ∇ denotes the Levi-Civita

connection associated to η and LZ denotes the Lie

derivative along a vector field Z.

From the axioms above it follows that in flat co-

ordinates for the metric the structure constants of the

product can be written in terms of the third order par-

tial derivatives of a function F called the prepotential

of the Dubrovin-Frobenius manifold:

ci
jk = η il

.l.j.kF.

By construction the function F is a solution of Witten-

Dijkgraaf-Verlinde-Verlinde (WDVV) equations6,16.

Remark I.2 The manifold M in the above definition

is a real or complex n-dimensional manifold. In the

first case all the geometric data are supposed to be

smooth. In the latter case T M is intended as the holo-

morphic tangent bundle and all the geometric data

are supposed to be holomorphic.

Remark I.3 Since the components of the metric and

of the unit vector field are constant in flat coordinates

we clearly have

Leηi j = 0. (I.6)

A point p ∈ M of an n-dimensional Dubrovin-

Frobenius manifold is called semisimple if TpM has

a basis of idempotents π1, . . . ,πn satisfying πk ◦πl =
δk,lπk. Semisimplicity at a point is an open prop-

erty on M: locally around a semisimple point one can

choose coordinates ui such that
.

Due to (I.1), in canonical coordinates the metric η
becomes diagonal: ηi j = H2

i δi j. Let us introduce the

Ricci rotation coefficients βi j := .jHi

H j
, i 6= j. In the case

of Dubrovin-Frobenius manifolds the rotation coeffi-

cients are symmetric (βi j = β ji) and as a consequence

the metric is potential in canonical coordinates (i.e.

H2
i = .iϕ for some function ϕ). Moreover it is easy to

check that the rotation coefficients satisfy the follow-

ing overdetermined system of PDEs:

.kβi j =βikβk j, i 6= j 6= k 6= i, (I.7)

e(βi j) =0, i 6= j, (I.8)

E(βi j) =−βi j, i 6= j, (I.9)

where

e =
n

∑
i=1

.i, E =
n

∑
i=1

ui
.i.

Condition (I.8) follows from (I.6). The system

(I.7,I.8) is called Darboux-Egorov system (see4,9) and

implies the flatness of the metric η . The last condition

(I.9) follows from the homogeneity properties. Given

a solution of the above system, the Lamé coefficients

(H1, ...,Hn) are obtained by solving the overdeter-

mined system of PDEs

.jHi =βi jH j, i 6= j, (I.10)

e(Hi) =0, (I.11)

E(Hi) =DHi, (I.12)

where D = − d
2

is an eigenvalue of the skew-

symmetric matrix Vi j := (u j − ui)βi j
8. In dimension

n = 3, on the open set u1 6= u2 6= u3 6= u1, the general

solution of the system (I.8, I.9) is

β12 =
1

u2 − u1
F12

(

u3 − u1

u2 − u1

)

β23 =
1

u3 − u2
F23

(

u3 − u1

u2 − u1

)

β13 =
1

u3 − u1
F13

(

u3 − u1

u2 − u1

)

.

(I.13)

The remaining conditions (I.7) are equivalent to the

following non-autonomous system of ODEs:

dF12

dz
=

1

z(z− 1)
F13F23

dF13

dz
=− 1

z− 1
F12F23

dF23

dz
=

1

z
F12F13

(I.14)

where z := u3−u1

u2−u1 . It is well-known that three-

dimensional Dubrovin-Frobenius manifolds are pa-

rameterized by solutions of a family of Painlevé VI

equation (see8). This can be easily proved also study-

ing system (I.14).

Theorem I.4 System (I.14) is equivalent to the fol-

lowing sigma form of Painlevé VI equation (see13):

z2(z− 1)2(σ ′′)2 + 4
[

σ ′ (zσ ′−σ
)2 − (σ ′)2(zσ ′−σ)

]

(I.15)
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=−2R2(σ ′)2 +R4σ ′,

where the parameter R2 is the value of the first inte-

gral I = F2
12 +F2

13 +F2
23.

Proof: First notice that dI
dz

= 0 as a simple com-

putation shows. So we set I = R2. Following1 it is

easy to check that one can write the squares of the

functions Fi j in terms of a single function σ(z):

F2
12 = σ ′, (I.16)

F2
13 = σ − zσ ′+

R2

2
, (I.17)

F2
23 =−σ +(z− 1)σ ′+

R2

2
. (I.18)

From equations (I.16), (I.17) and (I.18) we have im-

mediately

z
d

dz

(

F2
23

)

= z(z− 1)
d

dz

(

F2
12

)

(I.19)

=−(z− 1)
d

dz

(

F2
13

)

= z(z− 1)σ ′′(z).

On the other hand, due to (I.14) we have

z
d

dz

(

F2
23

)

= z(z− 1)
d

dz

(

F2
12

)

=−(z− 1)
d

dz

(

F2
13

)

(I.20)

= 2F12F13F32.

By comparing these equations with (I.19) and taking

the square we obtain (I.15).

In dimension 4 there is a special class of Dubrovin-

Frobenius manifolds that are also related to Painlevé

VI equation15. Dropping the assumption of symme-

try of the rotation coefficients and allowing differ-

ent degrees of homogeneity for the Lamé coefficients

one ends up with the Darboux-Egorov system (I.7,I.8)

with the additional constraint

E(βi j) = (di − d j − 1)βi j, i 6= j. (I.21)

In dimension 3 the system (I.7, I.8, I.21) reduces to a

system of 6 ODEs that turned out to be equivalent to

the full family of Painlevé VI12. The corresponding

geometric structure is a generalization of Dubrovin-

Frobenius manifold structure and it is called bi-flat

structure1. A similar result can be obtained studying

the system (see2)

.kΓi
i j =−Γi

i jΓ
i
ik +Γi

i jΓ
j
jk +Γi

ikΓk
k j, (I.22)

i 6= k 6= j 6= i,

e(Γi
i j) = 0, i 6= j (I.23)

E(Γi
i j) =−Γi

i j, i 6= j. (I.24)

System (I.22) is called Darboux-Tsarev system. Reg-

ular non semisimple bi-flat structures in dimension 3

are also related to Painlevé transcendents. This was

proved in2 studying the analogue of the Darboux-

Tsarev system in the non semisimple case (see also11

for an alternative approach based on the study of

Okubo-type systems).

II. DUBROVIN-FROBENIUS METRIC IN THE
GENERAL REGULAR CASE

Let M be a non semisimple Dubrovin-Frobenius

manifold of dimension n, with commutative and as-

sociative product ◦, metric η , unit vector field e and

Euler vector field E . Let M be regular near a point

m ∈ M, meaning that each Jordan block of the opera-

tor L = E ◦ is associated to a different eigenvalue.

Let r be the number of Jordan blocks of L and

let m1, . . . ,mr be their sizes. Any set of coordinates

u1, . . . ,un for M can be re-labelled by means of the

following notation: for each α ∈ {2, . . . ,r} and for

each j ∈ {1, . . . ,mα} we write

j(α) = m1 + · · ·+mα−1 + j (II.1)

(for α = 1 we set j(α) = j) so that u j(α) denotes the

j-th coordinate associated to the α-th Jordan block.

From now on, we will write ui when seeing the coor-

dinate as running from 1 to the dimension of the man-

ifold and we will write ui(α) when in need to highlight

the Jordan block to which the coordinate refers. Ac-

cording to this notation, ∂i and ∂i(α) will denote the

partial derivative with respect to ui and ui(α) respec-

tively.

In5 David and Hertling provide a generalization of

canonical coordinates in the regular case. According

to their results we can assume that the product has the

following form:

∂i(α) ◦ ∂ j(β ) =

{

δαβ ∂(i+ j−1)(α) i+ j ≤ mα + 1

0 i+ j ≥ mα + 2

(II.2)

for all i ∈ {1, . . . ,mα}, j ∈ {1, . . . ,mβ} for each

α,β ∈ {1, . . . ,r}. The unit vector field takes the form

e =
r

∑
α=1

∂1(α) (II.3)

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I:1
0.1

06
3/5

.00
94

58
0



4

and the Euler vector field becomes

E =
n

∑
s=1

us ∂s . (II.4)

The operator L = E ◦ is given by

L = L
i(α)
j(β )

∂i(α)⊗ du j(β ) (II.5)

where

L
i(α)
j(β )

=

{

δαβ u(i− j+1)(α) i ≥ j

0 i < j
(II.6)

for α,β ∈ {1, . . . ,r} and i ∈ {1, . . . ,mα}, j ∈
{1, . . . ,mβ}.

In fact, given α,β ∈ {1, . . . ,r} and i ∈ {1, . . . ,mα},

j ∈ {1, . . . ,mβ} we have

L
i(α)
j(β )

=
(

E ◦ ∂ j(β )

)i(α)
= uk(γ)

(

∂k(γ) ◦ ∂ j(β )

)i(α)

=

{

uk(γ)δβ γ

(

∂( j+k−1)(β )

)i(α)
1 ≤ k ≤ mβ − j+ 1

0 otherwise

=

{

uk(β )δαβ δ i
j+k−1 1 ≤ i− j+ 1

0 otherwise

=

{

δαβ u(i− j+1)(α) i ≥ j

0 i < j.

Remark 1 Due to regularity condition we are im-

plicitly assuming that u2(α) 6= 0 and u1(α) 6= u1(β ) if

α 6= β .

In order for the data (η ,◦,e,E) to define an actual

Dubrovin-Frobenius manifold, we have to impose all

the axioms entering its definition.

In particular, we want to study conditions (I.1)–

(I.6) in David-Hertling canonical coordinates. As

stated in5, the metric η is represented by a block di-

agonal matrix, each block of which is an upper tri-

angular Hankel matrix (for instance, in the case of a

single Jordan block see (III.3)). This follows from

(I.1). Precisely

η = δαβ η(i+ j−1)(α)dui(α)⊗ du j(β ) (II.7)

for some functions
{

η(i)(α) |1 ≤ α ≤ r, 1 ≤ i ≤ mα

}

and η(i)(α) = 0 for i ≥ mα + 1. Moreover, (I.4) im-

plies the existence of a metric potential H such that

η i(α) = ∂i(α)H (II.8)

for all i ∈ {1, . . . ,mα} for each α ∈ {1, . . . ,r}.

Since we consider non semisimple Dubrovin-

Frobenius manifolds, there must exist at least one Jor-

dan block of size greater or equal than 2. Without loss

of generality we then assume that the size of the first

Jordan block is greater than 1. If one drops this as-

sumption, analogous results will hold, where differ-

ent coordinates will play the roles here played by u1,

u2.

If we take into account that the metric must be ho-

mogeneous with respect to the Euler vector field and

constant with respect to the unity vector field, we are

able to get a further expression for the terms η(i)(α).

Theorem II.1 The functions η i appearing in (II.7)

can be written as

η i = (u2)−d Fi i ∈ {1, . . . ,n} (II.9)

for some functions F1, . . . ,Fn of the variables

z j =

u j+2 − u1
r

∑
α=2

δ j+2

1(α)

u2
j ∈ {1, . . . ,n− 2}

(II.10)

such that

F1 =−
r

∑
α=2

∂
z1(α)−2 f +C1 (II.11)

F2 =−z j ∂z j f − (d− 1) f +C2 (II.12)

Fj = ∂z j−2 f j ∈ {3, . . . ,n}
(II.13)

for some function f of z1, . . . ,zn−2 and constants C1,

C2. In particular, the quantity

r

∑
α=1

F1(α) =C1 (II.14)

is a constant that vanishes whenever d 6= 0.

Proof: By imposing (I.6) we get

r

∑
α=1

∂1(α)η i = Leη i = 0

for i ∈ {1, . . . ,n}. It follows that each η i can be writ-

ten as

η i = ϕi

(

u2,u3 − u1
r

∑
α=2

δ 3
1(α), . . . ,u

n − u1
r

∑
α=2

δ n
1(α)

)

(II.15)

for some function ϕi of n− 1 variables. By the ho-

mogeneity condition (I.5), it can be rewritten as in

(II.9) for some function Fi of the variables defined in

(II.10).
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5

The flatness of e with respect to ∇ implies that

d
(

η(e, ·)
)

= 0 (see5), that is

∂ j(β )η i(α) du j(β )∧dui(α) = 0

thus

∂ j(β )η i(α)− ∂i(α)η j(β ) = 0 (II.16)

for all i ∈ {1, . . . ,mα}, j ∈ {1, . . . ,mβ} and α,β ∈
{1, . . . ,r}. In particular, for i(α), j(β ) ∈ {3, . . . ,n}
we get

∂
z j(β)−2 Fi(α) = ∂

zi(α)−2 Fj(β ).

There must then exist a function f of the variables

z1, . . . ,zn−2 realizing (II.13). By fixing j(β ) = 2 and

i(α) ∈ {3, . . . ,n} in (II.16) we obtain the following

relation:

∂i(α)

(

(u2)−d F2

)

= ∂2

(

(u2)−d Fi(α)

)

which amounts to

(u2)−1 ∂
zi(α)−2 F2 =−d (u2)−1 Fi(α)+ ∂2Fi(α)

and, by the chain rule and (II.10),

∂
zi(α)−2 F2 =−d Fi(α)−

n−2

∑
j=1

z j ∂z j Fi(α).

By taking into account (II.13) we get

∂
zi(α)−2 F2 =−d ∂

zi(α)−2 f −
n−2

∑
j=1

z j ∂z j ∂zi(α)−2 f .

Then for each i ∈ {1, . . . ,n− 2}

∂ziF2 =−d ∂zi f − z j ∂z j ∂zi f

that is

∂zi

[

F2 − (1− d) f + z j ∂z j f

]

= 0.

Therefore the quantity F2 − (1− d) f + z j ∂z j f equals

some constant C2, proving (II.12).

By taking i(α) = 1(α), j(β ) ∈ {3, . . . ,n} in (II.16)

and summing over all α ∈ {1, . . . ,r} we get

r

∑
α=1

∂ j(β )η1(α) =
r

∑
α=1

∂1(α)η j(β )

that is

(u2)−d ∂ j(β )

(

r

∑
α=1

F1(α)

)

= Leη j(β )

thus

∂
z j(β)−2

(

r

∑
α=1

F1(α)

)

= 0.

This means that

∂z j

(

r

∑
α=1

F1(α)

)

= 0

for all j ∈ {1, . . . ,n− 2}, proving that
r

∑
α=1

F1(α) must

be equal to some constant C1. Condition (II.11) fol-

lows.

On the other hand, by taking i(α) = 1(α), j(β ) = 2

in (II.16) and summing over all α ∈ {1, . . . ,r} we get

∂2

(

r

∑
α=1

(u2)−d F1(α)

)

= 0

which, since
r

∑
α=1

F1(α) =C1, amounts to

∂2

(

(u2)−d C1

)

= 0.

This implies d C1 = 0, meaning that the constant C1

must vanish whenever d 6= 0.

Proposition II.2 Up to constants, the function f ap-

pearing in (II.11), (II.12), (II.13) is related to the met-

ric potential H by the following formula:

H = (u2)1−d f +C2 ϕ(u2)+C1 u1 (II.17)

where

ϕ(u2) =

{

(u2)1−d

1−d
if d 6= 1

lnu2 if d = 1.
(II.18)

Proof: By (II.8) and (II.9) we have

∂iH = (u2)−d Fi

(

z1, . . . ,zn−2
)

(II.19)

for each i ∈ {1, . . . ,n}. For i ≥ 3 we get

∂iH = (u2)−d ∂zi−2 f
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6

that is

∂zi−2H = (u2)1−d ∂zi−2 f

or

∂zi−2

(

H − (u2)1−d f
)

= 0.

It follows that

H = (u2)1−d f +K(u1,u2) (II.20)

for some function K(u1,u2). For i = 2 in (II.19) we

get

∂2H = (u2)−d
(

− z j ∂z j f − (d− 1) f +C2

)

that is, by the chain rule and (II.10),

(u2)−d
(

(1− d) f − z j ∂z j f
)

+ ∂2K

= (u2)−d
(

− z j ∂z j f − (d− 1) f +C2

)

yielding

∂2K(u1,u2) =C2 (u
2)−d .

Then

K(u1,u2) =

{

C2
(u2)1−d

1−d
+ k(u1) if d 6= 1

C2 lnu2 + k(u1) if d = 1.
(II.21)

for some function k(u1). By putting together (II.20)

and (II.21) one gets

H = (u2)1−d f +C2 ϕ(u2)+ k(u1)

for

ϕ(u2) =

{

(u2)1−d

1−d
if d 6= 1

lnu2 if d = 1.
(II.22)

For i = 1 in (II.19) we finally get

∂1H = (u2)−d F1

that is, by the chain rule and (II.10),

− (u2)−d
r

∑
α=2

∂
z1(α)−2 f + ∂1k(u1)

=−(u2)−d
r

∑
α=2

∂
z1(α)−2 f +(u2)−d C1.

Thus

∂1k(u1) = (u2)−d C1 =

{

0 if d 6= 0

C1 if d = 0

}

=C1

implying

k(u1) =C1 u1 +C3

for some constant C3. We conclude that

H = (u2)1−d f +C2 ϕ(u2)+C1 u1 +C3

for ϕ(u2) as in (II.22).

III. THE CASE OF A SINGLE JORDAN BLOCK:
EXPLICIT RESULTS UP TO DIMENSION 4

In this section we classify regular non semisimple

Dubrovin-Frobenius manifold structures up to dimen-

sion 4 in the case where the operator L has a single

Jordan block. Due to the results of the previous Sec-

tion in the specific case where L has a single Jordan

block of size n the unit vector field becomes e = ∂1

and in canonical coordinates we have

∂i ◦ ∂ j =

{

∂i+ j−1 i+ j ≤ n+ 1

0 i+ j ≥ n+ 2
(III.1)

for all i, j ∈ {1, . . . ,n} and ui = ui(1) for each i ∈
{1, . . . ,n}. The operator L is described by the fol-

lowing lower triangular Toeplitz matrix:

L =



















u1 0 0 . . . 0 0

u2 u1 0 . . . 0 0

u3 u2 u1 . . . 0 0
...

...
...

. . .
...

...

un−1 un−2 un−3 . . . u1 0

un un−1 un−2 . . . u2 u1



















. (III.2)

The metric is represented by an upper triangular Han-

kel matrix that only depends on the coordinate u2 and

on n functions F1, . . . ,Fn of the variables

zi =
ui+2

u2
i ∈ {1, . . . ,n− 2}.
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It takes the following form:

η = (u2)−d

















F1 F2 F3 . . . Fn−1 Fn

F2 F3 F4 . . . Fn 0

F3 F4 F5 . . . 0 0
...

...
...

. . .
...

...

Fn−1 Fn 0 . . . 0 0

Fn 0 0 . . . 0 0

















. (III.3)

In particular, F1 is equal to a constant C1 that vanishes

whenever d 6= 0 and the other Fis are expressed in

terms of a function f (z1, . . . ,zn−2) by

F2 =−zi ∂zi f − (d− 1) f +C2 (III.4)

Fj = ∂z j−2 f ∀ j ∈ {3, . . . ,n} (III.5)

for some constant C2.

A. Dimension n = 2

Let M be a two-dimensional Dubrovin-Frobenius

manifold with product ◦, metric η , unit vector field

e and Euler vector field E . Let us require M to

be regular and the operator L = E ◦ to have a sin-

gle Jordan block near a point m ∈ M. The unit and

the Euler vector fields read respectively e = ∂1 and

E = u1∂1 + u2∂2. It follows directly from (III.3) that

the metric has the form

η = (u2)−d

[

C1 C2

C2 0

]

(III.6)

for some constant C1 which vanishes whenever d 6= 0

and for some non-zero constant C2.

We are able to recover flat coordinates and an explicit

expression for the Dubrovin-Frobenius prepotential,

as pointed out in the following result.

Theorem III.1 Flat coordinates coincide with the

canonical ones when d = 0. Otherwise, they are given

by

x1(u1,u2) = u1

x2(u1,u2) =
(u2)1−d

1− d

when d 6= 1 and by

x1(u1,u2) = u1

x2(u1,u2) = lnu2

when d = 1. In all the cases, the prepotential is given

by

F(x1,x2) =
C1

6
(x1)3 +

C2

2
(x1)2 x2 (III.7)

up to second-order polynomial terms. In flat coordi-

nates the unit and the Euler vector fields are respec-

tively given by e =
∼
∂1 and

E =







x1
∼
∂1 +

∼
∂2 if d = 1

x1
∼
∂1 + x2(1− d)

∼
∂2 if d 6= 1.

Proof: If d = 0 then the metric in (III.6) is con-

stant, thus flat coordinates coincide with the canoni-

cal ones. Let us now fix d 6= 0. In this case the flat

coordinates are

x1(u1,u2) = u1

x2(u1,u2) =
(u2)1−d

1− d

when d 6= 1 and

x1(u1,u2) = u1

x2(u1,u2) = lnu2

when d = 1. In both cases, in flat coordinates the

metric becomes

η̃ =

[

C1 C2

C2 0

]

and the structure constants equal the ones in canonical

coordinates:

c̃k
i j = ck

i j i, j,k ∈ {1,2}.

It follows that up to second-order polynomial terms

the Dubrovin-Frobenius prepotential F is of the form

F(x1,x2) =
C1

6
(x1)3 +

C2

2
(x1)2 x2

and that in flat coordinates the unit and the Euler vec-

tor fields become of the form stated above.

B. Dimension n = 3

Let M be a three-dimensional Dubrovin-Frobenius

manifold with product ◦, metric η , unit vector field

e and Euler vector field E . Let us require M to be

regular and the operator L = E ◦ to have a single Jor-

dan block near a point m ∈ M. The unit and the
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Euler vector fields read respectively e = ∂1 and E =
u1∂1+u2∂2+u3∂3. We already know from (III.3) that

the metric is of the form

η = (u2)−d







F1(
u3

u2 ) F2(
u3

u2 ) F3(
u3

u2 )

F2(
u3

u2 ) F3(
u3

u2 ) 0

F3(
u3

u2 ) 0 0






(III.8)

for some functions F1, F2, F3 and that F1 is equal to a

constant C1 that vanishes whenever d 6= 0. It turns out

from the zero-curvature conditions that the functions

F2, F3 must be solutions to the following system of

ODEs

{

F ′
2 + zF ′

3 + d F3 = 0

2F3 F ′′
3 − 3(F ′

3)
2 = 0.

(III.9)

In fact, let us introduce the variable z = u3

u2 . We have

already seen that there exists a function f (z) such that

F2(z) =−z f ′(z)− (d− 1) f (z)+C2

F3(z) = f ′(z)

for some constant C2. It follows that

F ′
2 + zF ′

3 + d F3 = 0.

Moreover, by requiring that R1
232 = 0 one obtains the

Liouville-type differential equation

2F3 F ′′
3 − 3(F ′

3)
2 = 0.

This suffices to make all of the conditions in (I.1),

(I.3), (I.4), (I.5), (I.6), (I.2) hold without imposing

more. So far, what we know about the functions F1,

F2, F3 is that F1 equals some constant C1 and that F2,

F3 are solutions to the system (III.9). Two expressions

for the function f appering in (III.4), (III.5) are then

possible, as shown below.

Theorem III.2 The function f realizing (III.4),

(III.5) is either provided by

f (z) =C3 z+C4 (III.10)

for some constants C3, C4 or by

f (z) =− C4

z+C3

+C5 (III.11)

for some constants C3, C4, C5.

Proof: The first condition in (III.9) amounts to

(III.4) and (III.5), while the second one can be rewrit-

ten as

2 f ′(z) f ′′′(z)− 3( f ′′(z))2 = 0. (III.12)

Assuming f ′′(z) 6= 0 the solutions to equation (III.12)

can be written as (III.11), while (III.10) is recovered

by considering solutions corresponding to f ′′(z) = 0.

Summarizing two cases may occur: either











F1(z) =C1

F2(z) =−C3 d z+C2

F3(z) =C3

(III.13)

for some constant C1 that vanishes for d 6= 0 and some

constants C2, C3 or











F1(z) =C1

F2(z) =
C3 C4

(z+C3)2 − (2−d)C4

z+C3
+C2

F3(z) =
C4

(z+C3)2

(III.14)

for some constant C1 that vanishes for d 6= 0 and some

constants C2, C3, C4.

Proposition III.3 In the case of (III.13) flat coordi-

nates are given by

x1(u1,u2,u3) = u1

x2(u1,u2,u3) = (u2)−d u3 +
C2(u

2)1−d

C3(1− d)

x3(u1,u2,u3) =
2

2− d
(u2)

2−d
2

when d /∈ {0,1,2}, by

x1(u1,u2,u3) = u1

x2(u1,u2,u3) =
u3

(u2)2
− C2

C3 u2

x3(u1,u2,u3) = lnu2

when d = 2, by

x1(u1,u2,u3) = u1

x2(u1,u2,u3) =
u3

u2
+

C2

C3

lnu2

x3(u1,u2,u3) = 2
√

u2

when d = 1 and, trivially, by

x1(u1,u2,u3) = u1

x2(u1,u2,u3) = u2
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x3(u1,u2,u3) = u3

when d = 0.

The proof is a straightforward computation.

Proposition III.4 Let x1, x2, x3 denote flat coordi-

nates. Up to second-order polynomial terms, in the

case of (III.13) the prepotential is given by

F(x1,x2,x3) =
C3

2
(x1)2 x2 +

C3

2
x1 (x3)2 (III.15)

when d 6= 0 and by

F(x1,x2,x3) =
C1

6
(x1)3 +

C2

2
(x1)2 x2 +

C3

2
(x1)2 x3

+
C3

2
x1 (x2)2 (III.16)

when d = 0 (in this latter case flat coordinates coin-

cide with the canonical ones). If d 6= 0 then in flat

coordinates the multiplication is written as

∂̃1 ◦ ∂̃1 = ∂̃1

∂̃1 ◦ ∂̃2 = ∂̃2

∂̃1 ◦ ∂̃3 = ∂̃3

∂̃2 ◦ ∂̃2 = 0

∂̃2 ◦ ∂̃3 = 0

∂̃3 ◦ ∂̃3 = ∂̃2

and the Euler vector field reads

E = x1 ∂̃1 +(1− d)x2 ∂̃2 +
2− d

2
x3 ∂̃3

if d /∈ {0,1,2},

E = x1 ∂̃1 +
C2

C3

∂̃2 +
1

2
x3 ∂̃3

if d = 1 and

E = x1 ∂̃1 − x2 ∂̃2 + ∂̃3

if d = 2. In flat coordinates the unit vector field is

e = ∂̃1 for each value of d.

The proof is a straightforward computation.

Analogous results can be achieved for the case

of (III.14), as presented below.

Proposition III.5 In the case of (III.14) flat coordi-

nates and the Euler vector field are respectively given

by

x1(u1,u2,u3) = u1 +
C2C3(u

2)2 +C2 u2u3 −C4(u
2)2

C1 (C3 u2 + u3)

x2(u1,u2,u3) =
[(

−C2C3

√

C1C4 −C4(C1 −C4

+C2C3)
)

(u2)
2C4−

√
C1C4

C4

−C2 u3(u2)
C4−

√
C1C4

C4 (C4

+
√

C1C4)]
1

C4(C1 −C4)(C3 u2 + u3)

x3(u1,u2,u3) =
[(

C2C3

√

C1C4 −C4(C1 −C4

+C2C3)
)

(u2)
2C4+

√
C1C4

C4

−C2 u3(u2)
C4+

√
C1C4

C4 (C4

−
√

C1C4)]
1

C4(C1 −C4)(C3 u2 + u3)

E = x1 ∂̃1 + bx2 ∂̃2 + cx3 ∂̃3

where

b =
(C2C3 +C1)(C4)

3
2 −C1C2C3

√
C4 +(C4)

2
√

C1

C4 (C2C3

√
C1 +C2C3

√
C4 +C1

√
C4 −C4

√
C4)

+
−(C1)

3
2 C4 − (C4)

5
2

C4 (C2C3

√
C1 +C2C3

√
C4 +C1

√
C4 −C4

√
C4)

c =

√
C4 (C1 −C4)√
C1C4 − (C4)

3
2

when d = 0, C1 6= 0 and C1 6=C4, by

x1(u1,u2,u3) = u1 +
(u2)2(lnu2)2

2(C3 u2 + u3)

+
C2 u2

(

2 lnu2 − (lnu2)2 − 2
)

2C4

x2(u1,u2,u3) =− (u2)2 lnu2

C3 u2 + u3
+

C2 u2
(

lnu2 − 1
)

C4

x3(u1,u2,u3) =− (u2)2

C3 u2 + u3
+

C2 u2

C4

E = (x1 − x2) ∂̃1 +(x2 + x3) ∂̃2 + x3 ∂̃3

when d = 0 and C1 = 0, by

x1(u1,u2,u3) = u1 − (u2)2

C3 u2 + u3
+

C2 u2

C4

x2(u1,u2,u3) =− (u2)3

2
(

C3 u2 + u3
) +

C2 (u
2)2

4C4
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x3(u1,u2,u3) =− u2

C3 u2 + u3
+

C2 lnu2

C4

E = x1 ∂̃1 + 2x2 ∂̃2 +
C2

C4

∂̃3

when d = 0 and C1 =C4, by

x1(u1,u2,u3) = u1 +
2(u2)2

(

C4 −C2C3

)

C4(d)2(C3 u2 + u3)

x2(u1,u2,u3) =

(

C2C3 −C4 (1− d)
)

(u2)2−d

C4 (1− d)
(

C3 u2 + u3
)

+
C2 u3(u2)1−d

C4 (1− d)
(

C3 u2 + u3
)

x3(u1,u2,u3) =
2C2 u3(u2)

2−d
2

C4 (2− d)
(

C3 u2 + u3
)

+
−
(

C4(2− d)− 2C2C3

)

(u2)
4−d

2

C4 (2− d)
(

C3 u2 + u3
)

E = x1 ∂̃1−
d− 2

2
x2 ∂̃2 − (d− 1)x3 ∂̃3

when d /∈ {0,1,2} and C3 6= 0, by

x1(u1,u2,u3) = u1 +
2
(

−C2 u2 u3 +C4(u
2)2
)

C4 (d)2 u3

x2(u1,u2,u3) =
2C2 u3(u2)

2−d
2 −C4 (2− d)(u2)

4−d
2

C4 (2− d)u3

x3(u1,u2,u3) =
C2 u3(u2)1−d −C4 (1− d)(u2)2−d

C4 (1− d)u3

E = x1 ∂̃1−
d− 2

2
x2 ∂̃2 − (d− 1)x3 ∂̃3

when d /∈ {0,1,2} and C3 = 0, by

x1(u1,u2,u3) = u1 +
2(u2)2

C3 u2 + u3
− 2C2 u2

C4

x2(u1,u2,u3) =− u2

C3 u2 + u3
+

C2 lnu2

C4

x3(u1,u2,u3) =− (u2)
3
2

C3 u2 + u3
+

2C2

√
u2

C4

E = x1 ∂̃1 −
d − 2

2
x2 ∂̃2 +

(

C2

C4

− (d− 1)x3

)

∂̃3

when d = 1, by

x1(u1,u2,u3) = u1 +
(u2)2

2
(

C3 u2 + u3
) − C2 u2

2C4

x2(u1,u2,u3) =− u2

C3 u2 + u3
+

C2 lnu2

C4

x3(u1,u2,u3) =− 1

C3 u2 + u3
− C2

C4 u2

E = x1 ∂̃1 +

(

C2

C4

− d− 2

2
x2

)

∂̃2 − (d− 1)x3 ∂̃3

when d = 2. In each of these cases the unit vector

field reads e = ∂̃1.

Here are explicit expressions for the Dubrovin-

Frobenius potential in some selected cases.

Example III.6 Let us fix d = 0, C1 =C4 and C2 = 0.

In flat coordinates the metric becomes

η̃ =





C4 0 0

0 0 −C4

0 −C4 0



 ,

the multiplication is given by

∂̃1 ◦ ∂̃1 = ∂̃1

∂̃1 ◦ ∂̃2 = ∂̃2

∂̃1 ◦ ∂̃3 = ∂̃3

∂̃2 ◦ ∂̃2 =−3
√

2

4

√

x3

x2
∂̃2 +

√
2

4

(

x3

x2

)
3
2

∂̃3

∂̃2 ◦ ∂̃3 =−∂̃1 −
3
√

2

4

√

x2

x3
∂̃2 −

3
√

2

4

√

x3

x2
∂̃3

∂̃3 ◦ ∂̃3 =

√
2

4

(

x2

x3

)
3
2

∂̃2 −
3
√

2

4

√

x2

x3
∂̃3

and the prepotential reads

F(x1,x2,x3) =
2
√

2

3
C4 (x

2)
3
2 (x3)

3
2

+
C4

6
(x1)3 −C4 x1 x2 x3 (III.17)

up to second-order polynomial terms. In flat coordi-

nates the unit and the Euler vector fields are respec-

tively written as

e = ∂̃1

and

E = x1 ∂̃1 + 2x2 ∂̃2.

Example III.7 Let us fix d = 2 and C2 = 0. In flat

coordinates the metric becomes

η̃ =





0 0 C4

0 C4 0

C4 0 0



 ,
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the multiplication is given by

∂̃1 ◦ ∂̃1 = ∂̃1

∂̃1 ◦ ∂̃2 = ∂̃2

∂̃1 ◦ ∂̃3 = ∂̃3

∂̃2 ◦ ∂̃2 =−3

2

(

x2

x3

)2

∂̃1 + 3
x2

x3
∂̃2 + ∂̃3

∂̃2 ◦ ∂̃3 =

(

x2

x3

)3

∂̃1 −
3

2

(

x2

x3

)2

∂̃2

∂̃3 ◦ ∂̃3 =−3

4

(

x2

x3

)4

∂̃1 +

(

x2

x3

)3

∂̃2

and the prepotential reads

F(x1,x2,x3) =
C4

2
(x1)2 x3 +

C4

2
x1 (x2)2 +

C4

8

(x2)4

x3

(III.18)

up to second-order polynomial terms. In flat coordi-

nates the unit and the Euler vector fields are respec-

tively written as

e = ∂̃1

and

E = x1 ∂̃1 − x3 ∂̃3.

Example III.8 Let us fix d = 2 and C2 = 1. In flat

coordinates the metric becomes

η̃ =





0 0 C4

0 C4 0

C4 0 0



 ,

the multiplication is given by

∂̃1 ◦ ∂̃1 = ∂̃1

∂̃1 ◦ ∂̃2 = ∂̃2

∂̃1 ◦ ∂̃3 = ∂̃3

∂̃2 ◦ ∂̃2 =− 3

2(C4)2(x3)2
W
(

C4 x3 eC4 x2−1
)2

∂̃1

+
3

C4x3
W
(

C4 x3 eC4 x2−1
)

∂̃2 + ∂̃3

∂̃2 ◦ ∂̃3 =
1

(C4)3(x3)3
W
(

C4 x3 eC4 x2−1
)3

∂̃1

− 3

2(C4)2(x3)2
W
(

C4 x3 eC4 x2−1
)2

∂̃2

∂̃3 ◦ ∂̃3 =− 3

4(C4)4(x3)4
W
(

C4 x3 eC4 x2−1
)4

∂̃1

+
1

(C4)3(x3)3
W
(

C4 x3 eC4 x2−1
)3

∂̃2

and the prepotential reads

F(x1,x2,x3) =
1

24(C4)3x3

(

3W
(

C4 x3 eC4 x2−1
)4

+ 22W
(

C4 x3 eC4 x2−1
)3

(III.19)

+ 63W
(

C4 x3 eC4 x2−1
)2

+ 72W
(

C4 x3 eC4 x2−1
)

)

+
C4

2
(x1)2 x3 +

C4

2
x1 (x2)2

up to second-order polynomial terms, where W de-

notes the principal branch of the Lambert W function

(see3 and references therein). In flat coordinates the

unit and the Euler vector fields are respectively writ-

ten as

e = ∂̃1

and

E = x1 ∂̃1 +
1

C4

∂̃2 − x3 ∂̃3.

C. Dimension n = 4

Let M be a four-dimensional Dubrovin-Frobenius

manifold with product ◦, metric η , unit vector field

e and Euler vector field E . Let us require M to

be regular and the operator L = E ◦ to have a sin-

gle Jordan block near a point m ∈ M. The unit and

the Euler vector fields read respectively e = ∂1 and

E = u1∂1 + u2∂2 + u3∂3 + u4∂4. We already know

from (III.3) that the metric is of the form

η = (u2)−d







F1 F2 F3 F4

F2 F3 F4 0

F3 F4 0 0

F4 0 0 0






(III.20)

for some functions F1, F2, F3, F4 of the variables z =
u3

u2 , w = u4

u2 . In particular, F1 is equal to a constant C1

which vanishes whenever d 6= 0 and from (III.4) and

(III.5) we know that F2, F3, F4 can be expressed as

F2(z,w) =−z∂z f (z,w)−w∂w f (z,w)

− (d− 1) f (z,w)+C2 (III.21)

F3(z,w) = ∂z f (z,w) (III.22)

F4(z,w) = ∂w f (z,w) (III.23)
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for some function f (z,w) and some constant C2. By

the flatness conditions, two expressions for f are pos-

sible, as shown below. This fully classifies regu-

lar four-dimensional Dubrovin-Frobenius manifolds

whose operator L = E ◦ has a single Jordan block.

Theorem III.9 The function f realizing (III.4),

(III.5) is either provided by

f (z,w) =C3 weC4 z + h(z) (III.24)

for some constants C3, C4 and some functiton h(z)
which is solution to

h′′′(z)− 2C4 h′′(z)+C2
4 h′(z)+ 2C3C4 eC4 z = 0

(III.25)

or by

f (z,w) =C3 −
A(z)

2B(z)+w
(III.26)

for some constant C3 and solutions A(z), B(z) to the

following system of ODEs:

A′′ A− (A′)2 + 2
(

C2 +(1− d)C3

)

A = 0 (III.27)

AB′′′−A′ (B′′+ 1
)

+ 2
(

C2 +(1− d)C3

)(

B′+ z
)

+C1 = 0. (III.28)

Proof: By requiring that R1
243 = 0 we get

2∂w f ∂ 3
w f − 3(∂ 2

w f )2 = 0. (III.29)

Let us distinguish two cases: ∂ 2
w f 6= 0 and ∂ 2

w f = 0.

In the first case we obtain

f (z,w) =C(z)− A(z)

2B(z)+w
(III.30)

for some functions A(z), B(z), C(z) while in the sec-

ond one we obtain

f (z,w) = wh1(z)+ h2(z) (III.31)

for some functions h1(z), h2(z).

If f is as in (III.30) then condition R3
343 = 0 implies

that the function C(z) must be equal to a constant C3.

Conditions R3
234 = 0 and R2

322 = 0 yields respectively

A′′ A− (A′)2 + 2
(

C2 +(1− d)C3

)

A = 0

and

AB′′′−A′ (B′′+ 1
)

+ 2
(

C2 +(1− d)C3

)(

B′+ z
)

+C1 = 0.

All the other conditions in (I.1), (I.3), (I.4), (I.5), (I.6),

(I.2) hold without imposing more.

If, on the other hand, f is as in (III.31), condition

R3
234 = 0 implies that

h1(z)h′′1(z)− (h′1(z))
2 = 0. (III.32)

Solutions to (III.32) are given by h1(z) = C3 eC4 z for

some constants C3 and C4, so that

f (z,w) =C3 weC4 z + h2(z).

By imposing condition R2
322 = 0 we get

h′′′2 (z)− 2C4 h′′2(z)+C2
4 h′2(z)+ 2C3C4 eC4 z = 0

that yields

h2(z) =C7 −
eC4 z

C2
4

[

C3 C2
4 z2 −C4 (2C3 +C5)z−C4C6

+ 2C3 +C5

]

when C4 6= 0 and

h2(z) =C5 z2 +C6 z+C7

when C4 = 0 for some constants C5, C6, C7, so that f

becomes respectively

f (z,w) =C3 weC4 z +C7 −
eC4 z

C2
4

[

C3 C2
4 z2 (III.33)

−C4 (2C3 +C5)z−C4 C6 + 2C3 +C5

]

and

f (z,w) =C3 weC4 z +C5 z2 +C6 z+C7. (III.34)

In both cases it turns out that all the other conditions

in (I.1), (I.3), (I.4), (I.5), (I.6), (I.2) hold without im-

posing more.

Proposition III.10 The functions A(z) and B(z) ap-

pearing in (III.27) and (III.28) are expressed via hy-

perbolic functions and second-order polynomials:

A(z) =
C2 +(1− d)C3

C2
4

sinh2
(

C4(z+C5)
)

B(z) =C6 cosh(2C4(z+C5))+C7 sinh(2C4(z+C5))

− z

2

( C1

C2 +(1− d)C3

+ 4C4C7

)

− z2

2
+C8

for some constants C4, C5, C6, C7, C8 if C2 + (1 −
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d)C3 6= 0 and

A(z) =C5

(

cosh(C4 z)+ sinh(C4 z)
)

(III.35)

B(z) =
1

2(C4)3 C5

(

(2C6 C4 C5 +C1)cosh(C4 z)

+ (2C6C4 C5 −C1)sinh(C4 z)
)

− z2

2
+C7 z+C8 (III.36)

for some constants C4, C5, C6, C7, C8 if C2 + (1 −
d)C3 = 0.

Below flat coordinates are computed for selected

other cases, together with some Dubrovin-Frobenius

prepotentials.

Example III.11 Let us consider the case (III.24) with

C3 = 1, C4 = 0 and d 6= 0. Equation (III.25) becomes

h′′′(z) = 0 yielding h(z) = az2 +bz+ c for some con-

stants a,b,c. In particular we choose a = c = 0 and

b = 1, so that h(z) = z and f (z,w) = z+w. When

d 6= 1, in the flat coordinates

x1(u1,u2,u3,u4) = u1

x2(u1,u2,u3,u4) = (u2)−d
(

u3 + u4
)

x3(u1,u2,u3,u4) =
1

2
u2 + u3

x4(u1,u2,u3,u4) =
1

1− d
(u2)1−d

we have

η̃ =







0 1 0 C2

1 0 0 0

0 0 0 1

C2 0 1 0






,

e = ∂̃1,

E = x1 ∂̃1 +(1− d)x2 ∂̃2 + x3 ∂̃3 +(1− d)x4 ∂̃4.

Up to second-order polynomial terms, the prepoten-

tial is given by

F(x1,x2,x3,x4) =
C2

2
(x1)2x4 + x1x3x4 +

1

2
(x1)2x2

+
(d− 1)

d−3
d−1 e

2πi
d−1 (x4)

d−3
d−1

2(d+ 1)(d− 3)

when d /∈ {−1,0,3}, by

F(x1,x2,x3,x4) =
1

4
(x4)2 lnx4 +

C2

2
(x1)2x4 + x1x3x4

+
1

2
(x1)2x2

when d =−1, by

F(x1,x2,x3,x4) =
C2

2
(x1)2x2 + x1x2x3 +

1

2
(x1)2x3

+
1

2
(x1)2x4 +

1

2
x1(x2)2 +

1

6
(x2)3

when d = 0, by

F(x1,x2,x3,x4) =
C2

2
(x1)2x4 + x1x3x4 +

1

2
(x1)2x2

− 1

16
lnx4

when d = 3. The case where d = 1 must be treated

separately. In the flat coordinates

x1(u1,u2,u3,u4) = u1

x2(u1,u2,u3,u4) =
u3 + u4

u2

x3(u1,u2,u3,u4) =
1

2
u2 + u3

x4(u1,u2,u3,u4) = lnu2

the unit and the Euler vector fields are given by

e = ∂̃1, E = x1 ∂̃1 + x3 ∂̃3 + ∂̃4.

The metric is as the one for d 6= 1 and up to second-

order polynomial terms the prepotential is

F(x1,x2,x3,x4) =
1

8
e2x4

+
C2

2
(x1)2x4 + x1x3x4

+
1

2
(x1)2x2.

Example III.12 Let us consider the case (III.24) with

C3 = C4 = 1 and d 6= 0. Equation (III.25) becomes

h′′′(z)− 2h′′(z)+ h′(z)+ 2ez = 0 yielding h(z) = a−
(z2 + bz+ c)ez for some constants a,b,c. In partic-

ular we choose a = b = c = 0, so that h(z) = −z2ez

and f (z,w) = (w − z2)ez. When d 6= 0,1,2 the flat

coordinates are

x1(u1,u2,u3,u4) = u1 +
u2

2(1− d)

x2(u1,u2,u3,u4) =C2 lnu2 − 2(1− d)e
u3

u2

− (u3)2 − u2u4

(u2)2
e

u3

u2

x3(u1,u2,u3,u4) = (u2)−d−1
(

u2u4 − (u3)2
)

e
u3

u2
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+
C2(u

2)1−d

1− d

x4(u1,u2,u3,u4) =
(u2)2−d

2− d
.

In such coordinates the unit and the Euler vector

fields are respectively written as e = ∂̃1 and

E = x1 ∂̃1 +C2 ∂̃2 − (d− 1)x3 ∂̃3 − (d− 2)x4 ∂̃4.

For d =−1 the metric is

η̃ =









0 0 1 0

0 0 0 − 1
4

1 0 0 0

0 − 1
4

0 0









and up to second-order polynomial terms the prepo-

tential is given by

F(x1,x2,x3,x4) =− 1

32

3
√

3C2(x
4)

4
3 ln
(

3x4
)

+
15

128

3
√

3C2(x
4)

4
3 +

1

32

3
√

9(x4)
2
3 x3

+
3

32

3
√

3(x4)
4
3 x2 +

1

2
(x1)2x3

− 1

4
x1x2x4.

For d =−2 the metric is

η̃ =









0 0 1 0

0 0 0 − 1
6

1 0 0 0

0 − 1
6

0 0









and up to second-order polynomial terms the prepo-

tential is given by

F(x1,x2,x3,x4) =− 1

45

√
2C2(x

4)
5
4 ln
(

2
√

x4
)

+
4

75

√
2C2(x

4)
5
4 +

2

45

√
2(x4)

5
4 x2

+
1

72

√
x4 x3 +

1

2
(x1)2x3 − 1

6
x1x2x4.

The case d = 2 must be treated separately. In the flat

coordinates

x1(u1,u2,u3,u4) = u1 − u2

2

x2(u1,u2,u3,u4) =
2(u2)2 + u2u4 − (u3)2

(u2)2
e

u3

u2

x3(u1,u2,u3,u4) =
u2u4 − (u3)2

(u2)3
e

u3

u2 − C2

u2

x4(u1,u2,u3,u4) = lnu2

we have

e = ∂̃1, E = x1 ∂̃1 − x3 ∂̃3 + ∂̃4, η̃ =









0 0 1 0

0 0 0 1
2

1 0 0 0

0 1
2

0 C2









.

Up to second-order polynomial terms the prepotential

is

F(x1,x2,x3,x4) =− 1

16
x3 e2x4

+

(

C2 +
x2

2

)

ex4

+
C2

2
x1(x4)2 +

1

2
x1x2x4 +

1

2
(x1)2x3.

In the case where d = 1, which must be handled sep-

arately as well, flat coordinates are given by

x1(u1,u2,u3,u4) = u1 +
u2

2
− u2

2
lnu2

x2(u1,u2,u3,u4) =
u2u4 − (u3)2

(u2)2
e

u3

u2 +C2 lnu2

x3(u1,u2,u3,u4) =

(

u2u4 − (u3)2

(u2)2
lnu2 + 2

)

e
u3

u2

+
C2

2

(

lnu2
)2

x4(u1,u2,u3,u4) = u2

and

e = ∂̃1, E =

(

x1 − x4

2

)

∂̃1 +C2 ∂̃2 + x2 ∂̃3 + x4 ∂̃4,

η̃ =









0 1 0 0

1 0 0 0

0 0 0 1
2

0 0 1
2

0









.

Up to second-order polynomial terms the prepotential

is

F(x1,x2,x3,x4) =
C2

24
(x4)2

(

lnx4
)3

− 3

16

(

C2 +
2

3
x2

)

(x4)2
(

lnx4
)2

+
7

16

(

C2 +
6

7
x2 +

4

7
x3

)

(x4)2 lnx4

+
1

2
x1x3x4 +

1

2
(x1)2x2
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− 7x2 + 6x3

16
(x4)2.

The last case to be considered separatley is the one

for d = 0, as C1 may not vanish. Here the flat coordi-

nates are

x1(u1,u2,u3,u4) = u1 +
u2

2

x2(u1,u2,u3,u4) =
u2u4 − (u3)2

u2
e

u3

u2 − C1 − 2C2

2
u2

x3(u1,u2,u3,u4) =
u2u4 − (u3)2 − 2(u2)2

(u2)2
e

u3

u2

− C1 − 4C2

4
lnu2

x4(u1,u2,u3,u4) =
(u2)2

2
.

In such coordinates the unit and the Euler vector

fields are respectively e = ∂̃1 and

E = x1 ∂̃1 + x2 ∂̃2 −
(

C2 −
C1

4

)

∂̃3 − 2x4 ∂̃4

and up to second-order polynomial terms the prepo-

tential reads

F(x1,x2,x3,x4) =
3(C1 − 4C2) ln(2x4)− 8C1

72

√
2(x4)

3
2

+
32C2 + 24x3

72

√
2(x4)

3
2

− 1

8
x2 x4 ln(x4)+

C1

6
(x1)3

+
1

2
(x1)2x2 − 1

2
x1 x3 x4.

IV. A MENTION OF THE MULTIPLE-BLOCKS
CASES

As seen in section 2, an expression for the

Dubrovin-Frobenius metric in terms of a function f

realizing (II.11), (II.12), (II.13) can be achieved in

the case where the operator L = E ◦ has multiple Jor-

dan blocks as well. This section is devoted to show

how, in this case, it is possible to reduce the condi-

tions defining a Frobenius manifold to a single ODE

in dimension 3 and to a system of PDEs in dimension

4.

A. The three-dimensional case

In dimension 3, the only regular non-semisimple

case with multiple Jordan blocks is the one of two

blocks, of dimensions 2 and 1 respectively.

We already know that there exists a function f of the

variable

z =
u3 − u1

u2

such that the metric can be written as

η = (u2)−d





F1 F2 0

F2 0 0

0 0 F3





for

F1(z) =− f ′(z)+C1

F2(z) =−z f ′(z)− (d− 1) f (z)+C2

F3(z) = f ′(z)

where C1, C2 are constants. In particular, the quan-

tity F1 +F3 = C1 must vanish whenever d 6= 0. The

flatness condition amounts to the following equation:

z2 (−z f ′− (d− 1) f +C2) f ′ f ′′′ =−z2( f ′′)2
(

z f ′

− 1
2
(−z f ′− (d− 1) f +C2)

)

(IV.1)

+ 2
(

− d z f ′− (−z f ′− (d− 1) f +C2)
)

z f ′ f ′′

+ d ( f ′)2
(

− d z f ′+ d−2
2

(−z f ′− (d− 1) f +C2)
)

.

By solving (IV.1), one can determine explicitly the

function f , which turns out to be expressed in terms

of hyperbolic functions.

B. The four-dimensional case

In dimension 4, three rearrangements in Jordan

blocks are possible. Let us briefly illustrate the re-

sults of computations:

• In the case of two blocks, of sizes 3 and 1 re-

spectively we have:

η = (u2)−d







F1 F2 F3 0

F2 F3 0 0

F3 0 0 0

0 0 0 F4






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where

F1(z,w) =−∂w f (z,w)+C1

F2(z,w) =−z∂z f (z,w)−w∂w f (z,w)

− (d− 1) f (z,w)+C2

F3(z,w) = ∂z f (z,w)

F4(z,w) = ∂w f (z,w)

for some constants C1, C2 and a function f of

the variables

z =
u3

u2
, w =

u4 − u1

u2
.

In particular, the quantity F1 +F4 is a constant

that must vanish whenever d 6= 0.

• In the case of two blocks, both of size 2 we

have:

η = (u2)−d







F1 F2 0 0

F2 0 0 0

0 0 F3 F4

0 0 F4 0







where

F1(z,w) =−∂z f (z,w)+C1

F2(z,w) =−z∂z f (z,w)−w∂w f (z,w)

− (d− 1) f (z,w)+C2

F3(z,w) = ∂z f (z,w)

F4(z,w) = ∂w f (z,w)

for some constants C1, C2 and a function f if

the variables

z =
u3 − u1

u2
, w =

u4

u2
.

In particular, the quantity F1 +F3 is a constant

that must vanish whenever d 6= 0.

• In the case of three blocks, of sizes 2, 1 and 1

respectively we have:

η = (u2)−d







F1 F2 0 0

F2 0 0 0

0 0 F3 0

0 0 0 F4







where

F1(z,w) =−∂z f (z,w)− ∂w f (z,w)+C1

F2(z,w) =−z∂z f (z,w)−w∂w f (z,w)

− (d− 1) f (z,w)+C2

F3(z,w) = ∂z f (z,w)

F4(z,w) = ∂w f (z,w)

for some constants C1, C2 and a function f of

the variables

z =
u3 − u1

u2
, w =

u4 − u1

u2
.

In particular, the quantity F1+F3+F4 is a con-

stant that must vanish whenever d 6= 0.

Let us consider the flatness conditions in the first

case. They amount to the following system of PDEs

for the third derivatives of f :

∂ 3
z f =

3(∂ 2
z f )2

2∂z f
(IV.2)

∂ 2
z ∂w f =

∂z∂w f
(

∂z f ∂z∂w f + 2∂ 2
z f ∂w f

)

2∂z f ∂w f
(IV.3)

∂z∂
2
w f =

1

2w(∂z f )2 ∂w f

(

2w∂z f ∂w f (∂z∂w f )2

(IV.4)

+
(

− ∂w f ∂ 2
z f
(

w∂w f

+(d− 1) f −C2

)

+(∂z f )2
(

(d− 2)∂w f

+w∂ 2
w f
))

∂z∂w f

+ ∂z f ∂ 2
z f ∂w f

(

w∂ 2
w f + d ∂w f

))

∂ 3
w f =

1

2w3 ∂w f (∂z f )3
(−∂z f ∂w f w2 (w∂w f

(IV.5)

+(d− 1) f −C2)(∂z∂w f )2 − ((w3 (∂w f )2

− 2(−(d− 1) f +C2)w2 ∂w f

+(−(d− 1) f −wC1 +C2)∂z f +(−(d− 1) f

+C2)
2 w)∂ 2

z f − 3(∂z f )2 (w3 ∂ 2
w f

− (−4w2 d ∂w f ) 1
3
− d−2

3
∂z f

+(− d
3
(−(d− 1) f +C2)w)))∂w f ∂z∂w f

+ ∂z f ((w2 (w∂w f +(d− 1) f −C2)∂ 2
w f

+(w2 ∂w f − ∂z f +(d− 1)w f

−wC2)d ∂w f )∂w f ∂ 2
z f +(∂z f )2 (w2 (∂ 2

w f )2

−w∂w f (d+ 4)∂ 2
w f − 2(∂w f )2 d)w)).

In the remaining cases flatness conditions are given

by similar but much more cumbersome systems of

third order PDEs. We skip details of these compu-

tations.

We conclude this section by providing two exam-

ples of solutions to the system (IV.2)-(IV.5).
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Example IV.1 If d = 0 then the function

f (z,w) = az+ bw+ c

(where a, b and c are constants) is a solution to

the system (IV.2)-(IV.5). With this choice of f , the

Dubrovin-Frobenius metric turns out to be constant

in canonical coordinates. It reads

η =







C1 − b C2 + c a 0

C2 + c a 0 0

a 0 0 0

0 0 0 b







and up to second-order polynomial terms the

Dubrovin-Frobenius potential is

F(u1,u2,u3,u4) =
C1 − b

6
(u1)3 +

C2 + c

2
(u1)2 u2

+
a

2
(u1)2 u3 +

a

2
u1 (u2)2

+
b

6
(u4)3. (IV.6)

Example IV.2 Let L = E ◦ have two Jordan blocks of

sizes 3 and 1. When looking for a function f of the

form

f (z,w) = az+ g(w)

for some function g(w), the system (IV.2)–(IV.5)

comes down to a single ODE for g(w):

2w2 g′(w)g′′′(w)−w2
(

g′′(w)
)2

+(d+ 4)wg′(w)g′′(w)+ 2d
(

g′(w)
)2

= 0. (IV.7)

This yields

g(w) = a1 +
d2 (a2)

2

16a3 (d− 1)w
+ a2 w− d

2 + a3 w1−d

when d 6= 1 and

g(w) = a1 −
(a2)

2 lnw

16a3

+
a2√

w
+

a3

w

when d = 1, for some constants a1, a2, a3. For in-

stance, when d = 2 in the flat coordinates

x1(u1,u2,u3,u4) =
u3

(u2)2
+

a−C2

au2

+
(a2)

2

4aa3 (u4 − u1)
+

a2 + a3

a(u4 − u1)

x2(u1,u2,u3,u4) = lnu2

x3(u1,u2,u3,u4) = ln(u4 − u1)

x4(u1,u2,u3,u4) = u1

the metric becomes

∼
η =









0 0 0 a

0 a 0 0

0 0 − (2a3+a2)
2

4a3
0

a 0 0 0









and up to second-order polynomial terms the

Dubrovin-Frobenius potential is

F(x1,x2,x3,x4) =− (2a3 + a2)
2

8a3

(

2ex3
+(x3)2 x4

)

+
a

2

(

x1 (x4)2 +(x2)2 x4
)

. (IV.8)

In flat coordinates the unit and the Euler vector fields

are respectively written as

ẽ = ∂̃4

and

Ẽ =−x1 ∂̃1 + ∂̃2 + ∂̃3 + x4 ∂̃4.

V. CONCLUSIONS

In this paper we have studied regular Dubrovin-

Frobenius manifold structures (η ,◦,e,E). Assuming

that the Jordan form of the operator of multiplication

by the Euler vector field L contains a single Jordan

block and using a special set of coordinates intro-

duced by David and Hertling where the operator L

and the Dubrovin-Frobenius metric take the form

L =



















u1 0 0 . . . 0 0

u2 u1 0 . . . 0 0

u3 u2 u1 . . . 0 0
...

...
...

. . .
...

...

un−1 un−2 un−3 . . . u1 0

un un−1 un−2 . . . u2 u1



















,

η =



















.1H .2H .3H . . . .n− 1H .nH

.2H .3H .4H . . . .nH 0

.3H .4H .5H . . . 0 0
...

...
...

. . .
...

...

.n− 1H .nH 0 . . . 0 0

.nH 0 0 . . . 0 0



















,
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we have shown that, up to constants, the metric po-

tential H has the form

H = (u2)1−d f +C2 ϕ(u2)+C1 u1 (V.1)

where

ϕ(u2) =

{

(u2)1−d

1−d
if d 6= 1

lnu2 if d = 1
(V.2)

and f = f (z1, ...,zn−2) with zi = ui+2

u2 for each

i = 1, . . . ,n − 2. In dimension n = 2,3,4 we have

obtained explicit formulas for the metric potential

H (see Table 1 below) and, in some special cases,

we have computed the flat coordinates and the

corresponding prepotential.

n = 2 f =C3

n = 3 f =C3 z+C4 or f = C4
z+C3

+C5.

n = 4 f =C3weC4 z +C7 − eC4 z

C2
4

[

C3C2
4z2

−C4(2C3 +C5)z−C4C6 + 2C3 +C5

]

,

or

f =C3weC4 z +C5 z2 +C6 z+C7,

or

f =C3 − A(z)
2B(z)+w

with z = u3

u2 , w = u4

u2 , A(z) and B(z)
defined as in Proposition III.10.

TABLE I. Metric potential

We also considered the case of multiple Jordan

blocks in dimensions 3 and 4 showing that the

flatness conditions reduce to a third order ODE in

the first case and to a system of third oder PDEs in

the remaining cases, computing the flat coordinates

and the corresponding prepotential in some selected

cases.

According to the general theory the metrics η−1 and

Lη−1 define a flat pencil of metrics. Therefore a

byproduct of our results is a list of non semisisimple

flat pencils of metrics that define the bi-Hamiltonian

structures of the principal hierarchies of the associ-

ated Dubrovin-Frobenius manifolds. The study of

this class of bi-Hamiltonian structures and of their

bi-Hamiltonian deformations in the non semisimple

case is at a preliminary stage and only a few results

are available so far (see for instance7). The explicit

examples obtained in this work might be the starting

point of future investigations.
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